
Manuscript Details

Manuscript number SWEVO_2019_494_R2

Title Efficient Parallel and Fast Convergence Chaotic Jaya Algorithms

Short title Parallel Chaotic Jaya Algorithms

Article type Full Length Article

Abstract

The Jaya algorithm is a recent heuristic approach for solving optimisation problems. It involves a random search for
the global optimum, based on the generation of new individuals using both the best and the worst individuals in the
population, thus moving solutions towards the optimum while avoiding the worst current solution. In addition to its
performance in terms of optimisation, a lack of control parameters is another significant advantage of this algorithm.
However, the number of iterations needed to reach the optimal solution, or close to it, may be very high, and the
computational cost can hamper compliance with time requirements. In this work, a chaotic two-dimensional (2D) map
is used to accelerate convergence, and parallel algorithms are developed to alleviate the computational cost. Coarse-
and fine-grained parallel algorithms are developed, the former based on multi-populations and the latter at the
individual level, and in both cases these are accelerated by an improved (computational) use of the chaos map.

Keywords optimization;jaya algorithm;chaotic map;parallel algorithms;OpenMP

Taxonomy Distributed Optimization (Algorithms), Parallel Algorithm, Chaos Theory,
Heuristics, Optimization (Algorithms)

Corresponding Author Hector Migallon

Corresponding Author's
Institution

Miguel hernandez University

Order of Authors Hector Migallon, Antonio Jimeno-Morenilla, Jose-Luis Sanchez-Romero, Akram
Belazi

Submission Files Included in this PDF

File Name [File Type]

Response_to_reviewers (rev 2).pdf [Response to Reviewers]

SEC_PCJaya.pdf [Manuscript File]

Conflict of Interest.pdf [Conflict of Interest]

CRediT author statement.pdf [Author Statement]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE
Homepage, then click 'Download zip file'.

Research Data Related to this Submission

There are no linked research data sets for this submission. The following reason is given:
No data was used for the research described in the article

Usuario
Texto escrito a máquina
This is a previous version of the article published in Swarm and Evolutionary Computation. 2020, 56: 100698. https://doi.org/10.1016/j.swevo.2020.100698

https://doi.org/10.1016/j.swevo.2020.100698

Efficient Parallel and Fast Convergence Chaotic Jaya Algorithms
Swarm and Evolutionary Computation

Ref: SWEVO_2019_494_R1

Please find enclosed the second revision of our paper entitled “Efficient Parallel and
Fast Convergence Chaotic Jaya Algorithms”, co-authored with Antonio Jimeno
Morenilla, José Luis Sánchez Romero and Akram Belazi, which was submitted to
Swarm and Evolutionary Computation.

We want to thank the reviewers for their valuable comments and suggestions, which
will improve the quality of the paper. We also hope that the intense work that has been
done to address all of these suggestions will be acceptable.

Reviewer 4 Concern 1: Since the paper is aimed at comparing alternative parallel
algorithms in the multi-population case, a more interesting approach would be, for
example, the comparison of the Chaotic Jaya algorithm under coarse-grained multi-
population (current version) and fine-grained multi-population (diffusion/cellular). I
strongly encourage the authors to undertake this kind of study, as it will significantly
improve the impact of the paper and its suitability for the journal.

As suggested by the reviewer, we developed a parallel fine-grained algorithm called
DGP-CJaya. This algorithm uses a diffusion grid to select a random individual to
generate a new individual, and, logically, to store the population. The new parallel
algorithm is explained in Section 3.3. The new algorithm is analysed experimentally,
and the numerical results are given in Tables 4, 6, 7, 12 and 13. The numerical results
show that this algorithm has parallel performance that is similar to that of CP-CJaya, i.e.
significantly worse than the NCP-CJaya algorithm and with limited parallel scalability.

Reviewer 4 Concern 2: The motivation for the choice of the Jaya algorithm lies in its
parameter-less nature. Conceptually, only the population size and the stop criterion are
needed by the baseline algorithm. This comes at the expense of requiring the search
engine more a priori knowledge about the characteristics of the decision space. In spite
of the previous works cited by the authors, I believe this issue might limit the
applicability of the method to real-world, hard-to-process decision spaces. In order to
clarify this, it seems mandatory the introduction of a real-world case study where the
parallel Jaya algorithms are accordingly evaluated.

As suggested by the reviewer, two real-world problems are solved with the proposed
parallel algorithms: the welded beam problem, and the pressure vessel problem. The
formulation of both problems is given in Equations (5), (6) and (7). The numerical
results, including the parallel performance and the optimal solution obtained, are
presented in Tables 22 and 23.

Reviewer 4 Concern 3: The authors claim that the NCP-CJaya algorithm offers
optimal scalability. However, the study on parallel scalability has been conducted on a
tiny hardware setup with only 12 cores. Furthermore, the underlying X5660
architecture is 10 years old. Since the paper strongly focuses on the parallel evaluation
of the algorithms, it makes sense to examine larger system sizes, in order to confirm if

the approaches are able to effectively take advantage of current, state-of-the-art
multiprocessor systems.

The proposed algorithms have been analysed using a more recent parallel computing
platform, equipped with two Intel Xeon E5-2620 v2 processors. This platform has 12
physical cores, but we can use up to 24 logical cores. The numerical results confirm the
parallel behaviour shown by the first parallel platform, and the parallel scalability is
even increased. The numerical results are presented in Tables 14 to 19.

Reviewer 4 Concern 4: Also, some discussions on how the algorithms can benefit from
alternative hardware architectures should also be included, taking into account that the
authors have previous experience on adapting the Jaya algorithm to many-core GPUs.

The requested information has been added to the "Conclusions" section as future work.

Reviewer 4 Concern 5: Some details on the experimental conditions are missing. The
authors must report compilation flags, thread binding approaches, and operating
system.

The requested information has been added for the two parallel platforms used. Note that
no OpenMP thread binding or affinity approaches have been used, i.e. the operating
system performs these tasks.

Reviewer 4 Concern 6: Tables 1 and 2 share the same caption. They should be named
differently, something like:
- Table 1: Benchmarks, dimensions and domains
- Table 2: Benchmarks, objective functions.

Tables 1 and 2 have been renamed in accordance with the reviewer's suggestion

Reviewer 4 Concern 7: I believe Table 3 and 4 should be merged. In this way, it will
be easier to understand the increment in computational cost introduced by each version
of the algorithm.

Tables 3 and 4 have been merged into a single table (Table 3).

We look forward to hearing from you,
Héctor Migallón

Efficient Parallel and Fast Convergence Chaotic Jaya
Algorithms

H. Migallóna,∗, A. Jimeno-Morenillab, J.L. Sánchez-Romerob, A. Belazic

aDepartment of Computer Engineering, University Miguel Hernández, E-03202, Elche, Alicante, Spain.
bDepartment of Computer Technology, University of Alicante, E-03071, Alicante, Spain.

cRISC Laboratory National Engineering School of Tunis, University of Tunis El Manar, Tunis, Tunisia

Abstract

The Jaya algorithm is a recent heuristic approach for solving optimisation problems. It

involves a random search for the global optimum, based on the generation of new in-

dividuals using both the best and the worst individuals in the population, thus moving

solutions towards the optimum while avoiding the worst current solution. In addition

to its performance in terms of optimisation, a lack of control parameters is another sig-

nificant advantage of this algorithm. However, the number of iterations needed to reach

the optimal solution, or close to it, may be very high, and the computational cost can

hamper compliance with time requirements. In this work, a chaotic two-dimensional

(2D) map is used to accelerate convergence, and parallel algorithms are developed to

alleviate the computational cost. Coarse- and fine-grained parallel algorithms are de-

veloped, the former based on multi-populations and the latter at the individual level,

and in both cases these are accelerated by an improved (computational) use of the chaos

map.

Keywords: optimisation, Jaya algorithm, chaotic map, parallel algorithms, OpenMP

1. Introduction

Optimisation algorithms are used to find the optimal value, or a value as close

to this as possible, for a given function called the cost function. Depending on the

∗Corresponding author
Email address: hmigallon@umh.com (H. Migallón)

Preprint submitted to Swarm and Evolutionary Computation March 4, 2020

intrinsic characteristics of the cost function, finding this value can be a challenge, and

depending on the search pattern used, the optimisation algorithm can be trapped in local5

optimums. Population-based algorithms, such as the one considered in this work, are

also iterative algorithms, and depending on the number of iterations to be performed,

the computational cost can increase dramatically.

When deterministic methods are applied to solve an optimisation problem, a se-

quence of points tending to the optimal value is generated based on the analytical prop-10

erties of the problem to be solved. In this case, the optimisation problem becomes a

problem of linear algebra, i.e. the gradient of the cost function is used in many cases

to solve the optimisation problem. The deterministic methods can be used to solve the

problems of optimisation of many functions [1], for large-scale problems, and espe-

cially non-differentiable, non-convex and nonlinear objective functions. However, they15

may be powerless to reach acceptable solutions or be invalid for use because of their

high computational costs. Several heuristic methods have been proposed to overcome

these drawbacks, where the solution obtained is acceptable and the computational cost

is reasonable. In most cases, meta-heuristic methods employ guided search techniques

in which certain random processes are used to solve the problem. Although it cannot be20

formally demonstrated that the optimum value obtained is the solution to the problem,

they have been shown via experiment to be robust.

In the past few decades, several well-known meta-heuristic optimisation algorithms

based on natural phenomena have been proposed: for example, the particle swarm op-

timisation (PSO) algorithm [2] and its variants are based on the social behaviour of fish25

schooling or bird flocking; the artificial bee colony (ABC) algorithm [3] was inspired

by the foraging behaviour of honey bees; the shuffled frog leaping (SFL) [4] algorithm

imitates the collaborative behaviour of frogs; the ant colony optimisation (ACO) algo-

rithm [5] imitates the foraging behaviour of ant colonies; the evolutionary strategy (ES)

algorithm [6] is based on the processes of mutation and selection seen in evolution; ge-30

netic programming (GP) [7] and evolutionary programming (EP) [8] are techniques for

evolving programs based on the selection of individuals for reproduction (crossover)

and mutation; the firefly (FF) algorithm [9] was inspired by the flashing behaviour

of fireflies; the gravitational search algorithm (GSA) [10] was based on Newtons law

2

of gravity; the biogeography-based optimisation (BBO) algorithm [11] improves so-35

lutions stochastically and iteratively; the grenade explosion method (GEM) algorithm

[12] is based on the characteristics of the explosion of a grenade; genetic algorithms

(GA) [13] and their variants reflect the process of natural selection; the artificial im-

mune algorithm (AIA) [14] is based on the behaviour of the human immune system;

differential evolution (DE) [15] and its variants attempt to iteratively improve a candi-40

date solution for a given measure of quality; the simulated annealing (SA) algorithm

[16] is based on the annealing process in metallurgy; the tabu search (TS) algorithm

[17] employs meta-heuristic local search methods; the teaching-learning-based opti-

misation (TLBO) algorithm [18] is based on the processes of teaching and learning;

and the harmony search algorithm (HSA) [19] was inspired by the process of musical45

performance.

None of these algorithms are free of limitations in terms of their evolution process,

and some of them are easily trapped in local minima. However, a key aspect of the

behaviour of these algorithms is the correct adjustment of the control parameters, since

the effectiveness of these algorithms depends heavily on the correct setting of these50

fixed control parameters [18]; for example, PSO needs the cognitive and social param-

eters and inertia weights to be adjusted; GA needs the crossover probability, mutation

probability, selection operator, etc. to be set; the SA algorithm needs the initial anneal-

ing temperature and cooling schedule to be tuned; BBO needs the likelihood of habitat

modification, mutation probability, habitat elitism parameter and population size to be55

set; ABC needs the number of bees and limits to be defined; HSA needs the harmony

memory consideration rate, the number of improvisations, etc. to be adjusted; and BBO

needs the immigration rate, emigration rate, etc. to be set. In contrast, both TLBO and

the Jaya optimisation algorithm used in this work can overcome this drawback, since

both algorithms only need general parameters to be established, such as the population60

size and number of iterations (or number of generations) or the stopping criteria.

Jaya algorithms are suitable for solving large-scale industrial problems. For ex-

ample, in [20], the authors take advantage of the lack of control parameters in these

algorithms to optimise the coefficients of proportional-integral controller and the filter

parameters of a photovoltaic-fed distributed static compensator, showing that Jaya im-65

3

proves the performance of the TLBO (which also lacks control parameters). In [21],

Jaya is modified to efficiently solve the maximum power point tracking problem of

photovoltaic systems. In [22], the ABC algorithm is used to solve the welded beam

problem, the pressure vessel problem, and the tension-compression spring problem,

and is applied in the design of speed reducers and gear trains. Jaya has also been used,70

for example, to optimise the automatic application of carbon fiber reinforced polymer

composites in various production processes [23]; to analyse the effects of the param-

eters of the submerged arc welding process on the geometry of the weld seam [24];

to optimise sensor placement and damage identification in laminated composite struc-

tures [25]; to design a proportional-integral-derivative controller for automatic genera-75

tion control of an interconnected power system [26]; and to identify the parameters of

photovoltaic models used in the simulation, evaluation and control of such systems. It

can also be used to solve certain problems that commonly arise in industrial applica-

tions, for example those involving generalised sparse non-negative matrix factorisation

[27] or matrix factorisation methods, which are applied in [28, 29] large-scale collabo-80

rative filtering recommender systems. Parallel optimisation algorithms have been used

to optimise the tool path for numerical control machines [30]; to allocate generation

and transmission resources in an electricity market [31]; and to control the flow distri-

bution generated by the heliostat field of the receiving system of a solar power plant

[32], among other applications.85

Two of the most widely used techniques for improving these algorithms are hy-

bridisation and the use of chaos theory. Hybridisation involves the use of more than

one search technique to enhance the behaviour of the optimisation process (see, for

example, [33, 34, 35, 36, 37]). This hybridisation, as it is logical, usually improves the

quality of the solution obtained. However, it may make it difficult to adjust the param-90

eters correctly and can also increase the computational cost. Chaos theory concerns

the study of chaotic dynamical systems, which can be defined as nonlinear dynamical

systems that are characterised by a high sensitivity to their initial conditions [38, 39].

