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a b s t r a c t 

This paper proposes a novel nature-inspired method, so-called ripple-spreading algorithm (RSA) for multi- 

objective path optimization problem (MOPOP). Unlike most existing methods mainly capable of finding partial 

or approximated Pareto front, this paper focuses on calculating the complete Pareto front. This is achieved by 

taking advantage of the optimality principle in natural ripple-spreading phenomenon. Basically, the proposed 

RSA carries out a one-off ripple relay race in the route network, and then the complete Pareto front will be iden- 

tified with guaranteed optimality by backtracking those Pareto non-dominated ripples (PNDRs) which reached 

the destination node. Theoretical analyses and comprehensive experiments show that all complete Pareto fronts 

of a one-to-all MOPOP can also be found in just a single run of ripple relay race, and the reported method can be 

further extended to calculate all Pareto optimal paths in dynamical networks, which have rarely been touched 

by existing MOPOP methods. Since many real-world application problems can be converted into MOPOP, the 

reported method has a great potential of applications. 
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Introduction 

Inspirations from the nature have successful helped researchers to
evelop many effective multi-agent-based evolutionary computation
ethods [1] , [2] . Ripple-spreading models and algorithms are relatively
ew in the family of nature-inspired multi-agent-based methods, but
hey have shown potentials in studying some problems (e.g., sequenc-
ng aircraft [3] , modeling complex networks [4] , simulating epidemic
ynamics [5] , finding the first shortest path in static [6] and dynami-
al environments [7] , calculating the k shortest paths without [8] and
ith time-windows [9] ), and they suggest a possibility of new stream of
ptimization methods, distinguished from both classical deterministic
ethod stream (e.g., A 

∗ algorithm [10] , Dijkstra’s algorithm [11] and
abel correcting algorithm [12] ) and stochastic method stream (e.g.,
enetic algorithm [13] , particle swarm optimization [14] , ant colony
ptimization [15] and firefly optimization [16] ). Usually, determinis-
ic methods have optimality guarantee but are not flexible in modifica-
ion, while stochastic methods often output non-optimal solutions but
re easy to modify for various applications. Interestingly, as a multi-
gent-based method, ripple-spreading algorithm (RSA) is optimal, flexi-
Many theoretical and application researches often involve path op-
imization [1] , [2] , [18] . In reality, path optimization often has to con-
ider some different optimization objectives simultaneously, for exam-
le, path length, traveling time, fuel consumption, service charge, and
ourney risk due to exposure to adverse events, so comes MOPOP. In
eneral, MOPOP has not just a single optimal path, but a set of optimal
aths, whose projections in the objective space compose so-called Pareto
ront. Therefore, finding Pareto front associated with all Pareto optimal
aths is the ultimate goal of resolving a MOPOP. However, calculating
omplete Pareto front is not an easy task for multi-objective optimiza-

ble and fast, and it exhibits merits of both method streams while avoids
their demerits [6] - [7] . This paper aims to make RSA a more mature
and more distinguishing method, which will further enrich the family
of nature-inspired methods. To this end, the RSA reported in this paper,
different from all previously published RSAs, which are single-objective
optimization methods, is developed for the first time as a true multi-
objective optimization method. Furthermore, this paper extends RSA
to find complete Pareto front with theoretical optimality guarantee for
dynamical multi-objective path optimization problem, which has never
been achieved by any existing methods except [17] . 
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For multi-objective path optimization problem (MOPOP), some re-
earchers have already proven that it is possible to find the complete
areto front by, for instance, a label-correcting method based on a tech-
ique of extending one label at a certain node according to all arcs out of
hat node [45] , a two-phase method based on parametric network sim-
lex algorithm and k shortest paths algorithm [46] , a label-setting algo-
ithm based on a dimensionality reduction technique [47] , a Dijkstra-
ike method based on extreme supported solutions [48] , and an exact re-
ursive method based on implicit enumeration that aggressively prunes
ominated solutions [49] . Generally, these methods can be viewed as ex-

f [44] employs a single-objective ripple-spreading algorithm (RSA). 

Reference [44] reported a deterministic method that can, theoreti-
ally and practically, guarantee the finding of complete Pareto front for
iscrete MOOPs. The basic idea is: find the k best single-objective opti-
al solutions in term of each of the N Obj objectives in an MOOP, then,

ll Pareto non-dominated solutions in those N Obj × k single-objective
ptimal solutions will reveal the complete Pareto front of the original
OOP. To find the k best single-objective optimal solutions, the method

OOP. 

There is a common problem faced by existing MOOP methods, i.e.,
hey usually just find partial or approximated Pareto fronts, and have
o guarantee of complete Pareto front [27] . There are some benchmark
est problems with full information about complete Pareto front of con-
inuous MOOPs [40] , but few results are available on the quality of ap-
roximated Pareto front for discrete MOOPs [20] , [41] . As for dynam-
cal MOOP, AOF and COF methods are rarely used, and mainly PCR
nd MOEA/D methods can approximate some Pareto optimal solutions
42] , [43] , but complete Pareto front is never mentioned for dynamical

38] , [39] . 

Pareto front is a core concept for resolving MOOPs, and it is asso-
iated with a set of Pareto optimal solutions [20] , [21] . However, most
xisting methods for MOOPs focus on finding just a partial or approxi-
ated Pareto front, and there seriously lacks effective method to guar-

ntee the complete Pareto front. Basically, there are four kinds of MOOP
ethods, and they are based on aggregate objective function (AOF), con-

trained objective function (COF), Pareto-compliant ranking (PCR), and
ecomposition evolutionary algorithms (MOEA/D). An AOF method ac-
ually resolves a single-objective optimization problem (SOOP) which
ombines all of the original objectives in an MOOP to construct a sin-
le aggregate objective function [22] . Various techniques for combining
riginal objectives were reported, for instance, linear summing based
n weights was the most popular [23] , while purpose-designed nonlin-
ar combining functions were sometimes used, such as weighted expo-
ential sum [24] , weighted min-max method [25] , and weighted prod-
ct method [26] . A COF method optimizes only one single objective,
nd treats all other objectives as extra constraints [27] . Different con-
traint strategies, such as normal boundary intersection [28] and nor-
alized normal constraint [29] were introduced, and how to achieve

n even representation of Pareto front was often a major concern of
OF methods [ 30 , 31 ]. A PCR method ranks and evolves a population
f candidate solutions in order to find multiple Pareto non-dominated
olutions. Pareto-compliant ranking was first introduced into genetic al-
orithm [32] , and then improved by elitist technique [33] , reference-
oint based technique [34] , dynamic population size and adaptive local
rchives [35] , Pareto archived evolution strategy [36] and objective re-
uction method [37] . The MOEA/D methods are also population-based,
ut there is a big difference from the PCR methods. In PCR, each indi-
idual of a population represents a single solution to the MOOP, while in
OEA/D, thanks to problem-decomposition technologies, each individ-

al of a population represents a family of solutions with similar features
o the MOOP, and this often makes MOEA/D more efficient than PCR

ion problem (MOOP) [19] , [20] . In particular, it has even rarely been
tudied to identify all Pareto optimal paths in time-varying route net-
orks, despite of the fact that dynamical MOPOP is the most realistic
hen compared with other kinds of path optimization problems. There-

ore, resolving dynamical MOPOP will be a main concern of this paper.
There are 5 parts in the remainder of this paper, in order to present
 methodological tree of RSA for various MOPOPs, i.e., static one-to-
ne MOPOP, static one-to-all MOPOP, dynamical one-to-one MOPOP,
nd dynamical one-to-all MOPOP. Mathematical models are described
n Section 2, the new RSA is developed in Section 3 and analyzed the-
retically in Section 4, comprehensive experimental data are given in
ection 5, and conclusions and future works are discussed in Section 6.

amical route networks has seldom been discussed elsewhere. 

Differently, the MOOP method proposed in this paper thoroughly re-
ies on the ripple-spreading optimization principle of [6] . The RSA used
n [44] is a single-objective method, while the RSA reported in this paper
s truly a multi-objective method. To find the complete Pareto front for
OPOP, the RSA in [44] has to run for at least N Obj times, while the RSA

n this paper only needs to be run for just once. Actually, a single run
f the new RSA can even guarantee to find all complete Pareto fronts of
ne-to-all MOPOP. To apply the method of [44] to a one-to-all MOPOP
ith N N nodes, then one needs to run the method of [44] for ( N N -1)

imes, which means to run the RSA in [44] for at least ( N N -1) × N Obj 

imes. Differently, the new RSA proposed in this paper only needs to
e run once to tackle the same one-to-all MOPOP. Besides, the RSA re-
orted in this paper exhibits a unique capability far beyond the method
f [44] as well as most other existing methods for MOOPs, and that is
o find complete Pareto front with optimality guarantee in dynamical
outing environments. Actually, complete Pareto front of MOPOP in dy-

ptimization principle of [6] . 

It should be emphasized that the basic idea of the method in [44] for
OOPs has nothing to do with the ripple-spreading optimization prin-

iple as identified in [6] , and the RSA used in [44] itself has nothing to
o with MOOPs. In other words, the method of [44] needs an algorithm
o calculate the k best single-objective optimal solutions, and the RSA
appens to have such a capability, i.e., the RSA used in [44] is itself just
or single-objective optimization problems (SOOPs). For an MOOP with
 Obj objectives, the RSA in [44] needs to be run for at least N Obj times,
ach time for one of the N Obj objectives. Actually, the RSA employed
y the method of [44] can be replaced by any method that is capable
f calculating the k best single-objective optimal solutions, and after
he replacement, the method of [44] can still resolve MOOPs. In other
ords, the MOOP method of [44] does not rely on the ripple-spreading

ensions of single-objective Dijkstra’s algorithm and A 

∗ algorithm, and
hey mainly studied static bi-objective problems. As shown in [6] and
7] , RSA, as a newly reported, nature-inspired, multi-agent-based but
eterministic algorithm, exhibits some advantages against traditional
ijkstra’s algorithm and A 

∗ algorithm, particularly when it comes to re-
olve some complicated path optimization problems. For example, when
oute networks with time windows or dynamical routing environments
re concerned, RSA has demonstrated a good modification flexibility
nd computational efficiency [7] , [8] . This paper, with finding complete
areto front as the focus, is first interested in exploring the possibility of
pplying RSA to target MOPOP with static route networks, and then, it
oes on to extend to MOPOP with dynamical route networks, which are
ore complicated and have rarely been touched in those MOPOP litera-

ures such as [45] - [49] . Actually, RSA is the only method that has been
llustrated so far to find complete Pareto front for dynamical MOPOP
17] . In terms of studying dynamical MOPOP, this paper extends the
reliminary results of [17] from one-to-one problem to one-to-all prob-
em with more experimental results. 

