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a b s t r a c t 

Real-world optimisation problems pose domain specific challenges that often require an ad-hoc algorithmic design 
to be efficiently addressed. The present paper investigates the optimisation of a key stage in data mining, known 
as instance reduction, which aims to shrink the input data prior to applying a learning algorithm. Performing a 
smart selection or creation of a reduced number of samples that represent the original data may become a complex 
large-scale optimisation problem, characterised by a computationally expensive objective function, which has 
been often tackled by sophisticated population-based metaheuristics that suffer from a high runtime. 

Instead, by following the Ockham’s Razor in Memetic Computing, we propose a Memetic Computing approach 
that we refer to as fast Single-Point Memetic Structure with Accelerated Local Search (SPMS-ALS). Using the 
k-nearest neighbours algorithm as base classifier, we first employ a simple local search for large-scale problems 
that exploits the search logic of Pattern Search, perturbing an 𝑛 -dimensional vector along the directions identified 
by its design variables one by one. This point-by-point perturbation mechanism allows us to design a strategy 
to re-use most of the calculations previously made to compute the objective function of a candidate solution. 
The proposed Accelerated Local Search is integrated within a single-point memetic framework and coupled with 
a resampling mechanism and a crossover. A thorough experimental analysis shows that SPMS-ALS, despite its 
simplicity, displays an excellent performance which is as good as that of the state-of-the-art while reducing up 
to approximately 85% of the runtime with respect to any other algorithm that performs the same number of 
function calls. 
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. Introduction 

Since their earliest definition [34,35] Memetic Algorithms (MAs)
ere introduced to enhance upon the performance of algorithms, such
s Genetic Algorithms and Simulated Annealing. Unlike the majority of
ther algorithms, MAs are not fixed to a specific structure but are flexi-
le and thus versatile optimisation frameworks, see [38] . This flexibility
s one of the main features of MAs which likely inspired numerous sub-
equent studies that shaped, over the past three decades, the field of
emetic Computing (MC). 

By following the visionary ideas reported in [21] and the classifi-
ation in [12] , three groups/generations of MC approaches have been
dentified: 

• Simple Hybrids : this group includes hybrid algorithms generated
by two or more algorithms joined together in a synergistic manner.
Usually, the algorithms of this type combine a global search and at
least one local search. Some examples of successful hybridisations
are reported in e.g. [30,31,50] 
∗ Corresponding author. 
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• Adaptive Hybrids : this includes hybrid algorithms where multi-
ple local search algorithms are coordinated by an adaptive mech-
anism that selects the algorithmic elements at runtime. Popu-
lar selection criteria are performance-based like in hyperheuristics
[44] and meta-Lamarckian learning [26,43] , diversity-based [6] or
self-adaptive [42] . 

• (Future) Memetic Automation : this kind reinterprets MAs as a
combination of “agents ” without a predefined structure [1,63] and
investigates mechanisms to attain fully self-generated MAs. Al-
though this design approach is still under investigation, some inter-
esting domain-specific frameworks [15,29] and prototypes [7] have
been proposed. 

The flexibility of the subject facilitating domain-specific algorith-
ic design is one of the reasons of the success of MAs in real-world

pplications, see [3,14,61] . In other words, while robust algorithmic
esign and testing on multiple abstract mathematical functions is fun-
amental for the development of novel memetic structures (as well
s for any optimisation algorithm) [17,33] real-world problems often
ose specific challenges which may be addressed by ad-hoc representa-
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𝐷

ions and specific operators [21] . Among the plethora of MC structures
he need to design simple algorithm on a limited hardware inspired
ingle-Point Memetic Structures which are the focus of the present
tudy. For example, in [39] memetic structures using virtual popula-
ions (statistical models of populations) have been implemented directly
n the control cards of robots. In [9] , a simplistic single-solution MC ap-
roach composed of a global evolutionary operator and a local search
as been proven to be competitive with complex metaheuristics and
as been successfully implemented in the control card of an helicopter
obot. 

The latter approach is part a family of MAs designed according to
he so-called Ockham’s Razor in Memetic Computing principle formulated
n [22] : simple algorithmic structures designed by combining memes in
 bottom-up approach while addressing the knowledge of the problem
prior or available at run-time) often have a high performance despite
heir simplicity. This idea links to other areas of optimisation research
uch as the pioneering studies in [11,60] and the work on Fitness Land-
cape Analysis [23,32] . 

The present article addresses a real-world problem in the field of data
cience, known as instance reduction [58] . Datasets can be extremely
arge and usually require the use of pre-processing techniques to enable
ata mining and machine learning techniques to learn from a cleaner
nd smaller dataset that is free of noise, redundant or irrelevant sam-
les (the so-called, Smart Data [53] ). Instance reduction is an important
re-processing procedure that pursues to shrink the original dataset and
eep it as informative as by either selecting ( instance selection ) [19] or
enerating ( instance generation ) [51] representative instances from a
ery large raw dataset. This is not a trivial task, and it is essential to
roperly select or artificially generate those representative instances. 

Instance reduction can be conceived as an optimisation problem and
e tackled by search algorithms as either a binary search problem in the
ase of instance selection [5] , or as a continuous search problem to arti-
cially generate representative instances. In both cases, MAs have been
reeminent in comparison with other approaches in terms of perfor-
ance [18,52] . The vast majority of the existing instance reduction ap-
roaches were proposed to improve the performance of the well-known
earest Neighbour (NN) classifier [13] . However, the resulting reduced
ataset may be used by any classifier [5] . In this work, we will also focus
n the NN classifier. 

The main issue for current instance reduction solutions is related to
he high cost of evaluating candidate solutions. When tackling bigger
atasets, their runtime may become excessive and we can find in the
pecialised literature parallelisation approaches for instance reduction
55] , which allow them to be executed, whilst increasing the need for
dditional computational resources. Reducing the computational cost of
he fitness evaluation is an under-explored area in instance reduction,
nd just a few approximation approaches exist (e.g. windowing [4] or
urrogate models [41] ). 

Bearing in mind the elevated computational cost of the fitness func-
ion, we propose a simple and yet effective domain-specific MC approach
or instance reduction. The proposed MC approach is composed of a
ovel domain-specific implementation of local search hybridised with a
lobal evolutionary operator. The local search exploits the logic of the
eneralised Pattern Search that performs an implicit variable decom-
osition technique and perturbs the elements of a candidate solution
ne by one [40] . In contradistinction with existing population-based
pproaches that create new solutions perturbing multiple variables at
nce, we exploit the fact that the proposed local search produces candi-
ate solutions that are only “slightly ” different w.r.t the previous fitness
valuation. Based on this fact, we devise a mechanism to drastically re-
uce the cost of the objective function when using the NN algorithm as
ase classifier. The global search operator is a simple resampling mech-
nism followed by crossover while an elite memory slot retains the so-
ution with the best performance. The key idea lies in keeping a single-
oint approach to highly accelerate the objective function evaluation
hile using a global operator to avoid getting stuck in local optima. 
2 
The remainder of this article is organised in the following way.
ection 2 provides the background about instance reduction, formalises
t as an optimisation problem and provides an explanation why the
roblem is unavoidably large scale and why calculation of the objective
unction is computationally expensive. Section 3 describes and justifies
he proposed method. Section 4 presents the experimental setup while
ection 5 shows and discusses the results. Finally, Section 6 provides the
onclusion of this study. 

. Problem formulation and challenges associated with it 

In a supervised classification problem, the data is usually split into
raining ( 𝐓𝐑 ) and test ( 𝐓𝐒 ) sets. Each instance belongs to a class 𝑤 ,
hich is known for 𝐓𝐑 and unknown for 𝐓𝐒 . Both datasets can be viewed
s a matrix in which instances 𝐈 𝐢 are displayed on the rows whilst fea-
ures 𝐟 𝐢 are shown on the columns: 

𝐑 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝐟 𝟏 𝐟 𝟐 … 𝐟 𝐦 

𝐈 𝟏 𝑎 11 𝑎 12 … 𝑎 1 𝑚 
𝐈 𝟐 𝑎 21 𝑎 22 … 𝑎 2 𝑚 
… … … … …
𝐈 𝐥 𝑎 𝑙1 𝑎 𝑙2 … 𝑎 𝑙𝑚 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(1) 

The main purpose of an instance reduction technique is to clean and
ompress 𝐓𝐑 into a reduced set 𝐑𝐒 , by either selecting or generating
ew representative instances, so that, it preserves and provides valu-
ble information for a machine learning algorithm to learn useful in-
ights about a classification problem. Thus, the resulting 𝐑𝐒 should sat-
sfy several conditions such as well-representing the distributions of the
lasses, significantly reducing in size to minimise the required storage,
hich would be beneficial to the posterior classification phase. 

𝐒 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝐟 𝟏 𝐟 𝟐 … 𝐟 𝐦 

𝐈 𝟏 𝑏 11 𝑏 12 … 𝑏 1 𝑚 
𝐈 𝟐 𝑏 12 𝑏 22 … 𝑏 2 𝑚 
… … … … …
𝐈 𝐩 𝑏 𝑝 1 𝑏 𝑝 2 … 𝑏 𝑝𝑚 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(2) 

ith 𝑝 ≪ 𝑙. In this study we choose to treat 𝑝 as a parameter that signifies
he compression of the data with respect to the size of the entire set
f training set (number of rows of 𝐓𝐑 ). More specifically, we use the
eduction rate 𝑙 

𝑝 
as a parameter of our problem. In both matrices 𝐓𝐑

nd 𝐑𝐒 each row is associated with its class label, that is each instance
 𝐢 is assigned to its class on the basis of its features. 