Many of the algorithms mentioned here make use of randomness in their search pat-

terns, and this randomness can be totally or partially replaced by the use of chaos95

theory, which offers a powerful technique for hybridisation. Chaos has been used in

4

meta-heuristic algorithms to: (a) replace random number sequences with sequences

generated by chaotic maps; (b) perform a local search by means of a chaotic map func-

tion; and (c) to generate the control parameters chaotically [40].

Some of the works in which chaos has been successfully used to improve meta-100

heuristic optimisation algorithms are reported in [41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

51, 52].

The main objective of our work is to develop efficient parallel algorithms based

on the chaotic C-Jaya algorithm. The aim is for these algorithms to be efficient at the

levels of both optimisation behaviour and computational cost. We developed parallel105

coarse-grained algorithms based on multi-population, a technique previously used in

several sequential and parallel proposals (see, for instance, [53, 54, 55, 56]) and parallel

fine-grained algorithms based on a diffusion grid (see, for example, [57, 58]). In all

cases, the 2D chaotic map used in [59] was applied. These parallel algorithms were

computationally improved and adapted to the use of the 2D chaotic map.110

The main contributions of this paper are summarised below. Firstly, we analyse

the use of the 2D cross chaotic map proposed in the Jaya algorithm, both at the com-

putational level and at optimisation behaviour level. The results show a significant

improvement in optimisation performance, but at the expense of a huge increase in

the computational complexity during the optimisation process. Secondly, to reduce115

the global computing time, we develop efficient parallel coarse- and fine-grained al-

gorithms, in which the increase in computational complexity introduced by the use of

the 2D chaotic map reduces the intrinsic parallelism that can be exploited, thus reduc-

ing parallel scalability. Finally, we modify the pattern of use of the chaotic map to

develop more efficient and scalable parallel algorithms that maintain this remarkable120

improvement in optimisation behaviour.

The remainder of this paper is organised as follows: Section 2 presents a brief

description of the Jaya algorithm and the 2D chaotic map used here. In Section 3,

the parallel algorithms and the improvements we introduce are explained in detail. In

Section 4, we analyse the performance of the proposed parallel algorithms, and finally,125

in Section 5, concludes the paper.

5

2. Preliminaries

In this section, we present a description of the Jaya algorithm, and we give the

mathematical formula of the 2D chaotic along with its advantages for optimization

algorithms.130

2.1. Jaya algorithm

The Jaya algorithm was presented in [60], in which the results of optimising both

constrained and unconstrained functions are reported. These results show that the Jaya

algorithm behaves better than the most common reference algorithms, and a more de-

tailed comparative analysis is presented in [61]. The Jaya algorithm is a population-135

based algorithm in which the evolution does not depend on function-specific adjust-

ment parameters, and only the size of the population and the maximum number of

evaluations needed to be set.

Once the best and worst individuals of the current population have been identified,

the basic operation of the Jaya algorithm consists of searching the global optimum,140

which is achieved by moving toward the best individual and avoiding the worst one.

This strategy is implemented by obtaining a new individual following Eq. (1), in which

r1,j and r2,j are uniformly distributed random numbers, and j refers to the design

variable of the specific cost function to be optimised.

x
′

j = xj + r1,j (xj,best − |xj|)− r2,j (xj,worst − |xj|) (1)

145

Jaya is an iterative algorithm in which Eq. (1) is applied at each iteration to each

individual in the current population. If the new individual is better than the old one, it

is exchanged; otherwise, it is discarded. Algorithm 1 describes this process. Different

executions are performed in this type of algorithm, since the intrinsic randomness of

these algorithms may cause poor execution (see line 2). A random initial population150

is computed (lines 3–8). At each iteration (line 9), after searching for the best and

worst individuals in the population (line 10), new individuals are computed. They are

6

inserted into the population as replacements if they are better than the previous ones.

The value of each variable for the new individual is trimmed if necessary (lines 16–21).

The use of chaotic maps is proposed in order to increase the diversity of the pop-155

ulation, and thus avoid a possible premature convergence at a local minimum and ac-

celerate the convergence. When a chaotic map is employed, the randomness of Eq. (1)

(provided by the two random numbers) is replaced by a sequence of numbers that can

be generated from a random starting point. In this work, we use the chaotic map re-

ported in [59], and this is briefly described below.160

2.2. 2D chaotic map

The 2D chaotic map used here [59] balances the exploitation and exploration phases

that are characteristic of heuristic optimisation algorithms. Note that the exploita-

tion phase is related to the convergence ratio, while the exploration phase is related

to the algorithms ability to explore different regions in a search space. To balance both165

phases, the new individuals (cf. Algorithm 1) are obtained by using a random individ-

ual (xrand) from the current population, along with the current best and current worst

individuals. Moreover, the new individual can be obtained in three different ways, us-

ing Eqs. (2), (3) and (4). In these equations, as described above, xrand is a random

individual, and x ,best and x ,worst are the current best and worst individuals, respec-170

tively, of the population. Each ch ,j is the absolute value of a chaotic variable from the

2D cross chaotic map, and SF is a scaling factor that takes a value of one or two.

x
′

j = ch1,jx
rand
j + ch2,j

(
xj − ch3,jxrandj

)
+ ch4,j

(
xj,best − ch5,jxrandj

)
(2)

x
′

j = ch1,jx
rand
j + ch2,j

(
xj − ch3,jxrandj

)
+ ch4,j

(
xj,worst − ch5,jxrandj

)
(3)

x
′

j = ch1,jxj,best + ch2,j
(
xrandj − SFxj,best

)
(4)

The 2D chaotic map can be formulated as shown in Algorithm 2. In the experiments

performed here, the initial conditions for generating the 2D chaotic map are x1 = 0.2,

7

Algorithm 1 Jaya algorithm
1: Set parameters (Iterations and PopulationSize) and define cost function

2: for l = 1 to Runs do

3: for i = 1 to PopulationSize {Create Initial Population X:} do

4: for j = 1 to V ARS do

5: xij =MinV alue+ (MaxV alue−MinV alue) ∗ rand[0,1]
6: end for

7: Compute and store F (xij) {Function evaluation}

8: end for

9: for l = 1 to Iterations do

10: Search for best and worst individuals

11: for i = 1 to PopulationSize {Create New Population X’:} do

12: for j = 1 to V ARS do

13: Obtain 2 random numbers (rand1,2[0,1])

14: x
′i
j = xij + rand1,j

(
xij,best −

∣∣xij∣∣)− rand2,j (xij,worst − ∣∣xij∣∣)
15: { Check the bounds of x

′i
j }

16: if x
′i
j < MinV alue then

17: x
′i
j =MinV alue

18: end if

19: if x
′i
j > MaxV alue then

20: x
′i
j =MaxV alue

21: end if

22: end for

23: Compute F (x
′i) {Function evaluation}

24: if F (x
′i) < F (xi) then

25: Replace solution in population

26: end if

27: end for

28: end for

29: end for

30: Obtain Best Solution and Statistical Data

8

y1 = 0.3, k = i and maxDimMap = 500. The computed values xi and yi are in175

[−1, 1].

Algorithm 2 2D Chaotic map
1: Initialize x1

2: Initialize y1

3: Initialize maxDimMap

4: for i = 1 to maxDimMap do

5: xi+1 = cos(k ∗ arccos(yi))

6: yi+1 = 16x5i − 20x3i + 5xi

7: end for

At each iteration, the chaotic numbers are generated through one of the previous

equations, i.e. Eqs. (2), (3) and (4)).

Algorithm 3 Selection of the population update option
1: Obtain two ordered integer random numbers and one chaotic number:

2: a = min(rnd1,rnd2)

3: b = max(rnd1,rnd2)

4: chj are randomly selected chaotic values

5: Select between Eqs. (2), (3) or (4):

6: if chj < a then

7: x
′

j = ch1,jx
rand
j + ch2,j

(
xj − ch3,jxrandj

)
+ ch4,j

(
xj,best − ch5,jxrandj

)
8: end if

9: if a < chj < b then

10: x
′

j = ch1,jx
rand
j + ch2,j

(
xj − ch3,jxrandj

)
+ ch4,j

(
xj,worst − ch5,jxrandj

)
11: end if

12: if chj > b then

13: x
′

j = ch1,jxj,best + ch2,j
(
xrandj − SFxj,best

)
14: end if

It is also worth mentioning that the initial population is not computed as in the

original Jaya algorithm (see lines 4–6 of Algorithm 1). It is generated through the 2D180

9

chaotic map, as shown in lines 3–9 of Algorithm 4.

3. Proposed parallel algorithms

As mentioned above, parallel coarse- and fine-grained algorithms are developed in

this work; the former is based on sub-populations. However, due to the computational

characteristics of the chaotic algorithm, it is not possible to obtain high efficiency using185

the same parallel strategies like those used in [54]. It can be predicted, as discussed in

Section 2.2, that the computational cost per iteration will depend on the computational

cost of the function to be optimised, the selection of the chaotic values to be used and

their extraction from the chaotic map.

A general flowchart of the parallel coarse-grained algorithms is illustrated in Fig. 1.190

The most important steps and improvements introduced to accelerate the algorithm are

detailed below.

First, we analyse the decisions made regarding the efficient use of memory. Our

parallel coarse-grained algorithms are based on sub-populations, and all of them di-

vide the individuals of the whole population among the available computing processes,195

thus creating sub-populations. It is worth noting that these algorithms are executed

on a multicore computing platform, i.e., in a shared memory computer architecture.

However, each process (or thread) in the initial step copies the sub-population that has

been assigned to it to its local private memory. In contrast, the chaotic optimisation

algorithm considered here is based on a 2D cross chaotic map, for which the calcula-200

tion is shown in Algorithm 2. To ensure efficient behaviour of the parallel algorithms,

the chaotic map must be stored in global memory, and there is no overhead due to

contention in memory writing.

In Algorithm 3, up to three individuals (the best, worst and a random individual)

from the current population may be needed to generate a new individual. Since we205

avoid using extra memory to store the new sub-population, a copy of these individ-

uals must be stored during the generation of the new sub-population, allowing these

new individuals to replace others in the same sub-population if they represent improve-

ments. Algorithm 4 shows the computation of both the initial population and the sub-

10

Figure 1: General flowchart of the proposed parallel coarse-grained algorithms.

population sizes. Both processes are performed sequentially before the parallel region210

is spawned.

11

Algorithm 4 Computing of the initial population and sub-population sizes
1: Set parameters (Iterations and PopulationSize) and define cost function

2: Set the number of computing processes (NoC)

3: for i = 1 to PopulationSize do

4: for j = 1 to V ARS do

5: Obtain rnd: random integer value in range [1,maxDimMap]

6: xij =MinV alue+ (MaxV alue−MinV alue) ∗ ch(rnd)

7: end for

8: Compute and store F (xi)

9: end for

10: SubPopSize = PopulationSize/NoC

11: for i = 1 to NoC do

12: SubPopSizeArray[i] = SubPopSize

13: if i <= (PopulationSize%NoC) then

14: SubPopSizeArray[i] + +

15: end if

16: end for

12

The first step in the parallel region is to copy the assigned sub-population to local

memory, and then to search for the best and worst individuals in the sub-population.

Algorithm 5 shows how these processes are performed within a given parallel region.

Algorithm 5 Copy of sub-population and search for the best and the worst.
1: Inside a parallel region:

2: Identify thread Tid in range [1, NoC]

3: MySubPopSize = SubPopSizeArray[Tid]

4: Allocate memory in private memory for population of size MySubPopSize

5: IniSubPop = 0

6: for i = 1 to Tid− 1 do

7: IniSubPop+ = SubPopSizeArray[i]

8: end for

9: EndSubPop = IniSubPop+ SubPopSize

10: Copy sub-population (IniSubPop− EndSubPop) into private memory

11: Search for local best (LBest) and local worst (LWorst)

3.1. CP-CJaya parallel algorithm215

Two different parallel coarse-grained strategies for accelerating the optimisation al-

gorithm were developed. In the first one, called the CP-CJaya (Communicated Parallel

Chaotic Jaya) algorithm, the different processes share information, and coordination

processes between them are therefore necessary. Hence, in this strategy, as can be seen

in Algorithm 6, after having searched for the best and worst individuals in each sub-220

population, all the threads must be coordinated in order to select the global best and

global worst individuals. Copies of both individuals are stored in global memory to

allow access by all threads. Algorithm 6 includes two synchronisation points (lines

11 and 24), and between these two points there are two critical regions in which the

code is executed sequentially by all threads, i.e. with mutual exclusion. As mentioned225

above, up to three individuals can be used to create a new generation, i.e. in addition

to the best and worst, another individual is randomly chosen. In the latter case, in or-

der to avoid increasing the number of communications and coordination processes, it

13

is randomly selected by each thread from the individuals in its sub-population, and is

stored in private memory.230

The communications and coordination processes in Algorithm 6 cause a loss of

parallel efficiency if they are performed at each iteration, and to solve this problem,

we include flags to detect whether it is necessary to update the best or worst global

individual. As shown in Algorithm 7, if the best global individual is to be updated,

it is not necessary to include synchronisation, and only a critical region is needed.235

However, a synchronisation point is needed in order to check whether the worst global

individual needs to be updated, and this point cannot be removed (line 20 of Algorithm

8). If the worst global individual is to be updated, the process includes a search for

the worst local individual, two synchronisation points (lines 24 and 30) and a critical

region; these procedures are only performed if the flag F G GWorst is set.240

3.2. NCP-CJaya parallel algorithm

The second coarse-grained strategy, called the NCP-CJaya (Non-Communicated

Parallel Chaotic Jaya) algorithm, was developed to remove all synchronisation points.

