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Abstract: Two-sided robotic assembly lines are employed to assemble large-sized high-volume products, 

where robots are allocated to the workstations to perform the tasks and human workers are replaced for 

achieving lower cost and greater flexibility in production. In the two-sided robotic assembly lines, setup 

times are unavoidable and it has been ignored in most of the reported works. There has been limited 

attention on this till date. This paper focusses on the robotic two-sided assembly line with consideration 

of sequence-dependent setup times and robot setup times. A new mixed integer linear programming 

model is developed with the objective of optimizing the cycle time. Due to the NP-hard nature of the 

considered problem, this paper proposes a set of metaheuristics to solve this considered problem, where 

two main scenarios with low and high setup time’s variability are considered. Computational results 

verify that this new model is capable to achieve the optimal solutions for small-size instances whereas 

the simple adoption of the published mathematical model might produce wrong solutions for the 

considered problem. A comprehensive study with 13 algorithms demonstrates that the two variants of 

artificial bee colony algorithm and migrating bird optimization algorithm are capable to achieve the 

optimality for small-size instances and to obtain promising results for large-size instances. 

 

Keywords: Assembly line balancing; Robotic two-sided assembly line; Setup times; Integer 

programming; Metaheuristic 

 

1. Introduction 

Assembly line balancing problem has been classified as a well-known combinatorial 

optimization problem [1, 2], which has great applications in modern day industries for 

assembling different kinds of products. The basic model of the assembly line balancing 

problem is the simple assembly line balancing problem, where a set of tasks are 

allocated to a minimum number of workstations with the fulfillment of cycle time 

constraint and precedence constraint. Cycle time constraint ensures the total operation 

time in one workstation is less than a give cycle time; the precedence constraint ensures 

the predecessors of one task are allocated to the former workstation or the former 

position in the same workstation. The simple assembly line balancing problem might 

be criticized to be too theoretical, and hence the variants of the assembly line balancing 
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problem are studied extensively due to the diverse application in real world.  

Among the variants in the layouts of assembly lines, two-sided assembly lines are 

widely utilized to assemble large-size large-volume products [3-5], such as cars, trucks 

and motorcycles and etc. In this type of assembly line, two operators operate the tasks 

in parallel on the two facing workstations, referred as one mated-station. Modern 

assembly lines are fitted with robots by replacing human workers to operate the 

assembly tasks due to their higher flexibility and reduced cost [6]. These type of 

assembly lines are referred as robotic assembly line and one of the popular problems 

researched is robotic assembly line balancing problem (RALBP). RALBP mainly deals 

with both the general task assignment, the robot selection and allocation. Two-sided 

robotic assembly line are also extensively used by industries and robotic two-sided 

assembly line balancing problem (RTALBP) inherits the main features of two-sided 

assembly line balancing and RALBP, and it involves two sub-problems: task 

assignment and robot allocation.  

In the literature, research classify RALBP into two main types: RALBP-I to minimize 

the workstation number and RALBP-II to minimize the cycle time. The following 

paragraph presents the most relevant literature reported on the two types of RALB 

problems.  

Rubinovitz and Bukchin [7] presented the first study on RALBP-I, and later Rubinovitz 

et al. [8] employed a branch and bound method. More heuristics, exact methods and 

metaheuristic methods are being utilized to tackle RALBPs. Levitin et al. [9] utilized 

the genetic algorithm and Gao et al. [6] presented an improved genetic algorithm with 

local search. Yoosefelahi et al. [10] studied the multi-objective RALBP-II using three 

multi-objective evolution strategies. Daoud et al. [11] employed several hybrid methods 

to maximize the line efficiency and to balance the different tasks. Çil et al. [12] 

presented a goal programming technique to solve multi-objective RALBP-II using a 

case study. Borba et al. [13] presented an iterative beam search heuristic and a branch, 

bound and remember algorithm to solve RALBP-II. There are more contributions 

reported where different objectives are studied. Mukund Nilakantan et al. [14] 

presented the first study to minimize energy consumption using a particle swarm 

optimization. Nilakantan et al. [15] studied the carbon footprint and presented a multi-

objective co-operative co-evolutionary algorithm to minimize carbon footprint and 

maximum line efficiency. Nilakantan et al. [16] studied the cost-based RALBP-II with 

the objective of minimizing assembly line cost and cycle time utilizing differential 

evolution algorithm. Pereira et al. [17] investigated the cost-oriented RALBP using a 

memetic algorithm. Due to the diverse industrial environments, many researches are 

presented to study the RALBP with different assembly line layouts or multiple products. 

Çil et al. [18] studied the parallel RALBP-II with a beam search approach. Regarding 

the literature on mixed-model RALBP, Çil et al. [19] tackled the mixed-model using a 

beam search method to optimize the cycle time. Rabbani et al. [20] presented two multi-

objective algorithms to solve multi-objective mixed-model RALB-II problem. Li et al. 

[21] formulated the simultaneous balancing and sequencing robotic mixed-model 

assembly lines, and they also presented two algorithms to tackle large-size instances. 

Following paragraphs will present the studies reported on two-sided assembly 



balancing problem (TALBP) and related problems. The applied methods include 

heuristic methods [3, 22], exact methods [23-25] and metaheuristic methods [26-32], 

to cite just a few. Detailed review of these problems and methods are presented in Zhang 

et al. [33], Li et al. [4] and Abdullah Make et al. [5].  

However, the studies on RTALBP are limited. Li et al. [34] formulated the RTALBP-II 

and employed a co-evolutionary particle swarm optimization algorithm. Li et al. [35] 

later developed two discrete cuckoo search algorithms, which outperform the co-

evolutionary particle swarm optimization algorithm. Li et al. [36] studied the energy 

consumption in two-sided RALBP-II, and employ a multi-objective simulated 

annealing algorithm to minimize energy consumption and cycle time simultaneously. 

Aghajani et al. [37] tackle the two-sided mixed-model RALBP with setup time with a 

mathematical formulation and a simulated annealing algorithm. 

In most reported studies, the setup times are generally ignored or assumed that it is 

included into the task operation time. Nevertheless, in some occasions the setup times 

cannot be ignored and need to be studied separately [38] especially in today’s flexible 

manufacturing systems. In general, the setup times are divided into two types: 

sequence-independent setup time and sequence-dependent setup time [39]. Sequence-

independent setup time depends on the current task, whereas sequence-dependent setup 

time depends on the preceding task and the current task. In real world applications, it is 

very necessary to consider sequence-dependent setup times between tasks in a two-

sided robotic assembly line. To perform a task directly before another task may 

influence the latter task inside the station because some setup may be required for 

performing the latter task. If a task is assigned next to another task in a same station, it 

may require a setup time. If such a setup is required, it must be calculated to find the 

finishing time of that task. Additionally, if a task is assigned as the last one to a station, 

then it may require a setup to complete the first task assigned to that station since the 

tasks are performed cyclically [40]. Following paragraph presents the most relevant 

literature reported on setup times with regards to assembly lines.  

Andrés et al. [38] presented the first study on sequence-dependent setup times. Scholl 

et al. [41] study the different situation of setup times, where sequence-dependent task 

time increments are investigated. Afterwards, Yolmeh and Kianfar [42] studied the 

assembly line balancing and scheduling problems with setup times utilizing a hybrid 

genetic algorithm. Scholl et al. [43] extended the model in Andrés et al. [38] with a new 

model formulation and present a set of heuristic methods to tackle this problem. Özcan 

and Toklu [40] studied the sequence-dependent setup times in two-sided assembly line. 

Seyed-Alagheband et al. [44] presented a simulated annealing algorithm to solve the 

assembly line balancing and scheduling problems with setup times to minimize the 

cycle time. Hamta et al. [45] studied the multi-objective assembly line balancing 

problem with flexible operation times, sequence-dependent setup times and learning 

effect, and they implemented hybrid particle swarm optimization to tackle this problem. 

Akpinar and Baykasoğlu [46] investigated the mixed model assembly line balancing 

problems with setup times utilizing multiple colony bee algorithms. Another recent 

study is carried out by Janardhanan et al. [47], where RALBP-II with setup times are 

investigated. They formulated the problem as a mixed integer programming model and 



presented a set of metaheuristics to tackle the large-size instances for a straight robotic 

assembly line. 

From the aforementioned literature review, it can be concluded that there is only one 

related paper considering the setup times in RTALBP by Aghajani et al. [37] and there 

is only one metaheuristic, simulated annealing algorithm in Aghajani et al. [37], is 

developed to solve the RTALBP with setup times. However, the model presented by 

Aghajani et al. [37] has several drawbacks in dealing with the setup times and might 

achieve possibly wrong solutions (see Section 5.2). Hence, it is necessary to develop 

new and accurate mathematical model to deal with the setup times in two-sided robotic 

assembly line. It is important to utilize new metaheuristic algorithms to solve the 

considered problem and identify the most effective ones as industries require efficient 

schedules in a reasonable computation time Hence, this study presents two major 

contributions to the literature as follows. 1) Firstly, a new corrected mathematical model 

is developed to formulate the RTALBP with setup times, and an illustrated example is 

used to demonstrate that this model could obtain the correct solution. This model might 

be regarded as the first correct model to for RTALBP with setup times. 2) This type 

problem has a high-combinatorial structure that makes it difficult to obtain an optimal 

solution when the problem size increases. A set of 13 high-performing algorithms are 

extended to solve the considered problem. Due to the consideration of the setup times 

and the optimization of two sub-problems, all the algorithms utilize new encoding 

scheme and decoding procedure. This is for the first time 12 of these 13 algorithms are 

applied to solve the RTALBP with setup times. A comprehensive experimental study 

on two sets of newly generated instances is carried out to test the performance of these 

implemented algorithms and identify the best-performing ones. The comparative study 

demonstrates that migrating bird optimization algorithm and two variants of artificial 

bee colony algorithm are the most effective methods. 

The remainder of this paper is organized as follows. Section 2 introduces the problem 

description and mathematical formulation in detail. Section 3 presents the proposed 

metaheuristic methodologies, along with detailed encoding and coding. An illustrated 

example is provided in Section 4 to highlight the main features of the RTALBP with 

setup times. Later, Section 5 presents the computational study to test the developed 

model and the implemented algorithms. Finally, Section 6 concludes this research and 

gives several future research directions. 

 

2. Mathematical model 

Among the reported works as presented in the previous section, there is only one paper 

presenting the mathematical model for mixed-model RTALBP with setup times [37]. 

However, this model has several drawbacks in dealing with the setup times as presented 

in Section 5.2, this model might lead to achieving wrong solutions. Hence, this paper 

formulates a new mathematical model based on Li et al. [34] and Janardhanan et al. 

[47]. The problem assumptions are presented in section 2.1 and the detailed 

mathematical model proposed is presented in section 2.2.  

 



2.1 Problem description  

This research tackles the RTALBP with setup times with the objective of minimizing 

the cycle time on the basis of Andrés et al. [38], Özcan and Toklu [40], Janardhanan et 

al. [47] and Aghajani et al. [37]. Study by Scholl et al. [43] divides the setup times into 

two categories: forward setup times and backward setup times. Specifically, forward 

setup occurs when task j is operated immediately after task i in the same cycle; 

backward setup occurs when task i is the last one operated at the work piece of a cycle 

p and the worker has to move to the next work piece which is to be assembled in cycle 

p+1. This situation does not apply to robotic assembly line where positions of robots 

and products are usually fixed when executing the tasks observed in industry[47]. The 

assumptions of the considered RTALBP with setup times are presented as follows.  

1) Only a single type of product is assembled in the robotic two-sided assembly line. 

2) The operation times of tasks and robot setup times of tasks depend on the type of the 

robot processing them, and they are known and deterministic.  

3) The sequence-dependent setup times are considered following Janardhanan et al. [47] 

and Aghajani et al. [37], where only forward setup times in Scholl et al. [43] are 

considered. The sequence-dependent setup time between two tasks depends on the type 

of the robot processing them, and it is known and deterministic. 

4) Each robot is allocated to one workstation and the number of the available robots is 

equal to the number of workstations.  

5) The times for material handling, loading and unloading are negligible or included 

into the operation times of tasks. 

6) Work-in-process inventory and parallel workstation are not considered.  