Problem Description of Static Multi-Objective Path 

ptimization Problems 

Assume a static route network G ( V,E ) is composed of node set V and
ink set E. V has N N different nodes including the source and the des-
ination, and E has N L links between nodes. This route network can be
ecorded as an N N × N N adjacent matrix A . The matrix entry A ( i,j ) = 1,
 = 1,…, N N and j = 1,…, N N , defines a link from node i to node j . Otherwise,
 ( i,j ) = 0 means no link. Assume A ( i,i ) = 0, i.e., no self-connecting link is



Fig. 1. Examples of partial, approximated and complete Pareto fronts. 
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Many methods have been reported to find a partial or approximated
areto front for the above MOPOP. Fig. 1 intuitively illustrates what a
artial, an approximated and a complete Pareto front might look like
n a bi-objective path optimization problem. Fig. 1 clearly implies that,
hen compared with the complete Pareto front, a partial or approxi-
ated Pareto front provides insufficient or even incorrect information

bjective space construct the Pareto front. 

(6)
]

 𝑗 ( 𝑃 ) < 𝑓 𝑗 ( 𝑃 ∗ ) , for at least one 𝑗 ∈ 1 , .., 𝑁 Obj . 

The  N Obj  objective  values  of  such  a  P ∗ ,  i.e.,
 𝑓 1 ( 𝑃 ∗ ) , 𝑓 2 ( 𝑃 ∗ ) , ..., 𝑓 𝑁 𝑂𝑏𝑗 

( 𝑃 ∗ )] ,   determine  a  Pareto  point  in  the  ob-
ective  space.  In  general,  there  are  more  than  one  Pareto-optimal
ath for the above MOPOP, and their associated Pareto points in the

[ 
(5) 𝑖 ( 𝑃 ) ≤ 𝑓 𝑖 ( 𝑃 ∗ ) , for all 𝑖 = 1 , .., 𝑁 Obj , 

A Pareto-optimal path P ∗ to the above problem is such that there
xists no P that makes 

(4)

(3) 

[ 
in
𝑃  

 𝑓 1 ( 𝑃 ), 𝑓 2 ( 𝑃 ), ..., 𝑓 𝑁 Obj 
( 𝑃 )   

]𝑇 

ubject to Eq.(1) 

 ∈ Ω𝑃 , 

here ΩP is the set of all possible paths connecting S and D . 

Then,  a  general  mathematical  formulation  of  one-to-one  static
OPOP can be given as following: 

(2)

𝑁 𝑃 −1 

 𝑘 ( 𝑃 ) =  𝐶 𝑘 ( 𝑃 ( 𝑖 ) , 𝑃 ( 𝑖 + 1)), 𝑘 = 1 , …  , 𝑁 Obj , 
∑ 

𝑖 =1 

here f k is the k th objective of an MOPOP. 

an be calculated in terms of each objective 

(1) ( 𝑖 ) ≠ 𝑃 (𝑗 ), if 𝑖 ≠   𝑗, 𝑖 = 1 , … , 𝑁 𝑃 , and 𝑗 = 1 , … , 𝑁 𝑃 . 

For a given path P , its total cost from the source to the destination

han once, i.e., 

In a one-to-one static MOPOP, a pair of source and destination nodes,
enoted as [ S,D ], are specified, and then the goal is to find Pareto opti-
al paths from S to D . Suppose a candidate path is recorded as an integer

ector whose element P ( i ) = j means node j is the i th node in the path,
 = 1,…, N P , and j = 1,…, N N , where N P tells how many nodes, including the
ource and the destination, are included in the path. Obviously, P (1) is
he source and P ( N P ) is the destination, i.e., P (1) = S , and P ( N P ) = D . Since
o loop is allowed in this study, no node can appear in a path for more

llowed in this study. There are N Obj costs, i.e., C k ( i,j ), k = 1,…, N Obj , as-
ociated with each link A ( i,j ), and C k ( i,j ) will be used to calculate the
 th objective of a path. Here, the route network G ( V,E ) is called static,
ecause both A ( i,j ) and C k ( i,j ) are fixed and will not change during op-
imization. 
Ripple-Spreading Algorithm for Static Problems 

em, but also one-to-all problem) in static route networks. 

This section describes how to extend single-objective RSA to resolve
ulti-objective path optimization problems (not only one-to-one prob-

.1. The basic idea of ripple-spreading algorithm 

roduced for RSA with respect to the characteristics of static MOPOPs. 

It should be emphasized that single-objective POPs are the focus of
SA in existing literatures (e.g., the RSA employed in [44] can find just

he single-objective k shortest paths). Because of the theoretical and
ractical importance of MOPOP, and also because of the complexity of
OPOP, RSA needs to be extended to MOPOP in order to prove its full

alue. Actually, this paper will extend RSA not only to those MOPOPs
hich have already been studied in existing literatures, but also to some
OPOPs that have rarely been tackled so far. To apply RSA to static
OPOPs, new ripple spreading and triggering behaviors need to be in-

SA can be modified and extended to various POPs [6] . 

Basically, the procedure of RSA is simple: an initial ripple is gen-
rated at the source, and it spreads out at a specified speed; when it
eaches an unvisited node, it triggers a new ripple, which will spread
nd trigger more ripples at other nodes; ripple spreading and trigger-
ng behaviors go on and on until the destination has been reached by
 ripple; then the shortest path between the source and the destination
an be determined by backtracking the ripple which has arrived at the
estination first. Fig. 2 illustrates how the RSA in [6] finds the shortest
ath by generating and spreading ripples step by step. The procedure of
SA is likened to a ripple relay race. By defining ripple spreading and

riggering behaviors according to the characteristics of a given problem,

or path optimization [6] - [8] . 

Reference  [6] ,  by  mimicking  the  natural  ripple-spreading  phe-
omenon, developed ripple-spreading algorithm (RSA) for some single-
bjective path optimization problems (POPs), and proved the optimality
f RSA based on the ripple-spreading optimization principle, i.e., a rip-
le always reaches the closest spatial point first because of its identical
preading speed in all directions. This very simple principle can be eas-
ly applied to accomplish path optimization problems (POPs) effectively,
nd several ripple-spreading algorithms (RSAs) were developed in [6] to
esolve one-to-one, one-to-all, many-to-many the 1st shortest path prob-
ems, and one-to-one the k shortest paths problem. There are usually two
inds of path optimization methods, deterministic and stochastic. De-
erministic methods are centralized, top-down, logic-rule-based search
lgorithm, and they can usually guarantee optimality and run fast, but
ack flexibility of extending to various problems, because a logic rule is
ften purposed-designed for a specific problem. Stochastic methods are
sually decentralized, bottom-up, agent-based simulation model, and
hey often output non-optimal solutions and run relatively slow due to
heir population-based nature, but they can be easily modified for var-
ous problems, because agent behavior can be flexibly defined accord-
ng to problem characteristics. RSA is actually decentralized, bottom-
p, agent-based simulation model, but by defining the ripple-spreading
ehavior of individual nodes, it is guaranteed that optimality will auto-
atically and quickly emerge as a result of the collective performance

f the model. In other words, RSA exhibits the merits of both classical
eterministic methods and stochastic methods, and avoid their demerits

.2. The design of new ripple-spreading algorithm for one-to-one static 

roblem 

Here, a pure RSA will be designed, no need of any other existing mea-
ures (such as constructing AOFs, applying COFs, conducting stochastic
earch, or calculating N obj sets of the k best single-objective paths like in
44] ), to find the complete Pareto front for the one-to-one static MOPOP
efined in Section 2, with both theoretical and practical guarantee of op-
imality. Basically, to apply RSA to static MOPOP, new agent behavior



Fig. 2. How the RSA reported in [6] finds the best path. 
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ng ripple to node n , then, based on all objectives, conduct comparison

(10) ( 𝑟 ) = 𝑅 ( 𝑟 ) + 𝑣. 

Step 5: For any node n , if there is at least one 1 ≤ r ≤ N R that has
 R ( r ) = 1, A ( E (r), n ) = 1 and R ( r ) ≥ C h ( E ( r ), n ), i.e., ripple r is a new incom-

adius of ripple r by v , i.e., 

Step 3: If S R ( r ) = 0 for every r = 1,..., N R , i.e., if there is no active ripple
ny more, or if for any S R ( r ) = 1, 1 ≤ r ≤ N R, the costs of the so-far path of
ipple r are not Pareto non-dominated by those existing PNDRs on the
estination D , then go to Step 7; Otherwise, let t = t + 1, and go to Step 4.

Step 4: For each active ripple r , i.e., if S R ( r ) = 1, 1 ≤ r ≤ N R , update the

 = 1,…, N Obj . Set t = 0. 

(9)
( 

 = min  𝐶 ℎ (𝑖, 𝑗 )   , 𝑖 = 1 , … , 𝑁 𝑁 

, 𝑗 = 1 , … , 𝑁 𝑁 

Step 2: Initialize ΩPNDR ( n ) =Φ for every node 1 ≤ n ≤ N N . Initialize the
rst ripple at the source S , and set the current number of ripples as
 R = 1. Set E ( N R ) = S, R ( N R ) = 0, S R ( N R ) = 1, and T ( N R ) = 0 (which means

he first ripple is self-triggered). Let ΩPNDR ( S ) = { N R }, and set F i ( N R , S ) = 0,

preading speed as ) 

Step  1:  Assuming  the  h th  objective  has  the  maximal  value  of
in( C h ( i,j ))/max( C h ( i,j )) among all of the N Obj objectives, then, for the

ake of both optimality and computational efficiency [6] , set the ripple

urposes. 

The pseudocode of RSA for static MOPOP based on a given pair
f [ S,D ], i.e., one-to-one static MOPOP, is described as following. Let
 R ( r ) denote the state of ripple r , and S R ( r ) = 0/1 means ripple r is inac-
ive/active. E ( r ) denotes the epicenter of ripple r , i.e., ripple r is gener-
ted at node E ( r ). R ( r ) records the radius of ripple r. T ( r ) records which
ipple triggers ripple r . ΩPNDR ( n ) is the set of Pareto non-dominated rip-
les of node n . For a ripple r 𝜖ΩPNDR ( n ), in terms of the i th objective,
 = 1,…, N Obj , ripple r has a cost of F i ( r,n ) to travel from S to node n .
able 1 gives a list of all main variable symbols for reader reference

hen for node n , ripple r is a PNDR. 

(8) 
] 

 𝑗  𝑃 𝑟 𝑘  < 𝑓 𝑗  𝑃 𝑟 , for at least one 𝑗 ∈ 1 , … , 𝑁 Obj 

(7) 

[ ( ) ( ) 

he following conditions are not satisfied for every 𝑘 ∈ [1 , … , 𝑚 ] , 
( ) ( ) 
 𝑖  𝑃 𝑟 𝑘  ≤ 𝑓 𝑖  𝑃 𝑟 , for all 𝑖 = 1 , … , 𝑁 Obj 

Here is the definition of PNDR. Assume ripple r travels from S to
ode n through the path P r . In terms of the i th objective, i = 1,.., N Obj ,
ath P r has a cost of f i ( P r ). Assume by the time when ripple r arrives at
ode n , another m ripples, i.e., r 1 ,…, r m 

, have already got to node n . If

nd termination criteria need to be defined. If an incoming ripple is dom-
nated by any existing Pareto non-dominated ripple (PNDR) of a node,
hen the incoming ripple will trigger no new ripple at the node; and the
acro termination criteria becomes that there is no active ripples any
ore. 
Fig. 3 shows the fundamental difference between the procedures of
he method in [44] and the new RSA proposed here for MOPOP. From

NDRs implies a great searching efficiency of RSA. 