.1. Evaluation of an 𝐑𝐒 

The development of many data pre-processing techniques such as
nstance reduction was initially motivated by the imprecision and inef-
ciencies of the well-known nearest neighbour(s) (NN) algorithm [13] .
hese weaknesses have turned into strengths and made the NN rule a
ore algorithm to preprocess raw data [53] . Thus, most instance reduc-
ion techniques verify how well a candidate matrix 𝐑𝐒 represents the
ntire training dataset, 𝐓𝐑 , by using the NN algorithm as base classi-
er. To do so, this approach essentially checks how well we can clas-
ify, the large dataset 𝐓𝐑 using the small dataset 𝐑𝐒 as training data,
nd consists of the following steps. The Euclidean distance between each
nstance 𝐈 𝐢 (row vector) of 𝐑𝐒 and each instance 𝐈 𝐣 (row vector) of 𝐓𝐑
s calculated. This process yields 𝑙 × 𝑝 distance computations. Typically,
he nearest neighbours (smallest distances) are computed “on the fly ”,
ust by keeping the shortest distance and instance ID/number, and any
ntermediate distance computations are disregarded. As part of the strat-
gy we will devise in Section 3.2 , we could store all computed distances
n a distance matrix ; Fig. 1 shows an example of a distance matrix. An
ntry 𝐷 𝑖,𝑗 of the distance matrix in position 𝑖, 𝑗 indicates the distance of
he 𝑖 𝑡ℎ instance in 𝐓𝐑 to the 𝑗 𝑡ℎ instance in the 𝐑𝐒 : 

 𝑖,𝑗 = 

√ (
𝑏 𝑖, 1 − 𝑎 𝑗, 1 

)2 + 

(
𝑏 𝑖, 2 − 𝑎 𝑗, 2 

)2 + …+ 

(
𝑏 𝑖,𝑚 − 𝑎 𝑗,𝑚 

)2 
. 
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Fig. 1. Distance matrix of 𝑙 instances in 𝐓𝐑 and 𝑝 instances in 
𝐑𝐒 . The instance at the first row is verified by instance at column 
2, while the instance at the last row is checked by the one at 
column 1. Blue entries represent the shortest distance among 
the neighbours. 
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When the distance matrix 𝐃 is calculated, for each row (i.e. each
nstance of 𝐓𝐑 ), the smallest entry is detected, e.g. 0.22 in the first row of
ig. 1 , and that instance is given the class label 𝑤 of the closest instance
n 𝐑𝐒 . When all instances in 𝐓𝐑 have been classified, there are different
ays to assign a score (objective function) to the performance of 𝐑𝐒

2,59] . 
As we are dealing with mostly balanced datasets, in this study we

se the Accuracy Rate 𝐴𝑐 𝑐 [2,59] , that is 

𝑐𝑐 = 

number of correct classifications by means of 𝐑𝐒 
total number of examined samples 

Thus, for an input 𝐑𝐒 the objective function value is 𝐴𝑐 𝑐 , that is 

 ( 𝐑𝐒 ) = 𝐴𝑐 𝑐 . 

Algorithm 1 describes step-by-step the calculation of the objective

lgorithm 1 Objective Function. 

1: INPUT matrices 𝐓𝐑 = 

[
𝑎 𝑖,𝑗 

]
and 𝐑𝐒 = 

[
𝑏 𝑖,𝑗 

]
2: Build the matrix of Euclidean distances 𝐃 = 

[
𝐷 𝑖,𝑗 

]
3: for each row of the matrix 𝐃 do 

4: Find the smallest number and save its row and column indices 
5: Select, from 𝐓𝐑 and 𝐑𝐒 , the instances corresponding to the cal-

culated indices 
6: Check the corresponding labels 
7: if the labels coincide then 

8: Update the number of correct classifications 
9: end if 

10: end for 

11: Calculate 𝐴𝑐𝑐 
12: OUTPUT the objective function value 𝐴𝑐𝑐 

unction based on the distance matrix. 
Of course, since higher values of 𝐴𝑐 𝑐 correspond to a better clas-

ification, the objective function needs to be maximised. The maximi-
ation occurs within a ( 𝑝 × 𝑚 ) − dimensional space where each variables
an continuously vary in a normalised interval. Hence, the search for
he optimal solution occurs in the set [ 0 , 1 ] 𝑝 ×𝑚 . 

.2. Computational cost of the objective function 

Regardless of the score used to measure the quality of 𝐑𝐒 , the
rocedure described above requires the calculation of 𝑙 × 𝑝 Euclidean
istances. This operation can be computationally expensive especially
hen large datasets are under examination. The two main problems

hat arise when tackling larger datasets are runtime (due to the large
umber of distance computations required) and memory consumption
e.g. when the size of 𝐓𝐑 does not allow us to store it in main memory).
owever, the required runtime to evaluate candidate solutions tends

o be the most important factor to enable instance reduction of large
atasets. 

In the literature, two popular types of approach to accelerate the
rocessing of instance reduction techniques are: 

• divide-and-conquer: the execution of instance reduction ap-
proaches is parallelised, splitting the training data into a number
3 
of chunks, typically through big data technologies, see [55] . Whilst
they are necessary when the 𝐓𝐑 set does not fit in main memory,
the main limitation of this approach is that it does not address the
computational complexity of the problem, but its processing time,
by using additional computational resources. In addition, a trade-off
between the number of splits and the accuracy that can be obtained
exist, and must be experimentally found for the dataset at hand. 

• approximation: to reduce the complexity of the objective function,
the quality of 𝐑𝐒 may also be estimated by an approximation func-
tion. For example, a windowing approach that uses a different parti-
tion of 𝐓𝐑 to evaluate an 𝐑𝐒 at each iteration of a search algorithm
[4] . Other more sophisticated approximation (also known as surro-
gate) models to reduce the number of evaluations for instance reduc-
tion algorithms have been recently investigated [25,41] . While this
approach reduces the runtime, its main limitation is that an approxi-
mated objective function may mislead the search of the optimisation
algorithm. 

In the present paper, we propose a new mechanism that while ex-
loiting the structure of the optimisation algorithm allows a substan-
ial reduction of the computational complexity (i.e. number of distance
omputations) of the objective function without approximations, see
ection 3 . Thus, the goal of this work is not to tackle big datasets and
he memory limitations associated to it, but to devise a very fast and
eliable instance reduction process that could be couple together with
he approaches provided in [55] when very big datasets need to be ad-
ressed. 

. Single-Point memetic structure with accelerated local search 

or instance reduction 

From the description in Section 2 , we may characterise Instance Re-
uction as an optimisation problem with the following considerations: 

• the problem is large-scale and its number of variables ( 𝑝 × 𝑚 ) can be
extremely high depending on the size of the dataset 

• due to the large number of variables, the problem is likely to be hard
to solve and the fitness landscape could be highly multimodal 

• even if it were multimodal, an excessive exploitation of the basin
of attraction may yield an overfitted solution, that is a solution that
performs well on the training set but not on the test set 

• each objective function call (or fitness evaluation) is computation-
ally expensive due to calculation of multiple Euclidean distances 

In order to address the Instance Reduction problem, a domain-
pecific MC approach that takes into account the considerations
bove is here proposed. The proposed MC approach, namely Single-
oint Memetic Structure with Accelerated Local Search (SPMS-ALS) is
opulation-less and designed according to the bottom-up logic reported
n [22] . SPMS-ALS perturbs a single solution and makes use of one more
emory slot to store the elite solution, that is the best solution ever

ound. A novel domain-specific accelerated local search implementation
s here proposed. Section 3.1 describes the local search operator em-
loyed in SPMS-ALS while Section 3.2 illustrates how the local search
ogic is exploited to accelerate the calculation of the objective function.
he proposed SPMS-ALS makes also use of a simple global search oper-
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Algorithm 2 Local Search of the family of Pattern Search used by SPMS- 
ALS. 

1: INPUT 𝐱 
2: while local budget and precision conditions are not met do 

3: 𝐱 𝐭 = 𝐱 
4: for 𝑖 = 1 ∶ 𝑛 do 

5: 𝐱 𝐭 = 𝐱 − 𝜌 ⋅ 𝐞 𝐢 
6: Apply toroidal handling of the bounds 
7: if 𝑓 

(
𝐱 𝐭 
)
≥ 𝑓 ( 𝐱 ) then 

8: 𝐱 = 𝐱 𝐭 
9: else 

10: 𝐱 𝐭 = 𝐱 + 

𝜌

2 ⋅ 𝐞 
𝐢 

11: Apply toroidal handling of the bounds 
12: if 𝑓 

(
𝐱 𝐭 
)
≥ 𝑓 ( 𝐱 ) then 

13: 𝐱 = 𝐱 𝐭 
14: end if 

15: end if 

16: end for 

17: if 𝐱 has not been updated then 

18: reduce 𝜌
19: end if 

20: end while 

21: RETURN 𝐱 

3
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tor illustrated in Section 3.3 . Finally, Section 3.4 discusses and justifies
he design of SPMS-ALS. 

.1. Local search operator 

With the purpose of effectively describing SPMS-ALS, let us slightly
edefine the notation. As introduced in Eq. 2 , 𝐑𝐒 = 

[
𝑏 𝑖,𝑗 

]
is a matrix

f size 𝑝 × 𝑚 which can be rewritten as a vector 𝐱 of length 𝑛 = 𝑝 × 𝑚

ontaining all the rows of 𝐑𝐒 arranged sequentially: 

 = ( 𝑏 11 , 𝑏 12 , … , 𝑏 1 𝑚 , 𝑏 21 , 𝑏 22 , … , 𝑏 2 𝑚 , … , 𝑏 𝑝 1 , 𝑏 𝑝 2 , … , 𝑏 𝑝𝑚 ) = ( 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 ) 

here 𝑥 𝑖 represents the design variables of the optimisation problem. 
Let 𝐞 𝐢 be the 𝑖 𝑡ℎ versor (that is a vector of modulus equal to 1) of a

asis in an 𝑛 -dimensional space, that is a vector whose elements are all
eros except from the 𝑖 𝑡ℎ element which is one [37] : 

 

𝐢 = ( 0 , 0 , … , 1 , … , 0 , 0 ) 

The local search works on the candidate solution 𝐱 to locally improve
t. The following greedy implementation of a Generalised Pattern Search
as been used, see [40] . The algorithm perturbs each feature value of an
nstance at a time in its feasible range and then check if any improve-
ent is found. Specifically, let 𝐱 be the base vector (the best solution

ound at the time), for each design variable 𝑖 from 1 to 𝑛 the algorithm
xplores at first 

 

𝐭 = 𝐱 − 𝜌 ⋅ 𝐞 𝐢 

here 𝐱 𝐭 is a trial vector and the scalar 𝜌 is the step-size (exploratory
adius). For each index 𝑖 , the algorithm attempts to explore the opposite
rientation of the direction identified by 𝐞 𝐢 if the first attempt fails, that
s 

 

𝐭 = 𝐱 + 

𝜌

2 
⋅ 𝐞 𝐢 

As a remark, the asymmetric step-size is designed to avoid to revisit
he same solution (vector), see [40] . As soon as 𝐱 𝐭 outperforms 𝐱, that
s 𝑓 

(
𝐱 𝐭 
)
≥ 𝑓 ( 𝐱 ) , the trial vector 𝐱 𝐭 replaces the base vector 𝐱. 