 

The considered RTALBP with setup times can be described as allocating a set of Nt 

tasks to a set of Nj mated-stations, each equipped with one robot, with the objective of 

minimizing the cycle time while satisfying cycle time constraint, direction constraint 

and precedence constraint. Cycle time demands that the all the completion times of 

tasks are less than or equal to the cycle time, where the robot setup times of tasks and 

sequence-dependent setup times are considered. In direction constraint, the tasks are 

portioned into three types: L-type tasks that must be allocated to the left side, R-type 

tasks that must be allocated to the right side, and E-type tasks that can be allocated to 

both side. Precedence constraint demands the predecessors of one task are allocated to 

the former mated-station (workstation) or the former position in the same mated-station. 

Figure 1 illustrates on layout of RTALBP with 9 tasks and 4 workstations. One mated-

station comprises of two facing workstations, and mated-stations are connected by a 

transportation system, such as belt conveyor. Each workstation is equipped with one 

robot to operate the assigned tasks, and the tasks on latter mated-station are operated 

only when the tasks on the former mated-stations are completed.  
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Figure 1 Layout of robotic two-sided assembly line 

 

Figure 2 depicts the detailed task assignment with setup times on the mated-station 2 in 

Fig. 1, where the 𝑠  refers to the robot setup time and 𝑠𝑒  refers to the sequence-

dependent setup time. Regarding task 8, there are two setup times before the operation 

of task 8: sequence-dependent setup time between task 4 and task 8 by robot 4 and robot 

setup time of task 8 by robot 4. For the task 4 in the first position, the robot setup time 

of task lies before the operation of task 4, and the sequence-dependent setup time 

between task 8 and task 4 lies at the rear of this workstation. Due to the utilization of 

two sides and precedence relations, task 7 cannot be operated before task 4, resulting 

in sequence depended idle time. Sequence depended idle time is the special idle time in 

RTALBP, and it might be reduced by optimizing the task sequence on each workstation. 

In short, the RTALBP with setup times needs to deal with the robot allocation, task 

assignment to workstations and the scheduling of task sequence on each workstation. 
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Figure 2 The detailed assignment of tasks with setup times on one mated-station 

 

2.2 Newly developed model 

The utilized notations in the mathematical model, decision variables and indicator 

variable are presented below.  

 

Indices: 

𝑖, ℎ, 𝑝 Task index. 

𝑗, 𝑔 Mated-station index 

𝑘, 𝑓 Side of the line; 𝑘, 𝑓 = {
1     if the side is left

2  if the side is right
. 

(𝑗, 𝑘) The 𝑘 side workstation of the mated-station 𝑗. 

𝑠 A position inside the task operation sequence of a workstation (𝑗, 𝑘); 

𝑟 Robot index.  



Parameters: 

𝐼 Set of tasks in the precedence diagram, 𝐼 = {1,2, … , 𝑖, … , 𝑁𝑡}.  

𝐽 Set of mated-stations, 𝐽 = {1,2, … , 𝑗, … , 𝑁𝑗}.  

𝑊(𝑗, 𝑘) Subset of all tasks that can be assigned to workstation (𝑗, 𝑘). 

‖𝑊(𝑗, 𝑘)‖ Number of tasks in subset 𝑊(𝑗, 𝑘).  

𝑊𝑚𝑎𝑥  
Maximum number of tasks that can be assigned to a workstation, 𝑊𝑚𝑎𝑥 =

max(𝑗,𝑘){‖𝑊(𝑗, 𝑘)‖}. 

𝑁𝑇(𝑗, 𝑘) 
Set of operation sequence of tasks in a workstation (𝑗, 𝑘) ; 𝑁𝑇(𝑗, 𝑘) =

{1,2, ⋯ , 𝑠 ⋯ , ‖𝑊(𝑗, 𝑘)‖} ∀𝑗 ∈ 𝐽, 𝑘 = 1,2. 

𝑅 Set of robot types, 𝑅 = {1,2, … , 𝑟, … , 𝑁𝑟}. 

𝐴𝐿 Set of tasks which should be performed on the left-side workstation, 𝐴𝐿 ⊆ 𝐼. 

𝐴𝑅 Set of tasks which should be performed on the right-side workstation, 𝐴𝑅 ⊆ 𝐼.  

𝐴𝐸 Set of tasks which can be performed on left or right side of a mated-station, 𝐴𝐸 ⊆ 𝐼. 

𝑃0 Set of tasks that have no immediate predecessors. 

𝑃(𝑖) Set of immediate predecessors of task 𝑖. 

𝑃𝑎(𝑖) Set of all predecessors of task 𝑖. 

𝑆(𝑖) Set of immediate successors of task 𝑖. 

𝑆𝑎(𝑖) Set of all successors of task 𝑖. 

𝐶(𝑖) 

Set of tasks whose operation directions are opposite to that of task 𝑖 , 𝐶(𝑖) =

{
𝐴𝐿   if 𝑖 ∈ 𝐴𝑅
𝐴𝑅   if 𝑖 ∈ 𝐴𝐿

∅      if 𝑖 ∈ 𝐴𝐸
. 

𝐾(𝑖) 

The set of integers which indicate the preferred operation direction of task 𝑖, 𝐾(𝑖) =

{

{1}    if 𝑖 ∈ 𝐴𝑅
{2}    if 𝑖 ∈ 𝐴𝐿
{1,2}  if 𝑖 ∈ 𝐴𝐸

  .  

𝜓 A large positive number. 

𝑡𝑖𝑟 Processing time of task 𝑖 by robot 𝑟. 

𝑡𝑠𝑢𝑖𝑝𝑟  
Setup time between two successive task 𝑖  and 𝑝  with robot 𝑟  if 𝑖  and 𝑝  are 

assigned to the same workstation. 

𝑡𝑠𝑟𝑖𝑟  Setup time of a robot 𝑟 for processing task 𝑖.  

Decision variables: 

𝐶𝑇 Cycle time. 

𝑥𝑖𝑗𝑘𝑠  
1, if task 𝑖 is assigned to workstation (𝑗, 𝑘) in position 𝑠 of its operation sequence; 0, 

otherwise.    

𝑤𝑖𝑗𝑘  
1, if task 𝑖 is the last task in the operation sequence of tasks assigned to workstation 

(𝑗, 𝑘); 0, otherwise. 

𝑦𝑟𝑗𝑘  1, if robot 𝑟 is allocated to workstation (𝑗, 𝑘); 0, otherwise.   

𝑡𝑖
𝑓
 Completion time of task 𝑖. 

Indicator variables: 

𝑧𝑖𝑝𝑗𝑘 
1, if task 𝑖 is performed immediately before task 𝑝 in the same workstation  (𝑗, 𝑘) in 

the same cycle or in the next cycle; 0, otherwise. 

 

The detailed mathematical formulations are developed on the basis of the mathematical 

model reported in Li et al. [34] and Janardhanan et al. [47] and are presented below.  



 

Min  𝐶𝑇 (1) 

∑ ∑ ∑ 𝑥𝑖𝑗𝑘𝑠 = 1

𝑠∈𝑁𝑇(𝑗,𝑘)

  ∀𝑖 ∈ 𝐼

𝑘∈𝐾(𝑖)𝑗∈𝐽

 (2) 

∑ 𝑥𝑖𝑗𝑘𝑠

𝑖∈𝑊(𝑗,𝑘)

≤ 1   ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾(𝑖), 𝑠 ∈ 𝑁𝑇(𝑗, 𝑘) (3) 

∑ 𝑥𝑖𝑗𝑘,𝑠+1

𝑖∈𝑊(𝑗,𝑘)

− ∑ 𝑥𝑖𝑗𝑘𝑠

𝑖∈𝑊(𝑗,𝑘)

≤ 0  ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾(𝑖), 𝑠 ∈ 𝑁𝑇(𝑗, 𝑘) ∧ 𝑠 < ‖𝑊(𝑗, 𝑘)‖ (4) 

∑ ∑ ∑ (𝑊𝑚𝑎𝑥 ∙ (𝑔 − 1) + 𝑠) ∙

𝑠∈𝑁𝑇(𝑔,𝑘)

𝑥ℎ𝑔𝑘𝑠

𝑘∈𝐾(ℎ)𝑔∈𝐽

 

≤ ∑ ∑ ∑ (𝑊𝑚𝑎𝑥 ∙ (𝑗 − 1) + 𝑠) ∙

𝑠∈𝑁𝑇(𝑗,𝑘)

𝑥𝑖𝑗𝑘𝑠

𝑘∈𝐾(𝑖)𝑗∈𝐽

  

∀𝑖 ∈ 𝐼 − 𝑃0, ℎ ∈ 𝑃(𝑖) 

(5) 

𝑡𝑖
𝑓

≤ 𝐶𝑇  ∀𝑖 ∈ 𝐼 (6) 

𝑡𝑖
𝑓

− 𝑡ℎ
𝑓

+ 𝜓 (1 − ∑ 𝑥𝑖𝑗𝑘𝑠

𝑠∈𝑁𝑇(𝑗,𝑘)

) + 𝜓 (1 − ∑ ∑ 𝑥ℎ𝑗𝑓𝑠

𝑠∈𝑁𝑇(𝑗,𝑘)𝑓∈𝐾(ℎ)

) ≥ ∑ 𝑡𝑖𝑟 ∙ 𝑦𝑟𝑗𝑘

𝑛𝑟

𝑟=1

  

, ∀𝑖 ∈ 𝐼 − 𝑃0, ℎ ∈ 𝑃(𝑖), 𝑘 ∈ 𝐾(𝑖), 𝑗 ∈ 𝐽 

(7) 

𝑡𝑝
𝑓

− 𝑡𝑖
𝑓

+ 𝜓 (1 − ∑ 𝑥𝑝𝑗𝑘𝑠

𝑠∈𝑁𝑇(𝑗,𝑘)∧𝑠>1

) + 𝜓 (1 − ∑ 𝑥𝑖𝑗𝑘𝑠

𝑠∈𝑁𝑇(𝑗,𝑘)∧𝑠<‖𝑊(𝑗,𝑘)‖

) + 𝜓(1 − 𝑧𝑖𝑝𝑗𝑘)

≥ ∑(𝑡𝑝𝑟 + 𝑡𝑠𝑟𝑝𝑟 + 𝑡𝑠𝑢𝑖𝑝𝑟) ∙ 𝑦𝑟𝑗𝑘

𝑛𝑟

𝑟=1

   

∀(𝑖, 𝑝)|𝑖 ≠ 𝑝 ∧ 𝑖, 𝑝 ∈ 𝑊(𝑗, 𝑘), 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾(𝑖)⋂𝐾(𝑝) 

(8) 

𝑡𝑖
𝑓

+ ∑ 𝑡𝑠𝑢𝑖𝑝𝑟 ∙ 𝑦𝑟𝑗𝑘

𝑛𝑟

𝑟=1

≤ 𝐶𝑇 + 𝜓(1 − 𝑥𝑝𝑗𝑘1) + 𝜓(1 − 𝑤𝑖𝑗𝑘) + 𝜓(1 − 𝑧𝑖𝑝𝑗𝑘) 

∀(𝑖, 𝑝)|𝑖 ≠ 𝑝 ∧ 𝑖, 𝑝 ∈ 𝑊(𝑗, 𝑘), 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾(𝑖)⋂𝐾(𝑝) 

(9) 

𝑥𝑖𝑗𝑘𝑠 + 𝑥ℎ𝑗𝑘,𝑠+1 ≤ 1 + 𝑧𝑖ℎ𝑗𝑘  

 ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾(𝑖)⋂𝐾(ℎ), 𝑠 ∈ 𝑁𝑇(𝑗, 𝑘) ∧ 𝑠 < ‖𝑊(𝑗, 𝑘)‖, (𝑖, ℎ)|𝑖 ≠ ℎ ∧ 𝑖, ℎ ∈ 𝑊(𝑗, 𝑘) ∧ ℎ

∉ 𝑃(𝑖) 

(10) 

𝑥𝑖𝑗𝑘𝑠 − ∑ 𝑥ℎ𝑗𝑘,𝑠+1

∀ℎ∈𝑊(𝑗,𝑘)|𝑖≠ℎ∧ℎ∉𝑃(𝑖)

≤ 𝑤𝑖𝑗𝑘  

 ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾(𝑖), 𝑖 ∈ 𝑊(𝑗, 𝑘), 𝑠 ∈ 𝑁𝑇(𝑗, 𝑘) ∧ 𝑠 < ‖𝑊(𝑗, 𝑘)‖ 

(11) 



𝑤𝑖𝑗𝑘 + 𝑥ℎ𝑗𝑘1 ≤ 1 + 𝑧𝑖ℎ𝑗𝑘  

 ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾(𝑖)⋂𝐾(ℎ), (𝑖, ℎ)|𝑖 ≠ ℎ ∧ 𝑖, ℎ ∈ 𝑊(𝑗, 𝑘) ∧ 𝑖 ∉ 𝑃(ℎ) 

(12) 

𝑡𝑖
𝑓

+ 𝜓(1 − 𝑥𝑖𝑗𝑘𝑠) ≥ ∑ (𝑡𝑖𝑟 + 𝑡𝑠𝑟𝑖𝑟) ∙ 𝑦𝑟𝑗𝑘

𝑛𝑟

𝑟=1
   

∀𝑖 ∈ 𝐼, 𝑠 ≤ ‖𝑊(𝑗, 𝑘)‖, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾(𝑖) 

(13) 

∑ 𝑦𝑟𝑗𝑘

𝑛𝑟

𝑟=1
= 1  ∀𝑗 ∈ 𝐽, 𝑘 = 1,2 (14) 

∑ ∑ 𝑦𝑟𝑗𝑘

2

𝑘=1

𝑛𝑗

𝑗=1

= 1  ∀𝑟 ∈ 𝑅 (15) 

 

The objective in expression (1) minimizes the cycle time. Constraint (2) deals with the 

precedence constraint and the task assignment, indicating that a task must be assigned 

to only one position inside one workstation. Constraint (3) means that there should be 

no more than one task in each position inside one workstation, and constraint (4) 

denotes that the tasks should be assigned in increasing positions inside one workstation. 

