
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Dynamic Impact for Ant Colony Optimization

algorithm
Jonas Skackauskas

College of Engineering,

Design and Physical

Sciences

Brunel University London

London, United Kingdom

Tatiana Kalganova

College of Engineering,

Design and Physical

Sciences

Brunel University London

London, United Kingdom

ORCID: 0000-0003-4859-

7152

Ian Dear

College of Engineering,

Design and Physical

Sciences

Brunel University London

London, United Kingdom

ORCID: 0000-0003-1289-

0402

Mani Janakram

Intel Corporation

Arizona, United States

Abstract— This paper proposes an extension method for Ant

Colony Optimization (ACO) algorithm called Dynamic Impact.

Dynamic Impact is designed to solve challenging optimization

problems that has nonlinear relationship between resource

consumption and fitness in relation to other part of the

optimized solution. This proposed method is tested against

complex real-world Microchip Manufacturing Plant Production

Floor Optimization (MMPPFO) problem, as well as theoretical

benchmark Multi-Dimensional Knapsack problem (MKP).

MMPPFO is a non-trivial optimization problem, due the nature

of solution fitness value dependence on collection of wafer-lots

without prioritization of any individual wafer-lot. Using

Dynamic Impact on single objective optimization fitness value is

improved by 33.2%. Furthermore, MKP benchmark instances

of small complexity have been solved to 100% success rate

where high degree of solution sparseness is observed, and large

instances have showed average gap improved by 4.26 times.

Algorithm implementation demonstrated superior performance

across small and large datasets and sparse optimization

problems.

Keywords—Ant Colony Optimization, Dynamic Impact,

scheduling, Multi-Dimensional Knapsack Problem, Sparse data

I. INTRODUCTION

Combinatorial optimization is fundamentally difficult task to

be computed. Most of real-world optimization problems are

NP-Hard, which mean they are too large to check all

combinations in reasonable amount of time to find the

optimal result. Instead of brute forcing the optimization, often

metaheuristic methods are used to reach “good enough”

solution fast. We are using Ant Colony Optimization (ACO)

metaheuristic algorithm to solve real world Microchip

Manufacturing Plant Production Floor Optimization

(MMPPFO) problem and theoretical Multi-Dimensional

Knapsack problem (MKP).

The aim of this work is to introduce sub-heuristic search

method for Ant Colony Optimization algorithm called

Dynamic Impact, and provide insight on how it can be used

for any constrained optimization problem. Then use this

method to solve real word MMPPFO problem as well as

theoretical MKP for further validation and comparison to

previous published work.

A. Ant Colony Optimization

Ant Colony optimization (ACO) is a nature inspired

optimization algorithm that uses Ants as search agents

navigating a search space. Navigation is mediated by

pheromone that ant is naturally draw towards. While ant is

navigating it is depositing pheromone on its own path,

therefore attracting even more ants. Originally Ant Colony

Optimization algorithm has been designed for traveling

salesman problem (TSP) described in Dorigo [1] doctoral

theses in 1992. ACO algorithm has been successfully

implemented to solve number of different problems. Routing

problems [2], scheduling and sequencing problems [3] [4] [5]

[6] [7], subset problems [8]. Furthermore, ACO has been used

to solve large scale optimization problems as demonstrated in

these research papers [9] [10] [11].

ACO also has been successfully used for multiple types of

scheduling problems. For resource constrained project

scheduling problem [3], tardiness problem [4], job shop

scheduling problem [5] [6], and other types. Dorigo and

Stützle in this research [12] explain implementation methods

in detail to solve various scheduling problems using Ant

Colony Optimization algorithm.

B. Microchip manufacturing

Microchip manufacturing is a complex process that utilizes

expensive machinery. Tight manufacturing schedules are

used in order to run processes at maximum efficiency,

minimize machinery down time and always have enough

stock of product in demand. Often predicted microchip

demand does not meet observed real demand, and microchip

production schedule must be altered accordingly to meet

newly specified demand.

Microchip manufacturing scheduling problems have been

researched from various points of view. Scheduling robotic

arms of two-cluster tools in microchip manufacturing

facilities [13], transport scheduling in automated material

handling systems for wafer manufacturing plants [14], wafer

production scheduling as a job shop scheduling problem [15].

In this paper the research focus is on the resource constrained

production scheduling.

Microchip manufacturing plant production floor scheduling

is a difficult task, as the nature of the problem does not allow

to have a set heuristic information on each edge that enables

ants to efficiently navigate the search space.

MMPPFO is a scheduling problem. Scheduling problems are

proven to be strongly NP-Hard combinatorial problem [16].

To solve scheduling problems variety of different algorithms

have been explored. The comparison of Ant Colony

Optimization (ACO) versus Genetic Algorithm (GA) and

Simulated Annealing (SA) has been conducted buy Huang et.

al. [17]. Researchers have found ACO algorithm to be the

most effective obtaining feasible solutions for NP-complete

scheduling problems. Moreover, semiconductor wafer

fabrication scheduling using Ant Colony Optimization was

explored in [15] and showed ACO algorithm to be highly

effective on a large optimization problem.

C. Multi-Dimensional Knapsack Problem

In addition to solving real world optimization problem this

research further proved the validity of proposed methods by

solving a theoretical Multi-Dimensional Knapsack Problem

(MKP) as well as compare the results with previously

published research papers. The goal of MKP is to maximize

the total profit of the items taken into knapsacks, where all

items have multi-dimensional weights for each knapsack and

each knapsack have a capacity that must not be exceeded

[18]. The nature of packing different size items in all

knapsacks simultaneously makes the feasible region of the

search very sparse [19]. Such sparsity is a great challenge for

optimization algorithms where good solutions are obtained

by iterative convergence.

D. Sub-heuristics

Combinatorial search algorithms are designed to explore

large search spaces efficiently and converge to a good

solution quickly. The efficiency is achieved using

metaheuristic methods that allows the search space to be

explored more in areas of greater reward. These

combinatorial search algorithms usually have multiple hyper

parameters, that are often tricky to find such that the best

convergence speed is achieved. Hyper-heuristics are methods

introduced by Burke et. Al. [20] to generate or choose

heuristic that enables combinatorial metaheuristic algorithms

converge faster. Hyper-heuristics has been adopted to use

multiple low-level heuristic algorithm search results as a

search space [21].

For Ant Colony Optimization algorithm such hyper-heuristic

usually tunes 𝛼 , 𝛽 , and 𝜌 search hyper parameters [22].

However, using similar approaches, it is possible to have

more sophisticated search with introduced lower level

heuristics within metaheuristic algorithm. The Stochastic

Gradient Ascent introduced by Dorigo et. Al. [23] introduced

manipulation of the Ant Colony pheromone matrix. Such

pheromone correction allows Tuba and Jovanovic [24] avoid

algorithm stagnation.

Furthermore, sub-heuristics are the heuristic methods applied

within a core of search algorithm that acts upon the state of

incomplete partial solution. authors at [25] has utilized such

heuristic for Ant Colony Optimization algorithm for

probability calculation where a branching can occur while

building the solution. This sub-heuristic method allowed

them to have transition operation that otherwise could not be

accounted from the solutions previously explored.

E. Data

Our research on MMPPFO has real optimization data for

initial testing and capturing real world dynamics provided

from industry source. However, to accurately test algorithm

performance it is important to have large quantity of data that

covers most of optimization scenarios. Also, it is necessary

that datasets explore different optimization conditions that

could potentially occur in a real optimization system. For

effective algorithm evaluation it is beneficial to have methods

of creating adjustable difficulty benchmarks [26] by adjusting

problem dataset parameters. Furthermore, to fully test a

modern optimization algorithm, the benchmark problem has

to be challenging enough [27]. Hence, 2 sets of benchmark

datasets are chosen to solve MKP problem. Set of small

SAC94 datasets and large GK datasets. The datasets are

obtained from ResearchGate repository [28].

The rest of this paper is organized as follows. Section II

describes the Dynamic Impact method for Ant Colony

Optimization algorithm with simplistic usage example.

Section III introduces the MMPPFO problem definition,

constraints, and objectives. Section IV is dedicated to study

of Dynamic Impact method. Study is conducted for two

optimization problems MMPPFO and MKP. Also, the exact

implementation is of Dynamic Impact is described for each

of the problems. Then both problems are solved using Ant

Colony Optimization with Dynamic Impact and compared to

solutions obtained without Dynamic Impact. Furthermore,

for external validation, MKP problem is compared to other

recently published research results. Finally, conclusions and

future directions are presented in Section V.

