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A B S T R A C T

Transfer Optimization has gained a remarkable attention from the Swarm and Evolutionary Computation
community in the recent years. It is undeniable that the concepts underlying Transfer Optimization are
formulated on solid grounds. However, evidences observed in recent contributions confirm that there are
critical aspects that are not properly addressed to date. This short communication aims to engage the
readership around a reflection on these issues, and to provide rationale why they remain unsolved. Specifically,
we emphasize on three critical points of Evolutionary Multitasking Optimization: (i) the plausibility and
practical applicability of this paradigm; (ii) the novelty of some proposed multitasking methods; and (iii)
the methodologies used for evaluating newly proposed multitasking algorithms. As a result of this research,
we conclude that some important efforts should be directed by the community in order to keep the future
of this promising field on the right track. Our ultimate purpose is to unveil gaps in the current literature, so
that prospective works can attempt to fix these gaps, avoiding to stumble on the same stones and eventually
achieve valuable advances in the area.
1. Introduction

Addressing several learning tasks simultaneously by exploiting com-
monalities between them has been a central topic of research, ignited
by an ever-growing substrate of practical contexts where multitasking
can be framed. From the perspective of modeling problems, in the
last decade the existence of high-quality data has become a common
factor in almost any discipline of knowledge. Industrial sectors tradi-
tionally reluctant to the advent of digital technologies (e.g., energy
distribution or manufacturing plants) have gone at a par with this
vigorous information blossoming. As a result, Artificial Intelligence has
encountered a magnificent opportunity to provide practical value and
achieve unprecedented levels of performance over complex modeling
tasks.

In this context, the increase in the number of tasks and data flows
that coexist in a certain scenario has motivated a major shift towards
Artificial Intelligence algorithms capable of coping with several tasks.
This is the case of multitask learning [1], which focuses on the devel-
opment of learning models (e.g., image classification) that can address
several related tasks at the same time; or continual learning [2], which
generalizes the former paradigm to handle modeling tasks that can
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dynamically emerge, change, or disappear over time. Gains derived
from addressing these tasks via multitask learning come in the form
of shorter training periods, models of smaller size or a lower demand
for annotated data, all benefiting from the proper exploitation of the
synergistic commonalities between the modeling tasks at hand. Besides
multitask learning, other research areas in Machine Learning that also
promote the exchange of information between modeling tasks to boost
their generalization performance are transfer learning [3] and domain
adaptation [4].

This trend has also permeated the optimization research area with
the advent of the so-called Transfer Optimization paradigm [5], which
has gathered significant attention from the community. Similar to its
modeling counterparts, the raison d’être of this young research area
is to leverage the knowledge acquired when solving one optimization
problem to better address other problems, whether they are related
or not. Embracing this overarching goal, three different paradigms
have been identified in the landscape of Transfer Optimization: (i)
sequential transfer, in which optimization tasks are solved sequentially
(knowledge flows from one task to another once the former has been
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Fig. 1. Different forms in which Transfer Optimization can be realized.

solved), (ii) multitasking, whose objective is to tackle several concurrent
problems in a simultaneous fashion; and (iii) multiform multitasking,
which addresses a single optimization problem by deriving alternative
formulations and solving them simultaneously. Among these three cate-
gories, multitasking is considered the one in the limelight of the research
community, partly due to the capital role played by Evolutionary Com-
putation in the development of renowned multitasking solvers. This
noted relevance has forged the above-mentioned term of Evolutionary
Multitask Optimization, also regarded as Evolutionary Multitasking [6].
This paradigm refers to the adoption of concepts, operators and search
strategies conceived within Evolutionary Computation for tackling mul-
titask optimization scenarios. Fig. 1 illustrates the relationship between
all these forms of Transfer Optimization.

In Evolutionary Multitasking, methods to realize knowledge transfer
between the optimization tasks under consideration are central for
the overall effectiveness of the multitasking algorithm itself. As a
result, many works arising in this research area have striven for new
knowledge transfer mechanisms, targeting to promote the exchange
of information among related tasks and to minimize the potentially
negative impact of transferring information among unrelated problems
on the convergence of the search process. Although this motivation
suffices for pursuing new research endeavors along this direction, there
are more urgent needs in the field. These concerns can be described by
fundamental questions (FQ) that lie at the very heart of the field itself:

FQ1
Why?

Does the Evolutionary Multitasking paradigm ad-
dress a scenario that can be considered plausible in
practical settings? Does the simultaneous optimiza-
tion of several related problems occur in real-world
applications? Are there scenarios that can be ap-
proached using multitask optimization? In essence,
is the main motivation of this research area jus-
tified by an informed evidence of its real-world
applicability?

FQ2
What?

Are evolutionary algorithms used for multitask op-
timization called by their preexisting names? Are
we using the correct terminology and avoiding am-
biguities? Are advances made in this area coherent
with the state-of-the-art in meta-heuristic opti-
mization, Evolutionary Computation and Swarm
2

Intelligence?
FQ3
How?

Is the performance of multitask optimization ap-
proaches measured fairly? Are benchmarks created
on purpose for pairing problems with already
known correlation properties? Should research
studies account not only for the fitness improve-
ments yielded by knowledge transfer, but also the
implications of multitasking in terms of the com-
putational effort required for the purpose? When
solving real-world optimization problems, do we
really obtain a profit by addressing them together
via multitasking when compared to the case when
the problems are solved in isolation from each
other with competitive single-task optimization
algorithms?

After years of activity that have been summarized in recent surveys
on Evolutionary Multitasking [7,8], we firmly believe that it is the mo-
ment to expose and reflect these crucial concerns. Solid and informed
answers to these fundamental questions are still lacking, which can lead
to undesirable developments and outcomes of no practical value in the
future of this field. To avoid them effectively, we herein spur an open
constructive debate around the above issues, establishing the reasons
why this discussion is of paramount importance for the evolution and
practicality of the research area.

The rest of this manuscript is structured as follows: Section 2 de-
scribes briefly the basic concepts of Evolutionary Multitasking, as well
as friction points that this paradigm maintains with other areas of Evo-
lutionary Computation. Section 3 elaborates on the three fundamental
questions stated above. Finally, Section 4 ends this short communica-
tion by offering our prospects for the area, based on the conclusions
drawn from the discussion held on the fundamental questions.