Constraint (5) handles precedence constraint, ensuring that the predecessor ℎ of task 

𝑖 should be allocated to the former mated-station or the former position inside the same 

workstation. Constraint (6) is the cycle time constraint, ensuring that all the tasks are 

finished within the given cycle time. Constraint (7) ensures that the successor  𝑖 of 

task ℎ cannot be operated until task ℎ is completed. Constraint (8) deals with the task 

assignment inside one workstation, and it is reduced to 𝑡𝑝
𝑓

− 𝑡𝑖
𝑓

≥ ∑ (𝑡𝑝𝑟 + 𝑡𝑠𝑟𝑝𝑟 +𝑛𝑟
𝑟=1

𝑡𝑠𝑢𝑖𝑝𝑟) ∙ 𝑦𝑟𝑗𝑘  when task 𝑖  is performed immediately before task 𝑝  in the same 

workstation. Constraint (9) deals with the setup time between the last task and the first 

task inside one workstation, indicating that the cycle time is larger than or equal to the 

completion time of the last task and the setup time between the last task and the first 

task inside one workstation. Constraints (10-12) calculates the values of 𝑧𝑖𝑝𝑗𝑘  and 

𝑤𝑖𝑗𝑘 . Specifically, constraint (10) ensures that 𝑧𝑖𝑝𝑗𝑘  is equal to 1 when task 𝑖  is 

performed immediately before task 𝑝  in the same workstation. Constraint (11) 

indicates the 𝑤𝑖𝑗𝑘 is equal to 1 when task 𝑖 is the last task in the operation sequence 

of tasks assigned to one workstation. And constraint (12) ensures that 𝑧𝑖ℎ𝑗𝑘  is equal 

to 1 when task  𝑖 is the last task and task ℎ is the first task inside one workstation. 

Constraint (13) indicates that the completion time of task 𝑖 is larger than its operation 

time and setup time, and it is reduced to 𝑡𝑖
𝑓

≥ ∑ (𝑡𝑖𝑟 + 𝑡𝑠𝑟𝑖𝑟) ∙ 𝑦𝑟𝑗𝑘
𝑛𝑟
𝑟=1  when 𝑥𝑖𝑗𝑘𝑠 =

0 . Constraint (14) and constraint (15) deal with the robot allocation, ensuring a 

workstation is allocated with one robot and a robot must be allocated to only one 

workstation.  

The optimization of CT in expression (1) is one of the most important and practical 



objectives in real applications and researches, and it helps the smooth the assembly line 

and increase the line efficiency. In real applications, there are multiple conflicting 

objectives, including balancing and trading-off the resources, and machine/robot loads. 

As this study aims at testing the model utilizing the standard general solver and there is 

no general solver that can solve the RTALBP with multiple conflicting objective 

effectively, the multiple conflicting objectives are not considered in this study. However, 

these realistic objectives can be achieved by extending the developed model. It is to be 

noted that this developed model is not the simple adaption of the model in mixed-model 

RALBP in Aghajani et al. [37]. The published model has several drawbacks in dealing 

with the setup times, and the proposed model on the contrary has remedied these 

possible drawbacks. Specifically, the new model proposed new indicator 

variables 𝑧𝑖𝑝𝑗𝑘 and takes the sequence-dependent setup time between the last task and 

the first task inside one workstation into account. This new model and the model by 

Aghajani et al. [37], which is presented in Appendix A are compared in Section 5.2 in 

detail.  

 

3. Proposed metaheuristic methodologies 

There are many algorithms in solving kinds of combinatorial optimization problems, 

whereas most of these algorithms cannot be applied to solve the considered problem 

due to the special characteristics of the considered problem. There are three main 

characteristics for the considered problem: A) The considered problem is discrete 

optimization problem; B) there are two sub-problems needed to be optimized 

simultaneously; C) two vectors as presented in Section 3.1 are necessary for decoding 

to determine the task permutation vector and robot allocation respectively. And the 

published algorithms in solving other optimization problems might not produce 

promising results due to the discrete attribute and other special features of the RTALBP 

observed in the preliminary experiments. For instance, most of the reported algorithms 

applied to solve the general two-sided assembly line balancing problems [4] cannot be 

applied to solve RTALBP directly and need major modifications. Hence, this study 

mainly selects the algorithms applied to solve RALBP or RTALBP. A set of 13 

algorithms are implemented and modified to solve this new RTALBP with setup times. 

The proposed encoding and decoding are presented at first and all the algorithms utilize 

the same encoding and decoding. Later, this section provides the detailed descriptions 

of the tested algorithms. They are categorized into three types: local search algorithm, 

swarm intelligence algorithm (original edition) and co-evolutionary swarm intelligence 

algorithm (co-evolutionary edition). For the algorithms in each category, only one or 

two high-performing algorithms are described in detail.  

 

3.1 Solution representation  

This research utilizes task permutation vector and robot allocation vector for encoding 

based on the ones reported in Li et al. [34] and Janardhanan et al. [47]. Task permutation 

vector determines the task assignment; robot allocation decides the robot allocation. An 

example with 9 tasks and 4 robots is illustrated in Figure 3. In task permutation vector, 

the tasks in former positions have higher priority and are assigned at first, e.g. task 2 is 



assigned at first. In robot allocation vector, the robots are allocated to the workstations 

in sequence, e.g. the first robot 2 is allocated to the first workstation (1, 1).  

 

Task permutation 3 2 1 6 9 4 5 7 8

Robot allocation 2 3 4 1

 

Figure 3 Example of encoding scheme 

To transfer the encoding to a feasible solution, a decoding procedure and an initial cycle 

time are needed. The decoding procedure is described as follows. In Step 3, one task is 

assignable when direction constraint, precedence constraint and cycle time constraint 

are satisfied when the current mated-station is not the last mated-station. The cycle time 

constraint, on the contrary, is allowed to be violated when the current mated-station is 

the last mated-station in order to obtain the complete infeasible solution. And the 

maximum value of the completions times of tasks on all the mated-station is regarded 

as the achieved cycle time. The detailed decoding procedure is presented in Appendix 

B and a detailed procedure to transfer the encoding vectors into a feasible solution when 

solving the small-size instance in Section 4 is also presented in Appendix C.  

 

Algorithm 1: Decoding procedure for RTALBP with setup times 

Input: Task permutation, robot allocation and initial cycle time 

Step 1: Open a new mated-station. 

Step 2:  Decide the allocated robots to two sides of the current mated-station. 

Step 3:  

Select the assignable tasks for both sides fulfilling direction constraint, precedence constraint 

and cycle time constraint (except for the tasks on the last mated-station).  

% Regarding the cycle time constraint, the constraint (9) in section 2.2 must be satisfied: For 

any task 𝑖, the sum of the completion time of task 𝑖 and the setup time between task 𝑖 and the 

first task on the same workstation is less than the given cycle time (𝑡𝑖
𝑓

+ ∑ 𝑡𝑠𝑢𝑖𝑝𝑟 ∙ 𝑦𝑟𝑗𝑘
𝑛𝑟
𝑟=1 ≤

𝐶𝑇).  

Step 4:  

If no assignable task exists and there remains some unassigned tasks 

Execute Step 1; 

Else 

  Execute Step 5; 

Step 5:  

Determines the side to allocate the tasks. 

//The side with larger capacity is selected or the left side is selected by default when both sides 

have the same capacities. 

Step 6:  
Select one task from assignable task set and assign it to the selected side.  

//The task with the minimum sequence depended idle time and in the former position is selected. 

Step 7:  Update the remaining capacities of the two sides.  

Step 8:  

If all tasks have been assigned 

Terminate the decoding procedure.  

Else  

  Go to Step 3. 

Output: The achieved cycle time and detailed task assignment and robot allocation 



Determining the proper initial cycle time is another important problem and an iterative 

mechanism in Li et al. [4] and Janardhanan et al. [47] is utilized to update the cycle 

time. The iterative mechanism is embedded into the evolution process of algorithms 

and it is explained in Algorithm 2. This iterative mechanism has two main advantages. 

Firstly, the iterative mechanism is fast, as each individual only need to execute one 

decoding procedure (or several times if new best cycle time is found). It avoids the 

problem of executing the decoding procedure for many times to find the proper cycle 

time. Secondly, all the individuals are evaluated using the same initial cycle time and 

thus minor improvements are preserved.  

 

Algorithm 2: Iterative mechanism for cycle time update 

Step 1: 

Set the initial cycle time CT and best cycle time 𝐶𝑇𝐵𝑒𝑠𝑡 as a very large positive number.  

% The initial cycle time CT is set as 𝐶𝑇 = 2 ∙ ∑ ∑ 𝑡𝑖𝑟𝑟∈𝑅𝑖∈𝐼 (𝑁𝑟 ∙ 2 ∙ 𝑁𝑗)⁄  where the utilized indices 

and parameters are defined in Section 2.1, 𝑁𝑟 is the number of utilized robots and 𝑁𝑗 is the number 

of mated-stations. 

Step 2:  
This individual is decoded with CT as the initial cycle time using Algorithm 1.  

Update 𝐶𝑇𝐵𝑒𝑠𝑡 if the smaller cycle time is obtained and update 𝐶𝑇 using 𝐶𝑇 = 𝐶𝑇𝐵𝑒𝑠𝑡 − 1. 

Step 3:  

All individuals are decoded with CT as the initial cycle time using Algorithm 1.  

If smaller best cycle time is found 

Update 𝐶𝑇𝐵𝑒𝑠𝑡 and update 𝐶𝑇 using 𝐶𝑇 = 𝐶𝑇𝐵𝑒𝑠𝑡 − 1; 

All the individuals are re-decoded using CT as the initial cycle time and update 𝐶𝑇𝐵𝑒𝑠𝑡 when 

necessary. 

Endif 

Step 4:  
Go to Step 3 if the termination criterion is not met; or terminate and output the best cycle time 𝐶𝑇𝐵𝑒𝑠𝑡, 

otherwise. 

 

3.2 Local search algorithms 

This paper tests three local search algorithms such as simulated annealing (SA) 

algorithm, restarted simulated annealing (RSA) algorithm [21] and late acceptance hill-

climbing (LAHC) algorithm [30]. The main procedure of SA is presented in Algorithm 

3. The main property of SA is accepting a worse solution with a certain probability or 

SA is accepting a worse solution when Rand ≤ 𝑒𝑥𝑝−△ (𝑇×𝐹𝑖𝑡(𝑆))⁄  where Rand is a 

random number within [0, 1], 𝑇 is the temperature, 𝐹𝑖𝑡(𝑆) is the objective value for 

solution 𝑆  and △= Fit(𝑆′) − Fit(𝑆) ( S′  is the neighbor solution of the current 

solution 𝑆). Clearly, the probability decreases with the algorithm iterating. RSA firstly 

utilized by Nilakantan et al. [48] is an improved edition of SA algorithm to enhance 

exploration and avoid being trapped into local optima. RSA replaces the current 

temperature T with a restart temperature TR when no improvement on the best cycle is 

achieved for a number of consecutive times.  