II. ANT COLONY OPTIMIZATION ALGORITHM WITH DYNAMIC

IMPACT

A. Ant Colony Optimization algorithm

Frequently used Min-Max Ant System introduced by Stützle

and Hoos [29] is used as a baseline for proposed Dynamic

Impact Algorithm extension and experimental work. The

algorithm begins with search space initialization in which

search space is filter for all nodes to have only feasible edges

and each edge pheromone is set to maximum value 𝜏𝑚𝑎𝑥 , also

each edge 𝑗 of the node 𝑖 gets a precalculated heuristic value

𝜂𝑗,𝑖. Once the search space is prepared, the iterative search

starts. In the iterative search a set of ants that each build a

complete solution. Each ant starts building with an empty

partial solution 𝑠𝑝 = ∅. Then ant searches for a single edge to

add to the partial solution. Each edge is added stochastically

to the solution using following probability equation:

𝑝𝑗,𝑖 =
𝜏𝑗,𝑖

𝛼 ∗ 𝜂𝑗,𝑖
𝛽

∑(𝜏𝑗,𝑖
𝛼 ∗ 𝜂𝑗,𝑖

𝛽
)

, ∀(𝑗, 𝑖) ∈ 𝑁(𝑠𝑝)
(1)

where 𝜏 is edge’s pheromone, 𝜂 is edge’s heuristic

information, N(𝑠𝑝) is all feasible edges to allowed add to the

partial solution 𝑠𝑝, 𝛼 is relative pheromone importance, and

𝛽 is relative heuristic information importance, 𝑗 and 𝑖 are the

edges and nodes of the search space respectively. Once ant

search is finished solution gets evaluated for solution fitness

value, and the best solution is passed to influence the global

pheromone. At global pheromone update, the pheromone is

evaporated using percentage indicated by 𝜌 parameter as in

following equation:

𝜏𝑗,𝑖 ← 𝜏𝑗,𝑖 ∗ (1 − 𝜌), ∀(𝑗, 𝑖) (2)

where 𝜌 is constant parameter of pheromone evaporation rate

introduced by Dorigo and Stützle [30]. Solution of best ant is

taken to lay down pheromone on edges that it has visited

while building the solution as in following equation:

𝜏𝑗,𝑖 ← 𝜏𝑗,𝑖 + 𝜌, ∀(𝑗, 𝑖) ∈ 𝑠𝑝 (3)

where 𝑠𝑝 is the solution of the chosen ant to lay down the

pheromone.

The basis of serial algorithm implementation is courtesy of

M. Veluscek et al. [31]. However, to utilize modern computer

multicore architectures efficiently, parallel ant optimization

architecture has been implemented. The parallel ant

optimization architecture used in this paper courtesy of I.

Dzalbs et al. [32]

This Ant Colony Optimization algorithm is well suited for

constrained optimization problems [3]. Heuristic information

gives ants sense of direction when pheromone trails are not

strong and all edges appear similarly strong in the search

space. It plays crucial part in optimization convergence

speed. For MMPPFO problem the main objective is

minimum undersupported request which it does not have a

reliable heuristic information to be pre-calculated, therefore

alternative method is needed to provide similar functionality

for the search.

The objective of this optimization problem aims to minimize

the lack of wafers that has not been scheduled as per order

request. Also, producing too many wafers for given request

is not productive, and it uses the fab manufacturing capacity

that could potentially be used to satisfy other order requests.

The order request can be satisfied using collection of wafer-

lots. In the supporting collection none of wafer-lots are not

more important only the total sum of wafers across all of

them. This is a challenge for optimization engines to pick

wafer-lots for an order into the partial solution without having

clear separation of good wafer-lots versus bad ones, which is

normally expressed using heuristic information. This

research proposes the Dynamic Impact evaluation method as

an extension to Ant Colony Optimization algorithm to

improve solution quality and convergence speed.

B. Dynamic Impact evaluation

The goal of Dynamic Impact is to enable search identify

quicker the good collection of edges for the solution.

Dynamic Impact evaluation is novel method of calculating

each edge’s contribution to fitness value in relation to

resource as well as evaluating potential consumption of

remaining problem resources before including it to the

solution. This allows ant to choose edge more accurately that

benefit search fitness value of the solution the most and uses

least fraction of resources. This method is a third component

in an edge’s probability calculation along with pheromone

and heuristic information. The Dynamic Impact method is

also a myopic search component and it provides search

accuracy improvement similar to heuristic information.

Edge’s probability calculation using Dynamic Impact:

𝑝𝑗,𝑖 =
𝜏𝑗,𝑖

𝛼 ∗ 𝜂𝑗,𝑖
𝛽

∗ 𝐷𝐼𝑗,𝑖
𝛾

(𝑠𝑝)

∑ (𝜏𝑗,𝑖
𝛼 ∗ 𝜂𝑗,𝑖

𝛽
∗ 𝐷𝐼𝑗,𝑖

𝛾
(𝑠𝑝))

, ∀(𝑗, 𝑖) ∈ 𝑁(𝑠𝑝)
(4)

where 𝐷𝐼𝑗,𝑖
𝛾

(𝑠𝑝) is Dynamic Impact component in probability

calculation at the partial solution state 𝑠𝑝, 𝛾 (gamma) is a

relative importance of Dynamic Impact, 𝑗 and 𝑖 are the edges

and nodes of the search space respectively.

Proposed Dynamic Impact component to evaluation is unlike

heuristic information and pheromone, this component

depends on current state of partial solution and is not pre-

calculated like heuristic information. It is designed to change

every time an edge is added to a solution. Therefore, it cannot

be updated after each solution is completed like pheromone.

The best formula for Dynamic Impact calculation depends on

optimization problem and optimization goals. Fitness

function or simplified version of fitness function is used for

calculation of Dynamic Impact. In the cases where fitness

function is non-linear relationship of combination of edges

the Dynamic Impact measures how much each edge impacts

the fitness value for partial solution. Also, it measures the

consumption of remaining resources defined as problem

constraints in relationship to a reward received from using

this edge. General formula of Dynamic Impact can be

expressed as following:

𝐷𝐼𝑒 =
(𝑓(𝑠𝑝 + 𝑒) − 𝑓(𝑠𝑝)) ∗ 𝐴

(
𝛺(𝑠𝑝) − 𝛺(𝑠𝑝 + 𝑒)

𝛺(𝑠𝑝)
)

(5)

where 𝐷𝐼𝑒 is Dynamic Impact for 𝑒 edge. 𝐴 is a sign constant

of optimization goal: +1 for maximization, and −1 for

minimization objectives. 𝑓(𝑠𝑝) and 𝑓(𝑠𝑝 + 𝑒) note the

fitness values of a partial solution without and with added

edge respectively. Similarly, 𝛺(𝑠𝑝) and 𝛺(𝑠𝑝 + 𝑒) is a

notation of remaining constraints of partial solution without

and with added edge respectively. In this theoretical Dynamic

Impact calculation, the value is difference of fitness value

over the proportion resource consumption. In maximization

objective this is similar to perceived value in a given state,

where highest increase of fitness may not be the most

beneficial if it takes disproportionally large piece of

remaining constraints. Parts of this Dynamic Impact function

may be simplified depending on an optimization problem.

For example, in cases where fitness is linear sum of its

solution components 𝑓(𝑠𝑝 + 𝑒) − 𝑓(𝑠𝑝) can be simplified to

just individual fitness of an edge: 𝑓(𝑒). Also, constraint part

can be simplified whether it has non-linear nature or not, as

well as its relevance to the solution. Lastly, the Dynamic

Impact formula must always be formulated such that it is

always more than zero 𝐷𝐼𝑒 > 0.

In conclusion, Dynamic Impact evaluation similarly to

heuristic information is a myopic search component, however

it is evaluated as each edge is added to partial solution,

therefore making it more versatile in optimization problems

where constant heuristic information value cannot be

calculated in advance.

C. Dynamic Impact example

Let us consider a simplistic example of vehicle routing where

objective is to minimize total time spent on a road for each

vehicle but the constraint is fuel in a tank. In such example

driving on motorway vehicle might reach the destination

faster while using more fuel compared to the more direct

route in city traffic that is also much slower. For the purposes

of this Dynamic Impact example the formula is simplified to

maximize inverse time of the route while using the least

portion of remaining fuel.

𝐷𝐼𝑅𝑜𝑢𝑡𝑒 =
𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐹𝑢𝑒𝑙 − 𝐹𝑢𝑒𝑙𝐶𝑜𝑛𝑠(𝑅𝑜𝑢𝑡𝑒)

𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐹𝑢𝑒𝑙 ∗ 𝑇𝑖𝑚𝑒(𝑅𝑜𝑢𝑡𝑒)

(6)

In Table 1 this formula has been used to demonstrate the

difference in Dynamic Impact considering only variable of

remaining fuel. In this table there are three routes (edges) to

be considered: first fuel efficient but slow, second medium

fast and medium fuel efficient, and third fast with high fuel

consumption. Three scenarios of remaining fuel are

considered: low, medium and high amount of remaining fuel.

In scenario one route number one has highest Dynamic

Impact because in low fuel situation slow but fuel-efficient

route is considered to be more attractive. Second scenario

with medium amount of fuel, average fast route is the most

attractive. And lastly the third scenario where there is a lot of

fuel left to use Dynamic Impact strongly suggest a fastest

route. This remaining fuel would not normally be considered

in regular ACO probability calculation while building

solution and pheromone would have to converge over many

iterations without ants having a myopic understanding which

of the routes are in their best interest considering the partial

solution ant have already built. Using Dynamic Impact ACO

can build better solutions from first try and let pheromone

continue the fine tuning towards optimal solution along with

situation awareness provided by Dynamic Impact.

III. MICROCHIP MANUFACTURING PLANT PRODUCTION FLOOR

OPTIMIZATION

Microchip manufacturing plants (fabs) operate continuously

all year round according to a planned schedule. When

predicted demand is not aligned to actual demand or some

unforeseen changes occur, new manufacturing schedules are

required to accommodate new demand.