2. Evolutionary multitask optimization: Concepts and relation-
ship to other areas in meta-heuristic research

As mentioned before, multitasking postulates that different yet con-
current optimization problems or tasks are simultaneously solved to-
gether. The goal is hence to obtain a good solution to every one
of such problems, possibly exploiting as efficiently as possible the
knowledge of every problem captured by the solver over the search [9].
Mathematically, a multitasking environment comprises 𝐾 optimization
tasks {𝑇𝑘}𝐾𝑘=1 defined over as many search spaces {𝛺𝑘}𝐾𝑘=1. Without
loss of generality, we assume that each task 𝑇𝑘 is a single-objective
optimization problem driven by its own fitness function 𝑓𝑘 ∶ 𝛺𝑘 → R,
where 𝛺𝑘 is the search space over which the argument 𝐱 of 𝑓𝑘(⋅) is
defined. If we assume that all tasks should be minimized, the main
goal of multitasking is to find a set of solutions {𝐱∗1 ,… , 𝐱∗𝐾} such that
𝐱∗𝑘 = argmin𝐱∈𝛺𝑘

𝑓𝑘(𝐱).
Considering this formulation, two algorithmic strategies for tackling

multitasking scenarios can be identified in the existing literature, which
motivate the widespread adoption of meta-heuristic evolutionary and
swarm intelligence solvers in the area:

• The execution of a single search procedure on a unique population
𝐏 = {𝐱𝑝}𝑃𝑝=1 of candidate solutions. Since all the solutions are con-
tained in a single population, the challenge is to define a unified
search space 𝛺𝑈 over which candidates can be encoded, evolved, and
decoded back to the specific search spaces 𝛺𝑘 of every problem for
their evaluation. Therefore, individuals evolve over 𝛺𝑈 , translating
them to each independent search space 𝛺𝑘 when required by means
of an encoding/decoding function 𝜉𝑘 ∶ 𝛺𝑘 ↦ 𝛺𝑈 . An evident benefit
of this approach is the implementation of a single set of search
operators, which gives rise a lower computational complexity of the
search process. By contrast, it requires a proper design of the unified
search space and encoding/decoding functions, which is not always
straightforward to realize. This strategy is adopted by the family of
multifactorial optimization methods, which resort to the concept of
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skill factors to drive the exchange of knowledge among tasks through
the crossover operator and the unified search space. Among them, the
influential Multifactorial Evolutionary Algorithm (MFEA) is without
any doubt its most representative algorithm [10].

• The execution of different search processes running in parallel, one
for each problem under consideration. In accordance with a knowl-
edge sharing policy, information is exchanged between such search
processes, either periodically or conditioned on the partial results of
the search (e.g., a significant phenotypical change in the best solution
of the task). Under this strategy, each search procedure operates on
a task-specific population of individuals 𝐏𝑘 = {𝐱𝑝𝑘}

𝑃𝑘
𝑝=1. In this case,

each population runs over the search space 𝛺𝑘 in which the task 𝑇𝑘
is defined. Regarding the sharing of genetic material, this is usually
materialized through the exchange of individuals among different
populations, involving this fact the existence of a mapping function
𝛤𝑘,𝑘′ ∶ 𝛺𝑘 ↦ 𝛺𝑘′ for the translation of a solution 𝐱𝑝𝑘 ∈ 𝛺𝑘 to the
search space 𝛺𝑘′ of task 𝑇𝑘′ . In this second strategy the design of
the search operators applied locally on each 𝐏𝑘 is straightforward, as
it only depends on the characteristics of the problem and its search
space 𝛺𝑘. By contrast, it generally scales worse with increasing 𝐾
than the previous single-population strategy, and requires defining
a policy for the exchange of individuals among each pair of tasks.
This situation could increase even further the overall complexity of
the multitasking solver. Devising problem-specific populations and
search algorithms are the strategy adopted by multipopulation-based
multitasking approaches.

For further information about how algorithmic schemes based on
these two strategies work, we refer our readers to comprehensive
surveys recently published in [7,8,11,12]. Among them, MFEA [10] and
MFEA-II [13] stand out as the arguably most influential works in the
field.

Fig. 2 illustrates the strategies followed by multitasking-oriented
algorithm described above. Based on these descriptions, the reasons
for the marriage between Evolutionary Computation and Multitask-
ing Optimization become clear and evident: populations serve as the
knowledge base of the search algorithm, whereas the application of
customized crossover operators (unified search space) or the exchange
of individuals (multipopulation approaches) allow for the transfer of
knowledge between optimization tasks. Therefore, many research areas
in Evolutionary Computation and Swarm Intelligence can be largely
influential for the Evolutionary Multitasking paradigm. Key concepts
such as co-evolution [14], multi-population strategies [15], archiv-
ing criteria [16], estimation of distribution algorithms [17], surro-
gate models [18], parallel evolutionary algorithms [19] and cellular
genetic algorithms [20] have been already considered by the com-
munity when proposing new multitasking solvers. From a general
standpoint, any research avenue in Evolutionary Computation that
permits to split search resources can be thought to be capable of
accommodating different tasks over the search process. Consequently,
it can be extrapolated for multitasking setups by solely considering the
existence of multiple problems in their inner working. Thus, mecha-
nisms such as sub-populations [21], sub-archives [22], heuristics run-
ning in parallel or different neighborhood topologies (including cel-
lular automata [23]) are being actively investigated in the context of
Evolutionary Multitasking.

A further consequence of the above symbiosis is the controversy that
often ignites around the similarity between multitasking optimization
and multi-objective optimization, i.e., problems that comprise more
than one objective function, all defined over the same search space
and possibly conflicting with each other. The fact that multi-objective
optimization considers several objectives and that such problems are
often approached via Evolutionary Computation have propelled even
further this controversy. Certainly, conceptual overlaps exist among
both research areas (such as the optimization of a group of objective
functions), but both paradigms are different from each other. First,
3

Evolutionary Multitasking aims to leverage the parallelism that brings a
population of solutions in order to harness potential synergies between
the problems at hand. Each of these tasks has its own solution space,
often requiring the use of an encoding/decoding strategy for knowledge
transfer. On the contrary, multi-objective optimization seeks a set of
solutions that balance different conflicting objectives, but defined over
an unique search space. Nevertheless, multi-objective problems can
actually be tackled within a multitasking setup, in which the tasks to
be solved are multi-objective optimization problems [24].

Other areas of friction can be found in the connection between
multitask learning and multitask optimization, in the sense that we
can construct data-based models capable of learning to solve several
modeling tasks at the same time as a multitask optimization problem.
To this end, solutions {𝐱∗𝑘}

𝐾
𝑘=1 sought by multitask optimization should

represent the parameters of a model (as done, for instance, in symbolic
regression with evolutionary programming). We can conceive multitask
optimization as a possible alternative to deal with multitask learning
problems, but it is not the only way to do it, nor is multitask learn-
ing the unique application for Evolutionary Multitasking. Differences
and similarities between concepts and fields close to Evolutionary
Multitasking are visually depicted in Fig. 2.