Note that when applying the above perturbations, the resulting val-
es in the vector 𝑥 𝑡 could be outside of the bounds [ 𝑥 𝑙𝑜𝑤 , 𝑥 ℎ𝑖𝑔ℎ ] . On
he basis of preliminary tests we employed a toroidal handling of the
ounds, i.e. for 𝑥 𝑖 ∈ [ 𝑥 𝑙𝑜𝑤 , 𝑥 ℎ𝑖𝑔ℎ ] , if 𝑥 𝑖 > 𝑥 ℎ𝑖𝑔ℎ it is reinserted by reassign-
ent: 

 𝑖 = 𝑥 𝑙𝑜𝑤 + 

( (
𝑥 𝑖 − 𝑥 ℎ𝑖𝑔ℎ 

)⌊ (
𝑥 𝑖 − 𝑥 ℎ𝑖𝑔ℎ 

)(
𝑥 ℎ𝑖𝑔ℎ − 𝑥 𝑙𝑜𝑤 

) ⌋(𝑥 ℎ𝑖𝑔ℎ − 𝑥 𝑙𝑜𝑤 
)) 

hile if 𝑥 𝑖 < 𝑥 𝑙𝑜𝑤 it is reinserted by reassignment 

 𝑖 = 𝑥 ℎ𝑖𝑔ℎ − 

( (
𝑥 𝑙𝑜𝑤 − 𝑥 𝑖 

)
− ⌊ (

𝑥 𝑙𝑜𝑤 − 𝑥 𝑖 
)(

𝑥 ℎ𝑖𝑔ℎ − 𝑥 𝑙𝑜𝑤 
)⌋(𝑥 ℎ𝑖𝑔ℎ − 𝑥 𝑙𝑜𝑤 

)) 

here the parentheses ⌊⋅⌋ indicate the truncation to the lower integer. 
As an example, if we are in the range [0,1], and the resulting value

 𝑖 of the perturbation is 1.1, the toroidal handling will begin from the
eginning of the range, producing a 0.1. Conversely, if 𝑥 𝑖 were to be
elow 0, e.g. -0.1, this circular handling would provide 0.9. This en-
ures that the investigated values are within the range. Also, by forcing
he perturbation to go to the other side of the bound, we increase the
xploratory abilities of the method before reducing the radius 𝜌. This
trategy provided good results in preliminary tests in comparison with
ther alternatives. If after the entire exploration along the 𝑛 directions
o improved solution 𝐱 𝐭 is found, then the radius 𝜌 is reduced by a re-
uction rate. The local search is interrupted when either a budget condi-
ion is met or when the radius 𝜌 is smaller than a pre-arranged precision.
or sake of clarity Algorithm 2 shows the local search operator used in
PMS-ALS. 
4 
.2. Accelerated local search 

The proposed local search makes use of the search logic outlined
n Algorithm 2 and integrates within it a domain-specific procedure
o reduce the computational time of the algorithm. As highlighted in
ection 2 , when the NN algorithm is used as based classifier, most of
he high computational cost of the Instance Reduction problem is due
o the calculation of 𝑙 × 𝑝 Euclidean distances. However, the local search
oves 

 

𝐭 = 𝐱 − 𝜌 ⋅ 𝐞 𝐢 

nd 

 

𝐭 = 𝐱 + 

𝜌

2 
⋅ 𝐞 𝐢 

ffect only one design variable that is only one entry of the 𝐑𝐒 matrix. 
As a consequence, if we build a distance matrix 𝐃 associated with

 

𝐭 , this differs by only one column from the matrix 𝐃 associated
ith 𝐱. When the objective function 𝑓 

(
𝐱 𝐭 
)

is calculated according to
lgorithm 1 , there is no need to recompute 𝑙 × 𝑝 Euclidean distances
ince 𝑙 × ( 𝑝 − 1 ) elements have already been computed and appropriately
tored. 

Thus, when Algorithm 2 is applied, each objective function call re-
uires the calculation of only 𝑙 Euclidean distances. This fact can be
ffectively represented as the modified objective function used by the
ocal search outlined in Algorithm 3 . 

Our proposed local search performs once at the beginning the objec-
ive function call as in Algorithm 1 and then integrates Algorithm 3 into
ach 𝑓 

(
𝐱 𝐭 
)

function call for the rest of its execution. 

.3. Evolutionary global search operator 

At the beginning of the optimisation, a matrix 𝐑𝐒 (i.e. Eq. 2 ) is ran-
omly sampled from the matrix 𝐓𝐑 (i.e. Eq. 1 ) and from 𝐑𝐒 the corre-
ponding base vector 𝐱 constructed and inputted into the local search
perator. The local search is continued until the stopping criteria condi-
ions on budget and precision are met. The local search returns a (pos-
ibly improved) solution 𝐱. The best solution ever found is saved and
tored in an elite slot and called 𝐱 𝐞 . Then, a new solution 𝐱 𝐫 is gener-
ted by randomly sampling a new 𝐑𝐒 matrix from 𝐓𝐑 and constructing
he corresponding vector. A uniform crossover is applied to 𝐱 𝐫 and 𝐱 to
enerate a new trial vector 𝐱 𝐭 . 
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Algorithm 3 Objective Function 𝑓 
(
𝐱 𝐭 
)

of the Accelerated Local Search. 

1: INPUT matrix 𝐓𝐑 = 

[
𝑎 𝑖,𝑗 

]
, matrix 𝐃 associated with the base vector 

𝐱, and trial vector 𝐱 𝐭 
2: Build the matrix 𝐑𝐒 = 

[
𝑏 𝑖,𝑗 

]
from 𝐱 𝐭 

3: Update the matrix of Euclidean distances 𝐃 = 

[
𝐷 𝑖,𝑗 

]
by recalculating 

the 𝑙 elements of the pertinent column 
4: for each row of the matrix 𝐃 do 

5: Find the smallest number and save its row and column indices 
6: Select, from 𝐓𝐑 and 𝐑𝐒 , the instances corresponding to the cal- 

culated indices 
7: Check the corresponding labels 
8: if the labels coincide then 

9: Update the number of correct classifications 
10: end if 

11: end for 

12: Calculate 𝐴𝑐𝑐 
13: OUTPUT the objective function value 𝐴𝑐𝑐 
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Algorithm 5 Framework of the SPMS-ALS for Instance Reduction. 

1: Randomly generate a base vector 𝐱 in [ 0 , 1 ] 𝑛 and calculate 𝑓 ( 𝐱 ) ac- 
cording to Algorithm 1 

2: Assign the elite 𝐱 𝐞 = 𝐱 
3: while global budget conditions are met do 

4: Apply the Accelerated Local Search to the base vector 𝐱 accord- 
ing to Algorithm 2 with the objective function 𝑓 

(
𝐱 𝐭 
)

calculated ac- 
cording to Algorithm 3 

5: if 𝑓 ( 𝐱 ) ≥ 𝑓 ( 𝐱 𝐞 ) then 

6: Update the elite 𝐱 𝐞 = 𝐱 
7: end if 

8: Randomly generate a vector 𝐱 𝐫 in [ 0 , 1 ] 𝑛 
9: Apply Crossover between 𝐱 and 𝐱 𝐫 according to Algorithm 4 and 

generate a new trial vector 𝐱 𝐭 
10: Calculate 𝑓 

(
𝐱 𝐭 
)

according to Algorithm 1 
11: if 𝑓 

(
𝐱 𝐭 
)
≥ 𝑓 ( 𝐱 𝐞 ) then 

12: Update the elite 𝐱 𝐞 = 𝐱 𝐭 
13: end if 

14: Assign 𝐱 = 𝐱 𝐭 
15: end while 
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l  
In order to explain the functioning of this crossover, let us consider a
andidate solution 𝐱 and let us remind it that it corresponds to a matrix
𝐒 whose rows are instances and columns are features. By applying a
atrix partitioning we may represent 𝐑𝐒 as a vector of row vectors 

𝐒 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝐈 𝟏 
𝐈 𝟐 
…
𝐈 𝐩 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
Similarly, we may consider the random solution 𝐱 𝐫 and represent the

orresponding 𝐑𝐒 𝐫 matrix 

𝐒 𝐫 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝐈 𝐫 𝟏 
𝐈 𝐫 𝟐 
…
𝐈 𝐫 𝐩 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
hose instances are randomly selected from 𝐓𝐑 . 

The proposed crossover generates a trial vector 𝐱 𝐭 by randomly se-
ecting some rows from 𝐑𝐒 and some rows from 𝐑𝐒 𝐫 . Each row of the
esulting matrix 𝐑𝐒 𝐭 has a gene-resampling probability 𝐺𝑟 to be selected
rom 𝐑𝐒 and 1 − 𝐺𝑟 probability to be selected from 𝐑𝐒 𝐫 . It must be re-
arked that a crossover that perturbs single elements of 𝐑𝐒 instead of

ntire rows would yield a candidate solution which could be noisy (i.e.
ot have the right class label), and therefore, not meaningful from a
lassification point of view. 