Optimization problem starts with initial wafer-lot production

schedule and new die request. To solve the problem, wafer-

lot schedule has to be altered to support all demand. Schedule

can be altered by changing individual wafer-lot schedule in

three major ways: pull-in, push-out, and offload. Pull-in

wafer-lot means to produce the wafer-lot earlier. Push-out

means to produce the wafer-lot later. Offload means to

produce the wafer-lot in another fab. All wafer-lot schedule

alterations must comply with existing constraints, therefore

making problem combinatorial NP-hard. Wafer production is

a complex process in a microchip manufacturing plant. Each

fab can produce limited quantity of wafers in selected time

window. For the problem solved in this paper, the time

window is one Week. With known or predicted future die

demand it is possible to create wafer-lot production schedule

that maximizes the efficiency of fabs and supports all the

requested demand. Moreover, it is desired to support this new

demand while having the lowest number of changes to the

schedule possible.

A. Problem definition

Following are the definitions of MMPPFO are used for this

research.

Wafer-lot is a non-divisible collection of silicon wafers of a

single product to be manufactured all at once and can support

only one request. Noted as 𝑊𝐿𝑖 where 𝑊𝐿 stands for wafer-

lot and 𝑖 is the index of the wafer-lot. Each wafer-lot has

original schedule slot that can be altered in the problem

optimization. For example, wafer-lot 𝑊𝐿100 can have its

commit week changed from 𝑊 = 5 to 𝑊 = 3 which is a

pull-in operation as well as at the same time it can be

offloaded from 𝐹 = 𝐹30 fab to 𝐹 = 𝐹20.

Order is a silicon wafer product demand to be manufactured

in a fab at a specified week. Noted as 𝑂𝑗. Where 𝑂 is stands

for order and 𝑗 is the index of the order. Demand may not be

fully satisfied – undersupported, or it may have too many

wafers scheduled – oversupported. For example, order

number 5 requests for 55 wafers, 𝑂5 = 55. This demand can

be supported using multiple wafer-lots.

Equipped capacity is a number of wafers of specified product

group that a fab is capable to produce at a given week. Noted

as 𝐶𝑃,𝐹,𝑊. Where C stands for capacity, 𝑃 - product group, 𝐹

– fab, 𝑊 - commit week at which the capacity is defined.

Specified fab capacity must not be violated as it is physical

equipment limitation. For example, 𝐶𝑃1,𝐹30,𝑊5 = 400 is the

capacity at fab 𝐹30 in week 𝑊5 to make product group

𝑃100 is 400 wafers. The fab may produce more than one

product group and each of them have capacity defined

individually. Also, fab capacity is defined for each week

individually too, as production capacities might differ week

to week.

Supported request is a sum of wafers of all wafer-lots that is

scheduled to support the request of 𝑂𝑗 order

𝑆𝑅(𝑂𝑗) = ∑ 𝑄(𝑊𝐿𝑖)

𝑖

, 𝑊𝐿𝑖 ∈ 𝑠𝑝 (7)

where 𝑆𝑅(𝑂𝑗) stands for supported request of 𝑂𝑗 order,

𝑄(𝑊𝐿𝑖) is wafer quantity of 𝑊𝐿𝑖 wafer-lot, and wafer-lot

𝑊𝐿𝑖 belongs to solution where it is used for 𝑂𝑗 order.

Undersupported request is a number of wafers lacking to

support given request in full for 𝑂𝑗 Order.

𝑈𝑆𝑅(𝑂𝑗) = 𝐷(𝑂𝑗) − 𝑆𝑅(𝑂𝑗) |
𝑖𝑓 𝐷(𝑂𝑗) > 𝑆𝑅(𝑂𝑗)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0

(8)

where 𝑈𝑆𝑅(𝑂𝑗) stands for undersupported request of 𝑂𝑗

order, 𝐷(𝑂𝑗) is demand of the order.

Oversupported request is a number of wafers above the

requested demand for 𝑂𝑗 order.

𝑂𝑆𝑅(𝑂𝑗) = 𝑆𝑅(𝑂𝑗) − 𝐷(𝑂𝑗) |
𝑖𝑓 𝐷(𝑂𝑗) < 𝑆𝑅(𝑂𝑗)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0

(9)

where 𝑂𝑆𝑅(𝑂𝑗) stands for undersupported request of

𝑂𝑗 order.

Table 1: Simplistic example of Dynamic Impact. 3 parallel scenarios that have 3 equivalent routes each. Dynamic Impact is calculated
for each route in each scenario individually.

Scenario Route

number

Route

distance

Average route

speed

Route

time

Fuel

consumption

Remaining

fuel

Dynamic

Impact

1

1 25 10 2.5 15

60

0.3

2 30 15 2 25 0.291667

3 60 60 1 60 0

2

1 25 10 2.5 15

80

0.325

2 30 15 2 25 0.34375

3 60 60 1 60 0.25

3

1 25 10 2.5 15

120

0.35

2 30 15 2 25 0.395833

3 60 60 1 60 0.5

Capacity utilization is a capacity that has been used for wafer

production, calculated from an output schedule of an

optimization.

𝑈(𝐶𝑃,𝐹,𝑊) = ∑ 𝑄(𝑊𝐿𝑖),

𝑖

 𝑊𝐿𝑖 ∈ 𝑠𝑝 (10)

where 𝑈(𝐶𝑃,𝐹,𝑊) stands for utilization of specified fab

capacity 𝐶𝑃,𝐹,𝑊, and wafer-lot 𝑊𝐿𝑖 belongs to solution where

it is using fab capacity 𝐶𝑃,𝐹,𝑊.

Capacity waste is a capacity that has been left unused.

Capacity waste cannot be negative.

𝑊𝐴(𝐶𝑃,𝐹,𝑊) = 𝐶𝑃,𝐹,𝑊 − 𝑈(𝐶𝑃,𝐹,𝑊) (11)

where 𝑊𝐴(𝐶𝑃,𝐹,𝑊) is waste of specified fab capacity 𝐶𝑃,𝐹,𝑊.

Problem solution noted as 𝑠𝑝 is a schedule of wafer-lots to be

manufactured. The schedule indicates what wafer-lots 𝑊𝐿𝑖

are manufactured at given commit week 𝑊, and given fab 𝐹.

Fully assembled solution must comply with all problem

constraints.

Problem search space noted as 𝑁 is a collection of all vertices

and all edges of feasible combinatorial permutations.

B. Constraints

This optimization problem has set of constraints that

optimization engine must consider simultaneously when

building a solution. Some constraints are combinatorial

constraints, meaning that combination of wafer-lots must

satisfy a given constraint. Other constraints can be search

space constraints, that are applied for individual wafer-lot and

those constraints limit the total search space to be explored as

a consequence.

1) Capacity constraint

Fabs have equipped capacity that is a hard limit on how many

wafers of specified product group can be scheduled for a

given commit week. Sum of wafer must always be lower or

equal to equipped capacity. Limit is in effect as a sum of

wafers of wafer-lot collection for a given week and fab, thus

it is a combinatorial constraint.

𝐶𝑃,𝐹,𝑊 > 𝑈(𝐶𝑃,𝐹,𝑊) (12)

2) Order support constraint

All wafers supporting an order must be committed on time or

ahead of time. This way all wafer-lot permutations that are

too late are not included as edges of search space, therefore

constraining search space.

𝑊(𝑊𝐿𝑖) ≤ 𝑊(𝑂𝑗), ∀(𝑗, 𝑖) ∈ 𝑁 (13)

where 𝑊(𝑊𝐿𝑖) is commit week of 𝑊𝐿𝑖 , 𝑊(𝑂𝑗) is commit

week of 𝑂𝑗 order, for all permutations of 𝑗, 𝑖 that belong to

search space 𝑁.

3) Pull-in, push-out constraint

Wafer-lot schedule changes must follow specified pull-in

push-out information. Pull-in operations for specific products

can only be done in fabs that allow to do such operation.

Push-out can be done only for a corresponding pull-in

operation if necessary to stay within capacity constraint. This

constraint limits search space by not including permutations

of wafer-lot that has pull-in or push-out operation not defined

in the input. Moreover, each push-out must have a

corresponding pull-in operation applied in the solution,

making it combinatorial constraint too.

4) Offload constraint

Each wafer-lot can be offloaded to fabs that support the

product group and product itself. This limits search space by

not including wafer-lot permutations of offload to fabs that

cannot produce product of a wafer-lot.

C. Optimization objective

In microchip manufacturing, efficiency can be expressed in

several different ways. Each solution produced by

optimization engine must be evaluated in terms of selected

objective to get solution fitness value. Then solution fitness

value is compared to other solutions. Solution with lower

fitness value is better solution for a minimization objective.

Primary objective of this optimization problem is to minimize

undersupported request which makes sure that all customer

orders get silicon chips fulfilled on time. Minimizing

undersupported request means that all orders should have

wafer request supported fully or have least possible number

of wafers undersupported.

𝑚𝑖𝑛 ∑ 𝑈𝑆𝑅(𝑂𝑗)

𝑗

(14)

where 𝑈𝑆𝑅(𝑂𝑗) stands for UnderSupported Request of

𝑂𝑗 order.

For new silicon chip demand, it is possible that requested

wafers could not be met with integer number of wafer-lots. In

such scenario the request will be either undersupported and

have the orders not fully complete, or oversupported and

waste the production that potentially could be utilized to

support other demand.