Algorithm 9 shows the NCP-CJaya algorithm, in which the three individuals used to

create a new generation are stored in private memory. Hence, no global memory space245

is used except that used to store the chaotic map, as mentioned above.

In both strategies, CP-CJaya and NCP-CJaya, domain decomposition is imple-

mented in order to develop parallel algorithms. Load balancing is especially essential

in the CP-CJaya algorithm, as the synchronisation barriers can lead to high idle times

if the load is not correctly balanced. In contrast, NCP-CJaya, which does not include250

synchronisation barriers, is more versatile and allows load balancing techniques to be

applied.

3.3. DGP-CJaya parallel algorithm

The third parallel algorithm presented here, called DGP-CJaya (Diffusion Grid Pa-

rallel Chaotic Jaya), was developed following a fine-grained strategy. In order to in-255

crease the parallel efficiency, the whole population and the best and worst individuals

must be stored in global memory (or shared memory). Here, the random individual

14

Algorithm 6 CP-CJaya: initial search for the global best and global worst.
1: Allocate memory in shared memory for GBest (Global Best)

2: Allocate memory in shared memory for GWorst (Global Worst)

3: Inside a parallel region:

4: Identify thread Tid in range [1, NoC]

5: Allocate memory in private memory for xrand

6: Obtain rnd: random integer value in range [1,MySubPopSize]

7: Copy rnd individual to xrand

8: Master thread:

9: Copy LBestTid to GBest

10: Copy LWorstTid to GWorst

11: Sync Barrier

12: All threads in parallel CRITICAL region:

13: {

14: if LBestTid is better than GBest then

15: Copy LBestTid to GBest

16: end if

17: }

18: All threads in parallel CRITICAL region:

19: {

20: if LWorstTid is worse than GWorst then

21: Copy LWorstTid to GWorst

22: end if

23: }

24: Sync Barrier

15

Algorithm 7 CP-CJaya: search for the global best based on flags.
1: Flag to find the worst in shared memory: F G GWorst = false

2: Inside a parallel region:

3: Identify thread Tid in range [1, NoC]

4: Flag to find the best in private memory: F P Gbest = false

5: for i = 1 to SubPopSize do

6: Generate x
′i

7: if F (x
′i) < F (xi) then

8: Replace solution in population

9: if F (x
′i) < F (LBestTid) then

10: Update LBestTid

11: if F (x
′i) < F (GBest) then

12: F P Gbest = true

13: end if

14: end if

15: if i == LWorstTid then

16: F G GWorst = true

17: end if

18: end if

19: end for

20: if F P Gbest == true then

21: CRITICAL region:

22: if F (LBestTid) < F (GBest) then

23: Copy LBestTid to GBest

24: end if

25: F P GBest = false

26: end if

16

Algorithm 8 CP-CJaya: search for the global worst based on flags.
1: Flag to find the worst in shared memory: F G GWorst = false

2: Inside a parallel region:

3: Identify thread Tid in range [1, NoC]

4: Flag to find the best in private memory: F P Gbest = false

5: for i = 1 to SubPopSize do

6: Generate x
′i

7: if F (x
′i) < F (xi) then

8: Replace solution in population

9: if F (x
′i) < F (LBestTid) then

10: Update LBestTid

11: if F (x
′i) < F (GBest) then

12: F P Gbest = true

13: end if

14: end if

15: if i == LWorstTid then

16: F G GWorst = true

17: end if

18: end if

19: end for

20: Sync Barrier

21: if F G GWorst == true then

22: Search for LWorstTid

23: SINGLE thread: Copy LWorstTid to GWorst

24: Sync Barrier

25: CRITICAL region:

26: if F (LWorstTid) > F (GWorst) then

27: Copy LWorstTid to GWorst

28: end if

29: SINGLE thread: F G GWorst = false

30: Sync Barrier

31: end if

17

Algorithm 9 NCP-CJaya: parallel region without synchronizations.
1: Inside a parallel region:

2: Allocate memory in private memory for LBest (Local Best)

3: Allocate memory in private memory for LWorst (Local Worst)

4: Allocate memory in private memory for xrand

5: Flag to find the worst in private memory: F P LWorst = false

6: Flag to find the best in private memory: F P LBest = false

7: Find and store LBest and LWorst

8: Obtain rnd: random integer value in range [1,MySubPopSize]

9: Copy individual to xrand

10: for i = 1 to SubPopSize do

11: Generate x
′i

12: if F (x
′i) < F (xi) then

13: Replace solution in population

14: if F (x
′i) < F (LBestTid) then

15: Update LBestTid

16: F P LBest = true

17: end if

18: if i == LWorstTid then

19: F P LWorst = true

20: end if

21: end if

22: if F P LBest == true then

23: Update LBest

24: F P LBest = false

25: end if

26: if F P LWorst == true then

27: Find and store LWorst

28: F P LWorst = false

29: end if

30: end for

18

used to obtain a new individual (cf. Eqs. (2), (3) and (4)) will be obtained from the

current population, and will not be the same for the whole population; in fact, it will

be different when obtaining each new individual. In particular, DGP-CJaya was devel-260

oped using a diffusion grid (see, for example, [62, 63]). In this approach, the whole

population is stored in a two-dimensional array, in which each element is an individual

of the population. Figure 2 shows the diffusion grid for a population of 120 individuals,

organised into a two-dimensional array of 10 rows by 12 columns, where each square

represents an individual. To generate a new individual based on the selected individual265

in Fig. 2, the global best and worst individuals and a random individual are used, where

the random individual is chosen from the eight adjacent individuals, as shown in Fig. 2.

Figure 2: DGP-CJaya diffusion grid for population size equal to 120 (10x12).

Algorithm 10 shows the generation of the initial population using the diffusion grid

of individuals (i.e. a cubic structure) for the DGP-CJaya algorithm. The numbers of

rows (PopulationSize i) and columns (PopulationSize j) are computed depending270

on the population size to generate a matrix that is as square as possible.

Algorithm 11 shows the processing that is carried out at each iteration of the parallel

DGP-CJaya algorithm to obtain a new generation. As mentioned above, the random

individual used to obtain a new individual is adjacent to the current individual (see

19

Algorithm 10 DGP CJaya: Generation of initial population.
1: for i = 1 to PopulationSize i do

2: for j = 1 to PopulationSize j do

3: for k = 1 to V ARS do

4: Obtain rnd: random integer value in range [1,maxDimMap]

5: x
(i,j)
k =MinV alue+ (MaxV alue−MinV alue) ∗ ch(rnd)

6: end for

7: end for

8: Compute and store F (x(i,j))

9: end for

line 2). The search for the global best or worst individual is optimised via the use of275

flags stored in global memory (see lines 5 and 9). Since the population (x) has to be

stored in global memory, the parallel construct “for” in OpenMP is used (see line 14).

The search for the global worst individual in the DGP-CJaya algorithm (see line 29) is

similar to that in the CP-CJaya algorithm (see Algorithm 8).

Finally, a symmetric extension of the population structure is created to allow indi-280

viduals located at the edges of the diffusion grid to access eight adjacent individuals,

i.e. the inner individuals. It is noteworthy that the relative position of the element used

to obtain the new individual is the same for the whole population at each iteration.

Fig. 3 shows such symmetric extension, which is created by copying memory pointers

rather than by copying data.285

3.4. Improved computing performance (ICP) technique

The use of the 2D chaotic map increases the computational cost of the Chaotic Jaya

sequential algorithm compared to the original Jaya sequential algorithm. The selection

of the population update option shown in Algorithm 3, leads to computational cost

increase and may decrease the parallel performance of the parallel algorithms proposed.290

It should be noted that the random numbers a and b used in Algorithm 3 are calcu-

lated before each new individual is generated, while the other five random values are

obtained to compute of each variable for each new individual. In order to reduce the

20

Algorithm 11 DGP CJaya algorithm.
1: {SM: x, GBest, GWorst, i rand, j rand, i best, j best, i worst, j worst}

2: Compute i rand and j rand in range [−1, 1] (value (0, 0) not allowed)

3: Inside a PARALLEL REGION:

4: SINGLE region {

5: if F G Best == true then

6: GBest = x(i best,j best)

7: end if

8: F G Best = false }

9: SINGLE region {

10: if F G Worst == true then

11: GWorst = x(i worst,j worst)

12: end if

13: F G Worst = false }

14: PARALLEL FOR

15: for m = 1 to PopulationSize i ∗ PopulationSize j do

16: Obtain i, j from m {Random individual is x(i+i rand,j+j rand)}

17: Compute the new individual x
′(i,j)

18: if F (x
′(i,j)) < F (x(i,j)) then

19: Replace solution in population

20: if F (x
′(i,j)) < F (x

′(i best,j best)) then

21: CRITICAL region { i best = i; j best = j; F G Best = true}

22: end if

23: end if

24: if (i == i worst)&&(j == j worst) then

25: ATOMIC region { F G Worst = true }

26: end if

27: end for

28: if F G Worst == true then

29: IN PARALLEL: Find i worst and j worst

30: end if

21

Figure 3: DGP-CJaya symmetric extension of the population structure.

computational cost and improve the parallel efficiency in computing each variable for

each new individual, only one new chaotic number is extracted from the chaotic map,295

and the other four are reused. In this way, only one new random value needs to be

obtained for the extraction of only one chaotic value. This modification in the use of

the chaotic map is called ICP (Improve Computational Performance), and it is shown

in Algorithm 12.

4. Numerical experiments300

In this section, the parallel chaotic Jaya algorithms described in Section 3 are anal-

ysed in terms of their parallel performance and optimisation behaviour. The reference

algorithm presented in [60] and the parallel algorithms proposed here were imple-

mented in the C programming language, using the GCC v.4.8.5 compiler [64], and

the flags std=gnu++0x -fopenmp -O3 were applied in the compilation process.305

The parallel approaches were designed for shared memory parallel platforms using

the OpenMP API v3 [65], no OpenMP thread binding or affinity approaches were

used, i.e. the execution environment moved the OpenMP threads between OpenMP

22

Algorithm 12 Improved computing performance (ICP) applied to the selection of the

population update option
1: Obtain two ordered integer random numbers and one chaotic number:

2: a = min(rnd1,rnd2)

3: b = max(rnd1,rnd2)

4: {Initially chj are randomly selected chaotic values}

5: for i = 5 to 2 do

6: chj = chj−1

7: end for

8: ch1 new randomly selected chaotic value

9: Select one of (2), (3) or (4):

10: if chj < a then

11: x
′

j = ch1,jx
rand
j + ch2,j

(
xj − ch3,jxrandj

)
+ ch4,j

(
xj,best − ch5,jxrandj

)
12: end if

13: if a < chj < b then

14: x
′

j = ch1,jx
rand
j + ch2,j

(
xj − ch3,jxrandj

)
+ ch4,j

(
xj,worst − ch5,jxrandj

)
15: end if

16: if chj > b then

17: x
′

j = ch1,jxj,best + ch2,j
(
xrandj − SFxj,best

)
18: end if

23

places (cores). The parallel computing platform used was equipped with two Intel

Xeon X5660 processors, each of which contained six processing cores at 2.8 GHz, and310

hyperthreading was not activated. The operating system was CentOS Linux 7 (kernel

3.10.0-327.36.3.el7.x86 64). All experiments described here were performed on this

platform except where otherwise specified. The performance was analysed using 18

unconstrained functions (cf. Tables 1 and 2).

Table 1: Benchmarks, dimensions and domains.

Id. Name Dim. (V) Domain (Min, Max)

F1 Sphere 30 −100, 100

F2 SumSquares 30 −10, 10

F3 Beale 2 −4.5, 4.5

F4 Easom 2 −100, 100

F5 Zakharov 10 −5, 10

F6 Schwefel problem 1.2 10 −100, 100

F7 Rosenbrock 30 −30, 30

F8 Branin 2 x1 : −5, 10;x2 : 0, 15

F9 Bohachevsky 1 2 −100, 100

F10 Booth 2 −10, 10

F11 Michalewicz 2 2 0, π

F12 Bohachevsky 2 2 −100, 100

F13 Bohachevsky 3 2 −100, 100

F14 GoldStein-Price 2 −2, 2

F15 Hartman 3 3 0, 1

F16 Ackley 30 −32, 32

F17 Langermann 2 2 0, 10

F18 Langermann 10 10 0, 10

Table 2: Benchmarks objective functions.

24

Id. Function

F1 f =

V∑
i=1

x2i

F2 f =

V∑
i=1

ix2i

F3 f = (1.5− x1 + x1x2)
2 + (2.25− x1 + x1x

2
2)

2

+(2.625− x1 + x1x
3
2)

2

F4 f = − cos(x1) cos(x2) exp
(
−(x1 − π)2 − (x2 − π)2

)
F5 f =

V∑
i=1

x2i +

(
V∑
i=1

0.5ixi

)2

+

(
V∑
i=1

0.5ixi

)4

F6 f =

V∑
i=1

 i∑
j=1

xj

2

F7 f =

V−1∑
i=1

(
100(xi+1 − x2i)2 + (xi − 1)2

)
F8 f =

(
x2 − 5.1

4π2x
2
1 +

5
πx1 − 6

)2
+ 10

(
1− 1

8π

)
cosx1 + 10

F9 f = x21 + 2x22 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7

F10 f = (x1 − 2x2 − 7)2 + (2x1 + x2 − 5)2

F11 f = −
2∑
i=1

sinxi

(
sin

(
ix2i
π

))20

F12 f = x21 + 2x22 − 0.3 cos(3πx1) cos(4πx2) + 0.3

F13 f = x21 + 2x22 − 0.3 cos(3πx1 + 4πx2) + 0.3

F14 f =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)

][
30 + (2x1 − 3x2)

2(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)
]

F15 f = −
4∑
i=1

ci exp

− 3∑
j=1

aij(xj − pij)2


F16 f = −20 exp

−0.2
√√√√ 1

V

V∑
i=1

x2i

− exp

(
1
V

V∑
i=1

cos(2πxi)

)
+ 20 + e

F17

F18
f = −

5∑
i=1

ci

exp
− 1

π

V∑
j=1

(xj − aij)2
 cos

π V∑
j=1

(xj − aij)2


An analysis of the computational costs of both the original Jaya algorithm and the315

25

chaotic algorithm was performed first. Table 3 shows the sequential computational

times for a population size of 240, where the number of iterations was 50, 000 and

the number of independent executions was 30. The computational cost of the chaotic

algorithm is generally higher than that of the original algorithm. Also, the sequential

implementation (cf. Algorithm 3) has some drawbacks in terms of efficient parallel320

development, such as the computing of up to seven random numbers (to calculate a

and b and to select the chaotic values) and the extraction of up to five values from the

chaotic map.