3. Fundamental issues in evolutionary multitask optimization

An upsurge of contributions has been noted around Evolutionary
Multitasking and related concepts, as has been made clear in recent
survey papers around the topic [7,8]. However, some fundamental
questions need still to be clarified. In this section, we go deep into these
main issues, exposing the main concerns that should be addressed by
the community on each of these aspects: plausibility of the problem
statement (Section 3.1), novelty of algorithmic advances in the field
(Section 3.2) and rigor in the evaluation methodology (Section 3.3).
Fig. 3 summarizes such concerns.

3.1. FQ1 (why?): Is multitask optimization a concept that occurs in the
real-world?

The first issue that requires urgent attention from the whole multi-
tasking community is the lack of convincing reasons why optimization
problems should be solved in a simultaneous fashion. Although this
claim may sound superficial, the whole paradigm relies on the idea
of a temporal concurrence of optimization problems, i.e., multiple
problems originate at the same instant of time. Historically, the opti-
mization field has focused on solving single problems under different
circumstances: landscapes with challenging properties (e.g., rugged-
ness, multimodality), dynamic objective functions/constraints, or long
fitness evaluation processes. There have been specific cases when infor-
mation about a problem has been reused for improving a new search
process, either for the same problem (as in dynamic optimization, due
to the non-stationary nature of its objectives and constraints) or for
other related tasks (a change in the parameters defining the problem is
usually tackled by feeding the population with previous solutions and
restarting the search). In all such cases, tasks among which information
has been transferred appear sequentially over time. Given this prior
art, which suggests that in practice problems emerge sequentially, the
research community should clarify, supported by evidence, whether
independent optimization problems really appear simultaneously in
real-world environments. Even if this statement held, it should be veri-
fied whether such problems can be solved better by using multitasking
solvers than in isolation with each other, by resorting to state-of-the-art
single-problem solvers. FQ3 will later revolve on this second part of the
issue.

When it comes to the real-world applicability of multitask optimiza-
tion, we acknowledge the advance taken in this direction by an analysis
recently published in [25], where several real-world applications are
described for multitask optimization. This work must be considered as



Swarm and Evolutionary Computation 75 (2022) 101203E. Osaba et al.
Fig. 2. Diagrams showing the differences between multifactorial optimization and multipopulation-based multitasking (left); multi-objective optimization (center); and multitask
learning (right), the latter particularized for the case in which the solver aims to learn a model 𝑀𝜃 capable of addressing several supervised learning task at the same time.
Fig. 3. Schematic diagram showing the three fundamental questions (FQ) of Evolutionary Multitasking (EM) discussed in this paper. In the plot EC stands for Evolutionary
Computation and SI for Swarm Intelligence.
a step towards assessing the applicability of the field to real-world opti-
mization scenarios. Specifically, some of the real applications described
in this work relate to (1) the use of Evolutionary Multitasking methods
in data science pipelines, such as feature selection, hyper-parameter
tuning, or neural architecture search; (2) the simultaneous planning of
unmanned vehicle systems as a part of a wider robotic swarm; or (3)
the concurrent optimization of manufacturing processes. Other efforts
invested by the community for adapting the multitasking paradigm to
real applications include last-mile logistics [26] or the optimization of
software testing procedures [27].

Despite the contribution of [25] to the applicability of multitask
optimization, we advocate for a step beyond these efforts: studies must
not only report that multitasking can be applied to real-world scenarios
and problems, but also prove that multitasking is utilized to solve real-
world problems by virtue of its provided performance gains. Some
fraction of the works reviewed in [25] cannot be considered to stem
from a situation or a scenario encountered in a real use case. One
of such examples is [28], which is referred in [25] as an example of
real-world application related to evolving embodied intelligence. In [28]
an evolutionary multitasking method is proposed for evolving multiple
reinforcement learning agents coping with tasks of varying levels of
complexity. The study demonstrates that transfer optimization can be
a promising approach for solving such tasks, but also concludes that
other multitask reinforcement learning algorithms yield closer levels
of performance (success rate), but require a vastly lower computa-
tional complexity. In other words: feasibility does not imply practical
4

applicability supported by superior performance and/or computational
efficiency.

Further along this line, real-world optimization problems are known
to be largely diverse in their search spaces, objective functions and/or
constraints. Given this heterogeneity, can it be expected that concur-
rently originating real-world optimization problems will feature any
complementarity or synergy when tackled simultaneously via multi-
tasking in practical settings? The origins of this specific concern trace
back to the inception of the multitasking research area itself. Almost
all areas of research in the optimization field depart from a need or
problem observed in a real-world setup. Multitasking, however, started
from conjectural premises about the similarity between the solutions to
different problems. Symptomatically, application fields such as logis-
tics, medicine or energy have afforded several real-world benchmarks
for modeling and optimization. On the contrary, evolutionary multitask
optimization has so far dealt with synthetic benchmarks comprising
functions that are endowed with synergies that offer synthetic advan-
tages for multitask optimization. That is, the research has gone from
the technique to the synthetic problem creation rather than from the real-
world problem to the technique, which ensures that scientific advances
naturally flow towards practical impact. For academic purposes, in-
sights can be surely drawn by hypothesizing on the problem based on
intuition and common reasoning. But conversely, the lack of supporting
evidence for the formulated hypotheses hinders and puts to question
whether multitasking effectively contributes to the ultimate objective
of optimization research: to solve real-world problems as efficiently as
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possible [29]. Naturally, we should solve optimization problems as soon
as they arise in the real world, rather than waiting for some time until
several tasks are collected expecting some exploitable synergies among
them (which brings to question how long one can and should wait for,
or how long the first problem can be delayed in the process).

On the positive side, some recent works have presented preliminary
results about the possible use of Evolutionary Multitasking as an effec-
tive tool to improve the search efficiency in computationally expensive
problems. This is the case of [30], which showcases the adoption of
surrogate-assisted MFEA to efficiently address robust minimax opti-
mization problems, which also seek the worst scenario in which the
problem can be formulated. This aligns with other works on the suit-
ability of Evolutionary Multitasking to tackle problems characterized by
time-consuming function evaluations and/or diverse problem formula-
tions [31–33]. Among them it is worth noting the multitask variant of
Bayesian optimization [34], which allows for transferring knowledge
between hyper-parameter tuning tasks (a computationally burdensome
problem on its own) of machine learning models learned over different
albeit related domains. Such works delineate an interesting road of
opportunity for Evolutionary Multitasking, but more principled and
fair comparisons to state-of-the-art algorithms are still needed, together
with clearer evidence of the real-world applicability of Evolutionary
Multitasking. In references as the ones cited above, comparisons are
often done against non-multitasking versions of the same solver to
account for the benefits yielded by exploiting the relationships between
tasks, but override any comparison to alternative approaches known to
perform better and/or more efficiently when addressing the considered
tasks independently.