IV. EXPERIMENTAL WORK

A. ACO for Microchip Manufacturing Plant Production

Floor Optimization

1) Search space preparation

Ants can only navigate efficiently in the prepared search

space where all edges are filtered for feasibility and has

pheromone and heuristic information value attached to it. In

MMPPFO, a wafer-lot possible allocation for production is

an edge of a search space. One wafer-lot can have multiple

permutations with different production week, and/or

production fab.

2) Heuristic information

Ant Colony Optimization uses heuristic information that

plays very important role in algorithm convergence [33].

Heuristic information gives ants a myopic benefit, and directs

them to explore more promising part of search space and

obtain good initial solutions before strong pheromone trails

are laid. Heuristic information is calculated during search

space preparation and remains constant throughout entire

algorithm run. However, for MMPPFO problem main

objective, minimum undersupported request, does not have

an obvious heuristic information that could describe each one

of the edges attractiveness separately, since it considers total

number of wafers over the collection of multiple wafer-lots

taken in the solution. This makes the objective similar to a

collection of small subset problems, where individual wafer-

lots do not carry any significance over others but only the

collection of wafer-lots.

3) Experimental dataset

For algorithm validity and performance testing synthetic

dataset is needed, covering various corner cases that could

potentially occur in real optimization scenario. To generate

synthetic datasets an industry provided dataset will be used

as initial basis. Aim of dataset generation is to obtain multiple

datasets that have dynamics similar to provided dataset, but

with added extra desired characteristics and/or features that

are not present in dataset provided by industry.

Dataset generation consists of three major parts: wafer-lot

generation, order generation, and fab capacity generation.
Table 2: Dataset parameters for heuristically generated dataset
with combinatorial complexity (Wafer-lots x periods) and tightness
(total wafer demand / total capacity). Published at figshare: [34]

Parameters Heuristically generated dataset

Wafer-lots 300 (6,312 wafers)

Periods (weeks) 7

Orders 24

Wafer quantity range 1-25

Total capacity 6,000

Total wafer demand 5,000

The generated dataset used in this research in Table 2 is

useful for algorithm testing due to increased optimization

difficulty by reducing the number of parallel optimal

solutions. Accurately measuring number of parallel optimal

solutions that exist in search space is an NP-hard question.

However, in the context of this optimization problem good

difficulty estimation is a ratio of total capacity and wafers

over the total wafer demand, which in this dataset is

reasonably low.

4) Dynamic Impact for MMPPFO optimization

The goal of Dynamic Impact for MMPPFO problem is to

enable search quicker and to identify the good collection of

wafer-lots to support the order.

Following is description of Dynamic Impact used in

optimization for a min undersupported objective:

𝐷𝐼𝑗,𝑖 = 𝑚𝑎𝑥 {𝑅𝐷(𝑂𝑗) − |𝑅𝐷(𝑂𝑗) − 𝑄(𝑊𝐿𝑖)|, 0.1} (15)

𝑅𝐷(𝑂𝑗) = 𝐷(𝑂𝑗) − 𝑆𝑅(𝑂𝑗) (16)

where 𝐷𝐼𝑗,𝑖 is Dynamic Impact for 𝑂𝑗 order and 𝑊𝐿𝑖 wafer-

lot, 𝑅𝐷(𝑂𝑗) is remaining demand for the 𝑂𝑗 order, 𝐷(𝑂𝑗)

total demand of the order, and 𝑆𝑅(𝑂𝑗) is supported request of

the order. 𝑄(𝑊𝐿𝑖) is wafer quantity of 𝑊𝐿𝑖 wafer-lot.

|𝑅𝐷(𝑂𝑗) − 𝑄(𝑊𝐿𝑖)| part of formula is a modulus of

difference of wafer quantity taken away from remaining

demand. 𝑅𝐷(𝑂𝑗) − |𝑅𝐷(𝑂𝑗) − 𝑄(𝑊𝐿𝑖)| is that modulus

taken from remaining demand. The output of this part when

remaining demand is higher than wafer quantity is equal to

𝑄(𝑊𝐿𝑖). However, if wafer quantity 𝑄(𝑊𝐿𝑖) is higher than

remaining demand then equation gives value lower than

𝑄(𝑊𝐿𝑖). Lastly the 𝑚𝑎𝑥 part of the equation ensures that in

the worst case scenario where remaining demand is small

enough does not return negative value and as a result

algorithm does not calculate negative wafer probability.

This Dynamic Impact evaluation formula represents a

simplified edge evaluation fitness function which is the

distance of how much each wafer-lot added to solution gets

to closer to zero remaining demand and not overshooting.

Non-linearity of fitness function is used as a basis of Dynamic

Impact for this optimization problem, however it also

indirectly represents capacity constraint of a problem too.

Dynamic Impact based purely on fitness function would be

the minimum value of remaining demand and wafer quantity,

since this would be enough to find accurate difference in

fitness value for addition of the wafer-lot to a solution.

B. Microchip Manufacturing Plant Production Floor

Optimization experiment

The experiment is designed to test the benefit of using

Dynamic Impact for Min-Max Ant System in order to achieve

best final result. In this experiment, two probability

parameters will be tested, 𝑞0 and 𝛾. 𝛾 is the main variable

that defines the importance of Dynamic Impact. Experiment

baseline is 𝛾 = 0 (Dynamic Impact has no contribution to

search probabilities). Moreover, in this experiment 𝑞0 – the

ant exploration hyper parameter is tested, as optimal value of

𝑞0 often depends on the rest of hyper parameters. 𝛾 and 𝑞0

are tested in wide range of values to determine the best

possible combination of 𝛾 and 𝑞0, as well as to assert the

baseline of experiment with 𝛾 = 0 parameter. In this

experiment the range of 𝛾 is from 0.125 growing

exponentially to 16 by factor of 2, and 𝑞0 is from 0.01

growing to linearly to 0.96 by an increment of 0.05.

The remaining parameters of Min-Max Ant System has been

established by preliminary experimentation. Best

combination of pheromone parameters are: 𝜏𝑚𝑎𝑥 = 1 ,

𝜏𝑚𝑖𝑛 = 0.001 , 𝜌 = 0.1 . Configuration of probability

parameters: 𝛼 = 1, 𝛽 = 0. Solutions are achieved running

3,000 iterations using 2 sequential ants, using 16 parallel ants

as per [32] described architectural model.

In Table 3 the undersupported score is displayed for each of

𝑞0 and gamma configuration combinations. Each data is an

average score of 20 independent algorithm runs. Firstly, the

asserted baseline of 𝛾 = 0, which means Dynamic Impact has

no influence on the search probability calculation. Best

configuration of 𝛾 is 𝛾 = 0 , 𝑞0 = 0.46 , the corresponding

result at this configuration is 30.55 wafers of undersupported

request. For the runs which are using Dynamic Impact, the

best results are obtained with configuration 𝛾 = 4 , 𝑞0 =
0.06, and the result is 20.4 average wafers of undersupported

request score. The difference in best 𝑞0 value after

introduction of Dynamic Impact indicates that algorithm with

Dynamic Impact evaluation performs better with higher ant

exploration. Using Dynamic Impact with 𝛾 = 4, consistently

outperforms 𝛾 = 0 across wider range of 𝑞0 values. In the

context of real-world optimization problems where algorithm

𝑞0 value is not tuned perfectly, but only roughly estimated

𝑞0 value. Using the average of 5 best 𝑞0 settings, at 𝛾 = 4 is

23.08 wafers of undersupported request. In comparison, for

imperfectly tuned baseline the average of 5 best 𝑞0 settings

at 𝛾 = 0 is 34.7 wafers of undersupported request.

Moreover, in Fig 1 more detailed comparison of best

configurations among baseline 𝛾 = 0 , 𝑞0 = 0.46 and best

configuration using Dynamic Impact evaluation 𝛾 = 4, 𝑞0 =
0.06 . In the Fig 1, main bar represents the average

undersupported score of 20 algorithm runs of shown setting

and error bars indicate one standard deviation of the scores

across the runs.

On this optimization problem, with iterations limited to

3,000, using Dynamic Impact evaluation undersupported

request score has been improved on average by 33.2%.

Moreover, using Dynamic Impact evaluation the standard

deviation is reduced from 20.1 to 12.6. This means lower

quality solutions occur significantly less often, therefore

making performance more reliable, in fast paced

environments or solving large scale optimization problems.

Dynamic Impact evaluation comes with slight computational

performance cost. This is due to the fact that Dynamic Impact

had to be calculated at each wafer-lot probability calculation.

Algorithm at best configuration without Dynamic Impact

runs on average 86.8 seconds. With Dynamic Impact using

best configuration algorithm took on average 96.9 seconds.

This makes Dynamic Impact evaluation add 11.6% of

computational overhead. This was possible due to the

simplified wafer-lot impact on solution fitness value which

made the evaluation not computationally expensive

operation.

In conclusion, the method of Dynamic Impact evaluation has

proven to be extremely beneficial for objective where the aim

is to have combination of elements adding up to the specific

requested size or number. This experiment is a meaningful

discovery for an algorithm of Ant Colony Optimization that

can enable this algorithm to solve broader set of problems

with high computational efficiency.