The gene-resampling probability 𝐺𝑟 expresses the rate of the in-
tances in 𝐑𝐒 which are replaced by other instances sampled from 𝐓𝐑 .
lgorithm 4 describes the crossover mechanism. 

lgorithm 4 Crossover between 𝐱 and 𝐱 𝐫 . 
1: INPUT base vector 𝐱 and random vector 𝐱 𝐫 
2: Build the matrices 𝐑𝐒 = 

[
𝐈 𝐢 
]

and 𝐑𝐒 𝐫 = 

[
𝐈 𝐫 𝐢 
]

3: 𝐑𝐒 𝐭 = 

[
𝐈 𝐭 𝐢 
]
= 𝐑𝐒 

4: for 𝑖 = 1 ∶ 𝑝 do 

5: Generate a random number 𝑟𝑎𝑛𝑑 
6: if 𝑟𝑎𝑛𝑑 < 𝐺𝑟 then 

7: 𝐈 𝐭 𝐢 = 𝐈 𝐫 𝐢 
8: end if 

9: end for 

10: From 𝐑𝐒 𝐭 calculate 𝐱 𝐭 
11: OUTPUT the trial vector 𝐱 𝐭 

The local and global search operators are repeated until the global
udget conditions are met. The framework of the proposed SPMS-ALS
s illustrated in Algorithm 5 . 
5 
.4. Algorithmic design 

The proposed SPMS-ALS follows a bottom-up strategy as suggested
n [22] : we implemented within the algorithmic operators the necessary
ountermeasures to address each challenge associated with the problem.

The structure of the local search has been selected to address the
arge scale nature of the instance reduction problem, that is for a large
ataset, the matrix 𝐑𝐒 can easily have hundreds if not thousands of
ows. The proposed local search perturbs the variables separately and
hus implicitly performs a variable decomposition. Approaches of this
ype have been proved effective for large scale problems, see [28,47,56] .

This observation was reported in the experimental study in [8] . Large
cale problems are by no means easier than low-dimensional problems.
owever, since in practice the computational budget cannot grow expo-
entially with the problem dimensionality only a very limited portion of
he decision space is explored. Under these experimental conditions, the
lgorithm “sees ” the problem as separable: average Pearson and Spear-
an coefficients of the variables approach zero independently on the
roblem when the number of dimensions grows, see [8] . 

The high computational cost of each function call is addressed by
he acceleration mechanism outlined above: only the elements of one
olumn of the Euclidean matrix 𝐃 and not those of the entire matrix are
alculated at each function call. The population-less structure of SPMS-
LS has also been chosen taking into consideration the computational
ost. The proposed SPMS-ALS naturally devotes most of the computa-
ional budget (in terms of function calls) to the local search. On the con-
rary, the global search operator performs only sporadic function calls.
his logic perfectly suits the needs of reducing the computational cost
ince the global operator requires the expensive objective function as in
lgorithm 1 the local search operator uses its computationally cheaper
ersion as in Algorithm 3 . 

In order to address the multimodality of the fitness landscape and
revent that the algorithm converges to a suboptimal solution, we com-
ined the Accelerated Local Search with the simplistic global search de-
cribed above. It must be noted that the global search makes use of
art of decision variables (genotype) of previously improved solutions.
he elitism guarantees that previously detected promising solutions are
vailable at the end of the run. Furthermore, the gene-resampling mech-
nism, happening at the instance level (considering the rows as building
locks) complements the local search that happens at the level of the el-
ments of 𝐑𝐒 . 

At last, the restarting local search logic combined with a limited
ocal search budget is an important countermeasure to prevent from
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Table 1 

Summary description for small (Sample < 2000) and medium (Sample > = 
2000) datasets. 

Dataset Samp Att Class 

Abalone 4174 8 28 
Appendicitis 106 7 2 
Australian 690 14 2 
Autos 205 25 6 
Balance 625 4 3 
Banana 5300 2 2 
Bands 539 19 2 
Breast 286 9 2 
Bupa 345 6 2 
Car 1728 6 4 
Chess 3196 36 2 
Cleveland 297 13 5 
Contraceptive 1473 9 3 
Crx 125 15 2 
Dermatology 366 33 6 
Ecoli 336 7 8 
Flare-solar 1066 9 2 
German 1000 20 2 
Glass 214 9 7 
Haberman 306 3 2 
Hayes-roth 133 4 3 
Heart 270 13 2 
Hepatitis 155 19 2 
Housevotes 435 16 2 
Iris 150 4 3 
Led7digit 500 7 10 
Lymphography 148 18 4 
Magic 19,020 10 2 
Mammographic 961 5 2 
Monks 432 6 2 
Movement_libras 360 90 15 
Newthyroid 215 5 3 
Nursery 12,960 8 5 
Page-blocks 5472 10 5 
Penbased 10,992 16 10 
Phoneme 5404 5 2 
Pima 768 8 2 
Ring 7400 20 2 
Saheart 462 9 2 
Satimage 6435 36 7 
Segment 2310 19 7 
Sonar 208 60 2 
Spambase 4597 57 2 
Spectheart 267 44 2 
Splice 3190 60 3 
Tae 151 5 3 
Texture 5500 40 11 
Thyrod 7200 21 3 
Tic-tac-toe 958 9 2 
Titanic 2201 3 2 
Twonorm 7400 20 2 
Vehicle 846 18 4 
Vowel 990 13 11 
Wine 178 13 3 
Wisconsin 683 9 2 
Yeast 1484 8 10 
Zoo 101 16 7 
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verfitting: an excessive local search budget is likely to yield an overly
pecialised solution that performs poorly when the solution is tested
n a new dataset. This characteristic is experimentally analysed in
ection 5.3 . 

. Experimental framework 

This section presents the used datasets ( Section 4.1 ) and is followed
y introducing several instance reduction techniques that will be used
or comparison with our proposal ( Section 4.2 ). Finally, the parameter
onfiguration is explained ( Section 4.3 ). 

.1. Datasets 

In the experimental study, we have examined 40 small and 17
edium multi-class datasets from the KEEL dataset repository [54] . The
roperties of these datasets including name ( Dataset ), the number of
amples ( Samp ), the number of attributes ( Att ), the number of classes
 %Class ) are summarised in Table 1 . 

As defined in [51] , small datasets have less than 2000 instances while
edium datasets have at least 2000 instances. Each dataset is parti-

ioned using a 10-fold stratified cross-validation (10-fcv) procedure, see
45] . Thus, the performance of each dataset is reported by an average
f the 10 folds. All of the experiments with these datasets have been
onducted on computers at which each has 2 x 20 core processors (Intel
eon Gold 6138 20C 2.0GHz CPU) and 192 GB RAM. 

.2. Comparison algorithms 

In order to understand the benefits of the proposed MC approach,
e first define two baselines: 

• Nearest Neighbour (1NN): we use the NN algorithm ( 𝑘 = 1) employing
the entire 𝐓𝐑 for training, without any pre-processing. The perfor-
mance of the NN in 𝐓𝐑 is calculated following a leave-one-out vali-
dation scheme. This serves of a baseline to understand the benefits
of instance reduction. 

• Local Search Instance Reduction (LSIR): the local search presented
and used in [41] . LSIR is essentially the basic pattern search shown
in Algorithm 2 without any acceleration, that is the local search by
using the basic fitness function as in Algorithm 1 . 

In addition, we test the performance of the proposed approach
gainst the current state-of-the-art in instance reduction. SPMS-ALS be-
ongs to the family of positioning adjustment methods (see [51] ), which
re, to date, the best performing instance reductions methods in the
iterature and follow a similar algorithmic structure to the proposed ap-
roach. In [41] , we showed the classification performance of the local
earch against the entire family of positioning adjustment methods. For
he sake of simplicity, here we only report the comparison against the
ost competitive methods. SPMS-ALS can be categorised as a pure in-

tance generation approach, as we perform a continuous search. Thus,
e choose the following metaheuristics instance generation methods to

ompete against SPMS-ALS: 

• Scale Factor Local Search Differential Evolution (SFLSDE): this
memetic approach optimises the positioning of prototypes using an
implementation of differential evolution [52] . 

• Particle Swarm Optimisation (PSO): this algorithm modifies the po-
sition of an initial set using PSO rules, aiming to maximise the clas-
sification performance [36] . 

Additionally, to compare against more recent meta-heuristics, we
ave adapted a recent metaheuristic, proposed for the continuous do-
ain, to tackle instance reduction. 

• Linear Population Size Reduction of the Success-History based Adap-
tive Differential Evolution (LSHADE) [49] : this approach is devel-
oped from Success-History based Adaptive Differential Evolution
6 
(SHADE) [48] and Adaptive Differential Evolution with Optional Ex-
ternal Archive JADE [62] . It makes use of success-history and also
applies the population size reduction to progress the search. Note
that this metaheuristic has not been previously used for instance re-
duction, but due to its similarity to JADE, we used the design ideas
from [52] to adapt it to solve the instance reduction problem. 

These approaches evolve a population of solutions, whilst our
ethod only evolves a single solution (or more precisely two solutions

he trial solution 𝐱 𝐭 and the elite 𝐱 𝐞 ). However, similar to our method,
oth approaches start off from a random (stratified) subset of the train-
ng set 𝐓𝐑 (one for each individual of their population), which keeps
he original distribution of instances per class. Thus, the reduction rate
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Table 2 

Changing the number of evaluation considering training size and features 
for fairer comparison. 

Computational Budget 

Algorithm Setting 1 Setting 2 Setting 3 

SSMA SSMA_Eval = 3 × 𝑙 SSMA_Eval = 5 × 𝑙 SSMA_Eval = 5 × 𝑙

SFLSDE 2 . 5 ×
𝐅𝐞𝐚𝐭 𝐮𝐫 𝐞𝐬 ×
𝑙

- 

SSMA_Eval 

5 ×
𝐅𝐞𝐚𝐭 𝐮𝐫 𝐞𝐬 ×
𝑙

- 
SSMA_Eval 

10 ×
𝐅𝐞𝐚𝐭 𝐮𝐫 𝐞𝐬 ×
𝑙

- 

SSMA_Eval 

LSIR 
SPMS-ALS 
PSO 

LSHADE 
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s also defined by a parameter that determines how much we want to
educe 𝐓𝐑 . 