Table 3: Comparison of sequential computational times: Chaotic Jaya vs. Jaya.

Time (s.)

Original Chaotic Inc. (%) Chaotic Jaya Inc. (%)

Jaya Jaya (ICP)

F1 186.3 1227.7 559% 884.9 375%

F2 193.6 1241.1 541% 898.4 364%

F3 45.7 76.1 67% 49.0 7%

F4 43.6 79.6 83% 49.6 14%

F5 123.5 478.8 288% 255.7 107%

F6 353.9 1556.8 340% 1224.3 246%

F7 202.4 625.1 209% 240.7 19%

F8 27.7 59.0 113% 31.0 12%

F9 29.3 52.9 81% 25.7 -12%

F10 16.4 43.7 167% 16.5 1%

F11 92.8 141.3 52% 109.7 18%

F12 26.7 49.7 87% 22.0 -17%

F13 27.6 50.8 84% 22.7 -18%

F14 20.8 46.6 124% 19.5 -6%

F15 76.6 116.6 52% 77.9 2%

F16 162.1 357.1 120% 167.2 3%

F17 154.2 188.6 22% 169.1 10%

F18 239.7 400.2 67% 269.5 12%

26

The results shown in Table 3 can be used to analyse the sequential algorithm applied

to develop the parallel CP-CJaya and NCP-CJaya algorithms. The sequential algorithm325

used to create the parallel DGP-CJaya algorithm is different from that of CP-CJaya and

NCP-CJaya. Since, as seen in Algorithm 11, both the storage structure of the popula-

tion (diffusion grid) and the selection of the random individual used to generate new

individuals differs from those of the original chaotic Jaya algorithm. Also, the ICP

technique has been applied to this algorithm. The comparison of sequential computa-330

tional cost concerning the Jaya algorithm is shown in Table 4.

Table 4: Comparison of sequential computational times: Diffusion grid Chaotic Jaya vs. Jaya.

Time (s.)

Original Diffusion grid Inc. (%) Diffusion grid Inc. (%)

Jaya Chaotic Jaya CJaya (ICP)

F1 186.3 1324.1 611% 939.9 404%

F2 193.6 1339.1 592% 979.2 406%

F3 45.7 78.8 72% 51.8 13%

F4 43.6 82.5 89% 52.7 21%

F5 123.5 458.8 272% 161.7 31%

F6 353.9 1599.8 352% 1195.2 238%

F7 202.4 629.9 211% 243.9 20%

F8 27.7 61.3 122% 34.0 23%

F9 29.3 55.2 89% 28.1 -4%

F10 16.4 46.4 184% 20.4 25%

F11 92.8 146.4 58% 112.0 21%

F12 26.7 51.1 92% 27.4 3%

F13 27.6 50.9 85% 24.8 -10%

F14 20.8 48.7 134% 22.5 8%

F15 76.6 123.2 61% 79.9 4%

F16 162.1 357.3 120% 169.2 4%

F17 154.2 192.9 25% 166.4 8%

F18 239.7 404.4 69% 264.6 10%

27

The higher computational cost of the chaotic Jaya sequential algorithms compared

to the original sequential Jaya algorithm (cf. Tables 3 and 4) is undoubtedly offset by

faster convergence. However, the use of the chaotic map was computationally analysed

and modified to accelerate the parallel algorithms proposed in Section 3, using the ICP335

technique.

The results from Tables 3 and 4 show that the version in which the improved com-

puting performance (ICP) technique was included, significantly improved the compu-

tation times for the chaotic Jaya sequential algorithm. It can be observed from the

tables that the computational cost for both of the chaotic Jaya sequential algorithms340

is reduced by including the ICP technique. In some cases (the negative values in the

rightmost columns of Tables 3 and 4), the chaotic Jaya sequential algorithms with the

ICP technique are computationally less expensive than the original sequential Jaya al-

gorithm.

Tables 5 and 6 show the behaviour of the algorithms that include optimisation to345

improve computational performance (ICP), including the number of function evalua-

tions required to obtain an error of less than 1e − 1. The optimisation algorithm was

run ten times, and Tables 5 and 6 show the maximum, minimum and average values

of the number of cost function evaluations for a population of size 240. The error for

the Rosenbrock function (F7) was 1e + 2, and it can be seen that the behaviour does350

not differ markedly from one algorithm to another. Slight decreases in optimisation

performance are shown in some cases; however, the large reduction in computational

cost compensates for these slight decreases (see Tables 3 and 4).

Table 7 shows a significant improvement in the ratio of convergence between the

chaotic algorithms and the original Jaya algorithm for the functions that required more355

iterations. For the functions that required fewer iterations, the improvement was sig-

nificant in some cases, while in others, the behaviour was similar. A more exhaustive

comparative analysis for other algorithms can be found in [59].

In order to analyse the parallel behaviour of the peoposed parallel algorithms, ex-

periments were performed with 30 independent executions and population sizes of 240,360

120 and 60. Tables 8 and 9 show the speed-up achieved by CP-CJaya when no improve-

ments were applied and when performance computing improvement was included, re-

28

Table 5: Comparison of the number of cost function evaluations respect to the version with improved com-

puting performance (ICP). Chaotic Jaya vs Jaya.

Number of functions evaluations (error < 10e− 1)

Chaotic Chaotic (ICP)

Average Maximum Minimum Average Maximum Minimum

F1 5232 6240 3840 5328 6240 4560

F2 4752 5520 4080 4320 6240 3120

F3 552 960 480 552 720 480

F4 2808 4800 720 3264 9120 1920

F5 3216 4320 1680 3096 5520 960

F6 10416 12720 7440 9360 12000 7200

F7 (*) 3912 4560 2880 3936 5280 2880

F8 960 2640 480 1176 3840 480

F9 2376 3600 1680 2880 2160 1200

F10 1656 3120 720 2613 5760 480

F11 1032 2160 480 1224 2640 480

F12 2016 2640 1200 1752 2400 960

F13 1800 2640 960 1512 2160 960

F14 1848 3120 960 2256 3600 1200

F15 672 1200 480 936 2160 480

F16 4920 6240 4080 4488 6000 3360

F17 504 720 480 480 480 480

F18 480 480 480 480 480 480

29

Table 6: Comparison of the number of cost function evaluations respect to the version with improved com-

puting performance (ICP). Diffusion grid Chaotic Jaya vs Jaya.

Number of functions evaluations (error < 10e− 1)

Diffusion grid Chaotic Diffusion grid Chaotic (ICP)

Average Maximum Minimum Average Maximum Minimum

F1 4392 5040 3840 4533 5520 3840

F2 4187 4800 3120 3990 4560 3120

F3 480 480 480 480 480 480

F4 2064 3120 960 2070 3600 1440

F5 2184 3120 1440 2472 4080 1440

F6 6024 7680 4080 7032 9120 3840

F7 (*) 2976 4080 1680 3336 4080 2400

F8 768 1440 480 1080 4080 480

F9 1173 1680 480 1056 1680 480

F10 1248 2400 480 3624 7680 720

F11 480 480 480 480 480 480

F12 864 1680 480 840 1440 480

F13 960 1200 480 912 1440 480

F14 1560 2400 480 1573 2400 1200

F15 672 1440 480 864 3120 480

F16 3744 4800 2400 3360 4800 1920

F17 528 720 480 507 720 480

F18 480 480 480 480 480 480

30

Table 7: Comparison of the number of cost function evaluations respect to the original Jaya algorithm.

Number of functions evaluations (error < 10e− 1)

Original Chaotic Chaotic Jaya Diffusion grid Diffusion grid

Jaya Jaya (ICP) CJaya CJaya (ICP)

F1 532560 5232 5328 4392 4533

F2 441750 4752 4320 4187 3990

F3 780 552 552 480 480

F4 44580 2808 3264 2064 2070

F5 240960 3216 3096 2184 2472

F6 10416 9360 6024 7032

F7 (*) 644760 3912 3936 2976 3336

F8 690 960 1176 768 1080

F9 8880 2376 2880 1173 1056

F10 1710 1656 2613 1248 3624

F11 810 1032 1224 480 480

F12 7980 2016 1752 864 840

F13 8190 1800 1512 960 912

F14 8220 1848 2256 1560 1573

F15 600 672 936 672 864

F16 293550 4920 4488 3744 3360

F17 510 504 480 528 507

F18 480 480 480 480 480

31

spectively.

From both tables, it can be seen that excellent acceleration is obtained for the func-

tions of higher computational cost, even with 10 processes, for a population size of 240.365

As the population size decreases, the speed-up decreases. Note, for example, that for a

population of 60 individuals and 10 processes, the sub-population size is only six indi-

viduals, which makes the communication and coordination processes more expensive

than the computing time.

Since the sequential reference algorithm is the same in all figures, it can be seen370

that the use of ICP in the CP-CJaya algorithm (Table 9) improves the behaviour of the

original parallel CP-CJaya algorithm without the ICP technique (Table 8). Note that

less marked improvements are obtained for small sub-populations, for example, for a

sub-population size of six (i.e., a population size of 60 using 10 processes).

Tables 10 and 11 show the speed-up achieved by the parallel NCP-CJaya algorithm.375

The data in both tables were calculated using the same sequential reference algorithm

as that used in Tables 8 and 9, i.e. the chaotic Jaya sequential algorithm (without the

use of the diffusion grid). From comparisons of Tables 10 and 8, and Tables 11 and 9,

it can be observed that the parallel behaviour of the NCP-CJaya algorithm significantly

improves the parallel behaviour of CP-CJaya, both without (Tables 8 and 10) and with380

the ICP technique (Tables 9 and 11). From Tables 10 and 11, it can be seen that the

parallel behaviour of the NCP-CJaya algorithm using the ICP technique (Table 11)

improves significantly for the case where ICP is not used (Table 10), even for a small

sub-population of six (population 60 with 10 threads). As described above, the speed-

up results show good behaviour, even for 10 processes and small population sizes. In385

some cases, super-speed-up is shown, i.e. a value greater than the number of processes.

This is due both to the efficiency of the cache memory and, more importantly, to the

fact that the costs of the reference algorithm and the parallel algorithm are not the same.

Tables 12 and 13 show the speed-up for the parallel DGP-CJaya algorithm, with-

out and with the use of ICP, respectively. An analysis of the results in these tables390

shows that the ICP method improves speed-up, in an analogous way to the behaviour

demonstrated by the CP-CJaya and NCP-CJaya algorithms. The results in Tables 8,

10 and 12 show similar parallel behaviour of DGP-CJaya concerning CP-CJaya, while

32

Table 8: Speed-up of the CP-CJaya method without IPC.

Pop. Size: 240 Pop. Size: 120 Pop. Size: 60

N. of threads N. of threads N. of threads

2 6 10 2 6 10 2 6 10

F1 1.83 5.12 8.18 1.73 4.70 7.22 1.54 3.95 5.82

F2 1.86 5.09 8.21 1.70 4.52 6.92 1.47 3.84 5.59

F3 1.82 3.87 4.52 1.75 3.04 2.92 1.71 2.20 1.84

F4 1.76 4.24 5.19 1.95 3.63 3.47 1.59 2.30 1.99

F5 1.70 4.54 7.26 1.24 3.31 4.69 0.84 2.04 2.64

F6 1.92 5.37 8.61 1.92 5.35 8.29 1.81 4.80 7.21

F7 1.97 5.43 8.27 1.95 5.19 7.30 1.87 4.81 6.13

F8 1.88 4.08 4.62 1.75 2.94 2.68 1.53 1.99 1.59

F9 1.85 3.85 4.35 1.74 2.82 2.49 1.79 1.85 1.40

F10 1.82 3.65 3.81 1.70 2.54 2.09 1.43 1.54 1.20

F11 1.77 3.89 5.00 1.73 3.39 3.79 1.66 2.73 2.66

F12 1.81 3.80 4.16 1.72 2.69 2.33 1.48 1.79 1.37

F13 1.86 3.85 4.24 1.73 2.80 2.38 1.54 1.75 1.36

F14 1.85 3.78 4.02 1.71 2.60 2.19 1.54 1.79 1.33

F15 1.88 4.59 6.08 1.84 3.75 4.13 1.70 3.13 2.94

F16 1.96 5.28 7.87 1.92 4.90 6.66 1.87 4.48 5.44

F17 1.95 5.07 7.13 1.91 4.35 5.10 1.80 3.54 3.62

F18 1.94 5.26 7.94 1.94 4.90 6.73 1.89 4.35 5.30

33

Table 9: Speed-up of the CP-CJaya method with IPC.