C. ACO for Multidimensional Knapsack Problem (MKP)

In addition to solving MMPPFO we have implemented

optimization engine to solve MKP too. The purposes of

Table 3. Undersupported result map for 𝛾 and 𝑞0 , where 𝛾 = 0 is an algorithm run without Dynamic Impact. Each data point
represents the average of 20 runs. Results of optimizing the heuristically generated dataset.

 Gamma, γ

 0 (no Dynamic Impact) 0.125 0.25 0.5 1 2 4 8 16

q0

0.01 53.05 53.9 44.1 41.55 34.75 29.9 26.35 29.45 72.35

0.06 50.65 49.75 46.7 34.65 29.2 23.45 20.4 33.1 63.2

0.11 49.3 38.6 45.35 35.6 30.35 29.45 20.55 46.9 67.45

0.16 38.75 31 35.15 36.75 28.3 25.45 39.5 35.7 57.55

0.21 38.4 38.05 32.7 37.45 24.55 29.8 23.1 28.65 85.1

0.26 38.1 33.35 34 35.7 30.8 22.85 25 46.75 79.4

0.31 33.9 35.75 33.25 34.5 28 32.1 42.5 60.45 85.75

0.36 32.55 30.95 41.25 41.6 39.95 44.65 39 50.5 112.7

0.41 43.55 54.6 49.4 60.75 48.9 56.05 47 58.3 105.3

0.46 30.55 52.55 55.95 54.15 54.35 87.25 71.5 91.45 121.3

0.51 44.85 59.05 47.55 82.2 72.05 87.3 80.05 88.5 132.9

0.56 61.05 58.45 101.4 82.1 110.4 110.6 93.15 103 190.2

0.61 66.25 86.75 113.5 122.8 120.7 119.1 122 135.9 202.1

0.66 81.3 110.3 115.6 151.3 153.6 149.6 153.9 169.6 209

0.71 102.8 146.1 159.2 146.1 168.8 174.6 181.5 185.7 246.2

0.76 127.8 186.4 178.9 191.9 193.3 208.5 211.9 197.8 237.8

0.81 177.2 202.1 217.4 205.9 209.5 242.7 230.5 239.2 243.6

0.86 215.6 239.3 264.9 239.6 292.1 284.9 266.2 288.8 283.8

0.91 302.5 285.7 313.2 332.6 370.2 340.3 373.3 423.4 413.2

0.96 396.3 390.6 408.2 436.1 443.8 488.2 444.3 549.3 535.4

Fig 1. Dynamic Impact comparison on best configurations. Average of 20 runs. Error Bars indicate one standard deviation.

0 10 20 30 40 50 60

gamma-4, q0-0.06

gamma-0, q0-0.46

Undersupported request result C
o

n
fi

gu
ra

ti
o

n

Dynamic Impact comparison on best configurations

solving MKP is to test Dynamic Impact evaluation method

on another benchmark optimization problem.

1) Search space preparation

Search space of MKP is simple, MKP does not have discrete

orders or nodes and it is a binary problem. The search space

is expressed in a single dimension of a binary option, to take

item in the knapsack or not. Pheromone 𝜏𝑖 , heuristic

information 𝜂𝑖 , and Dynamic Impact 𝐷𝐼𝑖 are in this case

single dimensional too. The probability calculation for this

problem is done all at once for all items before adding any

item into partial solution.

2) Heuritic information

Similarly, to MMPPFO, MKP maximum profit objective

depends on total profit of the collection of all items taken in

the knapsack. None of the items are more important in the

knapsack over the other, only combination of the items that

all simultaneously fit in all knapsack dimensions must have

highest profit possible. Therefore, there is no reliable

heuristic information available for MKP optimization.

3) Experimental dataset

MKP optimization has been chosen in part due to the large

availability of benchmark datasets as well as available

research publishing the results that state-of-the-art

optimization algorithms have achieved. The datasets are

obtained from ResearchGate repository [28]. In this paper

small SAC-94 datasets and larger GK datasets will be solved.

For small SAC-94 datasets, the focus is on achieving optimal

values with highest success rate as possible, and on larger GK

goal is to get highest profit on average.

4) Dynamic Impact for MKP optimization

Dynamic Impact evaluation equation to solve MKP is

different from MMPPFO problem as problem domains are

not the same. For this problem the Dynamic Impact formula

is following:

𝐷𝐼𝑖 =
𝑁𝑃(𝐼𝑖)

𝐶𝐼(𝐼𝑖)

(17)

𝐶𝐼(𝐼𝑖) = 𝑚𝑎𝑥∀𝑗 {
𝑊(𝐼𝑖)

𝑅𝐶(𝐾𝑗)
} +

∑ {
𝑊(𝐼𝑖)

𝑅𝐶(𝐾𝑗)
}𝑗

𝑗

(18)

𝑁𝑃(𝐼𝑖) =
𝑃(𝐼𝑖)

𝑚𝑎𝑥{∀𝑃(𝐼)}

(19)

𝐷𝐼𝑖 – is Dynamic Impact for item 𝐼𝑖 , calculated using

normalized item profit over capacity impact of the item.

Normalized profit 𝑁𝑃(𝐼𝑖) of the item 𝐼𝑖 is a constant

parameter precalculated using profit of the item and highest

profit of all items. It is important to have normalize profit

from 0 to 1 in Dynamic Impact such that probability

calculations have constant range of inputs for any item profit

magnitude range across various input datasets. 𝐶𝐼(𝐼𝑖) is

capacity impact of item 𝐼𝑖 . This is the most intense compute

operation of the Dynamic Impact evaluation. It finds the

maximum weight utilization combined with average weight

utilization of remaining knapsack capacities. Capacity impact

has to be recalculated every time doing the probability

calculations as it uses the remaining knapsack capacities

𝑅𝐶(𝐾𝑗) in contrast to total capacity that does not change

while building the solution. When using remaining knapsack

capacity, the current state of solution is well reflected and

therefore can have an impact in probability calculation to pick

an item that does consume lower portion of available

knapsack space for same profit reward. 𝑊(𝐼𝑖) is weight, and

𝑃(𝐼𝑖) is the profit of the item defined in the input dataset.

D. MKP experiment

This MKP experiment is chosen in addition to solving

MMPPFO problem to solve a commonly available

benchmark problem that has similar multiple item collection

characteristic. There are no recent papers published on Ant

Colony Algorithm solving MKP benchmark datasets,

therefore it is logical to assume that there have not been any

successful attempts to achieve results on public benchmark

datasets to level that is comparable to other published results.

Two sets of benchmarks MKP datasets are considered in this

experiment. First set SAC-94 are small datasets and are

possible to find the optimal solution of a dataset within

reasonable amount of time. For these small datasets algorithm

success rate is analyzed, and compared which algorithm on

average reaches optimal solution quicker. Second set is large

GK benchmark datasets. The combinatorial complexity of

these benchmark datasets are high enough such that not all of

GK datasets have known optimal value, therefore in Table

for comparison most recent best known values will be taken

from [35] paper that combines their own reached highest

values as well as [36] and authors of the GK datasets [37].

The aim for large GK datasets is to get highest possible profit

or in other words to minimize profit gap to best known

solution.

1) SAC94 results

For SAC94 experiment Min-Max Ant System parameters has

been tuned with preliminary experimentation. Best

combination of pheromone parameters are: 𝜏𝑚𝑎𝑥 = 1 ,

𝜏𝑚𝑖𝑛 = 0.001 , 𝜌 = 0.1 . Configuration of probability

parameters: 𝛼 = 1 , 𝛽 = 0 , 𝑞0 = 0.01 . Solutions are

achieved running 3,000 iterations using 2 sequential ants,

using 64 parallel ants as per [32] described architectural

model. Experiment measures success rate, best successful

iteration, average successful iteration, and average profit of

each dataset using Dynamic Impact versus algorithm without

Dynamic Impact implemented. Each data point is an average

of 100 algorithm runs. In Table 4 SAC94 dataset results

presented. Ant Colony Optimization using Dynamic Impact

preliminary tests showed that the best convergence is

achieved using Gamma (γ) value set to 8. ACO with Dynamic

Impact shows 100% success rate in every single dataset while

same algorithm without Dynamic Impact manages to do so in

41 out of 54 datasets and remaining datasets average 74.7%

success rate. Moreover, optimization with Dynamic Impact

on average takes just 12.40 iterations and 0.046 seconds to

reach optimal value. Without Dynamic Impact on average

takes 128.96 iterations and 0.25 seconds to reach optimal on

41 datasets that managed successfully converge 100% of the

time.

Our achieved results of SAC94 are compared to recently

published research on state of the art optimization algorithms

solving SAC94 datasets in Table 5. A binary PSO with time-

varying acceleration coefficients (BPSOTVAC) proposed by

Chih et. al. [38]. A Dichotomous binary differential evolution

(DBDE) proposed by Peng et. al. [39]. A modified version of

the flower pollination algorithm (MFPA) proposed by Abdel-

Basset et. al. [40]. A binary particle swarm optimization with

genetic operations (HPSOGO) introduced by Mingo López

et. al. [41]. A random binary differential search algorithm

using Tanh function (TR-BDS) introduced by Liu et. al. [42].

A binary artificial algae algorithm (BAAA) introduced by

Zhang et. al. [43]. The main comparison metric of all results

is success rate. Proposed ACO with Dynamic Impact shows

superiority solving small datasets as none of the reviewed

algorithms have such versatility in solving all of the datasets

Table 4: MKP SAC94 datasets. Dynamic Impact result comparison of ACO without Dynamic Impact and ACO with Dynamic Impact. Each
dataset is result of 100 runs.