One might notice that in Step 5, when updating the set of Pareto
on-dominated ripples (PNDRs), it only needs to add in new PNDRs,
nd never needs to delete any existing PNDRs from set ΩPNDR ( n ). This
s rather different from most evolutionary computation methods (such
s genetic algorithm, ant colony optimization and particle swarm opti-
ization), where those non-dominated solutions found in a generation

ould turn out dominated by some solutions found in the next genera-
ion. Fortunately, this situation will not arise in RSA, thanks to the ripple
preading optimization principle as revealed in [6] . In other words, once
 ripple r is qualified to be added into ΩPNDR ( n ), it will never be dom-
nated by any ripple which arrives at node n after ripple r (see Lemma
 in Section 4.1 for theoretical proof). Therefore, compared with other
volutionary computation methods, no need of deleting any so-far found

areto front will be identified. 

Step 4 to Step 6 are the core of RSA, and they define ripple spreading,
riggering and deactivating behaviors, respectively. Step 3 tells when the
ipple relay race should be stopped, i.e., when no active ripple exists,
he ripple relay race is terminated to go to Step 7, where the complete

bjectives (see Step 2 and Step 5). 

In the above pseudocode of RSA, one can see that ripples spread on
 network with the h th objective as link cost, as both ripple-spreading
peed and ripple stop condition are defined based on the h th objec-
ive, i.e., see Eq.(9) and Eq.(11). However, during the ripple relay race,
hether a ripple is PNDR or not is judged based on all the i = 1,…, N Obj 

aths are determined by all of those PNDRs on D . 

Step 7: For every PNDR on the destination node, i.e., for every
 𝜖ΩPNDR ( D ), 1 ≤ r ≤ N R , [ F 1 ( r,D ),…, F N Obj ( r,D )] is a Pareto point, and the
ath travelled by ripple r from S to D is the associated Pareto optimal
olution. In this way, the complete Pareto front and all Pareto optimal

 ( 𝑟 ) ≥ 𝐶 ℎ ( 𝐸 ( 𝑟 ), 𝑛) ,   (11)

hen set S R ( r ) = 0, i.e., ripple r becomes inactive. Go to Step 3. 

etween all new incoming ripples to node n (if there are more than 1
ew incoming ripple), and also conduct comparison between the new
ncoming ripples to node n and the existing PNDRs on node n , in order
o find out such new incoming ripples which are Pareto non-dominated
y any other new incoming ripples to node n , or by any existing PNDR
n node n . For each of such new incoming ripples to node n , say, ripple
 is such a new incoming ripple to node n , then, ripple r becomes a new
NDR of node n , so, update ΩPNDR ( n ) =ΩPNDR ( n ) + { r }, and set F i ( r,n ),
 = 1,…, N Obj , according to the costs of the path travelled by ripple r from
 to node n ; and ripple r as PNDR will trigger a new ripple at node n : Let
 R = N R + 1; set E ( N R ) = n, T ( N R ) = r, R ( N R ) = R ( r )- C h ( E ( r ), n ); and if n ≠D , set
 R ( N R ) = 1, otherwise, set S R ( N R ) = 0, i.e., a new ripple triggered at the
estination node is inactive. 

Step 6: For any active ripple r , i.e., S R ( r ) = 1, if for any node n that
as A ( E ( r ), n ) = 1, the following condition holds 
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Table 1 

List of main variable symbols and acronyms 

f k The k th objective in MOPOP; f k ( P ) is the k th objective of path P 

f REED Function of routing environment evolving dynamics 

v Ripple spreading speed; v should be satisfy Condition (9), so that RSA can guarantee to find complete Pareto front for a MOPOP 

A Adjacent matrix, A ( i,j ) = 1 means a link from node i to node j 

A z |0 Dynamical adjacent matrix for time z predicted at time 0 

C Cost matrix, C k ( i,j ) is associated with link A ( i,j ), and is used to calculate the k th objective of a path 

C z |0 Dynamical cost matrix for time z predicted at time 0 

D Destination node 

E ( r ) Epicenter of ripple r 

F i ( r,n ) Cost of the path travelled by ripple r from S to node n in terms of the i th objective 

N ATU Number of simulation time units a ripple takes to go through a link 

N L Number of all links in a route network 

N N Number of all nodes in a route network 

N Obj Number of objectives in MOPOP 

N R Number of ripples ever generated so far 

N P Number of nodes, including S and D , included in path P 

N PP Number of Pareto points in a given MOPOP 

P Path, P ( i ) = j means node j is the i th node in path P 

P ∗ Pareto-optimal path; P ∗ must satisfy Conditions (5) and (6) 

R ( r ) Radius of ripple r; R ( r ) increases by v each time as ripple r spreads 

S Source node 

S R ( r ) State of ripple r; S R ( r ) = 0/1 means ripple r is inactive/active. 

T ( r ) Ripple that triggers ripple r 

ΩP Set of all possible paths connecting S and D 

ΩPNDR ( n ) Set of Pareto non-dominated ripples (PNDRs) on node n 

AOF Aggregate objective function 

CEPO Co-evolutionary path optimization 

COF Constrained objective function 

MOEA/D Decomposition based evolutionary algorithms 

MOOP Multi-objective optimization problem 

MOPOP Multi-objective path optimization problem 

OPRO Online path re-optimization 

PCR Pareto-compliant ranking 

PNDR Pareto non-dominated ripples 

POP Path optimization problem 

RSA Ripple-spreading algorithm 

SOOP Single-objective optimization problem 

SOPOP Single-objective path optimization problem 

TDPO Time-dependent path optimization 

Fig. 3. The difference between the method of [44] and the reported new RSA. 
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Fig. 4 gives an illustration about how the above RSA finds the com-
plete Pareto front for an MOPOP. The MOPOP in Fig. 4 is a bi-objective
path optimization problem, C ( i,j ) for objective 1, i.e., the green number

ig. 3 one can see clearly that (i) the method of [44] does not necessarily
ely on RSA, and any algorithm capable of finding the k shortest single-
bjective paths can be used as an inner optimizer within the method of
44] ; (ii) if RSA is employed by the method of [44] , RSA needs to be
un for at least N Obj times; (iii) the new method reported here is a pure
SA, and it takes only a single run of ripple relay race to identify the
omplete Pareto front. 
1 
n bracket, is physical distance between nodes, and C 2 ( i,j ) for objective
, i.e., the red number in bracket, is random weight. Pareto optimal
aths are highlighted as bold red line, and the data of Pareto optimal
aths are highlighted with orange background. Other colors and styles
f node, link and data are only for the sake of good illustrating effect.
he ripple relay race of RSA starts with ripple R1 at the source S. During
ime 2, R1 reaches nodes 2, 1 and 3 in turn. Since nodes 2, 1 and 3 have
o Pareto non-dominated ripple (PNDR) yet before R1 arrives, R1 be-
omes the first PNDR at them and triggers new ripples R2 at node 2, R3
t node 1, and R4 at node 3. R1 then becomes inactive as it has reached
ll the ends of its links. R2 reaches the destination D at time 3, becomes
he first NPDR at D, and identifies route S-2-D as a Pareto optimal path.
3 reaches node 2 during time 3. By comparing the objective values of
3 when R3 reaches node 2 with those of R1 when R1 reaches node 2,

t is clear that R3 is not dominated by R1, so, R3 becomes the second
NDR at node 2, and then triggers a new ripple R5 at node 2. Although
2 reaches node 1 during time 3, R2 is however dominated by R1, the
rst NPDR at node 1, and therefore fails to trigger any new ripple at
ode 1. During time 4, R3 reaches D first, but fails to identify any new
areto optimal path as R3 is dominated by R2, the first PNDR at D; then,
4 follows R3 to reach D, becomes the second PNDR at D, and identi-
es path S-3-D as another Pareto optimal path; R5 closely follows R4 to
each D, but it is dominated by R4; R4 also reaches node 2, and since
4 is not dominated by any previous PNDR at node 2 (i.e., R1 and R3),

t becomes the third PNDR at node 2 and triggers ripple R6 at node 2;
2 reaches node 3, but it is dominated by the first PNDR at node 3, i.e.,
1z. During time 5, R6 reaches D and identifies path S-3-2-D as a new
areto optimal path as R6 is not dominated by any previous PNDR at D
i.e., R2 and R4); R6 also reaches node 1, becomes the second PNDR at



Fig. 4. An illustration about how the complete Pareto front is found in a single run of ripple relay race of RSA for one-to-one static MOPOP. 
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ode 1 and triggers R7 at node 1. At time 6, R7 reaches D, but fails to
dentify any new Pareto optimal path, as it is dominated by all previous
NDRs at D. After time 6, there is no active ripple, so the ripple relay
ace terminates. Then, the complete Pareto front is determined by those
aths identified by all PNDRs at D, i.e., R2, R4 and R6. 

.3. Ripple-spreading algorithm for one-to-all static problem 

odes 1 and 4 as source and destination, respectively. 
In Fig. 5 , the first ripple, i.e., R1, starts spreading out from the source,

.e., node 1 at time t = 1. By time t = 2, R1 has got to nodes 2 and 3. There
s no PNDR at node 2 or 3 by time t = 2, so, the first PNDR of both nodes
s R1, and R1 identifies path 1-2 as a Pareto optimal path from node 1
o node 2, and path 1-3 as a Pareto optimal path from node 1 to node
. R1 also triggers new ripple R2 at node 2 and new ripple R3 at node
. Then, R1 becomes inactive (or dead) because it has reached all nodes
hat link to its epicenter node. At time t = 3, R2 and R3 keep spreading.
y time t = 4, R2 has reached both node 3 and node 4. At node 3, R2 is
ominated by R1, i.e., the existing PNDR of node 3, so, R2 triggers no
ew ripple at node 3. At node 4, R2 becomes the first PNDR of node
, so, it identifies path 1-2-4 as a Pareto optimal path from node 1 to
ode 4. R2 also triggers R4 at node 4. By time t = 4, R3 has got to nodes

The above RSA is developed for one-to-one static MOPOP. Fortu-
ately, it is very easy and highly straightforward to modify the RSA in
rder to apply to one-to-all static MOPOP, where all complete Pareto
ronts for a given S to each of other ( N N -1) nodes in the network need to
e found. To resolve a one-to-all static MOPOP, there is no need to re-
eat the above one-to-one RSA for ( N N -1) times, and it is enough to con-
uct a one-off ripple relay race where micro agent behaviors are slightly
odified, i.e., there is no destination and therefore a new ripple is al-
ays triggered as active (whilst for one-to-one static MOPOP, a ripple

riggered at D is always inactive). Due to limited space, here the details
f the RSA for one-to-all static MOPOP are skipped, and only a simple
llustration is given in Fig. 5 to show how a single run of ripple relay
ace can identify all complete Pareto fronts in a one-to-all bi-objective
roblem, i.e., those complete Pareto fronts with nodes 1 and 2 as source
nd destination, with nodes 1 and 3 as source and destination, and with
 and 2. At node 4, no existing PNDR dominates R3, so, R3 becomes
he second PNDR of node 4, and identifies another Pareto optimal path
rom node 1 to node 4, i.e., path 1-3-4. R3 also triggers R5. At node 2,
o existing PNDR dominates R3, so, R3 identifies path 1-3-2 as another
areto optimal path between nodes 1 and 2. R3 also triggers R6 at node
. After time t = 4, both R2 and R3 have become inactive. At time t = 5,
4, R5 and R6 keep spreading. By time t = 6, R4 has got to nodes 2 and
, however, R4 is dominated at either node 2 or 3. By time t = 6, R5
as also reached both nodes 2 and 3, however, R5 is also dominated at
ither node 2 or 3. By time t = 6, R6 has reached node 4, non-dominated
y any existing PNDRs of node 4, so, R6 is the third PNDR at node 4,
nd identifies the third Pareto optimal path from node 1 to node 4, i.e.,
ath 1-3-2-4. After time t = 6, all ripples have become inactive, so, the
ipple relay race stops, and all complete Pareto fronts are identified by
hose PNDRs of nodes 2, 3 and 4, respectively. 