  



 

Algorithm 3: Procedure of SA algorithm for RTALBP  

Set T:=T0 and obtain an initial solution S;  

While (Termination criterion is not satisfied)  

For n:=0 to N do 

Obtain a neighbor solution S′;  

Calculate △= Fit(𝑆′) − Fit(𝑆); 

% Fit(𝑆) is the fitness of solution S. 

If (△≤ 0) 𝑆 ⟵ 𝑆′; 

Else If (Rand ≤ 𝑒𝑥𝑝−△ (𝑇×𝐹𝑖𝑡(𝑆))⁄ )  𝑆 ⟵ 𝑆′;   

% Rand is a randomly generated number within [0,1] 

Endfor 

𝑇 = 𝑇 × 𝛼 

Endwhile 

%Parameter T0 is the initial temperature; parameter α is the cooling 

rate; parameter N is the iteration time before the temperature updates. 

 

3.3 Swarm intelligence algorithms 

This paper implements six swarm intelligence algorithms: particle swarm optimization 

(PSO) algorithm [34], genetic algorithm (GA) [47], discrete cuckoo search (DCS) 

algorithm[35], bees algorithm (BA) [46], two artificial bee colony (ABC) 

algorithms[49], referred to as ABC1 and ABC2, and migrating bird optimization 

algorithm (MBO) [47]. This section mainly provides the detailed description of 

artificial bee colony algorithms and MBO algorithm for their superiority and the 

detailed applications of other methods (GA, PSO and DCS) is available in Janardhanan 

et al. [47].  

The main procedure of ABC algorithm (ABC1) is presented in Algorithm 4. ABC1 

starts with initializing the swarm, and later the main loop consisting of employed bee 

phase, onlooker phase and scout phase is iteratively repeated until a termination 

criterion is met. In employed bee phase, a neighbor solution is generated for each 

individual and greedy acceptance is applied. In onlooker phase, an individual is selected 

using roulette wheel selection and subsequently neighbor solution is generated, and 

later greedy acceptance is applied again. Scout phase is utilized to emphasize 

exploration and it replaces a duplicated solution or the solution with the worst fitness 

with a neighbor solution of a randomly selected solution from the remaining individuals. 

The applied scout phase has a large probability in achieving high-quality solution, and 

it outperforms the method of replacing the selected solution with a randomly generated 

solution by a significant margin in preliminary experiments. As the onlooker phase is 

quite complex in selecting one individual using roulette wheel selection, ABC2 utilizes 

a binary tournament selection method to select a solution. Specifically, two solutions 

are randomly selected and the better one is selected. It can be noted that ABC2 is much 

easier in implementation.  

  



Algorithm 4: Procedure of ABC algorithm for RTALBP  

Initialize the PS food sources;  

While (Termination criterion is not satisfied)  

For p:=1 to pop do    % Employed bee phase 

Generate a neighbor solution 𝑝′ of the individual p; 

Replace p with 𝑝′when Fit(𝑝′) ≤ Fit(𝑝); 

Endfor 

For p:=1 to pop do    % Onlooker phase 

Obtain the probability value for each individual; 

Select one individual S using roulette wheel selection scheme; 

Generate a neighbor solution 𝑆′ of the individual S; 

Replace S with 𝑆′when Fit(𝑆′) ≤ Fit(𝑆) 

Endfor 

% Scout phase 

Select one duplicated solution or the solution with the worst fitness;            

Replace selected individual with the neighbor solution of a randomly selected 

solution from the remained individuals; 

Endwhile 

%Parameter PS is population size; Fit(𝑝) is the fitness of solution p. 

 

The main procedure of MBO algorithm is illustrated in Algorithm 5. MBO starts with 

population initialization, and later the main cycle comprising leader improvement, 

block improvement and leader replacement is iteratively repeated until a termination 

criterion is met [50]. Within the cycle, leader improvement attempts to improve the 

leader by generating k neighbor individuals. Afterward, block improvement tries to 

improve the remaining individuals by evaluating x unused best neighbor solutions of 

that in the front and its (k-x) neighbor individuals. After executing leader improvement 

and block improvement for consecutively m times, the leader replacement is employed 

to move the leader individual to the end and forward the immediate following 

individuals. The main feature of the MBO is the benefit mechanism which shares the 

neighbor solutions with the individual in the back. The benefit mechanism promotes 

evolution of the whole population and replaces the poor individuals with the high-

quality neighbor solutions of other individuals very fast. To avoid being premature or 

trapped into local optima, MBO utilizes a simulated annealing-like acceptance criterion 

when the current best cycle time remained unchanged for a number of iterations. The 

incumbent individual S is replaced with the new neighbor solution 𝑆′ when Fit(𝑆′) ≤

Fit(𝑆)  or with a probability of 𝑒𝑥𝑝−(Fit(𝑆′)−Fit(S)) (𝑇×𝐹𝑖𝑡(𝑆))⁄  , where Fit(𝑆)  is the 

fitness of solution S and T is the temperature. The value of T is updated using 𝑇 = 𝑇 ×

𝛼 after each iteration, where 𝛼 is the cooling rate. If the improvement on the current 

best cycle time is obtained, the original greedy acceptance is again applied. In summary, 

this new acceptance criterion enhances the exploration capacity of the MBO algorithm 

by accepting poor individual, and hence helps the algorithm to escape from being 

trapped into local optima. 



Algorithm 5: Procedure of MBO algorithm for RTALBP  

Initialize the individuals;  

While (Termination criterion is not satisfied)  

For i:=1 to m do    

For j:=1 to k do                     %Leader improvement 

Generate a neighbor solution S′ of the leader S; 

Replace S with 𝑆′when Fit(𝑆′) ≤ Fit(𝑆); 

Endfor 

Replace S with the best individual S′′ from k neighbor solutions  S′  when Fit(𝑆′′) ≤

Fit(𝑆); 

Set a large value as the Fit(𝑆′) when  Fit(𝑆′) is equal to the Fit(𝑆) for each neighbor 

solution S′; 

For each individual on left and right sides  %Block improvement 

For j:=1 to (k-x) do 

Generate a neighbor solution 𝑝′ of this individual p; 

Replace p with 𝑝′when Fit(𝑝′) ≤ Fit(𝑝); 

Endfor 

Replace p with the best individual 𝑝′′from the (k-x) neighbor solutions 𝑝′ and x unused 

best neighbor solution of the individual in the front when Fit(𝑝′′) ≤ Fit(𝑝); 

Set a large value as the Fit(𝑝′) when  Fit(𝑝′) is equal to the Fit(𝑝) for each neighbor 

solution 𝑝′; 

Endfor 

Endfor 

Move the leader individual to the end;   %Leader replacement 

Forward the immediately following individuals;  

Endwhile 

%Parameter m denotes that leader improvement and block improvement are executed 

consecutively m times before conducting the leader replacement procedure; parameter k is the 

number of neighbor solutions for the leader individual; parameter x is the number of shared 

neighbors of the individual in the front. 

 

3.4 Co-evolutionary swarm intelligence algorithms 

This research implements three co-evolutionary swarm intelligence algorithm: co-

evolutionary particle swarm optimization (CoPSO) [34], co-evolutionary cuckoo 

search (CoCS) [35] and co-evolutionary genetic algorithm (CoGA) [21]. This section 

mainly presents the procedure of the CoGA algorithm due to its superiority, and the 

other two methods have the similar procedure in co-evolution and detailed description 

are available in the cited articles. The main procedure of CoGA is illustrated in 

Algorithm 6. CoGA consists of two sub-swarms: task assignment sub-swarm and robot 

allocation sub-swarm. CoGA starts with the initialization of two sub-swarms and 

obtaining the best solution by testing the ith individuals from two sub-swarms, where 

the best solution is utilized to connect the two sub-problemsTask assignment sub-

swarm evolution and robot allocation sub-swarm evolution are iteratively repeated until 

a termination criterion is met. In task assignment sub-swarm, the individuals are 



decoded utilizing the task assignment vector in task assignment sub-swarm and the 

robot allocation vector in the best solution. Similarly, in robot allocation sub-swarm, 

the individuals are decoded utilizing the robot allocation vector in robot allocation sub-

swarm and the task assignment vector in the best solution. To avoid being trapped into 

local optima, a restart mechanism is employed when the best solution remains 

unchanged for consecutive RT iterations. The restart mechanism performs neighbor 

operations for two times on the two vectors of the best solutions randomly to obtain a 

number of solutions (set to 200). The best one among them is selected and later, the 

incumbent best solution is replaced with the selected new individual. Afterwards, two 

sub-swarms are reinitialized in a way the incumbent individuals are replaced with the 

new ones by conducting two times’ neighbor operations. This restart mechanism aims 

at increasing the exploration capacity and help the CoGA method to escape from getting 

trapped into local optima.  

 

Algorithm 6: Procedure of CoGA algorithm for RTALBP  

Set i=0 and initialize two sub-swarms for two sub-problems; 

Obtain and select the best solution by testing the ith inviduals from two sub-swarms; 

While (Termination criterion is not satisfied)  

%Task assignment sub-swarm evolution 

Decode using the task assignment vectors in task assignment sub-swarm and the other vector 

from the best solution;  

Obtain new sub-swarm utilizing tournament selection, crossover operator and mutation operator; 

Update the best solution when better fitness is achieved;  

Replace the last individual in the sub-swarm with the corresponding vector in the best solution; 

%End of task assignment sub-swarm evolution 

%Robot allocation sub-swarm evolution 

Decode using the robot allocation vectors in robot allocation sub-swarm and the other vector from 

the best solution;  

Obtain new sub-swarm utilizing tournament selection, crossover operator and mutation operator; 

Update the best solution when better fitness is achieved;  

Replace the last individual in the sub-swarm with the corresponding vector in the best solution; 

%End of robot allocation sub-swarm evolution 

If (New best solution is obtained)  i:=0; Else i:=i+1; 

If (𝑖 ≥ RT)  % Restart mechanism 

Conduct restart mechanism to update the best solution and the two sub-swarms; 

Endif 

Endwhile 

% RT denotes that the restart mechanism is conducted when the best solution remained unchanged 

in RT iterations.  

 

3.5 Neighbor structures 

For all the algorithms, it is necessary to achieve new generation or new solution 

utilizing neighbor structures. In this study, the insert operator and swap operator are 

utilized to obtain the new neighbor solution of one incumbent one. And two-point 



crossover operator are utilized to combine two incumbent individuals to obtain two new 

individuals. Figure 4 depicts an example of insert operator and swap operator in task 

permutation vector and robot allocation vector. For one algorithm, the task permutation 

vector or robot allocation vector is randomly selected at first, and later the insert 

operator or swap operator is randomly applied to obtain a new vector. Insert operator 

and swap operator have been widely applied in literature for different kinds of assembly 

line balancing problems, and the utilization of two neighbor operators helps in 

increasing search space and enhances exploration capacity. Figure 5 also depicts an 

example of utilizing two-point crossover operator for task assignment vectors.  

For instance, in SA algorithm presented in Algorithm 3, the neighbor solution S′ 

achieved by executing the insert operator or swap operator on the incumbent solution 

S. For CoGA algorithm in Algorithm 6, the two-point crossover operator is utilized for 

crossover operator, and insert operator or swap operator is randomly selected as 

mutation operator. In this paper, all the implemented algorithms share the same 

neighbor structures for a fair comparison.  

Task permutation 2 3 6 1 9 4 5 7 8

Robot allocation 2 3 4 1

Swap

Insert

Insert

Swap

 

Figure 4 Insert operator and swap operator for two vectors 
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Figure 5 Two two-point crossover operator for task assignment vectors 

 

4. An illustrated example 

This section illustrates an example problem with 9 tasks and 2 mated-stations to 

highlight the main features of the considered problem. Table 1 presents the precedence 

relations, the preferred directions of tasks and the operation times of tasks by robots. 