 ACO without Dynamic Impact ACO with Dynamic Impact

Dataset

Problem

size (N

x M) Optimal

Success

rate

Best

successful

iteration

Average

successful

iteration

Average

time to

success

(seconds)

Average

profit

Success

rate

Best

successful

iteration

Average

successful

iteration

Average

time to

success

(seconds)

Average

profit

hp1 28 x 4 3418 0.97 3 n/a n/a 3417.58 1 0 0.75 0.00308 3418

hp2 35 x 4 3186 0.95 7 n/a n/a 3185.1 1 5 36.65 0.04048 3186

pb1 27 x 4 3090 1 4 334.51 0.25203 3090 1 0 0.59 0.00303 3090

pb2 34 x 4 3186 0.97 10 n/a n/a 3185.46 1 0 33.87 0.03768 3186

pb4 29 x 2 95168 1 6 17.97 0.01701 95168 1 0 0.71 0.00285 95168

pb5 20 x 10 2139 1 0 40.53 0.02307 2139 1 0 26.5 0.01661 2139

pb6 40 x 30 776 1 4 18.68 0.01815 776 1 0 0.14 0.00242 776

pb7 37 x 30 1035 0.94 10 n/a n/a 1034.47 1 0 4.6 0.00853 1035

pet2 10 x 10 87061 1 0 0.08 0.00169 87061 1 0 8.44 0.00514 87061

pet3 15 x 10 4015 1 0 4.02 0.00453 4015 1 0 0 0.00179 4015

pet4 20 x 10 6120 1 0 10.81 0.00924 6120 1 0 0 0.00211 6120

pet5 28 x 10 12400 1 7 13.92 0.0177 12400 1 0 0 0.00195 12400

pet6 39 x 5 10618 0.44 32 n/a n/a 10610.16 1 0 10.61 0.01599 10618

pet7 50 x 5 16537 1 36 249.55 0.41771 16537 1 12 67.62 0.12189 16537

sento1 60 x 30 7772 1 39 319.23 0.59452 7772 1 0 0.11 0.00396 7772

sento2 60 x 30 8722 0.65 53 n/a n/a 8718.54 1 0 1.94 0.01163 8722

weing1 28 x 2 141278 1 13 32.6 0.03052 141278 1 0 0 0.00155 141278

weing2 28 x 2 130883 1 14 36.05 0.02862 130883 1 0 0 0.00163 130883

weing3 28 x 2 95677 1 6 29.44 0.01889 95677 1 0 0 0.00154 95677

weing4 28 x 2 119337 1 7 21.87 0.01853 119337 1 0 0 0.00193 119337

weing5 28 x 2 98796 1 4 18.06 0.01286 98796 1 0 0 0.00164 98796

weing6 28 x 2 130623 1 11 43.77 0.03164 130623 1 0 0 0.00165 130623

weing7 105 x 2 1095445 0 n/a n/a n/a 1095136 1 4 456.14 2.06904 1095445

weing8 105 x 2 624319 0.03 1981 n/a n/a 620481.5 1 0 0.7 0.006 624319

weish01 30 x 5 4554 1 12 27.83 0.02154 4554 1 0 0 0.00212 4554

weish02 30 x 5 4536 0.91 7 n/a n/a 4535.55 1 0 0 0.0024 4536

weish03 30 x 5 4115 1 3 21.84 0.01619 4115 1 0 0 0.00211 4115

weish04 30 x 5 4561 1 1 12.33 0.0094 4561 1 0 0 0.0022 4561

weish05 30 x 5 4514 1 2 10.61 0.00862 4514 1 0 0 0.002 4514

weish06 40 x 5 5557 1 19 189.83 0.18289 5557 1 0 0.08 0.00251 5557

weish07 40 x 5 5567 1 14 35.38 0.03701 5567 1 0 0 0.00247 5567

weish08 40 x 5 5605 1 15 37.97 0.04175 5605 1 0 0 0.00254 5605

weish09 40 x 5 5246 1 18 31.22 0.02959 5246 1 0 0 0.00248 5246

weish10 50 x 5 6339 1 28 65.49 0.08092 6339 1 0 12.08 0.01763 6339

weish11 50 x 5 5643 1 18 62.45 0.06658 5643 1 0 0 0.00248 5643

weish12 50 x 5 6339 1 20 56.96 0.06909 6339 1 0 7.5 0.01246 6339

weish13 50 x 5 6159 1 18 35.51 0.04445 6159 1 0 0 0.00263 6159

weish14 60 x 5 6954 1 27 44.24 0.06997 6954 1 0 0 0.00267 6954

weish15 60 x 5 7486 1 35 74.64 0.11307 7486 1 0 0 0.00325 7486

weish16 60 x 5 7289 1 39 545.29 0.85691 7289 1 0 0.01 0.00308 7289

weish17 60 x 5 8633 1 30 78.55 0.1655 8633 1 0 0 0.00374 8633

weish18 70 x 5 9580 1 52 265.71 0.614 9580 1 0 0.52 0.00531 9580

weish19 70 x 5 7698 0.93 40 n/a n/a 7697.09 1 0 0 0.00346 7698

weish20 70 x 5 9450 1 61 398.67 0.85951 9450 1 0 0 0.00387 9450

weish21 70 x 5 9074 1 44 246.19 0.50368 9074 1 0 0.02 0.00369 9074

weish22 80 x 5 8947 0.56 54 n/a n/a 8939.08 1 0 0 0.00391 8947

weish23 80 x 5 8344 1 44 109.6 0.24405 8344 1 0 0.05 0.00383 8344

weish24 80 x 5 10220 1 74 476.98 1.34094 10220 1 0 0 0.00444 10220

weish25 80 x 5 9939 0.94 71 n/a n/a 9938.17 1 0 0 0.00403 9939

weish26 90 x 5 9584 0.48 71 n/a n/a 9567.44 1 0 0 0.00449 9584

weish27 90 x 5 9819 1 62 135.06 0.38311 9819 1 0 0 0.00448 9819

weish28 90 x 5 9492 1 65 421.75 1.14258 9492 1 0 0 0.00442 9492

weish29 90 x 5 9410 1 73 386.61 1.03829 9410 1 0 0 0.00436 9410

weish30 90 x 5 11191 1 64 325.52 1.1109 11191 1 0 0.01 0.00503 11191

reliably to the optimal value 100% of the time. The closest

algorithm MFPA that solve on average 99.42% successfully

on the datasets published. However, very important to note

that this paper [40] does not have complete SAC94 dataset

results therefore versatility of the algorithm is not proven

since the success rate is unknown of the remaining datasets.

Secondly BAAA has 95.2% on average success rate of 48

datasets. 42 out of 48 datasets has reached 100% success rate.

Table 5: SAC94 results comparison with recently published research.

Dataset

Problem

size (N x

M) Optimal

ACO

without

Dynamic

Impact

ACO

with

Dynamic

Impact

BPSOTVAC

- [38]

2014

DBDE

- [39]

2017

MFPA

- [40]

2018

HPSOGO

- [41]

2018

TR-

BDS -
[42]

2016

BAAA

- [43]

2016

hp1 28 x 4 3418 0.97 1 0.38 1 0.4 0.93

hp2 35 x 4 3186 0.95 1 0.67 0.97 0.27

pb1 27 x 4 3090 1 1 0.46 1 0.5 1

pb2 34 x 4 3186 0.97 1 0.73 0.97 1

pb4 29 x 2 95168 1 1 0.91 1 1

pb5 20 x 10 2139 1 1 0.84 1 0.8 1

pb6 40 x 30 776 1 1 0.5 1 0.57 1

pb7 37 x 30 1035 0.94 1 0.47 1 0.8 1

pet2 10 x 10 87061 1 1 1
pet3 15 x 10 4015 1 1
pet4 20 x 10 6120 1 1
pet5 28 x 10 12400 1 1
pet6 39 x 5 10618 0.44 1
pet7 50 x 5 16537 1 1
sento1 60 x 30 7772 1 1 0.57 0.43 1 0.16 0.8 1