Further Analyses 

This section first conducts theoretical analyses about the optimality
nd computational efficiency of the reported RSA for static MOPOPs,
nd then goes on to extend RSA from static MOPOPs to dynamical
OPOPs. 

.1. Optimality of ripple-spreading algorithm for static multi-objective path 

ptimization problems 

Lemma 1: Once ripple r is added as a PNDR at node n at time t , then,
t will never be dominated by any ripple that reaches node n at time t + z,

 > 0. 
Proof: Assume ripple r reaches node n at time t 1 . According to Step 5

n the RSA pseudocode of Section 3, one has t 1 ≤ t . When ripple r reaches
ode n , it has a value of v × t 1 for the h th objective function according to
q.(9). For a ripple that reaches node n at time t 2 = t + z, z > 0, it has a value
f v × t 2 for the h th objective function. Since t 1 ≤ t < t + z = t 2 , one knows
or sure that the ripple arriving at time t 2 has a larger value for the h th
bjective function than ripple r has, and therefore, it cannot dominate



Fig. 5. An illustration of ripple relay race of 

RSA for one-to-all static MOPOP. 
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ipple r according to the definition of Pareto optimality by Eq.(5) and
q.(6). 

Lemma 1 guarantees that Step 5 in the RSA pseudocode of Section 3
ill never miss out any Pareto non-dominated ripples. 

Lemma 2: Suppose a ripple reaches a node. If this ripple is dominated
y any previous PNDR at the node, then any path that connects S and
 and covers the path this ripple has travelled through is not Pareto
ptimal. 

Proof: Let P 1 be the path travelled through by this ripple, including
 L 1 nodes, and P 2 the path by the PNDR which dominates this ripple, in-
luding N L 2 nodes. Then, one has P 1 (1) = P 2 (1) = S , and P 1 ( N L 1 ) = P 2 ( N L 2 ).
ccording to the definition of Pareto dominance, one knows that (i)
 k ( P 1 ) ≥ f k ( P 2 ) for all k = 1,…, N Obj , and (ii) there exists an ℎ ∈ [1 , ..., 𝑁 𝑂𝑏𝑗 ]
hich makes f h ( P 1 ) > f h ( P 2 ). 

A path covering P 1 and connecting S and D can be formu-
ated as P 4 = P 1 + P 3 . Then, a new path P 5 = P 2 + P 3 can be con-
tructed, which obviously also connects S and D . Since all ob-
ective functions satisfy condition (2) in this study, one has that
i) f k ( P 4 ) = f k ( P 1 + P 3 ) ≥ f k ( P 2 + P 3 ) = f k ( P 5 ) for all k = 1,…, N Obj , and (ii)
 h ( P 4 ) = f h ( P 1 + P 3 ) > f h ( P 2 + P 3 ) = f h ( P 5 ). This means P 5 dominates P 4 .
herefore, any path covering P 1 is not Pareto optimal to connect S and
 . 

Lemma 3: Suppose a path P ∗ is Pareto optimal connecting S and D .
hen, after the ripple relay race terminates, there is a ripple triggered
t D that has traveled through this path P ∗ . 

Proof: Assume Lemma 3 is false, which means there must be a node
n P ∗ , say, the i th node P ∗ ( i ), 1 < i ≤ N L 

∗ ( N L 
∗ is the number of nodes in

 

∗ ), that has eliminated the ripple which has reached P ∗ ( i ) by travelling
hrough nodes P ∗ (1),…, P ∗ ( i -1). Then, according to Lemma 2, P ∗ is not
areto optimal as it covers the path [ P ∗ (1),…, P ∗ ( i -1)]. So, Lemma 3 must
e true. 

Lemma 2 guarantees that (i) all those ripples which are eliminated
y PNDRs at intermediate nodes are of no use for identifying any Pareto
ptimal path connecting S and D , which can lead to computational effi-
iency, and (ii) all those ripples which are triggered at D are associated
ith Pareto optimal paths, which is the necessary condition of optimal-

ty. Lemma 3 guarantees that, when the ripple relay race terminates,
very Pareto optimal path connecting S and D will have an associated
t  
ipple triggered at D , which is the sufficient condition of optimality.
ased on Lemmas 2 and 3, one has the following theorem for the opti-
ality of the proposed RSA. 

Theorem 1 : In the proposed RSA for static MOPOPs, when the ripple
elay race terminates, the complete Pareto front is just determined by
ll of those ripples which have been triggered at D . 

.2. Complexity of ripple-spreading algorithm for static multi-objective path 

ptimization problems 

Theorem 2 : Suppose, for a given network with N N nodes, N L links
nd a specified source S , each of other ( N N -1) nodes has N PP Pareto
oints on average in its associated complete Pareto front. Then, the com-
utational complexity of RSA for one-to-all N Obj -objective POP is about
( N Obj × N L × N PP 

2 ). 
Proof: Based on Theorem 1, one can deduce that in the ripple re-

ay race on average, each node (other than S ) will have N PP PNDRs
nd therefore will be triggered to generate N PP new ripples. There are
ainly three kinds of basic computational steps in RSA: increase the

adius of a ripple by the constant ripple spreading speed, check if a rip-
le has reached the end of a link, and check if an incoming ripple is
ominated by any previous PNDR at a node. The first kind is an ad-
ition operation, the second kind is a comparison operation, and the
hird kind includes calculating N Obj so-far objective values for a rip-
le and comparing each value with up to N PP previous PNDRs at a
ode. On average, each node has 2 × N L / N N links. Suppose on aver-
ge, it takes N ATU simulation time units for a ripple to travel through
 link. Then, before a ripple becomes inactive, it may on average need
2 × N ATU + N Obj + N Obj × N PP ) × 2 × N L / N N operations. Since the source
 will generate only one ripple and each of other ( N N -1) nodes will gen-
rate N PP ripples on average, one then has that, before all ripples be-
ome inactive (when the ripple relay race terminates), it will take about
1 + ( N N -1) × N PP ) × (2 × N ATU + N Obj + N Obj × N PP ) × 2 × N L / N N oper-
tions. Usually, N PP >> N Obj and also N Obj × N PP >> 2 × N ATU , so, the
omputational complexity can be assessed as O( N Obj × N L × N PP 

2 ). 
If the method of [44] is applied to resolve the same one-to-all

OPOP, it needs to set up a proper k to satisfy certain theoretical condi-
ions and then run the single-objective RSA in [44] for N Obj times. The
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ay refer to some previous publications on RSA [6] - [7] . 

Besides the above theoretical complex analysis, the practical compu-
ational efficiency of RSA may be influenced by some algorithm param-
ters, such as ripple-spreading speed v . The influence of such algorithm
arameters is a common issue to all RSAs, no matter RSA is designed
or MOPOP or not. For more discussions about RSA parameters, readers

nvestigation. 

In path optimization, the space complexity of a method is often an-
lyzed for single-objective one-to-one problem, and it usually implies
ow many nodes and links in a route network will be explored before
he method finds a solution. However, for complex path optimization
uch as the k shortest paths problem, MOPOP and one-to-all problem,
his kind of space complexity analysis is not very popular or useful,
ecause all nodes and links in the route network will usually be ex-
lored before the algorithm can find solutions. Another possible defini-
ion of space complexity in path optimization is: the ratio of the number
f explored paths against all possible paths between source and desti-
ation. It is difficult to assess the number of either explored paths or
ll possible paths, particularly in complex path optimization. So, this
ind of space complexity analysis is rare and might be worth future

roblem is that it is difficult to pre-know which k is proper for a given
OPOP, so in practice, one needs to test k one by one by increasing k

rom 1 to a value that satisfies those theoretical conditions in [44] , and
or each k value, one needs to run the single-objective RSA in [44] for
 Obj times, and then check the Pareto dominating relationships between
 Obj sets of single-objective k shortest paths (the number of paths in the
 Obj sets of single-objective k shortest paths is at least N PP , but usually
uch larger than N PP ). The complexity of the single-objective RSA of

44] for a single problem of k shortest paths is about O( k × N L × N ATU )
8] . Therefore, the complexity of method [44] for one-to-all MOPOP can
e roughly assessed as O( k 2 × N Obj × N L × N ATU × N PP 

2 ), which is clearly
uch higher than the complexity of the RSA reported in this paper. 

.3. Extending ripple-spreading algorithm to dynamical multi-objective path 

ptimization problems 

The following is the mathematical description of dynamical MOPOP.
ssuming at the initial time t = 0, it is predicted that there will be a di-
ect link between nodes i and j at time z , then A z |0 ( i,j ) = 1. It is also
redicted at time t = 0 that the link between nodes i and j at time z has
osts C k , z |0 ( i,j ), k = 1,…, N Obj . In this paper, it is assumed that travelling
ime (or a similar index) is the 1 st objective function, i.e., it will take
ime C 1, z |0 ( i,j ) to pass link A z |0 ( i,j ). Based on the time-varying network
efined by A z |0 and C k , z |0 , the following minimization problem well

o a dynamical problem. 

Although theoretical researches like to use static problems, real-
orld applications often have to take into account some time-varying

actors [50] , [51] . Taking dynamical MOPOP as an example, a time-
arying network means nodes and/or links may temporarily become
naccessible (i.e., A ( i,j ) can change between 1 and 0), and the costs of
inks may change from time to time (i.e., C k ( i,j ) can change as time goes
n). It is usually the case that static optimal solutions are not suitable

her extended to one-to-all dynamical MOPOP. 

One might argue that the RSA reported in Section 3 is just another
ethod to a well-resolved problem, because there have already been a

ew methods that can calculate the complete Pareto front to the static
OPOP of Section 2 (e.g., see References [44] - [49] ). In order to better

erify the novelty and contribution of this paper, here the RSA is ex-
ended to a much more complicated MOPOP, i.e., calculating the com-
lete Pareto front in dynamical routing environments, which is called
ynamical MOPOP in this paper. To our best knowledge, those methods
n [44] - [49] are all focused on static MOPOP, no attempt has ever been
eported to extend those methods of [44] - [49] to dynamical MOPOP.
ctually in [17] , RSA has been preliminarily tested to identify complete
areto front for one-to-one dynamical MOPOP, and here it will be fur-
Actually, single-objective path optimization problem (SOPOP) in dy-
amical routing environment is often discussed by researchers. Here,
nly deterministic methods are reviewed, because calculating complete
areto front demands an optimality guarantee, which stochastic meth-
ds usually lack. There are mainly two categories of methods reported to
ddress dynamical SOPOP: one category is online path re-optimization
OPRO) [52] , [53] , and the other is time-dependent path optimization
TDPO) [54]-[56] . As illustrated in Fig. 6 , OPRO cannot ensure to find
he theoretical optimal path in a given dynamical network in terms of a
ingle objective, let alone dynamical MOPOP. TDPO does not need on-
ine re-optimization, and for a given dynamical routing environment, it
akes only a single offline run to make the resulted actual traveling tra-
ectory optimal with a theoretical guarantee, which comes from a static
ime-expanded hypergraph recording all the information of N TUinP pairs

q.(17). 