For instance, the preferred direction of task 2 is ‘R’, denoting that task 2 must be 

allocated to the right side and the operation times of task 2 by robots are 4, 3, 2 and 4; 

respectively. Table 2 and Table 3 illustrate the sequence-dependent setup times between 

tasks and robot setup times before operating a task. In Table 2, the sequence-dependent 

setup times between tasks depend on the robots, and they are different when tasks are 

operated by different robots. Namely, the sequence-dependent setup times are 

determined by the sequence of executing two tasks and the robots to operate them. In 

Table 3, it is observed that the robot setup times depend on the robots, and different 



robots might need different setup times before operating a task. Figure 6 illustrates the 

optimal robot allocation and task assignment by the model in Section 2, where 𝑠 refers 

to the robot setup time and 𝑠𝑒 refers to the sequence-dependent setup time. It is clear 

that the optimal cycle time is 4.9, and the robot 2, robot 3, robot 4 and robot 1 are 

allocated to workstation (1,1), workstation (1,2), workstation (2,1) and workstation (2,2) 

and there are sequence-dependent setup time and robot setup time before operating one 

task. For instance, there are sequence-dependent setup time and robot setup time before 

task 1. For the task 3 in the first position of workstation (1,1), the sequence-dependent 

setup time lies at the rear of this workstation. From the figure, it is observed that all the 

constraints are satisfied and the model in Section 2 produces the correct solution for 

this tested instance. 

Table 1 Precedence relations and operation times of tasks 

Tasks Successors 
 Operation times 

Preferred direction Robot 1 Robot 2 Robot 3 Robot 4 

1 4 L 2 2 2 2 

2 5, 6 R 4 3 2 4 

3 6 E 2 2 2 2 

4 7 L 3 3 4 2 

5 7, 8 R 1 1 1 1 

6 9 E 1 1 1 1 

7  E 2 2 2 2 

8  L 2 2 2 2 

9  E 1 1 1 1 

 

Table 2 Sequence-dependent setup times 

Robot 1 Robot 2 
 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

1 0 0.1 0.3 0.3 0.1 0.2 0.3 0.3 0.2 0 0.3 0.2 0.3 0.2 0.1 0.2 0.3 0.1 

2 0.2 0 0.2 0.2 0.2 0.3 0.3 0.1 0.2 0.2 0 0.2 0.1 0.1 0.1 0.2 0.3 0.3 

3 0.3 0.1 0 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0 0.3 0.3 0.3 0.3 0.3 0.3 

4 0.2 0.3 0.3 0 0.3 0.3 0.1 0.1 0.3 0.2 0.1 0.3 0 0.1 0.3 0.2 0.2 0.1 

5 0.2 0.1 0.1 0.2 0 0.3 0.3 0.2 0.2 0.3 0.3 0.3 0.3 0 0.3 0.1 0.3 0.3 

6 0.1 0.2 0.3 0.3 0.3 0 0.2 0.1 0.2 0.3 0.1 0.3 0.1 0.2 0 0.2 0.2 0.3 

7 0.2 0.1 0.2 0.1 0.1 0.3 0 0.1 0.2 0.2 0.3 0.3 0.2 0.2 0.3 0 0.2 0.1 

8 0.3 0.2 0.2 0.3 0.1 0.3 0.2 0 0.2 0.1 0.2 0.2 0.2 0.1 0.3 0.3 0 0.3 

9 0.2 0.1 0.3 0.1 0.3 0.2 0.3 0.2 0 0.2 0.2 0.3 0.2 0.1 0.2 0.3 0.3 0 
 Robot 3 Robot 4 

1 0 0.1 0.3 0.2 0.2 0.3 0.1 0.2 0.2 0 0.3 0.3 0.2 0.3 0.2 0.2 0.3 0.3 

2 0.3 0 0.3 0.2 0.3 0.1 0.1 0.3 0.1 0.3 0 0.3 0.3 0.1 0.2 0.2 0.2 0.2 

3 0.1 0.3 0 0.1 0.1 0.3 0.2 0.2 0.3 0.1 0.2 0 0.2 0.3 0.2 0.2 0.2 0.3 

4 0.1 0.1 0.1 0 0.3 0.2 0.2 0.3 0.2 0.2 0.1 0.2 0 0.1 0.1 0.3 0.3 0.1 

5 0.3 0.2 0.1 0.1 0 0.3 0.2 0.3 0.2 0.3 0.1 0.3 0.2 0 0.3 0.2 0.3 0.3 

6 0.3 0.3 0.3 0.3 0.3 0 0.3 0.3 0.1 0.1 0.3 0.2 0.1 0.2 0 0.2 0.3 0.3 

7 0.2 0.3 0.1 0.3 0.1 0.2 0 0.2 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0 0.1 0.2 

8 0.1 0.2 0.2 0.3 0.3 0.1 0.2 0 0.3 0.2 0.2 0.3 0.1 0.2 0.2 0.2 0 0.3 

9 0.3 0.1 0.1 0.1 0.2 0.3 0.2 0.3 0 0.2 0.2 0.1 0.1 0.2 0.3 0.3 0.2 0 

 

Table 3 Setup times of one robot before operating a task 

Tasks 
Setup times of robots 

Robot 1 Robot 2 Robot 3 Robot 4 

1 0.2 0.3 0.3 0.3 

2 0.3 0.3 0.2 0.2 

3 0.1 0.1 0.2 0.3 

4 0.2 0.2 0.2 0.2 

5 0.2 0.3 0.2 0.2 

6 0.3 0.1 0.2 0.2 

7 0.3 0.2 0.3 0.3 

8 0.2 0.1 0.3 0.3 
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Figure 6 Detailed task assignment and robot allocation by the proposed model 

 

5. Computational study 

This section presents the computational study, where the experimental design is first 

introduced. Later, the new proposed model is compared with the simple model from the 

reported work in Aghajani et al. [37]. Finally, a comprehensive comparative study on 

the results obtained using the 13 implemented metaheuristic algorithms.  

 

5.1 Experimental design  

As there are no available benchmark instances for RTALBP with setup times, this paper 

generates two sets of datasets on the basis of the utilized dataset in Li et al. [34]: low 

variability and high variability. The dataset in Li et al. [34] contains 39 problems with 

different task number or mated-station numbers: P9 with 2 and 3 mated-stations, P12 

with 2, 3, 4 and 5 mated-stations, P16 with 2, 3, 4 and 5 mated-stations, P24 with 2, 3, 

4 and 5 mated-stations, P65 with 4, 5, 6, 7 and 8 mated-stations, P148 with 4, 5, 6, 7, 8, 

9, 10, 11 and 12 mated-stations, P205 with 4, 5, 6, 7, 8, 9, 10, 11,12, 13 and 14 mated-

stations. The precedence relations of this dataset are taken from that in the traditional 

two-sided assembly line, and the operation time of task i by robot r (𝑡𝑖𝑟) are randomly 

generated between [𝑡𝑖 × 0.8, 𝑡𝑖 × 1.2 ]  where 𝑡𝑖  is the original operation time in 

TALBP. In this study, for each set of dataset, the precedence relations, the operation 

times of tasks by robots and the direction constraints are taken from Li et al. [34] 

directly. The setup times are generated following Andrés et al. [38] and Janardhanan et 

al. [47] as follows. 

 

Low variability: The sequence-dependent setup time 𝑡𝑠𝑢𝑖𝑝𝑟 and the robot setup time 

𝑡𝑠𝑟𝑖𝑟 are randomly generated based on the uniform discrete distribution 𝑈[0, 0.25 ∗

𝑚𝑖𝑛∀ℎ∈𝐼𝑡ℎ𝑟].  

High variability: The sequence-dependent setup time 𝑡𝑠𝑢𝑖𝑝𝑟 and the robot setup time 

𝑡𝑠𝑟𝑖𝑟 are randomly generated based on the uniform discrete distribution 𝑈[0, 0.75 ∗

𝑚𝑖𝑛∀ℎ∈𝐼𝑡ℎ𝑟]. 



For each dataset, there are 39 problems with different task number or robot number. 

With two levels of variability in setup times there are 78 instances in total. The detailed 

datasets are available upon request. All the implemented methodologies are tested 

utilizing the same termination criterion utilized in Janardhanan et al. [47]; the 

termination criterion is the maximum elapsed CPU time equal to Nt×Nt×τ milliseconds, 

where Nt is the number of tasks and τ is set to 10, 20, 30, 40, 50 and 60; respectively. 

The utilization of six termination criteria allows the observation of the algorithms’ 

performance from short running time to large running time.  

To calibrate the parameters of the tested algorithms, each parameter of one tested 

algorithm is set to 2 or 3 high-performing levels on the basis of the reported literature 

to keep the calibration at manageable level. This study employs a Design of 

Experiments approach where each parameter is regarded as a controlled factor. All the 

combinations of the parameters are tested in full factorial experimental design and each 

combination of the parameters solve ten large-size instances for 10 times. As different 

instances are utilized, the relative percentage deviation (RPD) is utilized to transfer the 

achieved the cycle times using  𝑅𝑃𝐷 = 100 ∙ (𝐶𝑇𝑠𝑜𝑚𝑒 − 𝐶𝑇𝐵𝑒𝑠𝑡) 𝐶𝑇𝐵𝑒𝑠𝑡⁄  , where 

𝐶𝑇𝑠𝑜𝑚𝑒 is the cycle time achieved by one combination and 𝐶𝑇𝐵𝑒𝑠𝑡 is the best cycle 

time obtained by all the combinations of the parameters. Finally, the ANOVA test is 

conducted to select the most effective level for each parameter, where the average 𝑅𝑃𝐷 

of 10 instances in one run is regarded as the response variable following Li et al. [34] 

and Janardhanan et al. [47]. Namely, there are 10 average RPD values for each 

combination that are utilized in the ANOVA test. The selected parameters of the tested 

and re-implemented algorithms are presented in Table 4. 

All the experiment results will be available in public domain like Research gate and 

also available on request. All the tested algorithms are coded in C++ programming 

language and executed on a set of virtual computers in one tower type server. This 

server is equipped with two Intel Xeon E5-2680 v2 processors at 2.8 GHz with 20 

processor cores in each processor, and a total of 64 GB of RAM memory. Each virtual 

computer is equipped with 1 processor core and 2 GB of RAM memory.  

 

Table 4 Selected for the tested and re-implemented algorithms 

Algorithm Parameters Selected value 

SA 

Initial temperature 1.0 

Cooling rate 0.95 

Iteration time before the temperature updates 500 

RSA 

Initial temperature 0.5 

Cooling rate 0.9 

Iteration time before the temperature updates 500 

Restart temperature 0.0001 

The number of consecutive times before replacing the current 

temperature with the restart temperature 
100 

LAHC List length 10 

PSO 

Population size 160 

Number of swarms 8 

Parameter c  0.7 

GA 

Population size 160 

Selection type 
Binary tournament 

selection 

Crossover probability 0.6 

Mutation probability 0.4 

DCS Population size 20 



Abandonment rate  0.1 

BA 

Population size 40 

Number of employed bees 20 

Number of best employed bees 2 

Number of onlookers for each best employed bee 10 

Number of onlookers for each employed bee except for the best 

employed bee 
1 

ABC1 Population size 20 

ABC2 Population size 20 

MBO 

Population size 5 

Number of neighbor solutions for the leader individual 11 

Number of shared neighbors of the individual in the front 5 

The number of executed consecutively times before conducting 

the leader replacement procedure 
20 

The number of iterations where the current best cycle time 

remained unchanged before utilizing the simulated annealing-

like acceptance criterion 

500 

Restart temperature in the simulated annealing-like acceptance 

criterion 
0.2 

Cooling rate in the simulated annealing-like acceptance criterion 0.95 

CoPSO 

Population size 80 

Number of swarms 8 

Parameter c  0.7 

The number of iterations when the best solution remained 

unchanged before conducting the restart mechanism 
50 

CoGA 

Population size 160 

Selection type 
Binary tournament 

selection 

Crossover probability 0.4 

Mutation probability 0.6 

The number of iterations when the best solution remained 

unchanged before conducting the restart mechanism 
50 

CoCS 

Population size 20 

Abandonment rate  0.1 

The number of iterations when the best solution remained 

unchanged before conducting the restart mechanism 
200 

 

5.2 Model evaluation  

This section evaluated the newly developed model in Section 2 and compared with the 

published model which is shown in Appendix A. Figure 7 illustrates the detailed task 

assignment and robot allocation by the model in Appendix A. From the figure, it is 

observed that the model in Appendix A has three drawbacks. Firstly, the robot setup 

time for the first task on one workstation is ignored. Secondly, the robot setup times 

and sequence-dependent setup times among the tasks, which have precedence relations 

and are allocated to the same workstation, are ignored. Thirdly, the setup time between 

the last task and the first task in one workstation is ignored.  