As a further remark, while PSO, SFLSDE were existing metaheuris-
ics that have been adapted to solve the instance generation problem,
he proposed SPMS-ALS has been expressly designed to solve this prob-
em effectively in terms of accuracy efficiently in terms of runtime. This
esign approach follows the bottom-up design logic of MC [22,38] and
an be observed in both accelerated local search logic and crossover
perator. Another remark is that LSHADE was used in the continuous
omain to solve benchmark functions, this metaheuristic design is first
ime adapted to solve the instance generation problem in this study. 

In [52] , the authors showed that using a random selection as ini-
ialisation mechanism is not usually appropriate, and the hybridisation
f an instance selection step followed by instance generation was sug-
ested to replace this random initialisation. More specifically, the use
f a Steady-State Memetic Algorithm (SSMA) [18] demonstrated empir-
cally to provide an excellent starting point, which means a good selec-
ion of instances per class and a good reduction rate (automatically de-
ermined by the instance selection step). To the best of our knowledge,
he hybrid instance reduction algorithm, SSMA-SFLSDE [52] , remains
he best performing method for Instance Reduction in both accuracy and
eduction rate. To establish a fair comparison against it, we will also hy-
ridise the proposed MC approach and the local search with SSMA (see
ection 5.5 ). 

Whilst the hybrid instance selection/generation method, SSMA-
FLSDE has not been outperformed to date, in order to assess the po-
ential of the proposed approach, we add a comparison with recently
ublished algorithms belonging to the family of instance selection. We
ncluded an approach based on local sets [27] and a method based on
nstance ranking [10] . Note that these methods follow a completely dif-
erent approach to produce a reduced set from the training set. Thus, we
annot set up the same computational budget that we do for the rest of
he comparison algorithms, as they do not follow an optimisation-based
pproach ( Section 4.3.1 ). 

The study in [27] contains three instance selection methods, namely
ocal Set Smoother (LSSm), Local Set Core (LSCo) and Local Set Bor-
er (LSBo). LSSm aims at achieving the highest accuracy regardless of
he reduction, while LSCo seeks at obtaining the highest reduction with
cceptable accuracy. LSBo addresses both accuracy and reduction rate
ith the same priority. For this reason, LSBo has been selected for com-
arison against the proposed memetic approach. 

The main idea of [10] is to exploit the relationship among members
n the training set by computing a rank for each element. A rank of an
nstance introduces the correlation between itself and others in the train-
ng set. Instances with higher ranks are likely to be selected compared to
hose holding a low rank. In Section 5.4.2 , we report the performance of
anking-based Instance Selection (RIS1) as it showed in [10] to display

he best performance, among multiple variants, w.r.t both measures of
ccuracy and reduction rate. 

.3. Parameter settings 

This section presents the parameter configuration for all the methods
mployed in this study, including the accelerated local search outlined
n Algorithms 2 and 3 and the entire memetic framework SPMS-ALS
hown in Algorithm 5 . Subsection 4.3.1 focuses on the computational
udget while Subsection 4.3.2 discusses the other parameters. 

.3.1. Computational budget 

In the previous studies on instance reduction, the computational bud-
et has usually been set empirically to a number of iterations (in search-
ike algorithms), which remained fixed for all datasets [41,52] . Just like
n scalability studies for ordinary optimisation problems, in the instance
eduction problem, the complexity of the search space grows exponen-
ially with the problem size, [8] . On the other hand, instance reduction
oses a further challenge that is the risk of overfitting and underfitting.
7 
n incorrect local search budget allocation is likely to lead to overfitting
n small datasets and underfitting appears in larger datasets. In order to
vercome this challenge and propose a standard for setting the computa-
ional budget, we have here conducted an extensive experimental study.
ote that keeping the same number of evaluations through the different
omparison methods will also help establish a fairer comparison (which
as not been the case in previous studies). 

Among the various properties of a dataset, the number of instances
n training data, i.e. the number of rows 𝑙 of the matrix 𝐓𝐑 and the
umber of features ( 𝐅𝐞𝐚𝐭 𝐮𝐫 𝐞𝐬 ) in an instance at each dataset are the two
mportant factors that define the size of the problem and need to be
onsidered when the budget is allocated. We acknowledge that other
actors may be also required into consideration such as the number of
lasses or the ratio of samples among classes. However, this simple yet
ffective approach of parameter setting has proven to highly reduce the
nnecessary allocated number of evaluations and thus can help mitigate
verfitting in small datasets and underfitting in larger ones. Since RIS1
nd LSBo do not perform any evaluation of their reduced set against the
raining set, we cannot apply a computational budget. 

In the original setting based on forty small datasets, SFLSDE [52] and
SIR [41] use approximately 20,000 and 30,000 evaluations, respec-
ively. We took these values as a reference and set three levels in our
xperimental study: lower, comparable, and greater than the reference
nes. Table 2 displays, for all the algorithms considered in this study
hat employ local search, the three local search budgets scenarios. From
he total number of evaluations presented in Table 2 , we split the eval-
ations into two parts when SSMA is included. SSMA takes 3 × 𝑙 evalu-
tions in Setting 1 and 5 × 𝑙 in Setting 2 and 3. The budget allocated to
SMA is indicated as SSMA_Eval. The rest of the evaluations is used for
nstance generation methods (LSIR, SPMS-ALS, PSO, SFLSDE, LSHADE).

.3.2. Parameters 

The proposed SPMS-ALS contains some parameters to set to coordi-
ate global and local search. In particular, the following parameters are
undamental to coordinate the interruption of accelerated local search
nd restart of global search. 

• 𝑁 max : the maximum number of times the local search accepts a new
trial solution 𝐱 𝐭 with the same objective function ( 𝐴𝑐 𝑐 ) as that of
the previous trial solution i.e. maximum number of search moves
allowed on a plateau 

• 𝜌𝑅𝑒𝑑 : the reduction rate of the exploratory step 𝜌 after the same fit-
ness has been calculated 𝑁 max times 

• 𝜌𝑇ℎ𝑟 : the threshold after which the local search is interrupted 
• 𝐺𝑟 : the gene-resampling probability as in Algorithm 4 

Since small datasets have only few samples per class, a large 𝐺𝑟 value
s required to make a significant refresh of the candidate solution. On the
ontrary, medium datasets inherently pose a highly multivariate prob-
ems. Hence smaller 𝐺𝑟 values result into a major alternation of the
andidate solution. We may consider this effect analogous to the set-
ing of the crossover rate in Differential Evolution with respect to the
umber of dimensions of the problem, see [39] . On the other hand, nu-
erous configurations have been examined to find a set of parameters
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Table 3 

Parameters used for comparison algorithms. 

Algorithms Parameter setting 

SFLSDE PopulationSize = 40, iterSFGSS = 8, iterSFHC = 20, Fl = 0.1, Fu = 0.9 
LSIR initial 𝜌 = 0.4 
SSMA Population = 40, Cross = 0.5, Mutation = 0.001 
PSO SwarmSize = 40, C1 = 1, C2 = 3, Vmax = 0.25, Wstart = 1.5, Wend = 0.5 
NN k = 1, Euclidean distance 
RIS Thresholds = [0.0, 0.1, 0.2, ..., 0.9, 1.0] 
LSBo –
LSHADE ArchiveSize = 1.4, PopulationSize = 40, MemorySize = 5 
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hat can guarantee a robust performance of SPMS-ALS on both small and
edium datasets. In this study, we report the performance of SPMS-ALS
sing the following parameters: initial radius 𝜌 = 0.4, 𝑁 max = 3, 𝜌𝑅𝑒𝑑 =
.25, 𝜌𝑇ℎ𝑟 = 0.005 and 𝐺𝑟 = 0.5 for small and 0.05 for medium datasets,
espectively. Apart from the budget condition, which is investigated for
ll the comparison algorithms as described above, the rest of the pa-
ameters for all the algorithms are established as recommended by the
uthors. All the details are presented in Table 3 . Following the exper-
mental setup in [51] , the reduction rate parameter is set to 95% for
mall size datasets, and 98% for medium datasets. 

. Analysis of results 

In this section, we analyse the results obtained from different sets of
xperiment, divided into multiple subsections, to empirically examine
he individual effect of each component we propose in our algorithm.
n the analysis, our aims are: 

• To understand how well LSIR works in different settings of evalu-
ations ( Subsection 5.1 ). We discuss multiple aspects of LSIR such
as the change in performance measured by accurate rate to see the
overfitting or underfitting effects on the learning process. In addi-
tion, the number of evaluations that has been used and saved for
each dataset is reported. 

• To measure the actual savings in terms of runtime when the proposed
acceleration is integrated within LSIR ( Subsection 5.2 ). We report in
detail the absolute and percentage figures of the runtime savings. 

• To examine the performance enhancement due to the proposed
memetic components ( Subsection 5.3 ), in comparison with the lo-
cal search. We report the accuracy rate depending on the number
of evaluations and we analyse the statistical significance of the im-
provements. 

• To compare the performance of SPMS-ALS with the state-of-the-art
techniques in the family of instance reduction, with a focus on in-
stance generation ( Subsection 5.4.1 ) considering the 1NN rule as a
baseline and recent instance selection methods ( Subsection 5.4.2 ).
In addition, the average runtime required by each algorithm is con-
trasted to highlight the substantial computational saving in the pro-
posed method. 

• To establish a fair comparison between the proposed approach and
the state-of-the-art algorithm in the family of instance reduction with
hybrid instance selection and generation algorithm, SSMA-SFLSDE,
using the same memetic instance selection algorithm as initialisation
mechanism ( Subsection 5.5 ). 

• To contextualise the results presented in this paper by comparing
the performance of SPMS-ALS with a recently proposed classifier
(obRaF(H)) which represents a robust algorithm in the field of clas-
sification [24] ( Subsection 5.6 ). 