Apparently, according to Eq.(13), Eq.(15) and Eq.(16), the dynam-
cal MOPOP defined by Eq.(12) needs to resolved by observing those
hanges in not only link accessibility but also link costs as described by

ervice charge. 

It should be emphasized that f 1 in Eq.(15) is calculated rather differ-
ntly from f k in Eq.(16), k = 2,…, N Obj , because as traveling time, f 1 relies
n both link cost C 1, z |0 and node accessible time with A z |0 ( i,j ) = 1. If a
ode is reached during its inaccessible time by a ripple, then waiting
ehavior is necessary for the ripple in front of the node, and f 1 must in-
lude such waiting time. In terms of another N Obj -1 objective functions,
here is no additional cost due to waiting behavior in front of a node,
nd f k is just the sum-up of relevant C k , z |0 , k = 2,…, N Obj . For example,
he service charge of highway segment relies on whether it is peak time
r off-peak time, and traffic jam time usually cannot be converted to

] ) ( 
𝐴 𝑧 +1 |0 , 𝐶 1 ,𝑧 +1 |0 , ..., 𝐶 𝑁 𝑂𝑏𝑗 ,𝑧 +1 |0  = 𝑓 𝑅𝐸 𝐸 𝐷  𝐴 𝑧 |0 , 𝐶 1 ,𝑧 |0 , ..., 𝐶 𝑁 𝑂𝑏𝑗 ,𝑧 |0  , 𝑧 ≥ 0 , 
 

(17) 

ubject to A 0|0 = A 0 and C k ,0|0 = C k ,0 , k = 1,…, N Obj , where f REED is the func-
ion of routing environment evolving dynamics, A 0 is the adjacent ma-
rix measured (not predicted) at the initial time t = 0, and C i ,0 is the mea-
ured cost matrix in terms of the i th objective at the initial time t = 0,
 = 1,…, N Obj . 

According to Eq.(13) to Eq.(16), one can see that both accessibil-
ty and costs of a link in path P rely on what time to pass the link.
his is completely different from those MOPOPs in References [44] and
45] - [49] . To predict time-varying A z |0 and C k , z |0 , this paper assumes a
outing environment evolving dynamics (REED) is pre-given as follows:

here P, N P , N Obj and ΩP have the same definitions as in Section 2,
 k ( P,i ) is the cost to travel along P to get to the i th node of P in the time-
arying network defined by A z |0 and C k , z |0 , and assuming after node
 ( i ) is reached by traveling along P , the earliest time for P ( i ) to become
assible is z i . 

(16)
∑𝑖 

 𝑘 ( 𝑃 , 𝑖 + 1) =  𝐶 𝑘, 𝑧 𝑗 |0 ( 𝑃 ( 𝑗) , 𝑃 ( 𝑗 + 1)), 𝑘 = 2 , …  , 𝑁 Obj , 
𝑗=1 

 1 ( 𝑃 , 𝑖 + 1) = max ( 𝑓 1 ( 𝑃 , 𝑖 ) , 𝑧 𝑖 |0) + 𝐶 1 , 𝑧 𝑖 |0 ( 𝑃 ( 𝑖 ) , 𝑃 ( 𝑖 + 1)) , 𝑖 = 1 , … , 𝑁 𝑃 − 1 , 

(15) 

(14) 𝑘 ( 𝑃 , 1) = 0 , 𝑘 = 1 , …  , 𝑁 Obj , 

(13)

(12) 
( ) ( )] ) 

𝑚𝑖𝑛  𝑓 1 𝑃 , 𝑁 𝑃  , 𝑓 2 𝑃 , 𝑁 𝑃  , ..., 𝑓 𝑁 𝑂𝑏𝑗  𝑃 , 𝑁 𝑃  , ∈Ω𝑃 

efines dynamical MOPOP: [ ( 

ubject to 

 𝑧 |0 ( 𝑃 ( 𝑖 ) , 𝑃 ( 𝑖 + 1)) = 1 , 𝑧 = 𝑧 𝑖 , ..., 𝑧 𝑖 +1 ,  



Fig. 6. Online path re-optimization (OPRO) cannot find the actual optimal trav- 

elling trajectory. 
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Compared with the RSA for static MOPOP of Section 3, basically, the
odified RSA for dynamical MOPOP has three major differences. First,

he route network, i.e., the [ A z |0 , C 1 ,z |0 ,…,C N Obj, z |0 ] pair needs to be
pdated according to a given routing environmental dynamics at each
imulated time unit during a single run of ripple relay race. Second, a
ipple has to wait at a node if the node or a link ahead is inaccessible.
hird, one might recall that in the RSA for static MOPOP of Section 3,

ace should be terminated immediately. 

The RSA reported in [7] can only target dynamical SOPOP, and here
ecessary modifications will be introduced, so that RSA can be applied
o dynamical MOPOP. Due to limited space, here pseudocode details will
e skipped, leaving focus on major modifications. As mentioned in [6] ,
SA is actually a decentralized, multi-agent based simulation model,
nd by simply modifying node micro behaviors, RSA can be flexibly
xtended to various POPs. Based on the RSA reported for dynamical
OPOP in [7] , the following two key modifications are introduced in
rder to enable RSA to resolve dynamical MOPOP. In the new RSA,
ore than 1 ripple may be generated at a node, while differently, each
ode can have up to 1 ripple in the RSA of [7] . Basically, when a ripple
eaches a node, if no existing PNDR of the node can dominate the ripple,
hen, the ripple will trigger a new ripple at the node, regardless how
any ripples the node have generated. The termination criteria of RSA

re also modified. In the new RSA, whether the ripple relay race should
e terminated only depends on whether there exists any active ripple,
egardless how many ripples have reached the destination, while in the
SA of [7] , once a ripple has arrived at the destination, the ripple relay

amical route network [7] . 

Reference [7] particularly modified RSA to realize CEPO. Basically,
ot only those changes in link accessibility and costs but also the ripple
elay race of RSA happens based on the same simulated time unit. So, the
hanging of route network can be seamlessly integrated into the ripple
preading procedure of RSA. This seamless integration of ripple-relay
ace and changes in link accessibility and costs provides the foundation
o ensure RSA to find optimal actual traveling trajectory in a given dy-

ptimal travelling trajectory with a theoretical guarantee. 

Rather different from both OPRO and TDPO, a novel co-evolutionary
ath optimization (CEPO) method has recently been reported to address
ynamical SOPOP [7] . Basically, CEPO does not need either online re-
ptimization, or time-expanded hypergraph, and a single offline run of
EPO method based on a network of original size can output actual

f [ A z |0 , C z |0 ], where N TUinP is the number of time units taken to travel
etween a given pair of source and destination nodes along an optimal or
romising path. However, dealing with a time-expanded hypergraph is
enerally complicated and memory-expensive, and TDPO methods of-
en have a serious scalability issue even for single-objective problem.
herefore, there has rarely been any attempt ever reported to extend
DPO methods to dynamical MOPOP. 
( N Obj × N L × N PP 
2 ), exactly the same as that for static MOPOP. 

Similar to the way described in Sub-section 3.3, the RSA for one-
o-one dynamical MOPOP can also be easily extended to one-to-all dy-
amical MOPOP. The optimality of RSA for dynamical MOPOP can be
educed by referring to the optimality proof of [7] and Theorem 1 in
ub-section 4.1. If the computational time for upgrading routing envi-
onmental information is not considered (e.g., because an external me-
eorological model can tell which part of route network will become
naccessible at what time under adverse weathers), then the compu-
ational complexity of RSA for dynamical MOPOP can be assessed as

pdating the set of PNDRs does not need to delete any existing PNDR,
hile differently, in the RSA for dynamical MOPOP, there is such a need
ue to the introduction of waiting behavior. Because of waiting at a
ode, an earlier arrived PNDR may have exactly the same traveling time
ost as a later arrived ripple. It is likely the later arrived ripple has better
 2 ,…, f N Obj values than the earlier arrived PNDR. So, the earlier arrived
NDR is dominated by the later arrived ripple, and therefore should be
eleted. The flowchart of RSA for dynamical MOPOP is given in Fig. 7 .

Experimental Results 

roblems. 

In this section, 4 sets of different experiments are conducted, in order
o domenstrate the effectiveness of the reported RSA. In experiments, all
ethods used were coded by the same group of researchers, in the same
ardware and software environments, and tested on the same sets of

.1. Results on one-to-one static bi-objective path optimization problems 

Although NSGA-II and MOEA/D are not the focus of this paper, it is
till necessary to roughly explain some of their designs. In either NSGA-II
r MOEA/D, crossover is not adopted, because crossing two path vec-
ors can easily produce infeasible paths by causing a node to appear
wice in a same path. Mutation is relatively straightforward, i.e., ran-
omly select two non-successive nodes in a path, and if there is a link
etween them in the network, then delete those intermediate nodes be-
ween them in the path and make them successive. In a new generation
f paths, some comes from mutating randomly selected paths in the pre-
ious generation, some are randomly produced by certain path initial-
zation techniques, and some are copied from elite paths in the previous
eneration. In NSGA-II, which path will be chosen for mutation or elite
opy and which path will be updated by initialization techniques largely
epend on the Pareto-compliant ranking of each path among its genera-
ion. MOEA/D can be viewed as to simultaneously evolve solutions to a
et of subproblems, which result from the decomposition of the original
OPOP. In this study, each subproblem is actually a single-objective

ath optimization problem defined by a weight sum of original objec-
ives, and each subproblem is associated with a randomly given set of
eights in order to evaluate the fitness of those paths to that subprob-

em. Mutation, initialization and elite copy in MOEA/D are conducted
ased on such scalar fitness values within each subproblem. Therefore,
areto-compliant ranking is not necessary for MOEA/D, in other words,
he computational burden of Pareto-compliant ranking is avoided in
OEA/D. Some preliminary experiments on adjusting pure GA param-

ters are conducted in order to set up NSGA-II and MOEA/D. Based on

areto front. 