The proposed model, on the contrary, is capable to rectify these drawbacks and the task 

assignment and robot allocation shown in Figure 6 using the new proposed model 

satisfies all the constraints.  

Table 5 presents the results obtained by the newly developed model using CPLEX 

solver in the General Algebraic Modeling System 23.0 with running time limited to 

3600 seconds (s). The best cycle times by all implemented algorithms are also presented 

here. From this table, it is observed that the proposed model achieves optimal solutions 

for three former instances with lower or high setup times. The implemented 

metaheuristic algorithms obtain the same values, and clearly the results obtained by the 

model are in accordance with that of the algorithms. However, the model in Appendix 



A achieves smaller and wrong cycle times (see Figure 7). It is observed that the 

RTALBP with setup times are much more complex than RTALBP. CPLEX solver could 

obtain 10 optimal solutions for RTALBP and only three optimal solutions for RTALBP 

with low or high setup times. Hence, metaheuristic methodologies are proposed and are 

necessary to achieve optimal or near optimal solutions in acceptable computation time. 
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Figure 7 Detailed task assignment and robot allocation by the model in Appendix A 

 

Table 5 Results by the newly developed model 

Instances Nj 

CPLEX solver Algorithms 

No setup Low setup High setup No setup Low High 

CT CPU(s) CT CPU(s) CT CPU(s) CT CT CT 

P9 2 4 0.21 4.9 16.76 5.7 52.56 4 4.9 5.7 

P9 3 3 0.18 3.3 69.89 3.9 67.74 3 3.3 3.9 

P12 2 6 0.38 6.5 947.38 7.5 891.04 6 6.5 7.5 

P12 3 4 0.36 5.4 3600 5.5 3600 4 4.4 5.5 

P12 4 4 1.45 - - - - 4 4.1 4.6 

P12 5 3 1.33 - - - - 3 3.2 3.4 

P16 2 21 1.57 - - - - 21 22.1 25.5 

P16 3 14 0.92 - - - - 14 15.2 17 

P16 4 13 412.15 - - - - 13 13.3 14 

P16 5 9 2.38 - - - - 9 9.7 11.1 

 

5.3 Comparative study  

This section presents a comprehensive and statistical evaluation of the implemented 

algorithms. All the instances are solved for 10 independent times under six termination 

criteria, and the achieved cycle times are recorded. As different instances are tackled, 

the cycle times are transferred using relative percentage deviation or RPD. Namely, 

there are 78 × 10 × 6 data to evaluate the algorithms’ performance. This rich dataset 

provides a better observation of the algorithms’ performance under different 

termination criteria and helps obtain sound findings. For space reasons, this section 

mainly presents the average RPD results to have a better evaluation of the algorithms’ 

performance. It is to be noted that, this study has also been calculated best cycle time, 

the average cycle time and standard deviation for one instance by each algorithm. As it 

is difficult to evaluate different instances using these evaluation metrics, the average 



RPD is selected as the evaluation metric and the detailed results regarding other 

evaluation metrics are available upon request. 

Table 6 illustrates the average RPD values of all the instances in 10 repetitions by all 

the tested algorithms. These algorithms might be divided into four categories, in which 

the algorithms show similar performances. The best performing category includes 

MBO, ABC2 and ABC1, the second-best performing category includes SA and RSA, 

the third-best performing category includes RCoGA, CoCS and DCS, and the worst 

performing category includes PSO, CoPSO, GA, LAHC and BA. For the three best 

performing algorithms in the first category, they all employ efficient techniques to 

enhance exploration and escape from being trapped into local optima. Specifically, 

MBO utilizes new acceptation criterion to accept poor solutions with a certain 

probability; ABC1 and ABC2 employ the scout phase to replace the duplicated or the 

worst performing individual with neighbor solution. Local search methods, SA and 

RSA, belong to the second-best performing category. SA and RSA outperform eight 

algorithms (PSO, CoPSO, GA, LAHC, BA, RCoGA, CoCS and DCS), whereas they 

are outperformed by three swam intelligence based algorithms (MBO, ABC2 and 

ABC1). PSO and CoPSO are the two worst performers.  

It is to be noted that the performance of the algorithms in Table 6 are in accordance 

with those reported in Janardhanan et al. [47], however they seem to be in conflict with 

that reported in Li et al. [35]. The reason behind this is that the proposed two ABC 

methods replace the selected solution with a neighbor solution of a randomly selected 

solution from the remaining individuals in scout phase to have a new high-quality 

solution. Another main reason is that all the tested algorithms utilize the iterative 

mechanism presented in Section 3.1, which ensures that the individuals are evaluated 

using the same initial cycle time, to preserve the minor improvements. As the iterative 

mechanism improves the algorithm’s performance by a significant margin observed in 

preliminary experiments, it is applied in this computational test.  

 

Table 6 The average RPD values by tested algorithms 

Low setup times 

Algorithm Nt×Nt×10 Nt×Nt×20 Nt×Nt×30 Nt×Nt×40 Nt×Nt×50 Nt×Nt×60 

PSO 7.97  7.51  7.26  7.13  7.02  6.92  

CoPSO 4.41  3.73  3.46  3.31  3.18  3.10  

GA 3.67  3.28  3.05  2.89  2.73  2.62  

LAHC 4.02  3.43  3.11  2.86  2.70  2.58  

BA 4.04  3.26  2.89  2.62  2.43  2.27  

RCoGA 2.61  2.33  2.19  2.10  2.06  2.03  

CoCS 3.19  2.67  2.33  2.22  2.10  2.02  

DCS 3.02  2.54  2.26  2.07  1.95  1.88  

SA 2.97  2.37  2.05  1.85  1.67  1.55  

RSA 2.92  2.35  2.02  1.82  1.65  1.53  

MBO 2.31  1.77  1.52  1.35  1.24  1.15  

ABC2 2.54  1.80  1.48  1.32  1.16  1.05  

ABC1 2.49  1.79  1.50  1.26  1.13  1.02  

High setup times 

Algorithm Nt×Nt×10 Nt×Nt×20 Nt×Nt×30 Nt×Nt×40 Nt×Nt×50 Nt×Nt×60 

PSO 8.45  8.12  7.92  7.76  7.66  7.57  

CoPSO 4.75  4.12  3.86  3.69  3.56  3.45  

GA 4.46  3.99  3.74  3.53  3.35  3.25  

LAHC 4.41  3.77  3.43  3.19  3.02  2.89  

BA 4.47  3.70  3.31  3.06  2.87  2.70  

RCoGA 2.87  2.69  2.57  2.50  2.44  2.41  



CoCS 3.63  3.08  2.82  2.64  2.55  2.48  

DCS 3.37  2.82  2.56  2.42  2.28  2.15  

SA 3.48  2.82  2.51  2.29  2.13  2.01  

RSA 3.57  2.91  2.59  2.37  2.20  2.07  

MBO 2.58  2.07  1.84  1.66  1.54  1.44  

ABC2 2.78  2.14  1.84  1.64  1.50  1.37  

ABC1 2.79  2.11  1.79  1.58  1.43  1.32  

 

To have a better observation of the performance of algorithms on different instances, 

Table 7 shows the average RPD of one dataset for ten repetitions of RTALBP with low 

setup times and a termination criterion of running time limited to Nt×Nt×60 

milliseconds. It can be observed that ABC1 is the best performer with the average RPD 

of 1.02, and the remaining algorithms are listed in the increasing order of the average 

RPD such as ABC2, MBO, RSA, SA, DCS, CoCS, RCOGA, BA, LAHC, GA, CoPSO 

and PSO. ABC1 outperforms ABC2, MBO, RSA and SA for 18, 20, 30 and 27 cases; 

respectively. Moreover, the algorithms show slightly different performance under 

different termination criteria. For example, MBO is the best performer for RTALBP 

with low setup times with the running time limited to Nt×Nt×10 milliseconds based on 

the average RPD value. It can be concluded that MBO, ABC2 and ABC1 in the best 

performing category are the best three algorithms due to much smaller average RPD.  

 

In order to have an observation of the algorithms under different termination criteria 

and ascertain that the observed difference is statistically significant, this section also 

conducts statistical analysis, using the ANOVA test[51] after conducting the normality 

test and equal variance test. In the ANOVA test, algorithm types and termination 

criteria are regarded as two controllable factors and the average RPD of all instances in 

one run is utilized as the response variable based on the procedure in Janardhanan et al. 

[47]. The ANOVA test shows that P-values of algorithm types or termination criteria 

are less than 0.001 in solving RTALBP with low setup times and high setup times, 

indicating that there are statistically significant differences in algorithm types or 

termination criteria. Table 8 illustrates the detailed ANOVA results in solving RTALBP 

with high setup times, and it is clear that there is statistically significant difference in 

the algorithms’ performance.  

 

To have a better observation of the algorithms’ performance, Fig.8 depicts the means 

plots of the average RPD value by six best performing algorithms in solving RTALBP 

with low setup times when τ=20, 40 and 60 for a better clarity. Figure 9 depicts the 

means plots of the average RPD value by these algorithms in solving RTALBP with 

high setup times. In Figure 8, it is clear the ABC1, ABC2 and MBO are the three best 

performers, and they outperform the remaining methods under all the three termination 

criteria. Recall that the overlapped interval in this figure denotes statistically 

insignificant difference at 95% confidence level. Hence, it is observed that there is no 

statistically significant difference between ABC1, ABC2 and MBO whereas ABC1, 

ABC2 and MBO outperform RSA, SA and DCS statistically. Similarly, ABC1, ABC2 

an MBO in Figure 9 outperform RSA, SA and DCS statistically, and there is no 

statistically significant difference among ABC1, ABC2 and MBO. From the above 

statistical analysis, it can be concluded that ABC1, ABC2 and MBO are three best 



performers for RTALBP with setup times and they outperform the remaining 

implemented methodologies statistically with a 95% confidence level.  
 

Table 7 Average RPD by tested algorithms of RTALBP with low setup times 

Problem Nj PSO CoPSO GA LAHC BA RCOGA CoCS DCS SA RSA MBO ABC2 ABC1 

P9 2 0.00  0.00  0.00  2.45  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

P9 3 0.00  0.00  0.00  2.12  0.00  0.00  0.00  0.00  0.00  0.30  0.91  0.00  0.00  

P12 2 0.00  0.00  0.00  3.23  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

P12 3 0.00  1.36  0.45  14.09  0.00  0.00  0.00  6.36  0.00  1.36  0.00  0.00  0.00  

P12 4 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

P12 5 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

P16 2 0.00  0.00  0.00  4.80  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