Pop. Size: 240 Pop. Size: 120 Pop. Size: 60

N. of threads N. of threads N. of threads

2 6 10 2 6 10 2 6 10

F1 2.52 6.62 10.59 2.33 6.10 9.13 2.03 5.07 7.11

F2 2.55 6.76 10.55 2.25 5.89 8.69 1.96 4.83 6.74

F3 2.71 5.19 5.16 2.70 3.73 3.31 2.20 2.48 1.85

F4 2.90 5.68 6.49 2.95 4.70 4.07 2.32 2.77 2.15

F5 2.23 6.06 9.14 1.70 4.19 5.83 1.09 2.44 3.02

F6 2.44 6.84 10.81 2.52 6.66 10.35 2.30 5.96 8.42

F7 4.92 12.13 17.84 4.88 10.91 12.70 4.53 8.89 9.65

F8 3.39 5.99 5.92 3.36 3.77 3.02 2.41 2.31 1.69

F9 3.51 5.96 5.33 3.09 3.51 2.81 2.42 2.14 1.48

F10 3.95 5.70 4.92 3.37 3.30 2.39 2.44 1.88 1.30

F11 2.28 4.82 5.88 2.37 4.12 4.32 2.08 3.17 2.88

F12 3.67 5.84 5.42 3.15 3.40 2.67 2.50 2.02 1.46

F13 3.55 6.01 5.54 3.26 3.67 2.74 2.40 1.95 1.43

F14 3.94 6.01 5.32 3.27 3.46 2.52 2.64 2.07 1.46

F15 2.88 6.53 7.83 2.85 4.95 4.77 2.49 3.78 3.23

F16 4.08 10.09 13.98 3.97 8.66 10.09 3.66 6.92 7.36

F17 2.20 5.82 7.96 2.26 4.81 5.69 2.11 3.84 3.79

F18 2.97 7.75 11.30 2.94 6.96 8.84 2.81 5.84 6.29

34

Table 10: Speed-up of the NCP-CJaya method without IPC.

Pop. Size: 240 Pop. Size: 120 Pop. Size: 60

N. of threads N. of threads N. of threads

2 6 10 2 6 10 2 6 10

F1 2.05 6.64 12.66 2.08 8.70 17.65 2.11 8.65 14.29

F2 2.00 6.62 12.71 2.14 8.71 16.85 2.29 8.71 15.61

F3 1.99 5.19 8.63 1.74 5.17 8.40 1.75 5.01 8.30

F4 1.91 5.27 9.28 1.90 5.70 9.28 1.96 5.31 8.68

F5 2.11 7.37 18.07 2.17 8.72 14.77 2.10 7.33 11.97

F6 1.99 5.78 9.92 1.99 7.47 16.76 1.98 10.59 17.60

F7 2.00 5.47 9.29 1.98 5.30 9.55 1.82 5.68 9.39

F8 1.97 5.14 8.55 1.75 5.12 8.49 1.77 5.16 8.43

F9 1.91 5.09 8.37 1.89 5.15 8.53 1.85 5.44 8.93

F10 1.75 5.21 9.09 1.78 5.44 8.80 1.79 5.28 8.53

F11 1.93 5.21 8.59 1.75 4.80 8.53 1.74 5.10 8.48

F12 1.75 4.94 8.07 1.84 5.18 8.55 1.75 5.23 8.05

F13 1.78 5.20 8.53 1.77 5.22 8.48 1.74 5.16 8.59

F14 1.76 5.20 8.82 1.77 5.23 8.56 1.83 5.21 8.37

F15 1.92 5.18 8.67 1.76 5.21 8.63 1.78 5.20 8.92

F16 1.97 5.23 8.71 1.82 5.25 9.03 1.75 5.17 8.63

F17 1.90 5.22 8.69 2.00 5.23 8.94 1.75 5.22 9.13

F18 1.99 5.31 8.71 1.93 5.20 8.65 1.77 5.27 8.76

35

Table 11: Speed-up of the NCP-CJaya method with IPC.

Pop. Size: 240 Pop. Size: 120 Pop. Size: 60

N. of threads N. of threads N. of threads

2 6 10 2 6 10 2 6 10

F1 2.96 10.23 18.12 3.22 16.35 42.36 4.52 22.80 32.15

F2 3.01 11.00 20.40 3.30 16.87 43.03 4.39 20.75 31.70

F3 3.08 8.90 9.37 2.73 7.83 12.34 2.70 7.40 11.25

F4 3.61 10.39 9.80 3.48 9.40 14.29 2.81 7.92 12.41

F5 4.01 20.57 21.96 6.17 19.47 32.57 4.39 12.50 18.45

F6 2.53 7.46 11.42 2.70 10.56 36.06 3.25 17.62 27.63

F7 5.23 14.53 15.47 4.94 13.93 20.35 4.91 11.98 17.58

F8 3.84 10.38 10.05 3.30 9.21 14.63 3.29 8.80 13.40

F9 4.04 10.91 11.02 3.54 9.60 15.52 3.30 9.44 14.60

F10 5.11 14.10 11.99 4.59 11.54 17.65 4.07 10.04 14.52

F11 2.63 7.49 8.98 2.64 6.74 10.94 2.49 6.46 10.27

F12 4.33 11.37 13.67 3.77 10.17 16.58 3.64 9.45 14.16

F13 4.11 11.30 11.14 3.72 10.17 16.54 3.61 9.81 14.60

F14 4.62 13.25 11.63 4.44 11.26 17.31 3.98 10.38 15.25

F15 3.07 8.54 8.24 3.08 8.27 13.43 2.63 7.35 11.81

F16 4.34 12.05 11.79 3.79 10.33 16.45 4.05 9.95 15.31

F17 2.38 6.68 7.15 2.33 6.19 9.97 2.06 5.98 9.85

F18 3.03 8.65 9.88 2.97 7.88 12.76 2.89 7.56 12.12

36

NCP-CJaya shows the best parallel behaviour. On the other hand, the results in Tables

9, 11 and 13 show that NCP-CJaya significantly outperforms CP-CJaya and especially395

DGP-CJaya, which was designed following a fine-grained strategy. This performance

improvement is enhanced by decreasing the sizes of the populations and increasing the

number of threads, meaning that DGP-CJaya does not show good parallel scalability.

Table 12: Speed-up of the DGP-CJaya method without IPC.

Pop. Size: 240 Pop. Size: 120 Pop. Size: 60

N. of threads N. of threads N. of threads

2 6 10 2 6 10 2 6 10

F1 1.84 5.14 8.26 1.70 4.61 7.11 1.53 3.49 3.76

F2 1.84 5.02 8.19 1.76 4.74 7.29 1.63 3.77 4.06

F3 1.80 3.68 4.56 1.63 2.71 2.69 1.51 2.03 1.86

F4 1.79 4.00 5.08 1.60 2.85 3.17 1.55 2.26 1.93

F5 1.99 6.04 9.27 1.71 4.56 6.54 1.84 3.43 3.51

F6 1.94 5.47 8.94 1.95 5.29 8.29 1.99 4.68 4.86

F7 1.95 5.35 8.46 1.94 5.15 7.45 2.05 4.44 4.59

F8 1.74 3.79 4.36 1.62 2.59 2.46 1.72 1.83 1.67

F9 1.82 3.64 4.20 1.61 2.47 2.25 1.46 1.84 1.67

F10 1.68 3.31 3.67 1.53 2.15 1.96 1.34 1.47 1.28

F11 1.75 3.81 4.95 1.65 3.15 3.60 1.64 2.69 2.60

F12 1.81 3.52 4.05 1.57 2.28 2.15 1.34 1.68 1.44

F13 1.86 3.71 4.32 1.60 2.38 2.15 1.47 1.77 1.42

F14 1.75 3.41 3.83 1.52 2.18 2.02 1.35 1.52 1.29

F15 1.82 4.39 5.89 1.75 3.49 3.86 1.72 2.75 2.53

F16 1.97 5.24 8.00 1.90 4.71 6.46 2.01 4.13 4.12

F17 1.90 4.83 7.01 1.83 4.07 5.11 1.92 3.35 3.20

F18 1.95 5.23 8.00 1.88 4.74 6.62 1.99 4.08 4.18

It is shown from Tables 8-13 that both CP-CJaya and NCP-CJaya algorithms be-

have computationally better than DGP-CJaya, especially for parallel scalability. Note400

37

Table 13: Speed-up of the DGP-CJaya method with IPC.

Pop. Size: 240 Pop. Size: 120 Pop. Size: 60

N. of threads N. of threads N. of threads

2 6 10 2 6 10 2 6 10

F1 2.52 6.91 11.02 2.39 6.24 9.33 2.02 4.72 5.03

F2 2.44 6.74 10.68 2.33 6.21 9.21 2.24 5.39 5.45

F3 2.58 4.74 5.36 2.53 3.24 3.03 2.05 2.49 2.18

F4 2.59 5.26 6.21 2.49 3.83 3.49 2.11 2.63 2.22

F5 5.41 14.70 19.54 4.56 11.08 12.34 4.32 7.17 6.83

F6 2.54 6.93 11.35 2.60 6.98 10.14 2.61 6.01 6.46

F7 4.79 12.29 18.14 4.68 11.00 14.03 4.75 9.26 8.98

F8 2.96 5.38 5.68 2.64 3.34 2.79 2.10 2.24 1.92

F9 3.08 5.30 5.69 2.68 3.09 2.63 2.01 2.21 1.82

F10 3.29 5.02 5.09 2.77 2.80 2.20 1.98 1.85 1.46

F11 2.22 4.67 5.98 2.17 3.84 4.10 2.04 3.21 2.87

F12 3.30 5.35 5.21 3.25 2.95 2.39 1.92 2.00 1.65

F13 3.39 5.64 5.44 3.30 3.03 2.55 2.13 2.05 1.65

F14 3.24 5.34 4.93 2.87 2.85 2.30 2.06 1.82 1.49

F15 2.69 6.01 7.53 2.69 4.51 4.52 2.32 3.35 2.99

F16 3.96 9.90 14.23 3.88 8.21 9.89 3.78 6.88 6.48

F17 2.19 5.51 7.70 2.13 4.54 5.40 2.09 3.69 3.49

F18 2.93 7.72 11.45 2.91 6.65 8.73 2.90 5.70 5.72

38

that the reference algorithm is always the same, i.e. the Chaotic Jaya sequential algo-

rithm without a diffusion grid.

The parallel coarse-grained algorithms were then analysed using a more recent plat-

form to investigate parallel scalability behaviour. The second parallel computing plat-

form used was equipped with two Intel Xeon E5-2620 v2 processors, each of which405

contained six 2.1 GHz processing cores. The operating system was CentOS Linux

6.6 (kernel 2.6.32-504.16.2.el6.x86 64). The GCC v.4.4.7 compiler [64] was used,

and the flags std=gnu++0x -fopenmp -O3 were set in compilation process. No

OpenMP thread binding or affinity approaches were applied. Tables 14 and 15 show

the speed-up for the CP-CJaya algorithm without and with the use of ICP, respectively,410

while Tables 16 and 17 show the speed-up for the NCP-CJaya algorithm without and

with the use of ICP, respectively. In all cases, it is confirmed that the speed-up is im-

proved and hence the parallel scalability increases when using a newer processor. It

is pointed out that in all these tables, the sequential reference algorithm is always the

same, i.e. the chaotic Jaya sequential algorithm without a diffusion grid.415

We also analysed the parallel scalability using hyper-threading of the processors of

an Intel Xeon E5-2620 v2, i.e., employing more than 12 threads and up to 24 threads

for the functions with a higher computational cost. Tables 18 and 19 show the speed-

up when the number of threads exceeds the number of physical cores for the CP-CJaya

and NCP-CJaya algorithms, respectively. As expected, the scalability of CP-CJaya is420

limited, and it has an average efficiency of 39% using hyperthreading and without ICP,

which rises to 53% when ICP is used (Table 18). In contrast, the NCP-CJaya algorithm

has outstanding scalability, with an average efficiency of 80% without ICP; this rises

to 163% when ICP is used (Table 19). This means that the algorithm obtains super-

speed-up values, and as noted above, this is because the sequential reference algorithm425

does not include the ICP technique.

We can conclude through Tables 14-19 that the parallel performance is similar for

both computing platforms, and the parallel scalability increases for the Intel Xeon E5-

2620 platform.

Table 20 shows the sequential computational times of chaotic Jaya in terms of the430

population size. It is found that the computational cost ratio is not proportional to

39

Table 14: Speed-up of the CP-CJaya method without IPC (Intel Xeon E5-2620).

Pop. Size: 240 Pop. Size: 120

N. of threads N. of threads

2 6 10 12 2 6 10 12

F1 1.80 4.77 7.50 8.59 1.70 4.35 6.52 7.38

F2 1.75 4.66 7.36 8.48 1.70 4.32 6.48 5.44

F3 1.64 3.28 3.42 3.31 1.54 2.49 2.44 2.07

F4 1.81 3.64 4.03 3.79 1.70 2.70 2.67 2.20

F5 1.76 4.46 6.55 6.01 1.33 3.22 4.27 4.47

F6 1.98 4.94 6.70 7.51 1.95 5.21 6.87 9.04

F7 1.78 4.75 5.17 8.26 1.76 3.62 6.34 7.03

F8 1.72 3.28 3.11 2.80 1.58 2.21 1.98 1.64

F9 1.68 3.14 3.06 2.76 1.53 2.17 1.87 1.52

F10 1.71 2.94 2.59 2.26 1.51 1.87 1.60 1.25

F11 1.80 3.82 4.58 4.65 1.72 3.22 3.44 3.22

F12 1.76 3.18 3.03 2.70 1.59 2.11 1.89 1.52

F13 1.70 3.11 2.93 2.56 1.48 2.05 1.81 1.44

F14 1.76 2.95 2.84 2.52 1.50 2.01 1.78 1.50

F15 1.84 4.03 4.73 4.86 1.71 3.29 3.31 2.82

F16 1.84 4.76 6.84 5.04 1.79 4.34 5.47 5.90

F17 1.75 4.27 5.47 5.67 1.71 3.65 4.27 3.97

F18 1.94 5.02 7.15 7.07 1.87 4.56 5.89 6.08

40

Table 15: Speed-up of the CP-CJaya method with IPC (Intel Xeon E5-2620).