For the sake of space, this section will only present summary results,
nd all the detailed results can be found in the Supplementary Material
nd the associated GitHub repository 1 . 
1 https://github.com/lehoanglam20000/SPMS-ALS 
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.1. LSIR Running with different computational budgets 

The Local Search LSIR as Shown in Algorithm 2 has been run with
he three budget settings outlined in Table 2 to understand the influ-
nce of the budget allowance in the performance of this algorithm. Its
verage classification performance in the training and test phase is dis-
layed in Table 4 on small and medium datasets. Note that the reported
erformance is obtained from using Algorithm 1 changing 𝐓𝐑 by 𝐓𝐒 to
valuate LSIR in the test phase. Analysing these average results and the
etailed results in the supplementary material, we can make the follow-
ng comments: 

• In the training phase the computational budget has a major impact
on the performance. However, while the performance grows consis-
tently from Setting 1 to Setting 3, this improvement is not major
when the performance of Setting 2 and Setting 3 are compared. This
may infer that changing each feature value cannot help the search
seek a better solution after a certain number of function calls. 

• Regarding the test performance, we observe that the results are dra-
matically different to those achieved during the training phase: Set-
ting 1 achieves most of the wins in test data overall. In small datasets,
Setting 1 has 22 wins out of 40, while Setting 2 and 3 win 14 and 11
times, respectively. In medium datasets, Setting 1 has 9 wins out of
17, while Setting 2 and 3 win 6 and 8 times, respectively. We con-
clude that overfitting is likely to happen for LSIR (possibly due to
its exploitative structure) in Setting 2 and 3. This tendency appears
evident in small size datasets. 

In summary, we can conclude that this local search does not seem
o benefit from using a larger budget and, as possibly expected, may
e falling into local optima, which do not generalise well in terms of
lassification performance. This is especially noticeable in medium size
atasets in which the average training performance does not seem to
ncrease much in respect to the number of evaluations. 

To further illustrate the behaviour of the LSIR approach with respect
o the number of evaluations, Table 5 shows the effect of its stopping
riteria. More specifically, when LSIR does not succeed at enhancing
pon the trial solution 𝐱 𝐭 (see Algorithm 2 ), the exploratory step de-
reases by the factor 𝜌𝑅𝑒𝑑 until a threshold value 𝜌𝑇ℎ𝑟 is met. When
hese conditions are met the run of LSIR is interrupted. Table 5 displays
he computational budget saving caused by the interruption of the run.
he savings are shown for small and medium datasets and for each of
he setting under consideration. For each configuration of dataset and
etting the number of function calls used by the algorithm is also shown.

Table 5 shows that Setting 1 mostly uses up the allocated number of
valuations, whilst Setting 2 saves 1.83% and 9.3% in small and medium
atasets, respectively. Setting 3 spends most of the evaluations in small
atasets but only consumes nearly half of the allocated number of evalu-
tions. These figures may help optimise the number of evaluations used
or each dataset based on their size and features. On the other hand, the
llocation of a very large budget to the local search (like Setting 3) may
ot be always beneficial, and as mentioned above, the algorithm seems
o get trapped into local optima. 

https://github.com/lehoanglam20000/SPMS-ALS
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Table 4 

Average training and test performance in different settings of LSIR over small and medium datasets. 

Training Test 

Small Medium Small Medium 

Setting 1 0.8521 ± 0.0128 0.9005 ± 0.0039 0.7411 ± 0.0605 0.8612 ± 0.0139 
Setting 2 0.8657 ± 0.0128 0.9049 ± 0.0039 0.7419 ± 0.0614 0.8610 ± 0.0133 
Setting 3 0.8693 ± 0.014 0.9052 ± 0.0041 0.7415 ± 0.0607 0.8609 ± 0.0136 

Table 5 

Number of evaluations used and saved by LSIR in different settings and datasets. 

Small datasets Medium datasets 

Used Saved (%) Saved Used Saved (%) Saved 

Setting 1 15,398 117 0.76 290,777 0 0.00 
Setting 2 30,795 562 1.83 581,554 54,094 9.30 
Setting 3 61,591 2966 4.82 1,163,108 588,637 50.61 
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.2. Runtime reduced in the accelerated version of LSIR 

This subsection reports the runtime used by LSIR and how much it is
educed from its accelerated version using Algorithm 2 and the fitness
n Algorithm 3 , here referred to as Accelerated Local Search for Instance
eduction (ALSIR). 

Of course, the time required by the local search depends directly
n the allocated budget and when the stopping criteria is reached. It
s also important to remember that ALSIR always provides exactly the
ame classification performance as LSIR, this is because ALSIR focuses
n accelerating the execution of the proposed method but it does not
hange the behaviour of the algorithm at all. The objective of the section
s therefore to show how much we can accelerate LSIR with the proposed
cceleration strategy. 

Details of the runtime of both LSIR vs ALSIR in small and medium
atasets, respectively, with respect to each setting of the number of eval-
ations can be found in the Supplementary material. Table 6 summarises
he average runtime for each setting and the average percentage of time
aved by the proposed acceleration. On average in small datasets, the
bjective function of the accelerated local search as in Algorithm 3 en-
bles a time reduction from at least 66% to 84.29%. However, the aver-
ge runtime saved in medium datasets settles around 90% in the three
ettings. Thus, the larger the dataset the more we can benefit from the
roposed acceleration strategy, as distance computations become the
ost dominant part of the execution of the local search. 

To illustrate the runtime reduction depending on the dataset size,
ig. 2 depicts the difference in runtime between LSIR and ALSIR for all
he datasets, providing a graphical representation of the average time
aving for each dataset. In order to enhance the readability of the dia-
ram, the logarithmic scale has been used. Those datasets which appear
o have no value represent those scenarios where the search can be com-
leted is less than a second. Hence, the acceleration may not be essential
n these cases. 

.3. Validation of the memetic framework of SPMS-ALS 

In this section, we compare the performance of LSIR and SPMS-ALS
o demonstrate the effectiveness of the proposed memetic framework.
able 7 provides a full summary of this comparison, presenting the aver-
ge accuracy values (over all the datasets) and the corresponding stan-
ard deviations in the three settings of computational budget in both
raining and test phases. The best average results in training and test
re highlighted in bold face. 

Furthermore, the Wilcoxon test [57] is also applied to detect the
tatistical differences between the two methods. The corresponding 𝑝 -
alues are also shown in the last column of Table 7 . When one algo-
9 
ithm significantly outperforms the other, the 𝑝 -value is less than the
onfidence level 0.05. We highlight in italic these 𝑝 -values. 

Numerical results in Table 7 show that for both training and test
hases, the memetic framework outperforms on a regular basis LSIR.
e may observe that in training phase and small datasets, SPMS-ALS

lightly outperforms LSIR while the difference in performance is larger
or medium datasets. According to our interpretation, this shows the
ffectiveness of the global search component in complex spaces: while
he local search exploits the space and is likely to achieve a suboptimal
oint (we may see that different computational budgets do not yield
ajor changes in LSIR performance), the crossover allows the search a

urther chance to detect a solution closer to the global optimum. The
esults in the test phase display a consistent better performance of the
emetic framework across the datasets. This finding can be interpreted

s a better performance of SPMS-ALS in terms of overfitting: the deter-
inistic and exploitative nature of LSIR may lead to overfitting while

he degree of randomisation introduced by the crossover-based global
earch element reduces the risk of overfitting hence improving upon the
erformance of the algorithm in test phase. Finally we may observe that
PMS-ALS statistically outperforms LSIR in Setting 3 in small datasets
nd shows improved progress in medium datasets. This fact is expected
ince longer runs tend to be more stable and thus be associated with
ower standard deviation values. On the contrary, with Setting 1 and
 we are more likely to observe “lucky ” or “unlucky ” runs that may
eopardise the statistical significance of the results. 

The test results are also graphically presented in Fig. 3 which con-
ains scatter plots of the accuracy of the methods. Each point com-
ares the test performance of SPMS-ALS and LSIR algorithm on a single
ataset. The accuracy of SPMS-ALS is shown on the x-axis position of
he point, while that of LSIR is on the y-axis position. Thus, points be-
ow the 𝑦 = 𝑥 line correspond to datasets for which SPMS-ALS achieves
etter performance than the compared algorithm. In most of the cases,
he points are plotted on or below the separating line, inferring greater
erformance of SPMS-ALS. In this plot, we can also see that the biggest
mprovements have been made in small datasets, but in turn, there are
 few datasets in which SPMS-ALS performs slightly worse. However, in
edium size datasets the improvements are less significant, especially

n settings 1 and 2, but consistently better. 
In order to emphasise the different behaviour of LSIR vs SPMS-ALS

e plot in Fig. 4 the accuracy of the trial solution 𝐱 𝐭 against function
alls (evaluations) of the two algorithms on the Chess dataset, using
etting 1. To show the functioning of the crossover the plot of SPMS-
LS refers to the local solution (and not the elite). We may observe that

he crossover functions as a restart which then quickly reaches a solution
ith a good performance. 

In conclusion, whilst the local search seemed to get stuck after a
umber of evaluations, the proposed MC approach, despite its simplic-
ty, benefits from larger computation budgets, outperforming the local
earch. 

.4. Comparison with the state-of-the-art methods in instance reduction 

This section consists of two sub-sections: Section 5.4.1 covers the
omparison of our proposal with related instance generation methods;
ection 5.4.2 presents the comparison with recently published instance
election methods. 
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Fig. 2. Runtime saved across 57 datasets, sorted by the ascending order of time gaps in Setting 1. 

Fig. 3. Accuracy scatter plots over 40 small and 17 medium datasets in the test phase. 
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Table 6 

Average runtime (in seconds) saved in different settings of LSIR and ALSIR, smaller values are in bold. 