P16 3 0.46  0.26  0.13  3.29  0.00  0.07  0.00  0.00  0.20  0.20  0.00  0.13  0.00  

P16 4 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

P16 5 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

P24 2 1.32  0.44  1.10  2.38  0.90  1.51  0.58  0.58  1.01  0.44  0.22  0.44  0.47  

P24 3 2.42  0.87  1.38  1.54  0.83  0.88  0.75  1.29  0.96  1.04  0.58  1.04  0.83  

P24 4 1.23  0.89  1.23  1.51  0.61  1.12  0.39  0.84  0.95  0.78  0.11  0.39  0.61  

P24 5 5.44  1.48  1.68  0.13  0.74  0.54  1.28  0.34  0.13  0.13  0.00  0.40  0.27  

P65 4 8.27  4.04  3.50  2.47  3.12  2.31  2.19  2.52  2.08  2.42  1.71  2.24  2.18  

P65 5 9.88  4.11  4.04  2.09  2.96  2.41  2.85  2.55  2.43  2.18  1.56  2.09  1.97  

P65 6 10.26  3.72  3.30  2.20  2.83  2.28  2.32  1.75  1.76  1.73  1.28  1.41  1.52  

P65 7 10.35  4.12  4.33  1.93  2.96  2.42  2.48  2.43  1.69  1.88  1.35  1.85  2.14  

P65 8 11.22  5.60  4.83  1.90  4.02  3.25  3.41  2.99  1.63  1.86  1.51  1.91  1.81  

P148 4 10.15  4.34  4.73  3.19  3.55  3.78  3.55  3.17  2.65  2.78  3.48  2.43  2.51  

P148 5 8.49  3.13  2.48  2.17  2.59  1.89  1.71  1.56  2.30  1.82  1.43  0.96  1.07  

P148 6 10.66  5.13  4.44  4.10  4.24  3.28  3.59  2.48  3.58  2.88  2.73  1.49  2.29  

P148 7 9.41  4.58  3.74  2.83  3.78  3.17  2.97  2.58  2.45  2.49  1.82  1.11  1.48  

P148 8 9.85  4.57  3.61  2.87  3.40  3.74  3.02  2.53  2.71  2.63  1.41  1.76  1.12  

P148 9 9.70  4.69  3.08  2.45  3.33  2.92  2.68  2.40  2.21  1.93  1.27  1.31  1.63  

P148 10 10.38  4.86  3.63  2.92  3.50  3.58  3.17  2.56  2.51  2.65  1.67  1.31  1.66  

P148 11 10.44  4.57  3.62  2.45  3.05  2.89  3.04  2.07  2.32  2.39  1.84  1.05  1.12  

P148 12 11.09  5.64  4.45  2.97  4.02  3.70  4.01  3.57  2.86  2.59  2.33  1.30  1.87  

P205 4 7.75  2.52  2.29  1.03  1.76  2.03  1.57  1.78  0.80  0.70  1.54  0.85  0.68  

P205 5 8.89  3.25  3.19  2.31  2.90  1.55  2.30  2.10  2.12  1.85  2.20  1.62  1.60  

P205 6 9.09  4.07  3.18  2.13  3.10  3.08  2.62  2.08  1.85  1.76  2.06  1.24  1.23  

P205 7 9.37  4.24  3.27  1.47  2.56  2.36  2.54  1.63  1.05  1.25  1.09  1.09  0.88  

P205 8 10.61  5.13  3.83  2.55  4.17  3.20  3.67  2.99  2.65  2.39  1.84  1.97  1.68  

P205 9 11.68  5.54  4.37  2.94  3.92  3.35  3.34  2.46  2.32  2.06  1.54  1.62  1.71  

P205 10 11.68  5.21  4.25  2.16  3.54  2.97  3.28  2.52  1.99  1.54  1.35  1.94  0.78  

P205 11 10.95  4.56  3.44  4.17  3.83  2.97  3.03  3.59  3.57  4.17  1.88  1.63  1.18  

P205 12 12.09  5.49  3.79  3.29  3.95  3.71  3.85  3.02  2.32  2.41  1.19  0.88  0.82  

P205 13 12.45  5.94  4.45  2.66  4.03  4.41  3.78  3.02  2.16  2.06  0.96  1.01  0.93  

P205 14 14.38  6.57  6.39  3.83  4.43  3.62  4.78  3.54  3.14  2.96  1.85  2.60  1.71  

AVG 6.92  3.10  2.62  2.58 2.27 2.03  2.02  1.88  1.55  1.53  1.15  1.05  1.02  

 

Table 8 Detailed ANOVA results 

Source of Variation DF SS MS F P 

Algorithm types 5 23.858 4.772 221.922 <0.001 

Termination criteria 2 17.576 8.788 408.722 <0.001 

Algorithm types×Termination criteria 10 0.194 0.0194 0.901 0.534 

Residual 162 3.483 0.0215   

Total 179 45.112 0.252   
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Figure 8 Means plot and 95% Tukey HSD confidence intervals for the interactions between algorithms 

and termination criteria in solving RTALBP with low setup times 
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Figure 9 Means plot and 95% Tukey HSD confidence intervals for the interactions between algorithms 

and termination criteria in solving RTALBP with high setup times 

 

6. Conclusion and future research 

Robotic two-sided assembly line balancing problem (RTALBP) with robot setup times 

and sequence-dependent setup times to minimize the cycle time is studied in this paper. 

A new mixed-integer program mathematical model is formulated, which is capable to 

solve the small-size instances optimally using CPLEX solver. Thirteen metaheuristic 

methodologies are implemented to tackle the large-size instances in acceptable 

computation time utilizing the iterative mechanism. All the algorithms solve two sets 

of instances: RTALBP with low setup times and RTALBP with high setup times, and 

the relative percentage deviation (RPD) is utilized to transfer the obtained cycle times 

to generalize the results for different instances.  

Computational results show that the simple adaption of the model in mixed-model 

RTALBP produces wrong solution whereas the proposed model has rectified all the 

possible drawbacks. A comprehensive study is carried out to evaluate the performances 



of these tested algorithms, and the statistical analysis demonstrates that two artificial 

bee colony algorithm and migrating bird optimization algorithms are the three best 

performers and outperform the remaining algorithms statistically with a 95% 

confidence level. The work done in this paper is very relevant to modern smart factories, 

where decisions are to be taken in short computation time that helps the production 

floor manager for real time decision support. 

Regarding the managerial implications, the developed model and algorithms can be 

employed by the line managers to improve the line efficiency, reduce the time waste 

and thus reduce the assembly cost to makes the factories competitive. The developed 

algorithms help the managers obtain satisfying schedule within short computation time. 

Future studies might extend the presented algorithms to other scheduling problems, like 

parallel robotic assembly line balancing problems. Another research venue is to 

implement exact methods for this RTALBP as there is no exact method published up to 

date. And it is also suggested to develop some tight lower bounds to evaluate the final 

solution. There are multiple constraints that should also be studied such as including 

positional constraint, zoning constraint and so on. There are also multiple conflicting 

objectives, including balancing and trading-off the resources, and machine/robot loads, 

that needed to be optimized simultaneously in real applications. It is also observed that 

in industry there are workers and robots simultaneously operating the tasks, and hence 

it will be interesting to study more realistic cases and the relationship between workers 

and robots.  
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Appendix A The adaption of published model 

This model is the simple adaption of the model reported in Aghajani et al. [37] by removing the mixed-

model constraints. This model utilizes two different variables as follows.  

𝑥𝑖𝑗𝑘  : 1, if task 𝑖 is assigned to workstation (𝑗, 𝑘); 0, otherwise. 

𝑧𝑖𝑝: 1, if task 𝑖 is assigned earlier than task 𝑝 in the same workstation; 0, otherwise. 

This adapted model is presented using expressions (A1-A10), and for the detailed description please refer 

to Aghajani et al. [37].   

 

Min  𝐶𝑇 (A1) 

∑ ∑ 𝑥𝑖𝑗𝑘 = 1  ∀𝑖 ∈ 𝐼

𝑘∈𝐾(𝑖)𝑗∈𝐽

 (A2) 

∑ ∑ 𝑔 ∙ 𝑥ℎ𝑔𝑘 ≤ ∑ ∑ 𝑗 ∙ 𝑥𝑖𝑗𝑘   ∀𝑖 ∈ 𝐼 − 𝑃0, ℎ ∈ 𝑃(𝑖)

𝑘∈𝐾(𝑖)𝑗∈𝐽𝑘∈𝐾(ℎ)𝑔∈𝐽

 (A3) 

𝑡𝑖
𝑓

≤ 𝐶𝑇  ∀𝑖 ∈ 𝐼 (A4) 



𝑡𝑖
𝑓

− 𝑡ℎ
𝑓

+ 𝜓(1 − 𝑥𝑖𝑗𝑘) + 𝜓(1 − ∑ 𝑥ℎ𝑗𝑓𝑓∈𝐾(ℎ) ) ≥ ∑ 𝑡𝑖𝑟 ∙ 𝑦𝑟𝑗𝑘
𝑛𝑟
𝑟=1  , 

∀𝑖 ∈ 𝐼 − 𝑃0, ℎ ∈ 𝑃(𝑖), 𝑘 ∈ 𝐾(𝑖), 𝑗 ∈ 𝐽  

(A5) 

𝑡𝑝
𝑓

− 𝑡𝑖
𝑓

+ 𝜓(1 − 𝑥𝑖𝑗𝑘) + 𝜓(1 − 𝑥𝑝𝑗𝑘) + 𝜓(1 − 𝑧𝑖𝑝) ≥ ∑(𝑡𝑝𝑟 + 𝑡𝑠𝑟𝑝𝑟 + 𝑡𝑠𝑢𝑖𝑝𝑟) ∙ 𝑦𝑟𝑗𝑘

𝑛𝑟

𝑟=1

   

∀𝑖 ∈ 𝐼, 𝑝 ∈ {𝑐|𝑐 ∈ 𝐼 − (𝑃𝑎(𝑖)⋃𝑆𝑎(𝑖)⋃𝐶(𝑖)) and 𝑖 < 𝑐}, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾(𝑖)⋂𝐾(𝑝) 

(A6) 

𝑡𝑖
𝑓

− 𝑡𝑝
𝑓

+ 𝜓(1 − 𝑥𝑖𝑗𝑘) + 𝜓(1 − 𝑥𝑝𝑗𝑘) + 𝜓 ∙ 𝑧𝑖𝑝 ≥ ∑(𝑡𝑖𝑟 + 𝑡𝑠𝑟𝑖𝑟 + 𝑡𝑠𝑢𝑝𝑖𝑟) ∙ 𝑦𝑟𝑗𝑘

𝑛𝑟

𝑟=1

  

∀𝑖 ∈ 𝐼, 𝑝 ∈ {𝑐|𝑐 ∈ 𝐼 − (𝑃𝑎(𝑖)⋃𝑆𝑎(𝑖)⋃𝐶(𝑖)) and 𝑖 < 𝑐}, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾(𝑖)⋂𝐾(𝑝) 

(A7) 

𝑡𝑖
𝑓

+ 𝜓(1 − 𝑥𝑖𝑗𝑘) ≥ ∑ 𝑡𝑖𝑟 ∙ 𝑦𝑟𝑗𝑘

𝑛𝑟

𝑟=1
  ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾(𝑖) (A8) 

∑ 𝑦𝑟𝑗𝑘

𝑛𝑟

𝑟=1
= 1  ∀𝑗 ∈ 𝐽, 𝑘 = 1,2 (A9) 

∑ ∑ 𝑦𝑟𝑗𝑘

2

𝑘=1

𝑛𝑗

𝑗=1

= 1  ∀𝑟 ∈ 𝑅 (A10) 

 

Appendix B Detailed decoding procedure 

Part of the utilized notations in decoding procedure are presented in Section 2.1 and the remains are 

presented as follows. 

𝑁𝑡 Number of tasks. 

𝑁𝑗 Number of mated-stations. 

𝑡𝑖
𝑓
 Completion time of task ℎ. 

𝑤𝑙𝑗  The completion time of the left-side workstation of the mated-station 𝑗 (including 

the idle time). 

𝑤𝑟𝑗  The completion time of the right-side workstation of the mated-station 𝑗 

(including the idle time).  

𝑆𝐿 Number of allocated tasks that have been allocated to the left side of mated-station 

𝑗. 

𝑆𝐿𝑗 Set of allocated tasks that have been allocated to the left side of mated-station 𝑗. 

𝑆𝑅 Number of allocated tasks that have been allocated to the right side of mated-

station 𝑗. 

𝑆𝑅𝑗 Set of allocated tasks that have been allocated to the right side of mated-station 𝑗. 

𝐴𝑇𝐿𝑗 Set of assignable tasks that can be allocated to the left side of mated-station 𝑗. 

𝐴𝑇𝑅𝑗 Set of assignable tasks that can be allocated to the right side of mated-station 𝑗. 

𝑠𝑑𝑖𝑡𝑖𝑗𝑘 Sequence depended idle time of task 𝑖  when task is allocated to 𝑘  side 

workstation of the mated-station 𝑗. 

𝑆𝑂𝐿𝑗 The operation sequence of tasks that have been allocated to the left side of mated-



station 𝑗.  

𝑆𝑂𝐿𝑗(𝑠) The tasks in the sth position of the operation sequence 𝑆𝑂𝐿𝑗. 

𝑆𝑂𝑅𝑗 The operation sequence of tasks that have been allocated to the right side of mated-

station 𝑗. 

𝑆𝑂𝑅𝑗(𝑠) The tasks in the sth position of the operation sequence 𝑆𝑂𝑅𝑗(𝑠). 

𝐶𝑇 The initial cycle time as an input parameter. 

𝑁𝐶𝑇 The new cycle time achieved by the decoding procedure. 

 

The detailed decoding procedure is presented as follows.  

Input: Task permutation vector and robot allocation vector and initial cycle time CT  

Step 1 Set ℎ = 1, 𝑗 = 0, 𝑁𝐶𝑇 = 0; 

Step 2  
Open a new mated-station and set 𝑗 = 𝑗 + 1, 𝑤𝑙𝑗 = 0, 𝑤𝑟𝑗 = 0, 𝑆𝐿 = 0, 𝑆𝑅 = 0, 𝑆𝐿𝑗 = ∅, 

𝑆𝑅𝑗 = ∅, 𝑆𝑂𝐿𝑗 = ∅ and 𝑆𝑂𝑅𝑗 = ∅.  