This issue also raises another concern when it comes to competitions
and benchmarks: are multitasking setups for benchmarking purposes
created with highly correlated problems to show that algorithms per-
form well by exploiting such correlations? In contributions related to
evolutionary multitasking it is common to have the proposals validated
over benchmarks comprising synthetic functions, which are used for
evaluating the quality of the developed methods. These benchmarks
combine correlated problem instances that create favorable scenarios
for multitasking approaches. For instance, the benchmark problems
defined for the 2022 edition of the IEEE Congress on Evolutionary
Computation (CEC’2022) competition on evolutionary multitasking for
single-objective continuous optimization [35] defines several scenarios
comprising tasks with varying levels of intersection and similarity
between their global optima in the unified search space. Such tasks are
essentially rotated and/or shifted versions of well-known test functions
for continuous optimization, whose rotation matrices and shift vectors
are tailored to induce different properties in their search spaces. The
benchmark itself includes a scenario with No Intersection and Low
Similarity tasks so as to account for the robustness of Evolutionary
Multitasking methods under unfavorable conditions. Even if allowing
for a proper comparison, the fact that such benchmark scenarios are
constructed by rotating and shifting synthetic test instances keeps into
question whether the correlation properties enforced in the scenarios
are representative of a real-world situation.

Prospective authors should provide rationale whether the simul-
taneity of real-world problems in any given practical scenario (1)
allows for the existence of synergies between tasks that makes ex-
ploitation worthwhile; and (2) that approaching such problems with
a multitasking solver is compliant with the non-functional require-
ments of the scenario (e.g., would any driver be willing to share the
source/destination node of his/her route with a remote machine in the
cloud? Is the sharing of industrial production schedules across different
plants a reasonable premise?). For these reasons, we should avoid
independent/separate comparison of methods using tailored bench-
mark problems without any connection to the limitations of real-world
scenarios. And most importantly, the overall assumption of corre-
lated global optima among multiple problems that lies at the core
5

of multitask optimization should be proven to hold in practice with
irrefutable evidence. Only when this important factor is verified mul-
titask optimization methods can be designed, performing consistently
with respect to the practical constraints and properties of their targeted
scenario.

This lack of applicability can be also noted in the forums where
works related to Evolutionary Multitasking are currently published. It is
often the case that new contributions springing in this area are reported
in high-quality journals and tier-one conferences dedicated to Artificial
Intelligence, with emphasis on algorithm developments in Evolutionary
Computation and Swarm Intelligence. On the contrary, contributions
dealing with evolutionary multitask optimization are rarely published
in conferences and journals specialized in a certain application field.
This can be a sign of the questionable applicability of the field since
its inception in 2015, since these latter scientific venues are more
concerned with the applicability of the technical proposal in real-
world settings. Contributions are more strictly evaluated in terms of
the plausibility of the scenarios and the gains/suitability of the pro-
posed solution rather than in terms of its algorithmic sophistication.
Prospective real-world applications of evolutionary multitasking for
readerships that are experts on such applications will have a signif-
icantly higher soundness than more algorithmic proposals evaluated
over favorably created synthetic benchmarks.

On a positive note, we eagerly encourage authors to embrace the
use of previously gathered knowledge when facing new real-world
optimization tasks, even if this exploitable knowledge is generated by
solving synthetic problems that may provide useful information for the
optimization process. In any case, we call for a deep reflection around
the benefits of solving real-world problems in a simultaneous fashion,
neglecting any prior knowledge and assuming a cold start for the overall
process. A more reasonable paradigm in practice is to consider huge
archives of previously gathered knowledge (solutions to other prob-
lems) before solving a new problem, discover which previous problems
are most similar to the one to be solved (e.g., by virtue of meta-features
extracted from each problem), and use stored solutions as a starting
point for addressing the new task (for instance, by seeding the initial
population). This specific type of sequential knowledge transfer can be
more impactful in real-world applications, whenever contributions to
realize this paradigm give credit to advances achieved over the past in
related areas of metaheuristic research, including archive memories or
landscape analysis, to mention a few.

To conclude our elaborations around FQ1, it is worth pausing at
some realistic application scenarios tackled with transfer optimization
algorithms in recent studies, which can potentially benefit from effec-
tive transfer optimization mechanisms: for instance, planning the routes
of several vehicles in a city, or the design of simulation-based processes.
Unfortunately, scenarios as such often neglect practical constraints that
could hinder the exchange of knowledge among the involved tasks:
for instance, are candidate solutions to a given task shareable by all
means with third-parties due to privacy/confidentiality restrictions?
Can one expect that in e.g. logistic planning, information about the
routes followed by a fleet of vehicles can be exchanged between differ-
ent companies/travelers? What if the genotype of exchanged solutions
can reveal sensitive information about the problem, as it could occur
in the therapeutic prescription in medical treatments, or production
scheduling of manufacturing plants? What about the existence of con-
flicting goals and/or precedence constraints among tasks? Most setups
currently addressed via multitask optimization oversee these important
aspects (e.g., correlation of the problems, number of decision variables,
concurrency in the creation of problems) that can make the exchange
of knowledge between tasks unreliable/non-robust in practical settings,
even if it is proven to be algorithmically beneficial in ideal conditions.
State-of-the-art solvers designed for single problems, however, can
perform competitively disregarding whether these aspects hold for the

scenario at hand.
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3.2. FQ2 (what?): Are evolutionary algorithms used for multitask optimiza-
tion coherent with the state-of-the-art in meta-heuristic research?

If we compare Evolutionary Multitasking to other areas in optimiza-
tion research, it is undeniable that it still remains in an early stage
of development, with a long road ahead with plenty of challenges
and discoveries. Despite its infancy, this area is timidly approaching
similar practices to the controversial ones observed in Evolutionary
Computation and Swarm Intelligence: the explosion of methods claim-
ing to portray a set of own algorithmic peculiarities, but very similar
in their essence to other solvers that have prevailed in the field for
decades [36,37]. This trend has led to hundreds of meta-heuristic
approaches with scarce differences at their core, both among them and
with respect to traditional optimization heuristics [38].

Having said that, we have noted that, until now, the number of
metaphor-based algorithmic proposals is much lower in Evolutionary
Multitasking than in other areas of optimization research. The algorith-
ic essence of every new Evolutionary Multitasking proposal should

oncentrate on novel strategies to allocate resources among tasks
nd/or the way knowledge is modeled and transferred among tasks. By
ll means, they should leave aside the evaluation of sophisticated-yet-
lready-existing search operators that do not account for the correlation
etween tasks whatsoever. For this reason, authors should work on
roperly highlighting the true contribution of their proposed method to
he multitasking community. This is the case in most studies to date,
ut the latent risk of witnessing an uncontrolled production of nature-
nspired Evolutionary Multitasking method calls for the adoption of
easures to avoid it effectively. All future algorithms must highlight

heir uniqueness and similarity to prior works, dissecting each of their
lgorithmic steps without any metaphorical reference, preferably in the
ontext of a concrete real-world application.