Small datasets Medium datasets 

LSIR ALSIR (%) Time saved LSIR ALSIR (%) Time saved 

Setting 1 6.98 2.35 66.25 8676.67 856.05 90.13 
Setting 2 19.47 3.60 81.54 15957.94 1508.85 90.54 
Setting 3 37.68 5.92 84.29 18061.49 1784.64 90.12 

Table 7 

Comparison in average training and test performance between LSIR and SPMS-ALS over small and medium datasets. Wilcoxon 𝑝 -value is obtained from 

the comparison between SPMS-ALS and LSIR. 

SPMS-ALS LSIR Wilcoxon 

TRAINING TEST TRAINING TEST 𝑝 -value 

SMALL Evaluations Acc Std Acc Std Acc Std Acc Std 
Setting 1 0.8598 0.0130 0.7477 0.0633 0.8521 0.0128 0.7411 0.0605 0.1015 
Setting 2 0.8665 0.0122 0.7512 0.0625 0.8657 0.0128 0.7419 0.0614 0.0867 
Setting 3 0.8733 0.0110 0.7549 0.0615 0.8693 0.0140 0.7415 0.0607 0.0132 

MEDIUM Setting 1 0.9126 0.0034 0.8625 0.0127 0.9005 0.0039 0.8612 0.0139 > 0.2 
Setting 2 0.9129 0.0033 0.8626 0.0126 0.9049 0.0039 0.8610 0.0133 > 0.2 
Setting 3 0.9199 0.0028 0.8668 0.0110 0.9052 0.0041 0.8609 0.0136 0.0577 

Fig. 4. Functioning (Accuracy) of SPMS-ALS and LSIR on the 
Chess dataset. 

Table 8 

Summary of the performance of SPMS-ALS against SFLSDE, PSO, LSHADE and 
1NN for instace reduction over 57 datasets. The best performance in the column 
is shown in bold. 

TRAINING TEST Friedman + Holm 

Algorithm Acc Std Acc Std Ranking 𝑝 𝐻𝑜𝑙𝑚 

SMALL LSHADE 0.8401 0.0165 0.7541 0.0612 2.425 –
SFLSDE 0.8480 0.0092 0.7615 0.0634 2.525 0.7773 
SPMS-ALS 0.8733 0.0110 0.7549 0.0615 3.125 0.1017 
PSO 0.8147 0.0156 0.7414 0.0606 3.175 0.1017 
1NN 0.7369 0.0088 0.7369 0.0088 3.750 0.0007 

MEDIUM SFLSDE 0.8887 0.0048 0.8608 0.0122 2.177 –
SPMS-ALS 0.9199 0.0028 0.8668 0.0110 2.353 0.7448 
LSHADE 0.8859 0.0138 0.8503 0.0147 3.294 0.1180 
1NN 0.8316 0.0045 0.8316 0.0045 3.294 0.1180 
PSO 0.8537 0.0066 0.8319 0.0137 3.882 0.0066 
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.4.1. Comparison against similar instance generation techniques 

In order to compare the performance of SPMS-ALS against that of
he other global optimisers for instance generation (PSO [36] , SFLSDE
52] , and the adapted LSHADE [49] ), we will focus on the maximum
umber of evaluations (Setting 3) for all the algorithms. As a baseline,
e also include the 1NN algorithm as a comparison algorithm. 

Table 8 summarises the performance of the comparison algorithm in
ll (57) datasets (small and medium). We have employed the Friedman
rocedure [20] plus a Holm post-hoc test to perform a ranking-based
tatistical analysis on the performance of the algorithms for small and
edium datasets, respectively. The last two columns of Table 8 provide

he results of these tests, including the rankings and the resulting 𝑝 -
alues. Note that the control method will obtain the lowest ranking, and
 o

11 
herefore, the 𝑝 -value shows if the differences are significant comparing
he control algorithm against the rest of the methods. 

As shown in Table 8 , LSHADE and SFLSDE are reported as the con-
rol method in small and medium datasets, respectively, since they
old the smallest ranking values. In small datasets, our proposal SPMS-
LS ranks third after SFLSDE, while it ranks second in the medium
atasets and its ranking value is not far away from that of the control
lgorithm. 

The Holm post-hoc test is used to detect if there is any significant sta-
istical differences between the control algorithm (LSHADE and SFLSDE)
ith respect to the remaining methods. Considering a level of signifi-

ance of 𝛼 = 0 . 05 , LSHADE statistically outperforms only 1NN in small
atasets, and PSO in medium datasets. The statistical tests have not re-
orted significant differences between our proposal and the control al-
orithm in either small or medium datasets. 

According to our interpretation, in training phase an exploitative ac-
ion guarantees a better performance of the algorithm especially in high
imensions [8] . However, the exploitative pressure should be counter-
alanced by a certain degree of randomisation to prevent the algorithm
rom overfitting and pay off with a deteriorated performance in test
hase. This feature of the instance generation problem makes it espe-
ially suitable to be tackled by memetic frameworks. Albeit reasonable,
he excessively exploratory nature of PSO does not appear to effectively
ddress the large dimensional space. 

In comparison with the baseline, 1NN, which uses all the data to
lassify the test set, we have conducted the Wilcoxon test to conduct
 pairwise comparison to our method. Although SPMS-ALS shows bet-
er average performance, the Wilcoxon test compute 𝑝 -value 0.0415 for
mall datasets and > 0 . 2 for medium datasets. These numeric 𝑝 -values in-
icates that our algorithm statistically outperform 1NN in small dataset,
ut has no significant different in medium datasets, considering a level
f significance of 𝛼 = 0 . 05 . 
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Table 9 

Comparison of the runtime (in seconds) consumed in 
SPMS-ALS and other approaches. Min values are in 
bold. 

Small datasets Medium datasets 

SFLSDE 38.89 ± 1.31 34738.82 ± 188.55 
PSO 19.63 ± 0.80 34941.65 ± 188.86 
LSHADE 83.63 ± 4.12 159009.10 ± 1154.75 
SPMS-ALS 6.25 ± 0.39 5006.93 ± 405.33 

Table 10 

Summary of the performance of SPMS-ALS against RIS1 and LSBo considering 
Acc in the test phase, Red and Acc ∗ Red measures for instance reduction over 
57 datasets. The best performance in the column is shown in bold. 

Algorithm Acc (Test) Std Red Acc ∗ Red 

SMALL RIS1 0.7319 0.0583 0.5906 0.4499 
LSBo 0.7605 0.0576 0.7859 0.6064 
SPMS-ALS 0.7549 0.0615 0.9500 0.7172 

MEDIUM RIS1 0.7972 0.0141 0.7052 0.6071 
LSBo 0.8540 0.0099 0.8739 0.7639 
SPMS-ALS 0.8668 0.0110 0.9800 0.8495 
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Table 11 

Friedman+Holm statistical test results in both Acc and Acc ∗ Rec metrics for 
small and medium datasets. The best performance in the column is shown in 
bold. 

Acc Acc ∗ Red 

Algorithm Ranking 𝑝 -value Algorithm Ranking 𝑝 -value 

SMALL SPMS-ALS 1.912 – SPMS-ALS 1.175 –
RIS1 1.938 0.9110 LSBo 2.000 0 

LSBo 2.150 0.2882 RIS1 2.825 2.25E-04 

MEDIUM LSBo 1.882 – SPMS-ALS 1.176 –
RIS1 2.000 0.7316 LSBo 2.059 1.01E-02 

SPMS-ALS 2.117 0.4927 RIS1 2.765 4.00E-06 
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Finally, Table 9 displays the average runtime of the four global opti-
isers for the small and medium datasets, respectively. On average, the

untime spent for small datasets is 6.25s, saving 92.52%, 83.93% and
8.17% with respect to LSHADE, SFLSDE and PSO, respectively. For
edium datasets, the percentage of saving time is slightly higher than
hat it did in small datasets, but the absolute value is more meaning-

ul. Specifically, SPMS-ALS only consumes roughly 5000s on average,
hile SFLSDE and PSO experience about 35000s, and LSHADE used up

o approximate 160.000s. In other words, for medium datasets, SPMS-
LS achieves similar if not better results of SFLSDE and LSHADE in one
eventh and less than one thirtieth of the runtime, respectively. 

.4.2. Comparison against recent instance selection 

As mentioned in Section 4.2 , two recent instance selection algo-
ithms LSBo [27] and RIS1 [10] have been selected for comparison with
ur proposal. This section reports the experimental results of the these
wo algorithms against SPMS-ALS over 57 datasets with reference to test
erformance and reduction rate. 

Details of the classification performance of RIS1, LSBo and SPMS-
LS in the test phase on small and medium datasets can be found in the
upplementary Material, while the summary information is displayed
t Table 10 . Overall, RIS1 obtains a majority of wins in both small and
edium datasets, SPMS-ALS ranks second and LSBo lies at the lowest
osition. Particularly, RIS1 has 25 wins (18 small and 7 medium), SPMS-
LS achieves the best results 18 times (15 small and 3 medium), while
SBo obtains 15 wins (8 small and 7 medium). However, the average
est performance of LSBo and SPMS-ALS are the highest for small and
edium datasets, respectively. 

The overall goal of instance reduction is to reduce the original
ataset as much as possible whilst keeping (or improving) the accuracy.
herefore, to establish a fairer comparison between the two instance
election methods and our method, we will also provide an additional
etric to consider both test accuracy and reduction as equally impor-

ant. Following [52] , we simply multiply the accuracy in test Acc and the
eduction rate Red to form a new metric Acc ∗ Rec . Table 10 presents the
verall average performance in accuracy Acc , reduction rate Red and
oth metrics Acc ∗ Rec . Furthermore, Table 11 provides the set of rank-
ngs and 𝑝 -values obtained from Friedman+Holm tests for the three
ontrasted algorithms. 

In the previous section, all algorithms (PSO, SFLSDE, LSHADE, and
PMS-ALS) yield the same reduction rate. In particular, in this experi-
ent, SPMS-ALS fixes the rate up to 95% and 98% for small and medi-
ms datasets, respectively. However, LSBo and RIS1 do not specify the
12 
eduction rate as a parameter, but their reduction depends on a par-
icular dataset. RIS1 yields an average reduction rate of 59.06% and
0.52% in small and medium datasets, respectively; whilst LSBo re-
uces 78.59% and 87.39% in small and medium datasets. Thus, both
lgorithms achieve a smaller reduction rate than the instance genera-
ion approach investigated in this paper. 