Section 4 gives the theoretical proof about the optimality of the pro-
osed RSA for static MOPOPs. Here experimental proofs will also be
iven. To this end, the new RSA is compared with the method of [44] and
he Dijkstra-like method of [48] , both of which are also capable of find-
ng the complete Pareto front of static MOPOPs. Hereafter, the method of
44] is denoted as SOK, because it is based on single-objective k short-
st paths, and the method of [48] as DL. For a better demonstrative
ffect, the new RSA is also compared with methods of AOF, NSGA-II
nd MOEA/D, which have no theoretical guarantee of finding complete



Fig. 7. Flowchart of RSA for dynamical MOPOP. 
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The main experimental results are given in Table 2 , and Fig. 8 plots
he results of a test case with N N = 25. In Table 2 , CT is the average
omputational time (in second), N PPF tells how many Pareto points a
ethod has found, and R FCPF gives the rate of a method for finding the

omplete Pareto front (i.e., divide the number of route networks where
he method has found the complete Pareto front by the total number of
oute networks the method has been tested under a given N ). Please

efer to [44] . 

(18) 2 ( 𝑖, 𝑗) = max ( 𝐶 1 ( ., . )) × min ( 𝐶 1 ( ., . ))∕ 𝐶 1 ( 𝑖, 𝑗) . 

 N is used to adjust the problem scale in the test, in this sub-section,
 N has three values, i.e., 25, 36 and 49, and for each N N , 100 route
etworks are generated. For more details of the test setup, readers may

eference [44] , i.e., 

Here, the test setup of [44] is borrowed. Firstly, randomly disturb
he locations of N N nodes which are originally evenly distributed in a
ectangular area defined by [-1000 1000 -1000 1000]; randomly choose
 node to connect it to its closest neighboring nodes, and make sure
very node has no more than 4 connections; then C 1 ( i,j ) is set as the
esult of dividing the physical straight line distance between nodes i
nd j by the ripple spreading speed; set C 2 ( i,j ) in the same way as in

uch preliminary experiments, the mutation probability, the random ini-
ialization probability, the elitist probability, the population size and the
umber of evolving generations for both NSGA-II and MOEA/D in this
ub-section are set up as 0.4, 0.5, 0.1, 400 and 400, respectively. 
N 
• In  terms  of  CT,  both  DL  and  the  new  RSA  exhibit  much  bet-
ter  computational  efficiencies  than  SOK,  which  will  be  further
proven in the experiment of next subsection. Roughly speaking,
DL is slower than the new RSA, and this is consistent with rel-
evant theoretical analyses. According to [48] , the computational

optimality of the new RSA. 

• SOK, DL and the new RSA proposed in this paper have exactly the
same N PPF and R FCPF values in all test cases. As both SOK and DL
have optimality guarantee of finding the complete Pareto front for
static MOPOPs, Table 2 can serve as experimental proofs about the

ote that, for each route network, either NSGA-II or MEA/D is run for 50
imes; AOF is also run for 50 times, each time with a randomly generated
et of weights for aggregate objective function; SOK, DL and the new
SA are run only once, respectively, as they can guarantee the finding
f complete Pareto front (in other words, for a given route network, no
atter how many times SOK, DL or the new RSA is run, the output is

he same). Therefore, for NSGA-II, MOEA/D and AOF, Table 2 lists the
verage values of mean and SS (mean square error) for CT, N PPF and
 FCPF (because of 50 runs for each of the 100 route networks), while for
OK, DL and the new RSA, just average CT, N PPF and R FCPF based on
he 100 route networks. In Fig. 8 , the first 9 subplots show all Pareto
ptimal paths of the test case; and the last subplot gives the Pareto fronts
alculated by the 6 different methods. From Table 2 and Fig. 8 , one can
ee that: 



Table 2 

Average Comparative Results of Bi-Objective POP 

NSGA-II MOEA/D AOF 

SOK DL 

New 

RSA 
Mean SS Mean SS Mean SS 

N N = 25 CT 36.29 4.93 32.02 4.76 0.39 0.02 0.54 0.49 0.47 

N PPF 5.13 2.11 5.28 1.96 2.81 0.38 7.67 7.67 7.67 

R FCPF 0.31 0.12 0.33 0.09 0.06 0.01 1.00 1.00 1.00 

N N = 36 CT 58.70 8.18 51.78 10.27 0.71 0.05 4.63 1.16 0.73 

N PPF 5.83 2.64 6.63 2.49 4.03 0.63 10.09 10.09 10.09 

R FCPF 0.22 0.07 0.26 0.05 0.04 0.01 1.00 1.00 1.00 

N N = 49 CT 107.38 14.23 94.75 16.20 1.69 0.17 33.15 2.97 1.85 

N PPF 5.27 2.87 6.51 3.05 4.58 0.69 15.44 15.44 15.44 

R FCPF 0.08 0.03 0.11 0.03 0.01 0.00 1.00 1.00 1.00 

Fig. 8. Example of solutions by different methods in a test case of static MOPOP (NN = 25). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

w

 

o  

t  

m  

f  

j  

v  

B  

c  

i  
complexity of DL is about O( N PP × N N × ( N L + N N × log N N )),
i.e., O( N PP × N N × N L + N PP × N N 

2 × log N N ), while the new RSA
O( N Obj × N L × N PP 

2 ). In this experiment, the value of the former is
larger than the value of the latter, so, the new RSA runs faster than
DL. Actually, the new RSA has similar CTs to the AOF method, which
is the fastest. 

are much worse than the other four methods. 
• Because of the random features in NSGA-II, MOEA/D and AOF, the

values of SS are not zero, which means for a given route network,
different runs of either NSGA-II, MOEA/D or AOF may output dif-
ferent results. In terms of SS, AOF is more stable than NSGA-II and
MOEA/D, this is probably because the only random feature of AOF
is the random generation of weights, while there are much more
random features in NSGA-II and MOEA/D. 

• Please note that the performances of AOF, NSGA-II and MOEA/D
are influenced not only by problem scale, but also by the values of
some algorithm parameters. For example, if more sets of weights
are used to combine N Obj objectives in AOF, and a larger population
and more generations to evolve in NSGA-II and MOEA/D, they might
be able to find more Pareto points (however, AOF still cannot find
Pareto points on non-convex parts of Pareto front, and either NSGA-
II or MOEA/D will still output some false Pareto points), at the cost

• Table 2 also clearly demonstrates that either NSGA-II, MOEA/D or
AOF often fails to find the complete Pareto fronts. In terms of N PPF ,
the AOF method is the worst of all, as it cannot find those Pareto
points in non-convex parts of a Pareto front. The reason why NSGA-
II and MOEA/D often fail to find the complete Pareto front is be-
cause of the stochastic nature of NSGA-II and MOEA/D, which means
there is no theoretical guarantee of optimality for even a single so-
lution, let alone complete Pareto front. MOEA/D often runs faster
and finds a little more Pareto points than NSGA-II. This is largely
because the problem decomposition technique of MOEA/D leads to
a better searching efficiency. However, in terms of CT, both NSGA-II
and MOEA/D, due to their population-based evolutionary processes,
of increasing CT significantly. Differently, the performances of SOK,
DL and the reported RSA here are much more stable, i.e., they can
always find complete Pareto front, and their CTs are mainly depen-
dent of problem characteristics, such as problem scale and network
topology. 

• It should be noted that, as mentioned in Section 1, a goal of this study
is to further mature and enrich RSA as a third stream method distin-
guished from both classical deterministic methods (the first stream)
and stochastic methods (the second stream). Therefore, the exper-
iment here is mainly used to demonstrate the merits and demerits
of three method streams (rather than to claim advantages against
certain specific algorithms). If further adjust/modify AOF, NSGA-II
and MOEA/D, or replace them with more recent methods, the exper-
imental results of stream 1 and stream 2 might be improved, but the
conclusion will not change that stream 1 is not flexible (e.g., AOF
cannot find any Pareto points on non-convex parts of Pareto front)
and stream 2 cannot guarantee optimality (e.g., either NSGA-II or
MOEA/D often outputs false Pareto points), while RSA, represent-
ing stream 3, can always find all Pareto points and never output any
false Pareto points. 

.2. Test on one-to-one static multi-objective path optimization problems 

ith NObj > 2 objectives 

One might argue that the problem scale in the experiment of previ-
us subsection is small, i.e., all test cases only have N Obj = 2 objectives,
he largest networks have just N N = 49 nodes and N L < 200 links, and the
ost complicated Pareto front has just about 30 Pareto points. There-

ore, one may ask: how about testing on some MOPOPs with more ob-
ectives, more nodes, and more Pareto points? Usually, the larger the
alues of N Obj , N N , N L and N PP , the more complicated the MOPOP is.
asically, with large settings of N Obj , N N , N L and N PP , if still use the
ompletely random network generator as employed in Sub-section 5.1,
t will be very difficult, if not impossible, to verify whether or not the re-



Table 3 

Average Comparative Results of MOPOP with N Obj > 2 

SOK DL 

AOF MOEA/D New 

RSA 

( N N = 100, N L = 400, and N PP = 5 N Obj )  NSGA-II 

Mean Mean  SS SS SS Mean 

160 160 

0.00 0.00  1.00  1.00  1.00 

14.80  1.62  160 63.06 

0.13 

14.95 

0.05 

N Obj = 40 

41.72 

0.16 

44.05 

0.18 

13.29 

0.08 

80 

N Obj = 20 

18.78 

0.18 

9.27 

0.07 

6.85 

0.08 

17.93 

0.18 

9.38 

0.00 

13.70 80 12.49  1.44  80 

0.00  1.00  1.00  1.00 0.00 0.06 

58.34 

0.12 

16.22 

0.04 

981.27  173.46  895.48  166.03  13.28  1.38  50.26  15.72  19.09 

915.85  164.06  863.79  171.54  6.71 

883.94  155.07  837.36  167.26  4.18 N Obj = 10 

15.17 

0.24 

13.08 

0.21 

5.24 

0.07 

N Obj = 6 

9.76 

0.31 

16 9.03 

0.30 

3.09 

0.06 

3.25 

0.06 

6.28 

0.00 

7.83 

0.00 

6.76 

0.06 

864.17  142.96  825.42  146.27  1.94 

857.01  141.56  815.58  148.17  0.85 N Obj = 4 

3.13 

0.08 

3.02 

0.07 

4.71 

0.00 

6.95 

0.36 

6.62 

0.33 

854.86  145.27  817.06  143.89  0.71 0.76 

12 

CT 

N PPF 

R FCPF 

CT 

N PPF 

R FCPF 

CT 

N PPF 

R FCPF 

CT 

N PPF 

R FCPF 

CT 

N PPF 

R FCPF 

CT 

N PPF 

R FCPF 

1.13 

12 

0.15  9.05 

1.03  12 

1.05 0.19  11.36  2.23 

1.28  16 16 

24 1.72  24 

0.34  14.27  4.86 

24 

40 1.52  40 

0.58  20.33  9.17 

40 

0.00  1.00  1.00  1.00 

0.91  28.69  12.03  11.85 

6.92 

0.00  1.00  1.00  1.00 

3.07 

0.00  1.00  1.00  1.00 

0.00  1.00  1.00  1.00 

N Obj = 3 
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• Compared with those results in Table I, one might notice the CT of
SOK does not increase as fast as that of the new RSA. This is mainly
because, for a route network generated by the MOPOP toolkit of
[41] under its Rule 1, SOK only needs to generate no more than
1 ripple at each node, while for a more random network used in
Sub-section 5.1, SOK often has to generate a lot of ripples at each
node, in order to guarantee optimality. As shown in [6] , generating
multiple ripples at each node will cause the computational burden
increase exponentially. Although the new RSA also has no more than
1 PNDR because of the purpose-designed model here (in Sub-section

Therefore, RSA still has a good application potential. 