Pop. Size: 240 Pop. Size: 120

N. of threads N. of threads

2 6 10 12 2 6 10 12

F1 2.80 6.49 10.49 12.12 2.64 6.51 7.00 10.01

F2 2.74 6.60 10.45 11.34 2.59 6.40 8.92 9.86

F3 2.51 4.25 4.02 3.64 2.27 3.01 2.62 2.17

F4 2.61 4.74 4.69 4.31 2.35 3.20 2.90 2.47

F5 2.84 6.43 8.86 8.85 2.18 4.39 5.32 4.34

F6 2.75 6.71 11.26 12.45 2.63 6.45 9.96 11.29

F7 4.62 10.89 14.65 16.10 4.44 9.57 11.13 11.72

F8 2.93 4.42 3.82 3.40 2.43 2.74 2.30 1.80

F9 2.99 4.36 3.62 3.13 2.29 2.61 2.06 1.60

F10 3.56 4.21 3.18 2.57 2.83 2.33 1.74 1.38

F11 2.23 4.40 5.04 4.94 2.11 3.59 3.74 3.31

F12 3.36 4.48 3.53 3.01 2.75 2.64 2.02 1.58

F13 3.26 4.38 3.45 3.03 2.69 2.61 2.00 1.74

F14 3.45 4.44 3.35 2.78 2.59 2.56 1.97 1.48

F15 2.77 5.43 5.83 5.62 2.55 4.28 3.77 3.16

F16 3.92 8.97 7.63 11.66 3.75 7.39 8.02 5.16

F17 2.20 5.14 6.39 6.46 2.10 4.27 4.80 4.28

F18 2.80 6.96 9.56 8.12 2.73 6.08 7.40 7.31

41

Table 16: Speed-up of the NCP-CJaya method without IPC (Intel Xeon E5-2620).

Pop. Size: 240 Pop. Size: 120

N. of threads N. of threads

2 6 10 12 2 6 10 12

F1 2.00 5.88 9.95 11.89 2.00 5.93 9.92 11.92

F2 2.00 5.85 9.94 11.84 1.99 5.90 9.86 11.93

F3 1.96 5.47 9.03 10.80 1.95 5.44 8.98 10.70

F4 1.95 5.46 9.05 10.84 1.93 5.43 9.00 10.75

F5 2.00 5.75 9.94 11.88 1.84 5.96 9.91 11.94

F6 1.96 5.56 9.42 11.77 1.91 5.93 9.98 11.94

F7 1.95 5.52 9.19 11.01 1.97 5.52 9.17 10.99

F8 1.96 5.39 8.86 10.59 1.95 5.36 8.86 10.56

F9 1.92 5.30 8.84 10.56 1.93 5.40 8.83 10.83

F10 1.95 5.48 9.07 10.83 1.95 5.43 8.92 10.63

F11 1.96 5.40 8.91 10.66 1.98 5.40 8.92 10.62

F12 1.96 5.42 8.90 10.64 1.66 5.46 9.02 10.71

F13 1.93 5.41 9.00 10.78 1.94 5.41 8.99 10.81

F14 1.95 5.46 9.04 10.79 1.95 5.43 8.89 10.60

F15 1.95 5.46 9.06 10.86 1.91 5.45 9.06 10.82

F16 1.95 5.49 9.12 10.94 1.95 5.49 9.12 10.92

F17 1.97 5.49 9.11 10.91 1.96 5.48 9.07 10.87

F18 1.96 5.48 9.09 10.85 1.96 5.49 9.13 10.94

42

Table 17: Speed-up of the NCP-CJaya method with IPC (Intel Xeon E5-2620).

Pop. Size: 240 Pop. Size: 120

N. of threads N. of threads

2 6 10 12 2 6 10 12

F1 3.28 11.00 22.24 28.28 3.58 15.51 32.40 37.46

F2 3.18 10.46 21.00 28.87 3.58 15.21 30.12 35.86

F3 2.97 8.11 12.84 15.61 2.96 7.92 12.65 14.69

F4 2.98 8.33 13.59 16.16 2.92 8.12 13.12 15.54

F5 4.62 20.78 35.86 42.38 5.58 16.25 25.66 30.02

F6 2.75 7.86 13.31 17.97 2.71 10.81 32.28 38.00

F7 5.01 13.67 22.07 26.06 4.90 13.06 20.62 24.11

F8 3.52 9.48 15.39 18.26 3.51 9.20 14.80 17.31

F9 3.78 10.19 16.32 19.28 3.86 9.97 16.12 18.41

F10 5.23 13.82 21.98 25.77 5.11 12.97 19.89 22.92

F11 2.54 6.97 11.44 13.51 2.50 6.90 11.31 12.34

F12 4.29 11.48 18.05 21.56 4.17 11.09 17.79 20.77

F13 4.23 10.92 18.17 21.04 3.98 10.89 17.78 20.15

F14 4.70 12.77 20.52 24.16 4.48 12.16 18.80 21.81

F15 3.14 8.64 14.11 16.77 3.13 8.44 13.60 16.06

F16 4.21 11.60 18.78 22.26 4.18 11.17 17.76 20.83

F17 2.23 6.18 10.28 12.31 2.17 6.17 10.18 12.10

F18 2.92 8.15 13.43 16.00 2.94 8.06 13.13 15.50

43

Table 18: Speed-up of the CP-CJaya method when using hyper-threading (Intel Xeon E5-2620).

Whitout ICP

Pop. Size: 240 Pop. Size: 120

N. of threads N. of threads

15 20 24 15 20 24

F1 8.33 9.69 11.26 6.99 7.43 8.88

F2 7.03 10.07 9.90 6.00 8.18 8.71

F5 6.76 7.74 6.97 4.09 4.44 4.30

F6 9.47 12.22 13.52 7.79 10.26 11.19

F7 6.84 8.05 8.96 5.93 6.50 6.40

F16 6.38 6.58 7.48 4.99 5.20 4.99

F18 6.86 7.41 7.82 5.22 5.54 5.16

Using ICP

Pop. Size: 240 Pop. Size: 120

N. of threads N. of threads

15 20 24 15 20 24

F1 11.77 13.72 15.23 7.89 10.28 9.42

F2 11.41 13.63 12.99 8.98 10.50 10.46

F5 7.42 9.24 8.73 4.86 5.08 5.04

F6 13.00 15.72 13.38 10.89 11.40 11.69

F7 12.09 14.43 14.72 9.91 7.87 6.85

F16 9.98 8.79 10.06 6.74 6.37 5.98

F18 8.85 9.05 9.42 6.30 6.46 6.20

44

Table 19: Speed-up of the NCP-CJaya method when using hyper-threading (Intel Xeon E5-2620).

Whitout ICP

Pop. Size: 240 Pop. Size: 120

N. of threads N. of threads

15 20 24 15 20 24

F1 14.85 19.39 22.26 14.30 18.32 21.75

F2 14.83 19.60 23.39 14.48 19.01 22.25

F5 14.82 19.34 23.72 12.32 16.17 15.65

F6 14.88 19.51 23.53 14.77 19.52 23.37

F7 9.65 12.22 14.45 9.53 12.29 14.50

F16 9.17 11.88 14.01 9.01 11.79 13.96

F18 9.91 12.94 15.31 9.82 12.95 15.26

Using ICP

Pop. Size: 240 Pop. Size: 120

N. of threads N. of threads

15 20 24 15 20 24

F1 34.61 45.99 54.26 31.17 39.30 45.09

F2 33.88 43.46 48.22 30.28 37.50 43.15

F5 33.27 42.93 50.00 23.52 29.53 33.96

F6 28.19 47.62 55.35 33.99 42.81 49.41

F7 21.85 27.21 31.67 19.72 24.39 28.00

F16 17.19 21.91 25.76 15.93 20.06 23.14

F18 14.44 18.74 22.23 13.89 18.01 21.22

45

the size of the population. The computational cost associated with each thread will,

therefore, depends on the size of its sub-population.

Table 20: Sequential computational times (s.).

Population size

240 120 60

Cjaya 895.82 394.71 156.81

Increment (respect pop. size = 60) 5.71 2.52

Increment (respect pop. size = 120) 2.27

Cjaya (ICP) 1227.48 573.55 234.50

Increment (respect pop. size = 60) 5.23 2.45

Increment (respect pop. size = 120) 2.14

It should be noted that in most experiments for the NCP-CJaya algorithm, the speed

of convergence increases with the number of processes. This behaviour is related to the435

fact that in general, the CJaya algorithm behaves better for small populations. It can

obtain an optimal value of the function with populations of only six individuals. Table

21 demonstrates this behaviour, and shows the maximum number of iterations needed

to obtain an optimal value with a tolerance of 1e− 1.

Finally, we will analyse the behaviour of the proposed parallel algorithms when440

solving two real-world cases involving constrained engineering design problems. The

first is the welded beam problem, whereas the second is the pressure vessel problem.

A detailed description of both problems can be found in [22, 66]. The pressure vessel

problem is given by Eq. (5), while the welded beam problem is formulated as Eq. (6).

Some auxiliary functions and constant values of welded beam problem are detailed in445

Eq. (7). Herein, F is the cost function and gi are the constraints.

46

Table 21: Maximum number of cost function evaluations with improved computing performance (ICP).

Tolerance 1e− 1

Maximum number of functions evaluations

Pop. Size = 240 Pop. Size = 120 Pop. Size = 60

F1 6240 3360 1020

F2 6240 2040 900

F3 720 240 120

F4 9120 1800 480

F5 5520 1680 1140

F6 12000 3720 1560

F7 (*) 5280 2520 1200

F8 3840 600 420

F9 2160 720 540

F10 5760 4080 900

F11 2640 360 1140

F12 2400 1200 540

F13 2160 720 300

F14 3600 2760 10680

F15 2160 1320 660

F16 6000 2280 960

F17 480 480 120

F18 480 240 120

47

Pressure vessel problem:

F = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x21x4 + 19.84x21x3

Constraints:

g1 = −x1 + 0.0193x3 ≤ 0

g2 = −x2 + 0.00954x3 ≤ 0

g3 = −πx23x4 − (4/3)πx33 + 1296000 ≤ 0

g4 = x4 − 240 ≤ 0

0.0625 ≤ x1, x2 ≤ 99 ∗ 0.0625

10 ≤ x3, x4 ≤ 240

(5)

Welded beam problem:

F = 1.10471x21x2 + 0.04811x3x4(14.0 + x2)

Constraints:

g1 = τ(x)− τmax ≤ 0

g2 = σ(x)− σmax ≤ 0

g3 = x1 − x4 ≤ 0

g4 = 0.10471x21 + 0.04811x3x4(14.0 + x2)5.0 ≤ 0

g5 = 0.125− x1 ≤ 0

g6 = δ(x)− δmax ≤ 0

g7 = P (x)− Pc(x) ≤ 0

0.1 ≤ x1, x4 ≤ 2.0

0.1 ≤ x2, x3 ≤ 10.0

(6)

48

Auxiliary functions and constant values of welded beam problem:

τ(x) =

√
(τ ′)2 + 2τ ′τ ′′

x2
2R

+ (τ ′′)2; τ ′ =
P√
2x1x2

; τ ′′ =
MR

J

M = P
(
L+

x2
2

)
;R =

√
x22
4

+

(
x1 + x3

2

)2

J = 2

{
√
2x1x2

[
x22
12

+

(
x1 + x3

2

)2
]}

σ(x) =
6PL

x4x23

δ(x) =
4PL3

Ex3xx4

Pc(x) =
4.013E

√
x2
3x

6
4

36

L2

(
1− x3

2L

√
E

4G

)
P = 6000lb;L = 14in; δmax = 0.25in;E = 30e+ 6psi;G = 10e+ 6psi

τmax = 13600psi;σmax = 30000psi

(7)

Tables 22 and 23 show the results for parallel speed-up and the solutions obtained

for the pressure vessel problem and the welded beam problem, respectively, both with

and without the ICP technique. These results show the same behaviour described in

the previous analysis for the parallel behaviour. For the solution obtained, these results450

confirm that good solutions are obtained in all cases [22, 66]. Furthermore, neither the

use of parallel methods nor the use of the ICP technique worsens the obtained solutions.

5. Conclusions

This paper proposed three parallel algorithms for accelerating the heuristic opti-

misation algorithm using a chaotic 2D map. For each of these algorithms, a strategy455

for reducing the computational cost by varying the use of the chaotic map is analysed.

These algorithms are analysed in detail at the level of parallel performance and the

level of optimisation behaviour. The employing of the chaotic map, besides the parallel

49

Table 22: Pressure vessel problem. Population size 120.

Solution

N. T. ICP Speed-up Fcost x1 x2 x3 x4

CP-Cjaya

2 N 1.81 6109.14294 0.75000 0.37500 38.85843 234.36939

6 N 3.79 6109.01921 0.75000 0.37500 38.85632 234.38143

10 N 4.19 6108.58298 0.75000 0.37500 38.85952 234.33183

2 Y 3.11 6109.74827 0.75000 0.37500 38.85726 234.40986

6 Y 5.46 6110.72962 0.75000 0.37500 38.85540 234.47527

10 Y 5.22 6111.81471 0.75000 0.37500 38.83579 234.69953

NCP-Cjaya

2 N 1.86 6109.06710 0.75000 0.37500 38.85667 234.38077

6 N 5.31 6109.00484 0.75000 0.37500 38.85579 234.38530

10 N 9.28 6109.08271 0.75000 0.37500 38.85993 234.35336

2 Y 3.29 6109.39554 0.75000 0.37500 38.85312 234.42803

6 Y 9.73 6109.03636 0.75000 0.37500 38.85752 234.37186

10 Y 15.51 6108.88119 0.75000 0.37500 38.85944 234.34753

50

Table 23: Welded beam problem. Population size 120.