On average, the test performance of LSBo is the highest on small
atasets, while SPMS-ALS reports the highest average on medium
atasets. However, apart from having the best reduction rate, SPMS-ALS
btains the best balance between accuracy and reduction. The results
rom the non-parametric tests (Friedman+Holm) in Table 11 reveal the
dvantage of SPMS-ALS looking at the Ranking and 𝑝 -value columns.
he 𝑝 -values reported for the comparison in terms of accuracy column
o not reflect any significant differences between the three methods in
ither small or medium datasets. However, when the reduction rate is
aken into consideration the proposed technique stands out significantly.

.5. Hybridisation with instance selection 

As stated in Section 4.2 , to perform a fair comparison against hybrid
nstance reduction method SSMA-SFLSDE [52] , the initialisation process
f the proposed algorithm must be replaced with a smarter approach.
n particular, we use the same instance selection algorithm, SSMA [18] ,
s tested in [52] . This section compares LSIR, SFLSDE, LSHADE and
PMS-ALS after using SSMA as initialisation. The resulting algorithms
re indicated as SSMA-LSIR, SSMA-SPMS-ALS, SSMA-LSHADE and the
tate-of-the-art algorithm SSMA-SFLSDE [52] . The detailed accuracy re-
ults for small and medium datasets in both training and test can be
ound in the Supplementary Material. Table 12 shows the average re-
ults obtained from the compared algorithms in conjunction with SSMA
nd the ranking plus 𝑝 -values from the Friedman + Holm test. 

The detailed results show that for small datasets and in training
hase SSMA-SPMS-ALS outperforms SSMA-SFLSDE and SSMA-LSHADE,
nd is outperformed by SSMA-LSIR. However these results are not
onfirmed in test phase where SSMA-LSHADE achieves the best per-
ormance, SSMA-SPMS-ALS the third best performance after SSMA-
FLSDE, and SSMA-LSIR the worst performance over the four algorithms
onsidered in this section. This ranking is statistically significant and
onfirmed by the Friedman + Holm test. According to our interpreta-
ion, the deterministic and exploitative local search logic in LSIR causes
verfitting. The restriction of the search space caused by SSMA increases
he risk of overfitting. In the proposed memetic framework, the resam-
ling and crossover mechanism seems to mitigate the overfitting. 

Our interpretation is confirmed by the results for medium datasets.
ince the search space is naturally large, the exploitative local search
s beneficial [8] and is improved by the memetic framework. Hence,
SMA-SPMS-ALS achieves the best performance in training phase. This
anking is confirmed in test phase where SSMA-SPMS-ALS slightly out-
erforms SSMA-SFLSDE and is established as the control algorithm in
he Friedman test. 

In summary, and similar to what we saw when comparing against
urely instance generation methods, the proposed memetic framework
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Table 12 

Summary performance between four hybrid models over 57 datasets. 

TRAINING TEST Friedman + Holm 

Algorithm Acc Std Acc Std Ranking 𝑝 𝐻𝑜𝑙𝑚 

SMALL SSMA-LSHADE 0.8687 0.0101 0.7792 0.0570 2.000 –
SSMA-SFLSDE 0.8684 0.0108 0.7767 0.0594 2.200 0.4884 
SSMA- SPMS-ALS 0.8727 0.0134 0.7670 0.0574 2.700 0.0306 
SSMA-LSIR 0.8911 0.0148 0.7642 0.0604 3.100 0.0004 

MEDIUM SSMA- SPMS-ALS 0.9264 0.0033 0.8700 0.0107 2.265 –
SSMA-SFLSDE 0.9059 0.0040 0.8675 0.0125 2.441 1.0000 
SSMA-LSHADE 0.9069 0.0035 0.8706 0.0118 2.647 1.0000 
SSMA-LSIR 0.9245 0.0039 0.8682 0.0127 2.647 1.0000 

Table 13 

Summary the average performance of 4-fold cross validation 
between the basic models (1NN and RaF) and their improved 
versions (SPMS-ALS and obRaF(H)) over 121 datasets. 

Friedman + Holm 

TRAINING TEST Ranking 𝑝 𝐻𝑜𝑙𝑚 

obRaF(H) – 0.8336 146.24 –
RaF(Scikit-learn) 0.9892 0.8286 173.13 0.05 
SPMS-ALS 0.8926 0.7597 324.99 0.03 
1NN 0.7487 0.7534 325.64 0.02 
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an obtain a very competitive classification performance, especially in
arger datasets, whilst reducing drastically the required runtime. 

At last we report some considerations about future improvements
hat can be applied. We will investigate the extension of our approach to
ig data frameworks [55] . In addition, we plan to expand our approach
o new promising classifiers, such as Heterogeneous oblique random for-
st [24] . An initial comparison with this kind of classifier can be found in
he Supplementary Material. Further investigation is however required
o perform an appropriate instance reduction for those classifiers. 

.6. Contextualising the results and limitations of the proposal 

Experimental results in Sections 5.1 to 5.5 , show that the proposed
PMS-ALS and its hybrid form, SSMA-SPMS-ALS, are effective at reduc-
ng the size of the training data whilst maintaining, or even improving,
he performance of the base classifier; in our case, the 1NN rule. The goal
f this section is to contextualise the classification results presented in
his paper with the 1NN as base classifier, and let the reader know where
e are going in our future research. To do so, we compare the results
f the proposed SPMS-ALS and 1NN against the popular Random For-
st (RaF) algorithm and a state-of-the-art classifier also based on Trees,
bRaF(H) [24] . 

It is important to note that the classification performance of a clas-
ifier is not only influenced by the pre-processing techniques but also
ts inherent robustness. For example, an ensemble classifier is likely to
utperform a single model [46] , or tree-based approaches handle cate-
orical attributes better than the NN classifier. Thus, whilst the reader
ay expect the results of RaF and obRaF(H) to be superior to the ones
resented with the 1NN rule, we believe it is beneficial to still observe
he performance gap and understand potential future research lines for
reprocessing technique for more robust classifiers. 

To establish a fair comparison against methods, we have re-run
PMS-ALS over the 121 UCI datasets used in [16,24] , following the exact
ame experimental framework, including depth of a tree (i.e. 57), num-
er of trees (i.e. 500), and a 4-fold cross validation scheme. Details of the
omparison on each single dataset can be found in the Supplementary
aterial, while the summary information and results of the statistical

est are displayed in Table 13 . As expected, both RaF and obRaF(H) dis-
lay a higher performance than NN-based results. On the other hand, the
roposed data reduction does not only reduce the storage need but also
13 
ecomes much more efficient in terms of runtime as we only preserve
 to 5% of the training data. For this reason, it is essential to highlight
hat the contribution of our proposal lies in the reduction of the training
et, as a preprocessing technique, whilst maintaining (or improving) the
lassification performance of 1NN. 

The reader might wonder if the result of the preprocessing performed
y the technique proposed in this paper could be used directly by any
ther classifier like RaF or obRaF(B). Although this pre-processing ap-
roach is intended for 1NN, as highlighted in [5] the resulting set could
otentially be used by any other classifiers. However, it is not straight-
orward to directly use the reduced set obtained from SPMS-ALS in an-
ther classifier. We have performed some preliminary experiments using
he resulting reduced set as training data for RaF in 89 small datasets
from the set of 121). The average results in the test phase sets at 0.5656,
hilst it is 1.000 on training. This suggests that RaF is overfitting the

raining data with the parameters used (e.g. depth of the trees, or num-
er of trees). This could be expected as the reduction on small datasets
ay end up having as few as 2–15 samples in some extremely small
atasets. Whilst NN technique would work well with such amount of
ata, Tree-like technique will not. Thus, as future work we plan to ex-
lore the interaction between the proposed SPMS-ALS and more robust
lassifiers like obRaF(B), for example, by adding it as base classifier or
ne tuning the parameters to use smaller training datasets without over-
tting. 

. Conclusion 

This paper proposes a single-point MC approach for instance reduc-
ion. The proposed algorithm is composed of a novel accelerated lo-
al search and a crossover based global search. The local search is de-
erministic and exploitative belonging to the family of Pattern Search
ethods whilst the global search is stochastic, based on resampling and

rossover. By making some considerations about the functioning of the
N classifier in instance generation and exploiting the search logic of
attern Search, the local search has been redesigned and implemented
n an accelerated version. The accelerated local search uses most of the
alculations performed at the previous step and thus lead to a major
aving in terms of runtime with respect to the existing algorithms in the
iterature. 

Numerical results performed with and without instance selection as
nitialisation mechanism show that the proposed MC approach tends to
e slightly worse than only one instance reduction algorithm in small
atasets. On the other hand, on medium datasets, the proposed MC ap-
roach achieves the best accuracy performance in both training and test
hases. These results are extremely valuable when we consider that the
roposed approach is up to seven times faster than the other algorithms.

Besides the proposed domain-specific MC approach this article offers
n extra contribution about experimentalism in data reduction. More
pecifically, in this paper we perform a thorough parameter setting of
he computational budget and display the results in multiple scenarios.
hese results aim to offer some guidelines to data scientists to set their



H.L. Le, F. Neri and I. Triguero Swarm and Evolutionary Computation 69 (2022) 100991 

e  

s

D

 

i  

t

C

 

t  

t  

p  

W

A

 

S  

m  

i  

d  

o  

i

S

 

t

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

[  

[  

[  

[  

 

 

[  

 

[  

 

[  

[  

[  

 

[  

 

 

[  

[  

[  

[  

[  

 

[  

 

[  

 

[  

[  

 

[  

 

[  

[  

[  

 

 

[  

[  

[  

[  

[  

[  

 

[  

[  

 

 

[  

[  

[  

[  

[
[  

 

 

[  

 

[  

 

[  

 

[  

 

xperimental conditions in a fair and effective manner to detect the de-
ired trade-off between accuracy and runtime. 
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