• Both SOK and DL have also found complete Pareto fronts in all test
cases. SOK runs slower than both DL and the reported RSA. DL runs
sometimes slower than RSA, and sometimes faster than RSA, largely
depending on the settings of N Obj , N N , N L and N PP values (actually
in this experiment, depending on the value of N Obj , as N N and N L 

are fixed, and N PP always equals to 4 N Obj ). For instance, DL runs
clearly slower than RSA when N Obj = 3, 4, 6, and 10, while faster
than RSA when N Obj = 40. This might imply that DL could be a better
choice when dealing with many objectives (under certain values of
N N , N L and N PP ). However, in most real-world applications, there
are usually only a few major objectives to be considered in a MOOP.

fast when compared with other methods. 

• With no surprise (partially because of the theoretical proof in Section
4), the new RSA has found complete Pareto fronts in all of these 600
test cases. And the new RSA also finds complete Pareto front very

nd N PP = 4 N Obj (i.e., 100 networks for each set of N Obj , N N , N L and N PP 

alues). Then, test the reported RSA and other methods on these 600
oute networks. The average test results are given in Table 3 , which
hows: 

To be able to test the reported RSA under large N Obj , N N , N L and
 PP , a special MOPOP generator is needed, so that one can manually
educe the complete Pareto front of generated MOPOP test case, no
atter how large N Obj , N N , N L and N PP are. Fortunately, the benchmark

est problem toolkit reported in [41] can generate random MOPOPs of
ifferent problem scales with any pre-given Pareto fronts. Here, with the
OPOP toolkit of [41] and its Rule 1, 600 route networks are randomly

enerated with settings of 𝑁 Obj ∈ [3 , 4 , 6 , 10 , 20 , 40] , N N = 100, N L = 400,

orted RSA has found the complete Pareto front, because (i) it is almost
mpossible to deduce manually the complete Pareto front to a MOPOP
andomly generated in Sub-section 5.1 with large N Obj , N N , N L and N PP ,
nd (ii) the computational burden of relevant existing methods, such as
OK, soars up dramatically as N Obj , N N , N L and N PP increase. 
always be zero. 

• For the same reason as discussed in Subsection 5.A, after analyzing
the SS values of NSGA-II, MOEA/D and AOF based on their 50 runs
for each of the 600 route networks, AOF is more stable than NSGA-
II and MOEA/D. In Table 3 , there is no SS value given for SOK, DL
or the new RSA, because they can always find the complete Pareto
front, which means, if given, their SS values of N PPF and R FCPF would

change significantly over N Obj . 

• In most test cases, either NSGA-II or MOEA/D has also failed to
find complete Pareto front. In general, MOEA/D finds more Pareto
points than NSGA-II, which means the problem decomposition tech-
nique of MOEA/D is helpful. NSGA-II is the slowest method of all.
Here, please note that for whichever value of N Obj , both NSGA-II
and MOEA/D employ the same population size (i.e., 1000 individ-
uals in a generation) and generation number (i.e., 600 generations
to evolve), and therefore, the CT of NSGA-II or MOEA/D does not

lead to the same paths. 

• The AOF method has never found any complete Pareto front, be-
cause in these many-objective test cases, no Pareto front is convex.
Actually, in terms of N PPF and R FCPF , AOF is the worst of all meth-
ods. Here, 2 N PP sets of weights are used to combine N Obj objectives.
Each set of weights can lead to a Pareto optimal path, but most sets

5.1, each node often has multiple PNDRs), it needs to keep com-
paring N Obj objective values between ripples at each node, and this
causes computational burden increase dramatically. There is no need
of comparing N Obj objective values between ripples at each node
in each single run of single-objective ripple relay race employed in
SOK, although at least N Obj runs will be conducted to find a complete
Pareto front. Therefore, based on the MOPOP toolkit under its Rule
1, SOK looks not too slow compared with the new RSA. Similarly,
the CT of DL does not increase as fast in Table II as in Table I, and
this is because, for a route network generated by the MOPOP toolkit
of [41] under its Rule 1, DL often only needs to label a node once in
terms of Pareto non-dominance, while for a network in Sub-section
5.1, DL often needs to label a node for quite a few or even many
times. 

.3. Test on a complicated one-to-all static 3-objective path optimization 

roblem 

Now it should be safe to say that the results in Sub-sections 5.1 and
.2 have satisfactorily demonstrated the reported RSA can find complete
areto front for one-to-one static MOPOP with optimality guaranteed.
ere is a further test on some three-objective one-to-all static problems



Fig.  9. An  example  of  one-to-all  static  MOPOP 

(NN = 400 and NL = 1600). 
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Table 4 gives some average results of 100 route networks. CT stands
or computational time (in second) consumed by a method to resolve
 one-to-all MOPOP; N PPF the number of Pareto points found (no mat-
er true or false) by a method for a one-to-all MOPOP; N TPPF / N FPPF the

rue Pareto point in this case. 

Fig. 9 gives some main results of a single test network in this experi-
ent. In the top subplot of Fig. 9 , the numbers of Pareto points found by
ifferent methods are given when different node in the route network
s chosen as destination (node 1 is always source). It clearly shows that
he NSGA-II and the AOF method usually only find a very small propor-
ion of true Pareto points when a complete Pareto front is big. In the 399
omplete Pareto fronts of this test network, the most complicated Pareto
ront has 2463 Pareto points in total (when node 360 is destination), as
alculated by the new RSA. The left-bottom and the right-bottom sub-
lots of Fig. 9 compare the Pareto points found by the AOF method and
y the NSGA-II, respectively, with those by the new RSA for the case
here node 360 is destination (the most complicated case). Actually,
lthough the NSGA-II in this experiment has a population size of 1000
nd a generation number of 600, which are not small, it fails to find any

and. 

In this experiment, only the NSGA-II and the AOF method are used
or comparative purposes. This sub-section randomly generates 100
oute networks, where each link has 3 costs for the calculation of 3 objec-
ives. In each network, node 1 (the node at the left-bottom of network)
s the source, and “one-to-all ” means it must find the complete Pareto
ront when node 2 is destination, the complete Pareto front when node 3
s destination, …, and the complete Pareto front when node 400 is desti-
ation. In other words, there are totally 399 Pareto fronts for each single
ne-to-all problem with N N = 400. This means, for each route network, it
as to run NSGA-II or AOF for 399 times to resolve this one-to-all prob-
em. Differently, the new RSA only needs to run for just once, i.e., only
 single run of ripple relay race needs to be carried out on the route
etwork, and then all the 399 complete Pareto fronts are available at

ith N N = 400, N L = 1600, in order to show the efficiency of the reported
SA. Here the network model of [41] is not used, as it might still look
imple, no matter how large N Obj , N N , N L and N PP are. Instead, the much
ore random model of Sub-section 5.1 is used to generate route net-
ork. 
 

• One might wonder: compared with the N PPF of RSA, NSGA-II finds
a smaller proportion of true Pareto points than AOF does, then, why
does NSGA-II find more complete Pareto fronts than AOF, i.e., why

This is why N FACPF = 0 for both NSGA-II and AOF. 

• However, either NSGA-II or AOF fails to find all complete Pareto
fronts for any of those 100 one-to-all MOPOPs in the experiment.

explains why N FSCPF > 0 for both NSGA-II and AOF. 

• When a node very close to node 1 is chosen as destination (e.g., a
node that has a direct link to node 1), the associated complete Pareto
front is usually simple with just a few Pareto points. So, either NSGA-
II or AOF stands a chance to find such a complete Pareto front. This

N ATPPFbyGA/AOF = 0 in the experiment. 

• Since  SOK  is  not  adopted  here  due  to  its  poor  scalability,
N ATPPFbyGA/AOF is used as an indirect/implicit indicator to verify
whether RSA has failed to find complete Pareto fronts. Every time
when NSGA-II or AOF has found a Pareto point that RSA has failed
to find and is not dominated by any Pareto points found by RSA,
N ATPPFbyGA/AOF is increased by 1. Thus, after a ripple relay race
stops for a route network, if N ATPPFbyGA/AOF > 0, one knows RSA
fails. Fortunately, as expected, this does not happen, because always

NSGA-II finds much less true Pareto points than AOF does. 

• NSGA-II has a larger N PPF than AOF, but it finds many false Pareto
points, while AOF never outputs any false Pareto points. Actually,

proportion of true Pareto points. 

• Regarding computational efficiency, the new RSA takes just about
500 seconds on average to find all of the 399 Pareto fronts by a
single run. The NSGA-II usually takes hours but ends up with many
false Pareto points. The AOF method (with 2 N N = 800 sets of weights)
takes about 400 seconds, but as shown in Table 4 , it finds a very small

umber of true/false Pareto points found by a method for a one-to-all
OPOP; N ATPPFbyGA/AOF the number of additional true Pareto points

ound by NSGA-II or AOF (i.e., true Pareto points that RSA fails to find);
 FSCPF the ratio indicating for how many of those 399 nodes (except
ode 1) in a single route network, a method has found complete Pareto
ront; R FACPF the ratio indicating for how many of those 100 route net-
orks, a method has found all complete Pareto fronts. From Table 4 ,
ne may have the following observations. 



Table 4 

Average Comparative Results of One-to-All 3-Objective POPs 

AOF New 

RSA 

( N N = 400 and N L = 1600)  NSGA-II 

SS Mean Mean SS 

0.00 

0.00 

0.02 

0.00 

0.00 

N.A. 

1.00 

1.00 

0.00 

0.00 

0.00 

0.00 

9785.23 

3038.37 

6746.86 

0.00 

0.03 

0.00 

363.41 6471.08  482.27  191183.26 

749.62 

0.00 

0.01 

0.00 

1021.63  6471.08  482.27  191183.26 

509.62 CT 

N PPF 

N TPPF 

N FPPF 

N ATPPFbyGA/AOF 

R FSCPF 

R FACPF 

18707.52  3506.28  417.55  34.17 
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still output some false Pareto points. 

• Again, it should be noted that, if increase the number of weight sets
for AOF, or replace NSGA-II with more recent more powerful multi-
objective evolutionary algorithms, then those associated experimen-
tal results may be improved, but AOF still cannot find Pareto points
on non-convex parts of Pareto front, and evolutionary methods will

one-to-all MOPOP. 

• Again, according to those SS values, the random feature in AOF (i.e.,
randomly generating weights set for aggregate objective function)
has relatively small influence on method performance than those
random features in NSGA-II do. The new RSA has no SS values, be-
cause it always guarantees finding all complete Pareto fronts for a

proportion of true Pareto points. 

• One might also wonder: NSGA-II only finds less than 2% true Pareto
points, then, why does it find about 3% complete Pareto fronts. This
is because the number of Pareto points is significantly uneven be-
tween Pareto fronts. As illustrated in Fig. 9 , a complicated Pareto
front may have over 2000 Pareto points, while a simple Pareto front
only has less than 10 Pareto points. So, finding a large proportion
of complete Pareto fronts does not necessarily mean finding a large

does NSGA-II have a larger N FSCPF than AOF? Again, this is largely
because AOF can only find Pareto points on convex parts of Pareto
front, but in this experiment, most Pareto fronts (even many of those
Pareto fronts between node 1 and its nearby nodes) are not convex.