In connection to this issue, we have also noted name-change re-
earch trends, i.e., some algorithmic strategies for Evolutionary Mul-
itasking, when inspected closely, can be found to be refactored ver-
ions of already existing concepts in meta-heuristic optimization re-
earch. Archive memory, multiple populations, estimation of distribu-
ions along the search, topologies, or migration strategies have been
onsidered in different contributions over the short history of Evolu-
ionary Multitasking, and should continue stimulating new develop-
ents in the area. But prospective studies using them should avoid any

efurbishing of their names, and should clearly and explicitly analyze
hether new proposals skim any established area in Evolutionary
omputation or Swarm Intelligence. Undeniably, such studies provide

resh perspectives on previous population-based optimization methods.
evertheless, their connection and incremental nature with respect to

he state-of-the-art should be highlighted rather than concealed under
refactored presentation.

This name changing trend affects beyond certain multitasking ap-
roaches proposed to date, permeating into the roots of the Transfer
ptimization paradigm. As anticipated in the introduction, three dif-

erent paradigms are identified in Transfer Optimization: sequential
ransfer, multitasking optimization, and multiform multitasking. Al-
hough the last two paradigms introduce new concepts and research
ointers, sequential transfer has been extensively studied in the liter-
ture along the years. Reusing what has been learned in the past for
xpediting the search process when optimization a new task (or a new
ersion of it) is a well-known strategy in dynamic optimization [39],
articularly in the case with recurring change patterns. In most schemes
eparting from the latter casuistry, the solver must store and retrieve
rom stored solutions encountered in the past (explicit memory), inject-
ng them into the population to better accommodate changes in the
roblem formulation and/or constraints [40].

This design principle clearly overlaps what is pursued in sequential
ransfer optimization, unless it is assumed that the variation undergone
y the problem is abrupt enough for the variation to be considered
6

new related problem. In this case one can argue that the transfer of
knowledge goes beyond storing information of the current problem and
retrieving it for solving a variation of the same task. If the problem at
hand varies enough to be regarded as a completely new optimization
task, the challenge to exploit knowledge captured prior to the changes
becomes more complex, making sequential transfer optimization a
research area on its own. In this case, differences between the new
problem formulation and its preceding one (e.g., heterogeneous search
spaces) may impose search strategies and knowledge modeling strate-
gies (correspondingly, learnable solution representations or subspace
alignments) that step further the current state-of-the-art in dynamic op-
timization. In any case, advances in this direction should acknowledge
their links to dynamic optimization, even if extending what has been
done so far in this area.

Summarizing, in FQ2, we underscore the fact that many methods
proposed in the context of Evolutionary Multitasking and Transfer
Optimization can – and must – be regarded as extensions of already
published methods in meta-heuristic optimization research. This is
noteworthy in dynamic optimization, where several approaches for in-
formation transfer among time-varying problems (essentially, to reuse
past solutions) have been proposed in the recent past [41]. Such
variants have been also used in the context of Transfer Optimization
and Evolutionary Multitasking (e.g., archive memories in [22] or surro-
gate modeling assisted information transfer in [42]). Unfortunately, in
several cases these variants come along with a change of terminology,
which does not fairly establish links to other areas of optimization
research. We firmly advocate for studies in which the connections of
newly proposed algorithms to traditional areas of optimization research
are identified, so that ambiguities are minimized, and meaningful
advances are achieved. In this regard, a remarkable attempt is made
in the survey published in [8] to describe the theoretical foundations
of evolutionary multitask optimization, examining its mathematical
ingredients and clearly defining each mechanism and solving strategy.
More along this line, in [7], the main concepts of multitasking opti-
mization are differentiated from other potentially colliding fields, such
as multi-objective optimization or transfer learning. However, more
fine-grained clarifications are still in need: new multitask optimization
methods to appear in the future should include a thorough examination
of the similarities and differences of their algorithmic components to
established methodologies in other areas of meta-heuristic optimization
research.

3.3. FQ3 (how?): Are evolutionary multitasking approaches evaluated
properly, with right metrics and in fair comparison benchmarks?

The last issue we bring to discussion in this short communica-
tion relates to the practices adopted for evaluating the performance
of Evolutionary Multitasking solvers. To begin with, a bad practice
observed in studies related to this area is to conduct experiment by
comparing new multitasking solvers to other multitasking methods,
mostly in terms of fitness value (or any other indicator of the quality
of the solutions encountered for the tasks under consideration). This
comparison is needed for verifying that the proposed solver attains
gains with respect to the state-of-the-art in Evolutionary Multitasking.
For the sake of a fair experimental analysis, discussions held around
the results should clarify, in an informed fashion, whether the gains
can be attributed to better search operators, more effective knowledge
transfer mechanisms, a more fine-grained parameter setting, or any
other aspect of the multitasking solver. But beyond all, experiments
should be completed with a rigorous and mandatory comparison of
the evolutionary multitasking solver to the alternative case where tasks
are solved separately from each other, using competitive state-of-the-art
algorithms, and subject to a similar computational effort budget.

A work embracing this recommendation is the recent work pre-
sented in [43], where a cellular evolutionary multitasking approach
is proposed to concurrently solve multimodal optimization problems.

The experimentation comprises 14 different instances drawn from the
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CEC’2013 competition on multimodal optimization, yielding several
valuable insights in connection to FQ3. To begin with, experiments
prove empirically that knowledge sharing among multimodal optimiza-
tion tasks is beneficial with respect to individual problem solving with
the same solver if the global optima of the problems at hand are related
to each other. This assumption falls far from real-world multimodal
problems, which usually have a very limited number of global solutions
and a higher quantity of local solutions: it is more likely in practice
that a global solution of one problem becomes aligned with the local
solution of another problem, leading to a potentially adverse exchange
of knowledge if a multitask solver is adopted.

Secondly, the performance of the proposed cellular evolutionary
multitasking solver is compared to that of other multitasking algo-
rithms, rendering a superior performance. However, and most im-
portantly, the performance of all multitasking methods considered in
the study is compared against single-objective optimization algorithms
suited for multimodal optimization that have ranked high in compe-
titions on multimodal optimization held so far. This last experiment
reveals that multitasking methods fail to perform competitively when
they are compared to approaches designed specifically for multimodal
optimization. In conclusion: advances in evolutionary multitasking are
of no practical impact if the exploitation of the synergies among
tasks is outgained by more efficient and outperforming single-task
solvers. Fair comparisons must be made against representative solvers
from the state-of-the-art of the optimization problems tackled by the
multitasking method.