Solution

N. T. ICP Speed-up Fcost x1 x2 x3 x4

CP-Cjaya

2 N 1.91 1.58737 0.16801 4.06735 10.00000 0.16803

6 N 4.44 1.58742 0.16800 4.06759 10.00000 0.16803

10 N 5.39 1.58738 0.16801 4.06837 10.00000 0.16802

2 Y 2.62 1.58773 0.16793 4.07219 10.00000 0.16802

6 Y 5.60 1.58739 0.16800 4.06713 10.00000 0.16804

10 Y 6.27 1.58786 0.16792 4.07282 10.00000 0.16803

NCP-Cjaya

2 N 1.93 1.58733 0.16801 4.06832 10.00000 0.16801

6 N 5.36 1.58743 0.16801 4.06872 10.00000 0.16802

10 N 8.67 1.58769 0.16806 4.06769 10.00000 0.16805

2 Y 2.48 1.58773 0.16793 4.07219 10.00000 0.16802

6 Y 7.74 1.58739 0.16800 4.06713 10.00000 0.16804

10 Y 11.66 1.58786 0.16792 4.07282 10.00000 0.16803

51

computing, enhance the convergence speed. Although the CP-CJaya and DGP-CJaya

algorithms have less scalability, the NCP-CJaya algorithm offers optimal parallel scala-460

bility. Furthermore, two real problems were studied, and it was found that the proposed

parallel algorithms and the Chaotic Jaya algorithm were suitable for solving real-world

problems. In future work, we will design hybrid versions at the level of chaotic maps

and the number and size of the sub-populations to accelerate convergence without los-

ing parallel efficiency. A parallel version for multiple cores will be designed by using465

Nvidia GPUs to assign independent executions to different multiprocessors of the GPU.

To achieve excellent occupation of the GPU, each CUDA thread will only be assigned

one variable of one individual.

Acknowledgments

This research was supported by the Spanish Ministry of Science, Innovation and470

Universities and the Research State Agency under Grant RTI2018-098156-B-C54 co-

financed by FEDER funds, and by the Spanish Ministry of Economy and Competitive-

ness under Grant TIN2017-89266-R, co-financed by FEDER funds.

References

[1] M.-H. Lin, J.-F. Tsai, C.-S. Yu, A review of deterministic optimization methods in475

engineering and management, Mathematical Problems in Engineering 2012 (Ar-

ticle ID 756023) (2012) 15. doi:10.1155/2012/756023.

[2] R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization, Swarm Intelli-

gence 1 (1) (2007) 33–57. doi:10.1007/s11721-007-0002-0.

[3] D. Karaboga, B. Basturk, On the performance of artificial bee colony (abc) al-480

gorithm, Appl. Soft Comput. 8 (1) (2008) 687–697. doi:10.1016/j.asoc.

2007.05.007.

[4] M. Eusuff, K. Lansey, F. Pasha, Shuffled frog-leaping algorithm: a memetic meta-

heuristic for discrete optimization, Engineering Optimization 38 (2) (2006) 129–

154. doi:10.1080/03052150500384759.485

52

http://dx.doi.org/10.1155/2012/756023
http://dx.doi.org/10.1007/s11721-007-0002-0
http://dx.doi.org/10.1016/j.asoc.2007.05.007
http://dx.doi.org/10.1016/j.asoc.2007.05.007
http://dx.doi.org/10.1016/j.asoc.2007.05.007
http://dx.doi.org/10.1080/03052150500384759

[5] M. Dorigo, G. Di Caro, New ideas in optimization, McGraw-Hill Ltd., UK, Maid-

enhead, UK, England, 1999, Ch. The Ant Colony Optimization Meta-heuristic,

pp. 11–32.

URL http://dl.acm.org/citation.cfm?id=329055.329062

[6] H.-P. Schwefel, Evolutionsstrategie und numerische Optimierung, Dr.-Ing. The-490

sis, Technical University of Berlin, Department of Process Engineering (1975).

[7] J. R. Koza, Genetic programming: A paradigm for genetically breeding popula-

tions of computer programs to solve problems, Tech. rep., Stanford, CA, USA

(1990).

[8] T. Bäck, G. Rudolph, H. P. Schwefel, Evolutionary programming and evolution495

strategies: Similarities and differences, in: In Proceedings of the Second Annual

Conference on Evolutionary Programming, 1997, pp. 11–22.

[9] Y. Xin-She, Firefly algorithm, lvy flights and global optimization, Research

and Development in Intelligent Systems XXVI (2009) 209–218doi:10.1007/

978-1-84882-983-1_15.500

[10] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, Gsa: A gravitational search al-

gorithm, Information Sciences 179 (13) (2009) 2232 – 2248, special Section on

High Order Fuzzy Sets. doi:10.1016/j.ins.2009.03.004.

[11] H. Ma, D. Simon, P. Siarry, Z. Yang, M. Fei, Biogeography-based optimization:

A 10-year review, IEEE Transactions on Emerging Topics in Computational In-505

telligence 1 (5) (2017) 391–407. doi:10.1109/TETCI.2017.2739124.

[12] A. Ahrari, A. A. Atai, Grenade explosion methoda novel tool for optimization

of multimodal functions, Applied Soft Computing 10 (4) (2010) 1132 – 1140.

doi:10.1016/j.asoc.2009.11.032.

[13] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory510

Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT

Press, 1992.

53

http://dl.acm.org/citation.cfm?id=329055.329062
http://dl.acm.org/citation.cfm?id=329055.329062
http://dx.doi.org/10.1007/978-1-84882-983-1_15
http://dx.doi.org/10.1007/978-1-84882-983-1_15
http://dx.doi.org/10.1007/978-1-84882-983-1_15
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1109/TETCI.2017.2739124
http://dx.doi.org/10.1016/j.asoc.2009.11.032

[14] J. D. Farmer, N. H. Packard, A. S. Perelson, The immune system, adaptation,

and machine learning, Phys. D 2 (1-3) (1986) 187–204. doi:10.1016/

0167-2789(81)90072-5.515

[15] K. V. Price, New ideas in optimization, McGraw-Hill Ltd., UK, Maidenhead, UK,

England, 1999, Ch. An Introduction to Differential Evolution, pp. 79–108.

URL http://dl.acm.org/citation.cfm?id=329055.329069

[16] L. Ingber, Simulated annealing: Practice versus theory, Mathematical and Com-

puter Modelling 18 (11) (1993) 29 – 57. doi:10.1016/0895-7177(93)520

90204-C.

[17] F. Glover, Interfaces in computer science and operations research, Springer,

Boston, MA, 1997, Ch. Tabu Search and Adaptive Memory Programming Ad-

vances, Applications and Challenge, pp. 1–75.

URL http://dl.acm.org/citation.cfm?id=329055.329069525

[18] R. V. Rao, V. Savsani, D. Vakharia, Teaching-learning-based optimization:

A novel method for constrained mechanical design optimization problems,

Computer-Aided Design 43 (3) (2011) 303–315. doi:10.1016/j.cad.

2010.12.015.

[19] J. H. Kim, Harmony search algorithm: A unique music-inspired algorithm, Pro-530

cedia Engineering 154 (2016) 1401 – 1405, 12th International Conference on

Hydroinformatics (HIC 2016) - Smart Water for the Future. doi:10.1016/j.

proeng.2016.07.510.

[20] S. Mishra, P. K. Ray, Power quality improvement using photovoltaic fed dstat-

com based on jaya optimization, IEEE Transactions on Sustainable Energy 7 (4)535

(2016) 1672–1680. doi:10.1109/TSTE.2016.2570256.

[21] C. Huang, L. Wang, R. S. Yeung, Z. Zhang, H. S. Chung, A. Bensoussan, A

prediction model-guided Jaya algorithm for the PV system maximum power point

tracking, IEEE Transactions on Sustainable Energy 9 (1) (2018) 45–55. doi:

10.1109/TSTE.2017.2714705.540

54

http://dx.doi.org/10.1016/0167-2789(81)90072-5
http://dx.doi.org/10.1016/0167-2789(81)90072-5
http://dx.doi.org/10.1016/0167-2789(81)90072-5
http://dl.acm.org/citation.cfm?id=329055.329069
http://dl.acm.org/citation.cfm?id=329055.329069
http://dx.doi.org/10.1016/0895-7177(93)90204-C
http://dx.doi.org/10.1016/0895-7177(93)90204-C
http://dx.doi.org/10.1016/0895-7177(93)90204-C
http://dl.acm.org/citation.cfm?id=329055.329069
http://dl.acm.org/citation.cfm?id=329055.329069
http://dx.doi.org/10.1016/j.cad.2010.12.015
http://dx.doi.org/10.1016/j.cad.2010.12.015
http://dx.doi.org/10.1016/j.cad.2010.12.015
http://dx.doi.org/10.1016/j.proeng.2016.07.510
http://dx.doi.org/10.1016/j.proeng.2016.07.510
http://dx.doi.org/10.1016/j.proeng.2016.07.510
http://dx.doi.org/10.1109/TSTE.2016.2570256
http://dx.doi.org/10.1109/TSTE.2017.2714705
http://dx.doi.org/10.1109/TSTE.2017.2714705
http://dx.doi.org/10.1109/TSTE.2017.2714705

[22] B. Akay, D. Karaboga, Artificial bee colony algorithm for large-scale problems

and engineering design optimization, Journal of Intelligent Manufacturing 3 (4)

(2010) 1001–1014. doi:10.1007/s10845-010-0393-4.

[23] K. Abhishek, V. R. Kumar, S. Datta, S. S. Mahapatra, Application of jaya algo-

rithm for the optimization of machining performance characteristics during the545

turning of cfrp (epoxy) composites: comparison with tlbo, ga, and ica, Engineer-

ing with Computers (2016) 1–19doi:10.1007/s00366-016-0484-8.

[24] A. Choudhary, M. Kumar, D. R. Unune, Investigating effects of resistance wire

heating on aisi 1023 weldment characteristics during asaw, Materials and Man-

ufacturing Processes 33 (7) (2018) 759–769. doi:10.1080/10426914.550

2017.1415441.

[25] D. Dinh-Cong, H. Dang-Trung, T. Nguyen-Thoi, An efficient approach for op-

timal sensor placement and damage identification in laminated composite struc-

tures, Advances in Engineering Software 119 (2018) 48 – 59. doi:10.1016/

j.advengsoft.2018.02.005.555

[26] S. P. Singh, T. Prakash, V. Singh, M. G. Babu, Analytic hierarchy process based

automatic generation control of multi-area interconnected power system using

Jaya algorithm, Engineering Applications of Artificial Intelligence 60 (2017) 35–

44. doi:10.1016/j.engappai.2017.01.008.

[27] H. Li, K. Ge Li, J. An, K. Ge Li, An online and scalable model for generalized560

sparse non-negative matrix factorization in industrial applications on multi-GPU,

IEEE Transactions on Industrial Informatics (2019) 1–1doi:10.1109/TII.

2019.2896634.

[28] H. Li, K. Li, J. An, K. Li, MSGD: A novel matrix factorization approach for large-

scale collaborative filtering recommender systems on GPUs, IEEE Transactions565

on Parallel and Distributed Systems 29 (7) (2018) 1530–1544. doi:10.1109/

TPDS.2017.2718515.

55

http://dx.doi.org/10.1007/s10845-010-0393-4
http://dx.doi.org/10.1007/s00366-016-0484-8
http://dx.doi.org/10.1080/10426914.2017.1415441
http://dx.doi.org/10.1080/10426914.2017.1415441
http://dx.doi.org/10.1080/10426914.2017.1415441
http://dx.doi.org/10.1016/j.advengsoft.2018.02.005
http://dx.doi.org/10.1016/j.advengsoft.2018.02.005
http://dx.doi.org/10.1016/j.advengsoft.2018.02.005
http://dx.doi.org/10.1016/j.engappai.2017.01.008
http://dx.doi.org/10.1109/TII.2019.2896634
http://dx.doi.org/10.1109/TII.2019.2896634
http://dx.doi.org/10.1109/TII.2019.2896634
http://dx.doi.org/10.1109/TPDS.2017.2718515
http://dx.doi.org/10.1109/TPDS.2017.2718515
http://dx.doi.org/10.1109/TPDS.2017.2718515

[29] H. Li, K. Li, J. An, W. Zheng, K. Li, An efficient manifold regularized sparse

non-negative matrix factorization model for large-scale recommender systems on

GPUs, Information Sciences 496 (2019) 464 – 484. doi:10.1016/j.ins.570

2018.07.060.

[30] N. Medina-Rodriguez, O. Montiel-Ross, R. Sepulveda, O. Castillo, Tool path

optimization for computer numerical control machines based on parallel aco, En-

gineering Letters 20 (2012) 101–108.

[31] C. C. Columbus, S. P. Simon, A parallel abc for security constrained economic575

dispatch using shared memory model, in: 2012 International Conference on

Power, Signals, Controls and Computation, 2012, pp. 1–6. doi:10.1109/

EPSCICON.2012.6175239.

[32] N. C. Cruz, J. L. Redondo, J. D. Álvarez, M. Berenguel, P. M. Ortigosa, A para-

llel teaching–learning-based optimization procedure for automatic heliostat aim-580

ing, The Journal of Supercomputing 73 (1) (2017) 591–606. doi:10.1007/

s11227-016-1914-5.

URL https://doi.org/10.1007/s11227-016-1914-5

[33] M. Z. Ali, N. H. Awad, P. N. Suganthan, R. M. Duwairi, R. G. Reynolds,

A novel hybrid cultural algorithms framework with trajectory-based search for585

global numerical optimization, Information Sciences 334-335 (2016) 219 – 249.

doi:10.1016/j.ins.2015.11.032.

[34] N. H. Awad, M. Z. Ali, P. N. Suganthan, R. G. Reynolds, Cade: A hybridization of

cultural algorithm and differential evolution for numerical optimization, Informa-

tion Sciences 378 (2017) 215 – 241. doi:10.1016/j.ins.2016.10.039.590

[35] Y. Bai, S. Xiao, C. Liu, B. Wang, A hybrid iwo/pso algorithm for pattern synthesis

of conformal phased arrays, IEEE Transactions on Antennas and Propagation

61 (4) (2013) 2328–2332. doi:10.1109/TAP.2012.2231936.