.4. Test on a one-to-one dyanimcal 2-objective path optimization problem 

From Fig. 10 , one can also see how the route network changes si-
ultaneously as the ripple relay race of RSA goes on, and how 4 Pareto

ptimal paths are found out one by one during the ripple relay race.

alculation of objective f 2 , clearly, this is a dynamical MOPOP. 

There lacks test case or method for dynamical MOPOP in existing
iteratures, so, it is very difficult, if not impossible, to make compar-
sons. In order to make dynamical MOPOP digestible to readers, as well
s making manual analysis on the complete Pareto front possible, just
 simple test case of dynamical MOPOP is given in Fig. 10 . The dy-
amical route network in Fig. 10 has N N = 9 nodes and N L = 12 links.
ach link has N Obj = 2 costs: C 1, z |0 ( i,j ) is the traveling time to pass the
ink, and C 2, z |0 ( i,j ) is something like service charge. In this experiment,
or the sake of simple demonstration, C 1, z |0 ( i,j ) = 1 for all links at any
ime z |0, i.e, C 1, z |0 is constant and will not change over time. There-
ore, C 1, z |0 ( i,j ) is not given in Fig. 10 (otherwise, Fig. 10 would look too
usy). Link accessibility can change from time to time (i.e., A z|0 ( i,j ) can
hange between 1 and 0 over simulated time z |0). For instance, the link
etween nodes 2 and 5 is not passible until time 3|0, so, A z|0 (2,5) = 0 for
 = 1,2, and then A z|0 (2,5) = 1 for z = 3,…,7. C 2, z |0 ( i,j ) also changes over
ime, and the data set of C 2, z |0 ( i,j ) is given in the first sub-plot of Fig. 10 .
or instance, the link between nodes 2 and 5 has a C 2, z |0 data set of
(2,3);(1, ∞) ”, so, C 2, z |0 (2,5) = 2 for z = 1,2,3, and then C 2, z |0 (2,5) = 1 for
 > 3. The link between nodes 4 and D has a C 2, z |0 data set of “(20, ∞) ”,
o, C 2, z |0 (4,D) = 20 for all times. Other sub-plots of Fig. 10 only show
nstantaneous values of C 2, z |0 . As time-varying A z|0 ( i,j ) is used in the
alculation of objective f 1 , and time-varying C 2, z |0 ( i,j ) used in in the
At predicted time 7|0, both network topology and link costs con-
inue changing. R12 reaches node D. Since R12 is not dominated by any
xisting PNDR of node D, R12 finds a new Pareto optimal path O-3-4-1-
-5-7-D. Then, there is no longer any active ripple. So, the ripple relay

ew ripple R12 at node 7. 

At predicted time 6|0, the route network keeps changing in terms of
opology and link costs. In particular, link (6,D) becomes accessible, so
6 starts to spread and then arrives at D. Since R6 is not dominated by
ny existing PNDR of D, R6 finds a new Pareto optimal path O-3-6-D.
11 reaches node 7 and becomes a new PNDR of node 7, so, R11 triggers

riggers new ripple R11 at node 5. R6 keeps waiting at node 6. 

At predicted time 5|0, the route network continues changing in terms
f topology and link costs. R10 arrives at node D, identifying a Pareto
ptimal path O-1-2-5-7-D. R9 arrives at node 5, and it is not dominated
y any existing PNDR of node 5, so, R9 is a new PNDR at node 5, and

aiting at node 6. 

At predicted time 4|0, some link costs change. R7 arrives at node 2,
nd it is not dominated by the first PNDR of node 2, so, R7 is the second
NDR at node 2, and triggers new ripple R9 at node 2. R8 reaches node
, becomes the first PNDR of node 7, and triggers new ripple R10 at
ode 7. R5 also arrives at node 4, but it is dominated by the existing
NDR of node 4, so, it does not trigger a new ripple at node 4. R6 keeps

6,D) is inaccessible, R6 holds and waits at node 6. 

At predicted time 3|0, the route network changes further as node 5
nd its associated 3 links become accessible, link (7,D) becomes inac-
essible, and besides, link costs C 2, z |0 (1,2) and C 2, z |0 (3,4) also change.
5 reaches the destination D, and finds a Pareto optimal path O-3-4-D.
5 also reaches node 1. Node 1 already has a PNDR, i.e., R1, which
ad objective values [ 1 , 4 ] when reaching node 1 at time 1|0. R5 has
bjective values [ 3 , 3 ] when reaching node 1 at time 3|0. So, R5 is not
ominated by R1 at node 1. So, R5 becomes the second PNDR at node
, and triggers new ripple R7 at node 1. Both R4 and R5 reach node 5.
ecause R4 has objective values [ 3 , 9 ] and R5 has [ 3 , 12 ] when reaching
ode 5, R5 is dominated by R4 at node 5. Therefore, R4 becomes the
rst PNDR at node 5, and triggers new ripple R8 at node 5. Because link

f node 4, and triggers new ripple R5 at node 4. 

At predicted time 2|0, the route network changes a little bit as link
6,D) becomes inaccessible. R2 spreads and reaches node 2. Since there
s no PNDR at node 2, R2 becomes the first PNDR at node 2, and triggers
ew ripple R4. R3 arrives at node 6, becomes the first PNDR at node 6,
nd triggers new ripple R6 at node 6. Both R2 and R3 arrives at node
. The so-far path to node 4 travelled by R3 has objective values [ 2 , 2 ]
hile the so-far path to node 4 travelled by R2 has objective values
 2 , 13 ]. This means R3 dominates R2 at node 4, so, R3 becomes a PNDR

ew ripple R2 at node 1 and R3 at node 3, respectively. 

In Fig. 10 , at predicted time 1|0, node 5 and links (2,5), (4,5) and
5,7) are inaccessible. The initial ripple R1 spreads from the origin, i.e.,
ode O , and reaches node 1 and node 3. Since there is no PNDR at either
ode 1 or node 3, R1 becomes their first PNDR, and therefore triggers

ll possible paths between node O and node D, as well as the com-
lete Pareto front of the test problem are given in Fig. 11 . By analyzing
ig. 10 and Fig. 11 , one can clearly see that the RSA reported in this
aper is effective and correct to resolve dynamical MOPOP. 



Fig. 10. The test case of RSA for one-to-one dynamical MOPOP. 

Fig. 11. Complete Pareto front of the test case in Fig. 10 . 
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ace stops, and all Pareto optimal paths between nodes O and D in the
iven dynamical route network have been found out successfully by the
eported RSA. 

.5. Test on a one-to-all dyanimcal 2-objective path optimization problem 

As emphasized through this paper, thanks to its multi-agent nature,
SA, without losing its optimality guarantee, is more flexible than clas-
ical deterministic methods in terms of extending to various complex
roblems. The test on one-to-one dynamical MOPOP in the previous
ubsection has already shown a preliminary proof about the modifica-
ion flexibility of RSA, as no existing method can guarantee to find the
omplete Pareto front for such one-to-one dynamical MOPOP. This sub-
ection will test the merits of RSA in an even harder problem, i.e., one-
o-all dynamical MOPOP, which demands to find all Pareto fronts from
 given source node to all other nodes in a dynamical route network. As
xplained in Section 4.C, it does not need to repeat running the one-to-
ne-dynamical-MOPOP-oriented RSA for N N -1 times, but just modify it
imply by changing the termination condition of ripple relay race, and
hen, still a single run of modified RSA can guarantee to find all Pareto
ronts for a dynamical one-to-all MOPOP. 

Because, to our best knowledge, one-to-all dynamical MOPOP is a
roblem never discussed in any existing literatures, here still a simple
est case is used, so that readers may manually check the correctness of



Fig. 12. A test case of RSA for a one-to-all dynamical MOPOP. 
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ingle run of ripple-relay race. 
Dynamical MOPOP has great application potentials. For instance, in

n adverse weather scenario (e.g., rainstorm, typhoon, blizzard), road
onditions in network are time varying due to the dynamical weather
eveloping progress. Although the CEPO method of [7] can find single-
bjective optimal paths in such a dynamical routing environment, it
nly considers how to minimize traveling time. However, in such an
dverse weather scenario, how to minimize traveling risk is at least of

The left-top subplot of Fig. 12 defines a one-to-all dynamical 2-
bjective MOPOP, the other subplots of Fig. 12 show how a single run of
SA can find all Pareto fronts, and the right-bottom subplot of Fig. 12 list

he PNDRs on each node during the single ripple relay race. Fig. 13 gives
ll possible paths in the test case of Fig. 12 , and all Pareto fronts are also
lotted. From Fig. 12 and Fig. 13 , one can see clearly that RSA can cor-
ectly find all Pareto fronts in a dynamical route network still by just a

SA. Otherwise, if use random, complex test cases just like in Subsec-
ions 5.A and 5.B, then readers will have no idea whether and how RSA
orks correctly in one-to-all dynamical MOPOP. 
n  
he same importance. For emergence evacuation in disaster events (such
s fire, earthquake, flooding), traveling risk even has a higher priority.
pparently, a short route segment does not necessarily correspond to a
mall risk. The test networks in these two sub-sections can well model
uch time-risk dynamical problems, and the reported RSA can achieve
ptimal results no other existing methods can guarantee. 

Conclusions and Future Work 

Ripple-spreading algorithm (RSA) is a relatively new method in com-
utational intelligence. Existing RSAs are all focused on single-objective
ptimization problems (SOOPs). For the first time, this paper proposes
n RSA which itself truly targets at multi-objective path optimization
roblems (MOPOPs). The new RSA can calculate the complete Pareto
ront by running a ripple relay race. The new RSA is an agent-based
ottom-up simulation model, and by defining micro agent behavior, i.e.,
ow a node will generate a new ripple according to the Pareto domi-
ance state of an incoming ripple, the complete Pareto front will emerge



Fig. 13. Theoretical results and complete Pareto fronts of the one-to-all dynamical MOPOP in Fig. 13 . 
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t the macro level of ripple relay race with a guarantee of optimality.
ifferent from some other methods that can find the complete Pareto

ront for static MOPOPs, the proposed RSA can easily deal with more
omplicated MOPOPs, such as with dynamical networks. Experimental
esults illustrate the effectiveness and efficiency of the proposed RSA for
OPOPs. Because of its capability of finding complete Pareto front, the

ew RSA can serve as a benchmark method for studying MOOPs, and
he resolved MOPOPs can be used as benchmark problems to assess the
erformance of other methods for discrete MOOPs, such as genetic algo-
ithm and particle swarm optimization. Future attentions may be put on
onducting more theoretical analyses (e.g., space complexity), applying
he reported RSA to real-world transportation problems which can be
onverted to MOPOPs, and making comparisons and combinations with
ore recent MOOP methods in specific applications, particularly with

pecial-purpose-designed evolutionary operations and problem decom-
osition strategies. Because of the multi-agent nature of RSA, it is worth
xploring how to design a decentralized parallel coding architecture of
SA. Effort should also be made to optimize the codes of RSA and then
ake them publicly available. 
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