Furthermore, experiments held over multitasking environments
should consider quantitative measures beyond fitness value statistics.
One of the reasons to opt for a joint optimization of several tasks at the
same time is to reduce the computational effort of the search for their
solutions. This implies either a lower number of function evaluations
needed for discovering solutions of a given level of quality or, alter-
natively, better solutions found under the same computational budget.
This requires a major rethink on how results in Evolutionary Multi-
tasking should be normalized and interpreted considering the amount
of resources (memory, function evaluations) consumed over the search,
not only in what refers to function evaluations, but also regarding the
additional computation burden imposed by estimating, transferring and
exploiting knowledge among tasks. Several preliminary ideas can be
outlined for this purpose, including a normalization of the results with
respect to the best solutions achieved by non-multitasking solvers for
the problems at hand, repeatedly randomizing the experimental cases
for them to comprise different mixtures of related and unrelated tasks,
or reporting on performance metrics that account for the overall num-
ber of function evaluations inside the multitask solver. All in all, the
community needs to differentiate between comparison studies among
different multitask optimization approaches and between the multitask
optimization proposal of the work at hand and competitive single-task
solvers, deriving quantitative and fair measures of performance (that
account for both optimality, convergence, and complexity) for both
types of comparison studies.

Finally, another concern with experimental methodologies followed
to date by the Evolutionary Multitasking community is the examination
of the performance of the developed multitask solvers in environments
composed by unrelated tasks. In accordance with our reflections in
Section 3.1, a large fraction of the works emerging lately in this
area still conduct experiments over benchmarks composed by synthetic
functions, in which synergies among tasks are forced to favor its ex-
ploitation during the multitask search. Besides the handcrafted nature
of these benchmarks (which we already discussed in FQ1), experi-
ments should be augmented with Evolutionary Multitasking scenarios
composed by unrelated and stochastically generated tasks, so that the
discussion is fed with performance results of the method when facing
favorable and unfavorable scenarios given the purpose the multitask
7

solver was designed for.
An exception to this statement is the aforementioned CEC’2022
benchmark on evolutionary multitasking for single-objective continu-
ous optimization [35]. In this benchmark one of the scenarios com-
prises tasks with no intersection between their global optima in the
unified space, nor are their optimal solutions similar to each other.
Interestingly, baseline results reported in [35] reveal that, when dealing
with the scenario consisting of totally unrelated tasks, the perfor-
mance of evolutionary multitasking (as represented by MFEA) degrades
with respect to a naive single-objective, non-multitasking evolution-
ary solver that is actually not competitive in the tasks included in
the scenario. The work on community detection over graphs using
coevolutionary multitask optimization reported in [44] also considers
multitasking scenarios composed by fully correlated and uncorrelated
problem instances. Furthermore, the performance of the proposed co-
evolutionary multitask solver is compared to single-objective, non-
multitasking versions of the same solver. Conclusions drawn from this
study shown that when tasks are related, the multitasking approach
emerges as the best alternative, while no difference is perceived among
the results of the coevolutionary multitask solver with respect to solving
the tasks in isolation when they are unrelated to each other.

Nevertheless, the work in [44] exemplifies the early stage of de-
velopment in which Evolutionary Multitask Optimization prevails:
no comparisons to other established community detection algorithms
(e.g., Louvain) were made, even though they have been proven to
perform competitively with respect to meta-heuristic algorithms used
for this task. Furthermore, the experimental setup consisted of net-
work instances of the same size (despite the important implications in
terms of solution encoding and knowledge sharing those differences in
genotypical length could entail), and only the quality of solutions was
examined in the discussed comparisons. Studies like [44] can be largely
improved if our reflections offered in FQ3 are followed.

For this reason, until there is an algorithm proven to effectively
pair related problems to be solved collectively, effectively, and univer-
sally, a large number of experiments comprising related and unrelated
problems selected fully at random should be conducted, including
a mandatory comparison against solving each optimization task by
competitive state-of-the-art methods. Should such a pairing approach
eventually exists, the computational resources required to pair up
related problems from a large pool of problems should be considered
as well. Above all, we again emphasize that in real-world scenarios,
optimization tasks with synergies and commonalities rarely occur (let
alone arising simultaneously). For this reason, the degradation of the
results in environments with unrelated tasks should be thoroughly eval-
uated, as it is the circumstance that the algorithm will most frequently
encounter in practice.

4. Prospective: Something else is needed in evolutionary multi-
task optimization

Transfer Optimization and Evolutionary Multitasking are at their
dawn. A growing corpus of contributions are published on a daily
basis, in top conferences and reputed journals [8,11,12]. This area has
garnered much interest from the community working on optimization,
blowing a fresh breeze of new developments and research directions
over the field.

Unfortunately, not all that glitters is gold: Evolutionary Multitask-
ing needs urgent, sincere, and reflexive thoughts about fundamental
questions that should be addressed for the prosperity of the area as
a whole. Solid grounds are still missing in terms of (i) the practical
applicability and competitiveness of the multitasking paradigm; (ii)
the novelty and reciprocity of algorithmic proposal with respect to
the state-of-the-art in optimization research; and (iii) the fairness and
rigor of the methodologies for performance assessment and comparison
used to date. As a result, a growing strand of literature blossoms every
day without convincing responses to the aforementioned issues. On a
prescriptive note, we advocate for several specific actions that could

bring light to the area:
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✔□ Informed evidence of the practical relevance of the multitasking
paradigm should be given (e.g., by providing examples of real-
world setups where the tasks at hand could co-occur, together with
the reasons why they might occur at the same time and why they
could feature synergistic relationships with each other). Rationale
offered in this regard should also specify the computational aspect
favored by the adoption of multitask optimization, be it a faster
convergence or a higher quality of the solutions discovered for each
problem under consideration.

✔□ More studies showcasing the usage of evolutionary multitasking in
real-world (not only realistic) applications published in fora and
journals specialized in the field at hand, leading to competitive
levels of performance and efficiency with respect to state-of-the-
art single-problem solvers. Such studies should conform to good
methodological practices to design, evaluate and implement meta-
heuristic algorithms in real-world optimization scenarios [29].

✔□ Prospective works should consider and satisfy all specifications,
requirements and constraints that one could encounter in a mul-
titasking setup, especially when it comes to information sharing
across tasks (e.g., the confidentiality of solutions when shared to
third-parties, or the obsolescence of the solution in time-varying
tasks).

✔□ Algorithmic contributions should focus on improvements that can
be attributed to the strategy for knowledge transfer and exploita-
tion, rather than to sophisticated/metaphor-based search operators
that do not relate at all to the presence of multiple, potentially
correlated optimization tasks.