Step 3  
Allocate the robots in the 𝑗 ∙ 2 position and 𝑗 ∙ 2 + 1 position of the robot allocation vector to 

the workstation(𝑗, 1) and workstation(𝑗, 2); respectively.  

Step 4  

Determine the assignable task sets for both sides: 𝐴𝑇𝐿𝑗 = {𝑖|𝑖 ∈

𝐴𝐿⋃𝐴𝐸, 𝑖 is not assigned and any 𝑝 ∈ 𝑃(𝑖) has been allocted } ; 𝐴𝑇𝑅𝑗 = {𝑖|𝑖 ∈

𝐴𝑅⋃𝐴𝐸, 𝑖 is not assigned and any 𝑝 ∈ 𝑃(𝑖) has been allocted }. 

Step 5  

For task 𝑖 ∈ 𝐴𝑇𝐿𝑗  

If 𝑗 < 𝑁𝑗 

5.1 If 𝑡𝑖𝑟 + 𝑡𝑠𝑟𝑖𝑟 + 𝑤𝑙𝑗 + 𝑡𝑠𝑢𝑆𝑂𝐿𝑗(𝑆𝐿−1),𝑖,𝑟 + 𝑡𝑠𝑢𝑖,𝑆𝑂𝐿𝑗(1),𝑟 > 𝐶𝑇 , remove task 𝑖  from 

𝐴𝑇𝐿𝑗 and continue; 

5.2 If 𝑡𝑖𝑟 + 𝑡𝑠𝑟𝑖𝑟 + 𝑡𝑓𝑅𝑖𝑔ℎ𝑡 + 𝑡𝑠𝑢𝑖,𝑆𝑂𝐿𝑗(1),𝑟 > 𝐶𝑇 (𝑡𝑓𝑅𝑖𝑔ℎ𝑡 = 𝑚𝑎𝑥{𝑡𝑓𝑝|𝑝 ∈ 𝑃(𝑖) ⋂ 𝑆𝑅𝑗 }), 

remove task 𝑖 from 𝐴𝑇𝐿𝑗 and continue; 

Endif 

5.3 Calculate 𝑠𝑑𝑖𝑡𝑖𝑗1 = 𝑚𝑎𝑥{𝑡𝑓𝑅𝑖𝑔ℎ𝑡 − 𝑤𝑙𝑗 , 0 }; 

Endfor  

For task 𝑖 ∈ 𝐴𝑇𝑅𝑗  

If 𝑗 < 𝑁𝑗 

5.4 If 𝑡𝑖𝑟 + 𝑡𝑠𝑟𝑖𝑟 + 𝑤𝑟𝑗 + 𝑡𝑠𝑢𝑆𝑂𝑅𝑗(𝑆𝑅−1),𝑖,𝑟 + 𝑡𝑠𝑢𝑖,𝑆𝑂𝑅𝑗(1),𝑟 > 𝐶𝑇 , remove task 𝑖  from 

𝐴𝑇𝑅𝑗 and continue; 

5.5 If 𝑡𝑖𝑟 + 𝑡𝑠𝑟𝑖𝑟 + 𝑡𝑓𝐿𝑒𝑓𝑡 + 𝑡𝑠𝑢𝑖,𝑆𝑂𝑅𝑗(1),𝑟 > 𝐶𝑇  ( 𝑡𝑓𝐿𝑒𝑓𝑡 = 𝑚𝑎𝑥{𝑡𝑓𝑝|𝑝 ∈ 𝑃(𝑖) ⋂ 𝑆𝐿𝑗  } ), 

remove task 𝑖 from 𝐴𝑇𝑅𝑗 and continue; 

Endif 

5.6 Calculate 𝑠𝑑𝑖𝑡𝑖𝑗2 = 𝑚𝑎𝑥{𝑡𝑓𝐿𝑒𝑓𝑡 − 𝑤𝑟𝑗 , 0 }; 

Endfor 

Step 6  

If 𝐴𝑇𝐿𝑗 = ∅, 𝐴𝑇𝑅𝑗 = ∅ and ℎ ≤ 𝑁𝑡  

Execute Step 2;  

Else  

Execute Step 7; 

Step 7  

If 𝐴𝑇𝑅𝑗 = ∅ or (𝐴𝑇𝐿𝑗 ≠ ∅ and 𝐴𝑇𝑅𝑗 ≠ ∅ and 𝑤𝑙𝑗 ≤ 𝑤𝑟𝑗)  

7.1 Select the task 𝑖 with minimum value of the 𝑠𝑑𝑖𝑡𝑖𝑗1 and in the former position in the task 

permutation; 



7.2 Allocate task 𝑖  to the left side;  𝑡𝑓𝑖 = 𝑚𝑎𝑥 {𝑡𝑖𝑟 + 𝑡𝑠𝑟𝑖𝑟 + 𝑤𝑙𝑗 + 𝑡𝑠𝑢𝑆𝑂𝐿𝑗(𝑆𝐿−1),𝑖,𝑟 , 𝑡𝑖𝑟 +

𝑡𝑠𝑟𝑖𝑟 + 𝑡𝑓𝑅𝑖𝑔ℎ𝑡} ,  𝑤𝑙𝑗 = 𝑡𝑓𝑖 , 𝑆𝐿 = 𝑆𝐿 + 1,  𝑆𝐿𝑗 = 𝑆𝐿𝑗 + {𝑖}     , 𝑆𝑂𝐿𝑗 = 𝑆𝑂𝐿𝑗 + {𝑖}   ,  

𝑆𝑂𝐿𝑗(𝑆𝐿) = 𝑖 and ℎ = ℎ + 1.  

7.3 Set 𝑁𝐶𝑇 = 𝑚𝑎𝑥 {𝑡𝑓𝑖 + 𝑡𝑠𝑢𝑖,𝑆𝑂𝐿𝑗(1),𝑟 , 𝑁𝐶𝑇} and execute Step 8; 

Else  

7.4 Select the task 𝑖 with minimum value of the 𝑠𝑑𝑖𝑡𝑖𝑗2 and in the former position in the task 

permutation; 

7.5 Allocate task 𝑖  to the right side;  𝑡𝑓𝑖 = 𝑚𝑎𝑥 {𝑡𝑖𝑟 + 𝑡𝑠𝑟𝑖𝑟+𝑤𝑟𝑗 + 𝑡𝑠𝑢𝑆𝑂𝑅𝑗(𝑆𝑅−1),𝑖,𝑟 , 𝑡𝑖𝑟 +

𝑡𝑠𝑟𝑖𝑟 + 𝑡𝑓𝐿𝑒𝑓𝑡} ,  𝑤𝑟𝑗 = 𝑡𝑓𝑖 , 𝑆𝑅 = 𝑆𝑅 + 1,  𝑆𝑅𝑗 = 𝑆𝑅𝑗 + {𝑖}     , 𝑆𝑂𝑅𝑗 = 𝑆𝑂𝑅𝑗 + {𝑖}   ,  

𝑆𝑂𝑅𝑗(𝑆𝑅) = 𝑖 and ℎ = ℎ + 1. 

7.6 Set 𝑁𝐶𝑇 = 𝑚𝑎𝑥 {𝑡𝑓𝑖 + 𝑡𝑠𝑢𝑖,𝑆𝑂𝑅𝑗(1),𝑟 , 𝑁𝐶𝑇} and execute Step 8; 

Endif 

Step 8  

If all tasks have been allocated (ℎ > 𝑁𝑡)  

Terminate the decoding procedure.  

Else  

  Go to Step 4.   

Output: CT  

 

  

Appendix C Illustrated example to transfer the encoding vectors into a feasible solution 

The procedure to transfer the encoding vectors into a feasible solution is presented utilizing the example 

in Section 4. Figurer A1 illustrate the detailed decoding procedures with a cycle time of 4.9, where 𝑠 

refers to the robot setup time and 𝑠𝑒 refers to the sequence-dependent setup time. Table A1 presents the 

example procedure to obtain the feasible line balance following the decoding procedure in Appendix B.  
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Figure A1 Detailed encoding and decoding for the illustrated example 

 

Table A1 Example procedure to obtain the feasible line balance 

Assignable task  Select side and task Assigning tasks to workstations 

 

Open a new mated-station; 𝑗 = 1; 

Allocate robot 2 to workstation (1, 1); 

Allocate robot 3 to workstation (1, 2); 

 

𝑆𝐿𝑗 = {1, 3}; 

𝑆𝑅𝑗 = {1, 2}; 

Select left side;  

Select task 3; 

𝑡𝑓3 = 2.1; 𝑤𝑙1 = 𝑡𝑓3; 

𝑆𝐿1 = 𝑆𝐿1 + {3}; 

𝑆𝑂𝐿1 = 𝑆𝑂𝐿1 + {3}; 

𝑆𝐿𝑗 = {1}; 

𝑆𝑅𝑗 = {2}; 

Select right side;  

Select task 2; 

𝑡𝑓2 = 2.2; 𝑤𝑟1 = 𝑡𝑓2; 

𝑆𝑅1 = 𝑆𝑅1 + {2}; 

𝑆𝑂𝑅1 = 𝑆𝑂𝑅1 + {2}; 

𝑆𝐿𝑗 = {1,6}; 

𝑆𝑅𝑗 = {5,6}; 

Select left side;  

Select task 1; 

𝑡𝑓1 = 4.6; 𝑤𝑙1 = 𝑡𝑓1; 

𝑆𝐿1 = 𝑆𝐿1 + {1}; 

𝑆𝑂𝐿1 = 𝑆𝑂𝐿1 + {1}; 

𝑆𝐿𝑗 = { }; 

𝑆𝑅𝑗 = {5,6}; 

Select right side;  

Select task 6;  

𝑡𝑓6 = 3.5; 𝑤𝑟1 = 𝑡𝑓6; 

𝑆𝑅1 = 𝑆𝑅1 + {6}; 

𝑆𝑂𝑅1 = 𝑆𝑂𝑅1 + {6}; 

𝑆𝐿𝑗 = { }; 

𝑆𝑅𝑗 = {9}; 

Select right side;  

Select task 9; 

𝑡𝑓6 = 4.8; 𝑤𝑟1 = 𝑡𝑓9; 

𝑆𝑅1 = 𝑆𝑅1 + {9}; 

𝑆𝑂𝑅1 = 𝑆𝑂𝑅1 + {9}; 

𝑆𝐿𝑗 = { }; 

𝑆𝑅𝑗 = { }; 

Open a new mated-station; 𝑗 = 2; 

Allocate robot 4 to workstation (2, 1); 

Allocate robot 1 to workstation (2, 2); 

 

𝑆𝐿𝑗 = {4}; 

𝑆𝑅𝑗 = {5}; 

Select left side;  

Select task 4; 

𝑡𝑓4 = 2.2; 𝑤𝑙2 = 𝑡𝑓4; 

𝑆𝐿2 = 𝑆𝐿2 + {4}; 

𝑆𝑂𝐿2 = 𝑆𝑂𝐿2 + {4}; 

𝑆𝐿𝑗 = { }; 

𝑆𝑅𝑗 = {5,7}; 

Select right side;  

Select task 5; 

𝑡𝑓5 = 1.2; 𝑤𝑟2 = 𝑡𝑓5; 

𝑆𝑅2 = 𝑆𝑅2 + {5}; 

𝑆𝑂𝑅2 = 𝑆𝑂𝑅2 + {5}; 

𝑆𝐿𝑗 = {8 }; 

𝑆𝑅𝑗 = {7}; 

Select right side;  

Select task 7; 

𝑡𝑓7 = 4.2; 𝑤𝑟2 = 𝑡𝑓7; 

𝑆𝑅2 = 𝑆𝑅2 + {7}; 

𝑆𝑂𝑅2 = 𝑆𝑂𝑅2 + {7}; 

𝑆𝐿𝑗 = {8 }; 

𝑆𝑅𝑗 = { }; 

Select left side;  

Select task 8; 

𝑡𝑓8 = 4.8; 𝑤𝑙2 = 𝑡𝑓8; 

𝑆𝐿2 = 𝑆𝐿2 + {8}; 

𝑆𝑂𝐿2 = 𝑆𝑂𝐿2 + {8}; 

𝑆𝐿𝑗 = { }; 

𝑆𝑅𝑗 = { }; 
Complete  
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