[36] M. Ghasemi, S. Ghavidel, S. Rahmani, A. Roosta, H. Falah, A novel hybrid al-

gorithm of imperialist competitive algorithm and teaching learning algorithm for595

56

http://dx.doi.org/10.1016/j.ins.2018.07.060
http://dx.doi.org/10.1016/j.ins.2018.07.060
http://dx.doi.org/10.1016/j.ins.2018.07.060
http://dx.doi.org/10.1109/EPSCICON.2012.6175239
http://dx.doi.org/10.1109/EPSCICON.2012.6175239
http://dx.doi.org/10.1109/EPSCICON.2012.6175239
https://doi.org/10.1007/s11227-016-1914-5
https://doi.org/10.1007/s11227-016-1914-5
https://doi.org/10.1007/s11227-016-1914-5
https://doi.org/10.1007/s11227-016-1914-5
https://doi.org/10.1007/s11227-016-1914-5
http://dx.doi.org/10.1007/s11227-016-1914-5
http://dx.doi.org/10.1007/s11227-016-1914-5
http://dx.doi.org/10.1007/s11227-016-1914-5
https://doi.org/10.1007/s11227-016-1914-5
http://dx.doi.org/10.1016/j.ins.2015.11.032
http://dx.doi.org/10.1016/j.ins.2016.10.039
http://dx.doi.org/10.1109/TAP.2012.2231936

optimal power flow problem with non-smooth cost functions, Eng. Appl. Artif.

Intell. 29 (2014) 54–69. doi:10.1016/j.engappai.2013.11.003.

[37] N. Zhou, A. Zhang, F. Zheng, L. Gong, Novel image compressionencryption

hybrid algorithm based on key-controlled measurement matrix in compressive

sensing, Optics & Laser Technology 62 (2014) 152 – 160. doi:10.1016/j.600

optlastec.2014.02.015.

[38] M. Majumdar, T. Mitra, K. Nishimura, Optimization and Chaos, Springer, New

York, 2000.

[39] E. Ott, Frontmatter, 2nd Edition, Cambridge University Press, 2002, pp. i–iv.

[40] A. Rezaee Jordehi, A chaotic-based big bangbig crunch algorithm for solving605

global optimisation problems, Neural Computing and Applications 25 (2014)

1329–1335. doi:10.1007/s00521-014-1613-1.

[41] A. Gandomi, X.-S. Yang, S. Talatahari, A. Alavi, Firefly algorithm with chaos,

Communications in Nonlinear Science and Numerical Simulation 18 (1) (2013)

89 – 98. doi:10.1016/j.cnsns.2012.06.009.610

[42] S. Gokhale, V. Kale, An application of a tent map initiated chaotic firefly algo-

rithm for optimal overcurrent relay coordination, International Journal of Elec-

trical Power & Energy Systems 78 (2016) 336 – 342. doi:10.1016/j.

ijepes.2015.11.087.

[43] Z. S. Ma, Chaotic populations in genetic algorithms, Applied Soft Computing615

12 (8) (2012) 2409 – 2424. doi:10.1016/j.asoc.2012.03.001.

[44] X. F. Yan, D. Z. Chen, S. X. Hu, Chaos-genetic algorithms for optimizing the

operating conditions based on RBF-PLS model, Computers & Chemical En-

gineering 27 (10) (2003) 1393 – 1404. doi:10.1016/S0098-1354(03)

00074-7.620

[45] W.-C. Hong, Traffic flow forecasting by seasonal SVR with chaotic simulated

annealing algorithm, Neurocomputing 74 (12) (2011) 2096 – 2107. doi:10.

1016/j.neucom.2010.12.032.

57

http://dx.doi.org/10.1016/j.engappai.2013.11.003
http://dx.doi.org/10.1016/j.optlastec.2014.02.015
http://dx.doi.org/10.1016/j.optlastec.2014.02.015
http://dx.doi.org/10.1016/j.optlastec.2014.02.015
http://dx.doi.org/10.1007/s00521-014-1613-1
http://dx.doi.org/10.1016/j.cnsns.2012.06.009
http://dx.doi.org/10.1016/j.ijepes.2015.11.087
http://dx.doi.org/10.1016/j.ijepes.2015.11.087
http://dx.doi.org/10.1016/j.ijepes.2015.11.087
http://dx.doi.org/10.1016/j.asoc.2012.03.001
http://dx.doi.org/10.1016/S0098-1354(03)00074-7
http://dx.doi.org/10.1016/S0098-1354(03)00074-7
http://dx.doi.org/10.1016/S0098-1354(03)00074-7
http://dx.doi.org/10.1016/j.neucom.2010.12.032
http://dx.doi.org/10.1016/j.neucom.2010.12.032
http://dx.doi.org/10.1016/j.neucom.2010.12.032

[46] J. Mingjun, T. Huanwen, Application of chaos in simulated annealing, Chaos,

Solitons & Fractals 21 (4) (2004) 933 – 941. doi:10.1016/j.chaos.625

2003.12.032.

[47] J. Saremi, S. Mirjalili, A. Lewisn, Biogeography-based optimisation with chaos,

Neural Computing and Applications 25 (5) (2014) 1077 – 1097. doi:10.

1007/s00521-014-1597-x.

[48] X. Wang, H. Duan, A hybrid biogeography-based optimization algorithm for job630

shop scheduling problem, Computers & Industrial Engineering 73 (2014) 96 –

114. doi:10.1016/j.cie.2014.04.006.

[49] D. Jia, G. Zheng, M. K. Khan, An effective memetic differential evolution algo-

rithm based on chaotic local search, Information Sciences 181 (15) (2011) 3175

– 3187. doi:10.1016/j.ins.2011.03.018.635

[50] C. Peng, H. Sun, J. Guo, G. Liu, Dynamic economic dispatch for wind-thermal

power system using a novel bi-population chaotic differential evolution algorithm,

International Journal of Electrical Power & Energy Systems 42 (1) (2012) 119 –

126. doi:10.1016/j.ijepes.2012.03.012.

[51] B. Alatas, Chaotic bee colony algorithms for global numerical optimization, Ex-640

pert Systems with Applications 37 (8) (2010) 5682 – 5687. doi:10.1016/j.

eswa.2010.02.042.

[52] S. Gao, C. Vairappan, Y. Wang, Q. Cao, Z. Tang, Gravitational search algorithm

combined with chaos for unconstrained numerical optimization, Applied Mathe-

matics and Computation 231 (2014) 48 – 62. doi:10.1016/j.amc.2013.645

12.175.

[53] R. V. Rao, A. Saroj, A self-adaptive multi-population based Jaya algorithm for

engineering optimization, Swarm and Evolutionary Computation 37 (2017) 1 –

26. doi:10.1016/j.swevo.2017.04.008.

[54] H. Migallón, A. Jimeno-Morenilla, J.-L. Sánchez-Romero, H. Rico, R. V.650

Rao, Multipopulation-based multi-level parallel enhanced Jaya algorithms,

58

http://dx.doi.org/10.1016/j.chaos.2003.12.032
http://dx.doi.org/10.1016/j.chaos.2003.12.032
http://dx.doi.org/10.1016/j.chaos.2003.12.032
http://dx.doi.org/10.1007/s00521-014-1597-x
http://dx.doi.org/10.1007/s00521-014-1597-x
http://dx.doi.org/10.1007/s00521-014-1597-x
http://dx.doi.org/10.1016/j.cie.2014.04.006
http://dx.doi.org/10.1016/j.ins.2011.03.018
http://dx.doi.org/10.1016/j.ijepes.2012.03.012
http://dx.doi.org/10.1016/j.eswa.2010.02.042
http://dx.doi.org/10.1016/j.eswa.2010.02.042
http://dx.doi.org/10.1016/j.eswa.2010.02.042
http://dx.doi.org/10.1016/j.amc.2013.12.175
http://dx.doi.org/10.1016/j.amc.2013.12.175
http://dx.doi.org/10.1016/j.amc.2013.12.175
http://dx.doi.org/10.1016/j.swevo.2017.04.008

The Journal of Supercomputing 75 (2019) 1697 – 1716. doi:10.1007/

s11227-019-02759-z.

[55] P. D. Michailidis, An efficient multi-core implementation of the Jaya optimisation

algorithm, International Journal of Parallel, Emergent and Distributed Systems655

0 (0) (2017) 1–33. doi:10.1080/17445760.2017.1416387.

[56] A. Garcı́a-Monzó, H. Migallón, A. Jimeno-Morenilla, J.-L. Sánchez-Romero,

H. Rico, R. V. Rao, Efficient subpopulation based parallel TLBO optimization

algorithms, Electronics 8 (1). doi:10.3390/electronics8010019.

[57] E. Alba, M. Tomassini, Parallelism and evolutionary algorithms, IEEE Trans-660

actions on Evolutionary Computation 6 (5) (2002) 443–462. doi:10.1109/

TEVC.2002.800880.

[58] E. Alba, J. M. Troya, A survey of parallel distributed genetic algorithms, Com-

plexity 4 (4) (1999) 31–52. doi:10.1002/(SICI)1099-0526(199903/

04)4:4<31::AID-CPLX5>3.0.CO;2-4.665

[59] A. Farah, A. Belazi, A novel chaotic Jaya algorithm for unconstrained numerical

optimization, Nonlinear Dynamics 93 (2018) 1451 – 1480. doi:10.1007/

s11071-018-4271-5.

[60] R. V. Rao, Jaya: A simple and new optimization algorithm for solving constrained

and unconstrained optimization problems, International Journal of Industrial En-670

gineering Computations 7 (2016) 19–34. doi:10.5267/j.ijiec.2015.

8.004.

[61] R. V. Rao, G. Waghmare, A new optimization algorithm for solving complex con-

strained design optimization problems, Engineering Optimization 49 (1) (2017)

60–83. doi:10.1080/0305215X.2016.1164855.675

[62] B. Manderick, P. Spiessens, Fine-grained parallel genetic algorithms, in: Third

international conference on Genetic algorithms, 1989, pp. 428–433.

59

http://dx.doi.org/10.1007/s11227-019-02759-z
http://dx.doi.org/10.1007/s11227-019-02759-z
http://dx.doi.org/10.1007/s11227-019-02759-z
http://dx.doi.org/10.1080/17445760.2017.1416387
http://dx.doi.org/10.3390/electronics8010019
http://dx.doi.org/10.1109/TEVC.2002.800880
http://dx.doi.org/10.1109/TEVC.2002.800880
http://dx.doi.org/10.1109/TEVC.2002.800880
http://dx.doi.org/10.1002/(SICI)1099-0526(199903/04)4:4<31::AID-CPLX5>3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1099-0526(199903/04)4:4<31::AID-CPLX5>3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1099-0526(199903/04)4:4<31::AID-CPLX5>3.0.CO;2-4
http://dx.doi.org/10.1007/s11071-018-4271-5
http://dx.doi.org/10.1007/s11071-018-4271-5
http://dx.doi.org/10.1007/s11071-018-4271-5
http://dx.doi.org/10.5267/j.ijiec.2015.8.004
http://dx.doi.org/10.5267/j.ijiec.2015.8.004
http://dx.doi.org/10.5267/j.ijiec.2015.8.004
http://dx.doi.org/10.1080/0305215X.2016.1164855

[63] P. Spiessens, B. Manderick, A massively parallel genetic algorithm: implementa-

tion and first analysis, in: Fourth international conference on genetic algorithms,

1991, pp. 279–286.680

[64] Free Software Foundation, Inc., GCC, the gnu compiler collection, https://

www.gnu.org/software/gcc/index.html.

[65] OpenMP Architecture Review Board, OpenMP Application Program Interface,

version 3.1, http://www.openmp.org.

[66] H. Garg, A hybrid pso-ga algorithm for constrained optimization problems, Ap-685

plied Mathematics and Computation 274 (2016) 292 – 305. doi:10.1016/j.

amc.2015.11.001.

60

https://www.gnu.org/software/gcc/index.html
https://www.gnu.org/software/gcc/index.html
https://www.gnu.org/software/gcc/index.html
http://www.openmp.org
http://dx.doi.org/10.1016/j.amc.2015.11.001
http://dx.doi.org/10.1016/j.amc.2015.11.001
http://dx.doi.org/10.1016/j.amc.2015.11.001

/

AUTHOR DECLARATION

We wish to confinn that there are no known conflicts of interest associated with this
publication and there has been no significant financia) support for this work that could have
influenced its outcome.

We confirm that the manuscript has been read and approved by ali named authors and that
there are no other persons who satisfied the criteria for authorship but are not listed. We
further confinn that the order of authors listed in the manuscript has been approved by ali of
us.

We confinn that we have given due consideration to the protection of intellectual property
associated with this work and that there are no impediments to publication, including the
timing of publication, with respect to intellectual property. In so doing we confinn that we
have followed the regulations of our institutions concerning intellectual property.

We understand that the Corresponding Author is the sole contact for the Editorial process
(including Editorial Manager and direct communications with the office). He/she is
responsible for communicating with the other authors about progress, submissions of
revisions and final approval of proofs. We confirm that we have provided a current, correct
email address which is accessible by the Corresponding Author and which has been
configured to accept email from hmigallon@umh.es

Signed by the corresponding author on behalf of ali authors:

Héctor Migallón (corresponding author)
Antonio Jimeno Morenilla
José Luis Sánchez Romero
Akram Belazi

;� A'/
Signed: Héctor Migallón

CRediT author statement

Héctor Migallón: Conceptualization, Methodology, Software, Validation, Investigation,
Writing - Original Draft, Writing - Review & Editing, Supervision, Project administration,
Funding acquisition

Antonio Jimeno-Morenilla: Validation, Investigation, Writing - Original Draft, Writing -
Review & Editing, Supervision, Project administration, Funding acquisition

José-Luis: Sánchez-Romero: Validation, Investigation, Writing - Original Draft, Writing -
Review & Editing, Supervision

Akram Belazi: Conceptualization, Methodology, Software, Validation, Investigation, Writing -
Original Draft, Writing - Review & Editing