✔□ Every newly proposed algorithm should be complemented with
a thorough analysis of possible algorithmic overlaps with other
preexisting areas of Evolutionary Computation and Swarm Intelli-
gence, thereby avoiding name-change research.

✔□ The added computational complexity of evolutionary multitask-
ing methods should be regarded as a mandatory aspect for the
evaluation of new proposals.

✔□ Comparisons must be done to other multitasking alternatives, but
also to competitive single-task solvers from the state-of-the-art
subject to the same computational budget. The fitness of solutions
delivered by multitask optimization should be normalized by that
of the best-known solutions achieved by single-task solvers for the
considered problems, so that the search efficiency of multitask
solvers is gauged with respect to the state-of-the-art performance
known for such problems.

In no way the intention of this short critique is to condemn the
achievements reached in Evolutionary Multitasking to date, nor do we
intend to divert efforts away from this research area. Diametrically,
we believe that Transfer Optimization and Evolutionary Multitasking
deserve proper research attention. However, efforts to be invested in
the future must guarantee that the right questions are addressed to
dispel the doubts and concerns exposed in this manuscript. Otherwise,
the field will maintain an uncontrolled growth without well-grounded
conceptual, methodological, and practical rationale, eventually leading
to a manifold of studies with little practical relevance.

A global understanding and assumption of these needs by the com-
munity requires an explicit manifesto that serves as a referential point
of consensus. This is indeed the ultimate purpose of this open letter.
Evolutionary Multitasking is still a young area facing a long road ahead
to develop itself and showcase its postulated benefits in real-world
applications, competing fairly against state-of-the-art single-instance
solvers. It is now the time to ensure that this road can be driven safely,
and sure of reaching a meaningful destination.

CRediT authorship contribution statement

Eneko Osaba: Conceptualization, Writing – original draft, Writing
– review & editing, Visualization, Supervision. Javier Del Ser: Concep-
tualization, Writing – original draft, Writing – review & editing, Visual-
ization, Supervision, Funding acquisition. Ponnuthurai N. Suganthan:
8

Conceptualization, Writing – review & editing, Supervision.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

The authors would like to thank the Basque Government, Spain for
its funding support through the ELKARTEK program and the consoli-
dated research group MATHMODE (ref. IT1456-22).

References

[1] Y. Zhang, Q. Yang, A survey on multi-task learning, IEEE Trans. Knowl. Data
Eng. (2021).

[2] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh,
T. Tuytelaars, A continual learning survey: Defying forgetting in classification
tasks, IEEE Trans. Pattern Anal. Mach. Intell. 44 (7) (2021) 3366–3385.

[3] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, Q. He, A
comprehensive survey on transfer learning, Proc. IEEE 109 (1) (2020) 43–76.

[4] M. Wang, W. Deng, Deep visual domain adaptation: A survey, Neurocomputing
312 (2018) 135–153.

[5] A. Gupta, Y.-S. Ong, L. Feng, Insights on transfer optimization: Because experi-
ence is the best teacher, IEEE Trans. Emerg. Top. Comput. Intell. 2 (1) (2017)
51–64.

[6] Y.-S. Ong, Towards evolutionary multitasking: a new paradigm in evolutionary
computation, in: Computational Intelligence, Cyber Security and Computational
Models, Springer, 2016, pp. 25–26.

[7] E. Osaba, J. Del Ser, A.D. Martinez, A. Hussaim, Evolutionary multitask opti-
mization: a methodological overview, challenges and future research directions,
Cogn. Comput. 14 (2022) 927–954.

[8] Q. Xu, N. Wang, L. Wang, W. Li, Q. Sun, Multi-task optimization and multi-task
evolutionary computation in the past five years: A brief review, Mathematics 9
(8) (2021) 864.

[9] Y.-S. Ong, A. Gupta, Evolutionary multitasking: a computer science view of
cognitive multitasking, Cogn. Comput. 8 (2) (2016) 125–142.

[10] A. Gupta, Y.-S. Ong, L. Feng, Multifactorial evolution: toward evolutionary
multitasking, IEEE Trans. Evol. Comput. 20 (3) (2015) 343–357.

[11] K.C. Tan, L. Feng, M. Jiang, Evolutionary transfer optimization-a new frontier
in evolutionary computation research, IEEE Comput. Intell. Mag. 16 (1) (2021)
22–33.

[12] T. Wei, S. Wang, J. Zhong, D. Liu, J. Zhang, A review on evolutionary multi-task
optimization: Trends and challenges, IEEE Trans. Evol. Comput. 26 (5) (2021)
941–960.

[13] K.K. Bali, Y.-S. Ong, A. Gupta, P.S. Tan, Multifactorial evolutionary algorithm
with online transfer parameter estimation: MFEA-II, IEEE Trans. Evol. Comput.
24 (1) (2019) 69–83.

[14] M.A. Potter, K.A.D. Jong, A cooperative coevolutionary approach to function
optimization, in: International Conference on Parallel Problem Solving from
Nature (PPSN), Springer, 1994, pp. 249–257.

[15] H. Ma, S. Shen, M. Yu, Z. Yang, M. Fei, H. Zhou, Multi-population techniques in
nature inspired optimization algorithms: A comprehensive survey, Swarm Evol,
Comput. 44 (2019) 365–387.

[16] M. Laumanns, L. Thiele, E. Zitzler, K. Deb, Archiving with guaranteed con-
vergence and diversity in multi-objective optimization, in: Proceedings of the
4th Annual Conference on Genetic and Evolutionary Computation, 2002, pp.
439–447.

[17] M. Hauschild, M. Pelikan, An introduction and survey of estimation of
distribution algorithms, Swarm Evol. Comput. 1 (3) (2011) 111–128.

[18] A.I. Forrester, A.J. Keane, Recent advances in surrogate-based optimization,
Progr. Aerospace Sci. 45 (1–3) (2009) 50–79.

[19] E. Cantú-Paz, Migration policies, selection pressure, and parallel evolutionary
algorithms, J. Heuristics 7 (4) (2001) 311–334.

[20] E. Alba, B. Dorronsoro, Cellular Genetic Algorithms, Vol. 42, Springer Science &
Business Media, 2009.

[21] H. Song, A.K. Qin, P.-W. Tsai, J.J. Liang, Multitasking multi-swarm optimization,
in: IEEE Congress on Evolutionary Computation, IEEE, 2019, pp. 1937–1944.

[22] Y. Chen, J. Zhong, L. Feng, J. Zhang, An adaptive archive-based evolutionary
framework for many-task optimization, IEEE Trans. Emerg. Top. Comput. Intell.