sento2 60 x 30 8722 0.65 1 0.27 0 1 0.25 0.73 1

weing1 28 x 2 141278 1 1 1 1 0.1 1 1

weing2 28 x 2 130883 1 1 1 0.97 1 1 1

weing3 28 x 2 95677 1 1 0.92 0.6 1 1 0 1

weing4 28 x 2 119337 1 1 1 1 1 1 1 1

weing5 28 x 2 98796 1 1 1 0.3 1 0.7 1

weing6 28 x 2 130623 1 1 0.97 0.97 1 1 1 1

weing7 105 x 2 1E+06 0 1 0 0 1 0 0.58

weing8 105 x 2 624319 0.03 1 0.35 0 1 0.5 0.93

weish01 30 x 5 4554 1 1 1 1 1 1 1 1

weish02 30 x 5 4536 0.91 1 0.64 1 1 1 1 1

weish03 30 x 5 4115 1 1 0.99 1 1 1 1 1

weish04 30 x 5 4561 1 1 1 1 1 1 1 1

weish05 30 x 5 4514 1 1 1 1 1 1 1 1

weish06 40 x 5 5557 1 1 0.59 0.3 1 1 1 1

weish07 40 x 5 5567 1 1 0.96 0.33 1 1 0.98 1

weish08 40 x 5 5605 1 1 0.79 0.87 1 1 0.98 1

weish09 40 x 5 5246 1 1 1 1 1 1 1 1

weish10 50 x 5 6339 1 1 0.91 1 1 1 1 1

weish11 50 x 5 5643 1 1 0.88 0.63 1 1 0.92 1

weish12 50 x 5 6339 1 1 0.89 1 0.82 1 0.96 1

weish13 50 x 5 6159 1 1 1 1 1 0.35 0.98 1

weish14 60 x 5 6954 1 1 0.98 1 1 1 0.92 1

weish15 60 x 5 7486 1 1 1 1 1 1 0.96 1

weish16 60 x 5 7289 1 1 0.54 0.87 1 1 1 1

weish17 60 x 5 8633 1 1 1 0.67 1 1 1

weish18 70 x 5 9580 1 1 0.75 1 1 0.98 1

weish19 70 x 5 7698 0.93 1 0.65 1 1 1 0.96 1

weish20 70 x 5 9450 1 1 0.78 1 1 1 0.96 1

weish21 70 x 5 9074 1 1 0.74 1 1 0.1 0.96 1

weish22 80 x 5 8947 0.56 1 0.16 1 1 0.98 1

weish23 80 x 5 8344 1 1 0.85 0.23 1 0.92 0.45

weish24 80 x 5 10220 1 1 0.7 1 1 0.68 0.54

weish25 80 x 5 9939 0.94 1 0.49 0.97 1 0.84 1

weish26 90 x 5 9584 0.48 1 0.36 1 1 1 0.94 1

weish27 90 x 5 9819 1 1 0.99 0.97 1 0.98 1

weish28 90 x 5 9492 1 1 0.87 1 1 0.94 1

weish29 90 x 5 9410 1 1 0.86 1 1 0.92 1

weish30 90 x 5 11191 1 1 0.87 0.83 1 0.32 1

None of the authors has considered “pet” datasets part of

SAC94. “pet” datasets seem to be an edge case, especially

problematic for any optimization algorithm with observed

highly sparse nature, and despite small theoretical

combinatorial complexity, and are difficult to solve. None of

the other research has published results solving “pet”

datasets, possibly due to difficulty handling high degree of

sparseness, especially when it is expected to be easily solved

as theoretical combinatorial complexity is low.

1) GK results

Algorithm has been tuned slightly differently to solve large

GK datasets. Dynamic Impact importance parameter Gamma

(γ) value is set to 32, and algorithm is run for 10000

iterations. Experiment measures average profit obtained over

10 algorithm runs, then average profit is turned into average

gap using best known profit values. In Fig 2. ACO with

Dynamic Impact is compared to the same algorithm without

implemented Dynamic Impact running the same probability

settings. In absolute terms ACO with Dynamic Impact gets

average gap reduction of 0.54%, where highest difference is

in gk09 – 0.9% and lowest in gk01 – 0.27%. In relative terms

difference in profit gap is on average 4.27 times lower, where

highest is gk02 reducing gap 10.4 times and lowest in gk03

reducing gap 2.33 times. Furthermore, in Fig 3. well

performing ACO with Dynamic Impact algorithm is stacked

up against recently published solutions of GK dataset

implementations. Dantas – GPGPU SA [44] is GPU

accelerated Simulated Annealing algorithm. Kong – NBHS2

[45] out of several algorithms compared their proposed New

Binary Harmony Search type 2 was best performing for GK

datasets. Wang – DLHO [46] is their proposed Diverse

Human Learning Optimization algorithm that has performed

the best among compared solutions. On average ACO with

Dynamic Impact has 0.31% or 3.3 times lower gap than

Dantas – GPGPU SA, however ACO is outperformed by

0.05% difference in gap on single gk09 instance. Kong –

NBHS2 has closer performance and is on average 0.24% or

2.48 times behind ACO, however no instances outperform

ACO, and the closest instance is gk07 falling behind by

0.07% or 1.35 times. Lastly, ACO outperforms Wang –

DLHO on average by 1.10% or 7.72 times.

In conclusion Dynamic Impact proved to significantly aid the

search for small datasets reliably reach optimal value and

large datasets significantly lower gap to optimal value.

V. CONCLUSIONS

This research has studied Ant Colony Optimization algorithm

solving MMPPFO. Problems main optimization objective

depends on a collection of smaller parts of solution without

prioritizing any one over others therefore useful heuristic

information that could be predefined does not exist. The

research has proposed additional component to the ACO

algorithm probability calculation which is called Dynamic

Impact. Dynamic Impact similarly to heuristic information is

a myopic component of the search. The difference is,

Dynamic Impact is calculated each time probability is

calculated and it depends on a state of partial solution. In

other words, Dynamic Impact is simplified evaluation of each

edge impact on fitness function and resource consumption.

Computational overhead to use this method is low when

micro-optimized for specific problem. For MMPPFO

problem, this research has demonstrated that using Dynamic

Impact evaluation significantly improve solution quality over

the same number of search iterations. Furthermore, ACO with

Fig 2. ACO Dynamic Impact test - GK dataset results graph of average gap. Results are average of 10 algorithm runs

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

gk01 gk02 gk03 gk04 gk05 gk06 gk07 gk08 gk09 gk10 gk11

G
ap

 (
%

)

Dataset

Ant Colony Optimization Dynamic Impact test - average gap of GK
datasets

ACO without dynamic impact ACO with dynamic impact

Dynamic Impact has showed significant improvements

solving Multi-dimensional knapsack problem. For small

benchmark datasets Dynamic Impact solves all instances to

optimal solution which is also a significant improvement in

comparison to other published research. For large benchmark

datasets Dynamic Impact can solve up to 10 times closer to

known best or optimal value within same search efforts.

VI. REFERENCES

[1] M. Dorigo, "Optimization, Learning and Natural

Algorithms," 1992.

[2] D. Favaretto, E. Moretti and P. Pellegrini, "Ant colony

system for a VRP with multiple time windows and

Table 6: MKP GK datasets. ACO results with Dynamic Impact are compared against ACO without Dynamic Impact as well as best
performing other algorithm results taken from recently published papers.

Average profit Average gap

Dataset problem size

(N x M)

Best

known

profit

ACO

without

Dynamic

Impact

ACO

with

Dynamic

Impact

ACO

without

Dynamic

Impact

ACO

with

Dynamic

Impact

Dantas-

GPGPU

SA [44]

2018

Kong-

NBHS2

[45]

2015

Wang-

DHLO

[46]

2017

gk01 100 x 15 3766 3750.7 3760.7 0.41% 0.14% 0.36% 0.29% 0.96%

gk02 100 x 25 3958 3937.2 3956 0.53% 0.05% 0.62% 0.30% 0.99%

gk03 150 x 25 5656 5621.8 5641.3 0.60% 0.26% 0.76% 0.55% 1.17%

gk04 150 x 50 5767 5733.5 5757 0.58% 0.17% 0.91% 0.46% 1.23%

gk05 200 x 25 7560 7511.8 7545 0.64% 0.20% 0.48% 0.43% 1.23%

gk06 200 x 50 7677 7621.8 7659.7 0.72% 0.23% 0.85% 0.49% 1.17%

gk07 500 x 25 19221 19104.1 19183.29 0.61% 0.20% 0.29% 0.26% 1.56%

gk08 500 x 50 18806 18662.3 18764 0.76% 0.22% 0.45% 0.56% 1.47%

gk09 1500 x 25 58089 57466.1 57987.2 1.07% 0.18% 0.13% 0.27% 1.59%

gk10 1500 x 50 57295 56703.9 57179.2 1.03% 0.20% 0.31% 0.54% 1.55%

gk11 2500 x 100 95238 94111.6 94937.6 1.18% 0.32% 0.44% 0.64% 1.36%

Fig 3. ACO with Dynamic Impact comparison to other recently published GK dataset solution results.

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%

gk01 gk02 gk03 gk04 gk05 gk06 gk07 gk08 gk09 gk10 gk11

G
ap

 (
%

)

Dataset

ACO with Dynamic Impact comparison to other implementations

ACO with dynamic impact Dantas - GPGPU SA Kong - NBHS2 Wang - DHLO

multiple visits," Journal of Interdisciplinary

Mathematics, vol. 10, no. 2, pp. 263 - 284, 04/2007.

[3] D. Merkle, M. Middendorf and H. Schmeck, "Ant

colony optimization for resource-constrained project

scheduling.," Proceedings of the 2nd Annual

Conference on Genetic and Evolutionary

Computation, pp. 893-900, 2000.

[4] A. Bauer, B. Bullnheimer, R. Hartl and C. Strauss, "An

ant colony optimization approach for the single

machine total tardiness problem," IEEE, vol. 2, pp.

1445 - 1450, 1999.

[5] A. Colorni, M. Dorigo, V. Maniezzo and M. &

Trubian, "Ant system for job-shop scheduling,"

Belgian Journal of Operations Research, Statistics and

Computer Science, vol. 34, no. 1, pp. 39-53, 1994.

[6] R.-H. Huang and C.-L. Yang, "Ant colony system for

job shop scheduling with time windows," The

International Journal of Advanced Manufacturing

Technology, vol. 39, no. 1, pp. 151 - 157, 2008.

[7] C. Solnon, "Combining two pheromone structures for

solving the car sequencing problem with Ant Colony

Optimization," European Journal of Operational

Research, vol. 191, no. 3, pp. 1043 - 1055, 2008.

[8] G. Leguizamon and Z. Michalewicz, "A new version

of ant system for subset problems," Proceedings of the

1999 Congress on Evolutionary Computation-CEC99

(Cat. No. 99TH8406), vol. 2, pp. 1459 - 1464, 1999.

[9] B. Guan and Y. Zhao, "Self-Adjusting Ant Colony

Optimization Based on Information Entropy for

Detecting Epistatic Interactions," Genes, vol. 10, no. 2,

p. 114, 02/2019.

[10] S. Tabakhi and P. Moradi, "Relevance–redundancy

feature selection based on ant colony optimization,"

Pattern Recognition, vol. 48, no. 9, pp. 2798 - 2811,

09/2015.

[11] R. Devi Priya and R. Sivaraj, "Imputation of Discrete

and Continuous Missing Values in Large Datasets

Using Bayesian Based Ant Colony Optimization,"

Arabian Journal for Science and Engineering, vol. 41,

no. 12, pp. 4981 - 4993, 12/2016.

[12] M. Dorigo and T. Stützle, "Ant colony optimization:

overview and recent advances," Handbook of

metaheuristics, pp. 311-351, 2019.

[13] X. Li and R. Y. K. Fung, "Optimal K-unit cycle

scheduling of two-cluster tools with residency

constraints and general robot moving times," Journal

of Scheduling, vol. 19, no. 2, pp. 165 - 176, 2016.

[14] C. Schwenke and K. Kabitzsch, "Continuous flow

transport scheduling for conveyor-based AMHS in

wafer fabs," 2017 Winter Simulation Conference

(WSC), pp. 3588 - 3599, 2017.

[15] C. Guo, Z. Jiang, H. Zhang and N. Li, "Decomposition-

based classified ant colony optimization algorithm for

scheduling semiconductor wafer fabrication system,"

Computers & Industrial Engineering, vol. 62, no. 1,

pp. 141-151, 2012.

[16] W. Long and Y. Jinjiang, "Single-machine scheduling

to minimize the total earliness and tardiness is strongly

NP-hard," Operations Research Letters, vol. 41, no. 4,

pp. 363-365, 2013.

[17] H.-H. Huang, C.-H. Huang and W. Pei, "Solving Multi-

Resource Constrained Project Scheduling Problem

using Ant Colony Optimization," Journal of

Engineering, vol. 5, no. 1, pp. 2 - 12, 2015.

[18] M. Kong, P. Tian and Y. Kao, "A new ant colony

optimization algorithm for the multidimensional

Knapsack problem," Computers and Operations

Research, vol. 35, no. 8, pp. 2672 - 2683, 2008.

[19] S. Khuri, T. Bäck and J. Heitkötter, "The zero/one

multiple knapsack problem and genetic algorithms,"

Proceedings of the 1994 ACM symposium on applied

computing, pp. 188 - 193, 1994.

[20] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E.

Ozcan and J. R. Woodward, "Exploring Hyper-

heuristic Methodologies with Genetic Programming,"

Computational intelligence: Collaboration, fusion and

emeregense, pp. 177-201, 2009.

[21] J. Drake, E. Ozcan and E. K. Burke, "A Case Study of

Controlling Crossover in a Selection Hyper-heuristic

Framework Using the Multidimensional Knapsack

Problem," Evolutionary Computation, vol. 24, no. 1,

pp. 113-141, 2016.

[22] A. Fayeez and E. Keedwell, "H-ACO: A

Heterogeneous Ant Colony Optimisation approach

with Application to the Travelling Salesman,"

Artificial Evolution, pp. 144-161, 2018.

[23] D. M., Z. M., M. N. and B. M., "Updating ACO

Pheromones Using Stochastic Gradient Ascent and

Cross-Entropy Methods," Applications of Evolutionary

Computing, vol. 2279, pp. 21-30, 2002.

[24] M. Tuba and R. Jovanovic, "Improved ACO Algorithm

with Pheromone Correction Strategy for the Traveling

Salesman Problem," International Journal of

Computers Communications & Control, vol. 8, no. 3,

p. 477, 2013/06.

[25] S. Xu, Y. Liu and M. Chen, "Optimisation of partial

collaborative transportation scheduling in supply chain

management with 3PL using ACO," Expert Systems

With Applications, vol. 71, pp. 173 - 191, 2017.

[26] D. K. Karpouzos and K. L. Katsifarakis, "A Set of New

Benchmark Optimization Problems for Water

Resources Management," Water Resources

Management, vol. 27, no. 9, pp. 3333 - 3348, 2013.

[27] P. Baniasadi, V. Ejov, M. Haythorpe and S.

Rossomakhine, "A new benchmark set for Traveling

salesman problem and Hamiltonian cycle problem,"

arXiv preprint arXiv:1806.09285, 2018.

[28] J. H. Drake, "Benchmark instances for the

Multidimensional Knapsack Problem," 2015. [Online].

Available:

https://www.researchgate.net/publication/271198281_

Benchmark_instances_for_the_Multidimensional_Kn

apsack_Problem. [Accessed 30 04 2019].

[29] T. Stutzle and H. Hoos, "MAX-MIN Ant System and

local search for the traveling salesman problem," IEEE,

pp. 309 - 314, 1997.

[30] M. Dorigo and T. Stutzle, Ant Colony Optimization,

1st ed., Massachusetts: The MIT Press, 2004.

[31] M. Veluscek, T. Kalganova, P. Broomhead and A.

Grichnik, "Composite goal methods for transportation

network optimization," Expert Systems With

Applications, vol. 42, no. 8, pp. 3852 - 3867, 05/2015.

[32] I. Dzalbs and T. Kalganova, "Accelerating supply

chains with Ant Colony Optimization across range of

hardware solutions," no. arXiv:2001.08102, 2020.

[33] M. Dorigo and L. Gambardella, "Ant colony system: a

cooperative learning approach to the traveling

salesman problem," IEEE Transactions on

Evolutionary Computation, vol. 1, no. 1, pp. 53 - 66,

1997.

[34] S. Jonas, "Microchip Manufacturing Plant Production

Floor Optimization (MMPPFO) problem," Figshare,

2020.

[35] S. V. Chupov, "An Approximate Algorithm for

Lexicographic Search in Multiple Orders for the

Solution of the Multidimensional Boolean Knapsack

Problem," Cybernetics and Systems Analysis, vol. 54,

no. 4, pp. 563 - 575, 07/2018.

[36] M. Vasquez and J.-K. Hao, "A hybrid approach for the

0-1 multidimensional knapsack problem," IJCAI , pp.

328-333, 2001.

[37] F. Glover and G. A. Kochenberger, "Critical event tabu

search for multidimensional knapsack problems.,"

Meta-Heuristics Springer, pp. 407-427, 1996.

[38] M. Chih, C.-J. Lin, M.-S. Chern and T.-Y. Ou, "Particle

swarm optimization with time-varying acceleration

coefficients for the multidimensional knapsack

problem," Applied Mathematical Modelling, vol. 38,

no. 4, pp. 1338 - 1350, 02/2014.

[39] H. Peng, Z. Wu, P. Shao and C. Deng, "Dichotomous

Binary Differential Evolution for Knapsack Problems,"

Mathematical Problems in Engineering, pp. 1 - 12,

2017.

[40] M. Abdel-Basset, D. El-Shahat, I. El-Henawy and A.

K. Sangaiah, "A modified flower pollination algorithm

for the multidimensional knapsack problem: human-

centric decision making," Springer Berlin Heidelberg,

vol. 22, no. 13, pp. 4221 - 4239, 07/2018.

[41] L. F. Mingo López, N. Gómez Blas and A. Arteta

Albert, "Multidimensional knapsack problem

optimization using a binary particle swarm model with

genetic operations," Soft Computing, vol. 22, no. 8, pp.

2567 - 2582, 04/2018.

[42] J. Liu, C. Wu, J. Cao, X. Wang and K. L. Teo, "A

Binary differential search algorithm for the 0–1

multidimensional knapsack problem," Applied

Mathematical Modelling, vol. 40, no. 23-24, pp. 9788

- 9805, 12/2016.

[43] X. Zhang, C. Wu, J. Li, X. Wang, Z. Yang, J.-M. Lee

and K.-H. Jung, "Binary artificial algae algorithm for

multidimensional knapsack problems," Applied Soft

Computing, vol. 43, pp. 583 - 595, 06/2016.

[44] B. de Almeida Dantas and E. N. Cáceres, "An

experimental evaluation of a parallel simulated

annealing approach for the 0–1 multidimensional

knapsack problem," Journal of Parallel and

Distributed Computing, vol. 120, pp. 211 - 221,

10/2018.

[45] X. Kong, L. Gao, H. Ouyang and S. Li, "Solving large-

scale multidimensional knapsack problems with a new

binary harmony search algorithm," Computers and

Operations Research, vol. 63, pp. 7 - 22, 11/2015.

[46] L. Wang, L. An, J. Pi, M. Fei and P. M. Pardalos, "A

diverse human learning optimization algorithm,"

Journal of Global Optimization, vol. 67, no. 1, pp. 283

- 323, 01/2017.