4 (3) (2019) 369–384.

http://refhub.elsevier.com/S2210-6502(22)00169-9/sb1
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb1
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb1
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb2
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb2
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb2
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb2
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb2
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb3
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb3
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb3
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb4
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb4
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb4
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb5
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb5
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb5
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb5
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb5
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb6
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb6
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb6
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb6
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb6
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb7
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb7
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb7
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb7
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb7
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb8
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb8
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb8
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb8
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb8
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb9
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb9
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb9
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb10
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb10
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb10
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb11
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb11
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb11
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb11
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb11
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb12
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb12
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb12
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb12
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb12
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb13
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb13
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb13
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb13
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb13
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb14
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb14
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb14
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb14
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb14
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb15
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb15
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb15
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb15
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb15
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb16
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb16
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb16
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb16
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb16
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb16
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb16
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb17
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb17
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb17
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb18
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb18
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb18
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb19
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb19
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb19
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb20
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb20
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb20
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb21
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb21
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb21
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb22
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb22
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb22
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb22
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb22


Swarm and Evolutionary Computation 75 (2022) 101203E. Osaba et al.
[23] E. Osaba, J. Del Ser, A.D. Martinez, J.L. Lobo, F. Herrera, AT-MFCGA: An
adaptive transfer-guided multifactorial cellular genetic algorithm for evolutionary
multitasking, Inform. Sci. 570 (2021) 577–598.

[24] A. Gupta, Y.-S. Ong, L. Feng, K.C. Tan, Multiobjective multifactorial optimization
in evolutionary multitasking, IEEE Trans. Cybern. 47 (7) (2016) 1652–1665.

[25] A. Gupta, L. Zhou, Y.-S. Ong, Z. Chen, Y. Hou, Half a dozen real-world
applications of evolutionary multitasking, and more, IEEE Comput. Intell. Mag.
17 (2) (2022) 49–66.

[26] L. Feng, Y. Huang, L. Zhou, J. Zhong, A. Gupta, K. Tang, K.C. Tan, Explicit evolu-
tionary multitasking for combinatorial optimization: A case study on capacitated
vehicle routing problem, IEEE Trans. Cybern. 51 (6) (2020) 3143–3156.

[27] R. Sagarna, Y.-S. Ong, Concurrently searching branches in software tests gener-
ation through multitask evolution, in: IEEE Symposium Series on Computational
Intelligence, IEEE, 2016, pp. 1–8.

[28] A.D. Martinez, J. Del Ser, E. Osaba, F. Herrera, Adaptive multi-factorial evo-
lutionary optimization for multi-task reinforcement learning, IEEE Trans. Evol.
Comput. 26 (2) (2021) 233–247.

[29] E. Osaba, E. Villar-Rodriguez, J. Del Ser, A.J. Nebro, D. Molina, A. LaTorre, P.N.
Suganthan, C.A.C. Coello, F. Herrera, A tutorial on the design, experimentation
and application of metaheuristic algorithms to real-world optimization problems,
Swarm Evol. Comput. (2021) 100888.

[30] H. Wang, L. Feng, Y. Jin, J. Doherty, Surrogate-assisted evolutionary multitasking
for expensive minimax optimization in multiple scenarios, IEEE Comput. Intell.
Mag. 16 (1) (2021) 34–48.

[31] P. Liao, C. Sun, G. Zhang, Y. Jin, Multi-surrogate multi-tasking optimization of
expensive problems, Knowl.-Based Syst. 205 (2020) 106262.

[32] A. Gupta, J. Mańdziuk, Y.-S. Ong, Evolutionary multitasking in bi-level
optimization, Complex Intell. Syst. 1 (1) (2015) 83–95.

[33] T. Rios, B. van Stein, T. Bäck, B. Sendhoff, S. Menzel, Multi-task shape
optimization using a 3d point cloud autoencoder as unified representation, IEEE
Trans. Evol. Comput. 26 (2) (2021) 206–217.
9

[34] K. Swersky, J. Snoek, R.P. Adams, Multi-task bayesian optimization, in: Advances
in Neural Information Processing Systems, Vol. 26, 2013, pp. 1–9.

[35] B. Da, Y.-S. Ong, L. Feng, A.K. Qin, A. Gupta, Z. Zhu, C.-K. Ting, K. Tang,
X. Yao, Evolutionary multitasking for single-objective continuous optimization:
Benchmark problems, performance metric, and baseline results, 2017, arXiv
preprint arXiv:1706.03470.

[36] K. Sörensen, Metaheuristics–the metaphor exposed, Int. Trans. Oper. Res. 22 (1)
(2015) 3–18.

[37] J. Del Ser, E. Osaba, D. Molina, X.-S. Yang, S. Salcedo-Sanz, D. Camacho, S. Das,
P.N. Suganthan, C.A.C. Coello, F. Herrera, Bio-inspired computation: Where we
stand and what’s next, Swarm Evol. Comput. 48 (2019) 220–250.

[38] D. Molina, J. Poyatos, J. Del Ser, S. García, A. Hussain, F. Herrera, Compre-
hensive taxonomies of nature-and bio-inspired optimization: Inspiration versus
algorithmic behavior, critical analysis recommendations, Cogn. Comput. 12 (5)
(2020) 897–939.

[39] T.T. Nguyen, S. Yang, J. Branke, Evolutionary dynamic optimization: A survey
of the state of the art, Swarm Evol. Comput. 6 (2012) 1–24.

[40] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, X. Yao, A survey of
evolutionary continuous dynamic optimization over two decades–Part A, IEEE
Trans. Evol. Comput. 25 (4) (2021) 609–629.

[41] J. Branke, Evolutionary Optimization in Dynamic Environments, Vol. 3, Springer
Science & Business Media, 2012.

[42] F. Zhang, Y. Mei, S. Nguyen, M. Zhang, K.C. Tan, Surrogate-assisted evolutionary
multitask genetic programming for dynamic flexible job shop scheduling, IEEE
Trans. Evol. Comput. 25 (4) (2021) 651–665.

[43] E. Osaba, J. Del Ser, A.D. Martinez, J.L. Lobo, A multifactorial cellular ge-
netic algorithm for multimodal multitask optimization, in: IEEE Congress on
Evolutionary Computation, IEEE, 2022, pp. 1–8.

[44] E. Osaba, E. Villar-Rodriguez, J. Del Ser, A coevolutionary variable neighborhood
search algorithm for discrete multitasking (COVNS): Application to community
detection over graphs, in: IEEE Symposium Series on Computational Intelligence,
IEEE, 2020, pp. 768–774.

http://refhub.elsevier.com/S2210-6502(22)00169-9/sb23
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb23
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb23
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb23
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb23
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb24
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb24
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb24
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb25
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb25
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb25
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb25
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb25
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb26
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb26
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb26
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb26
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb26
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb27
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb27
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb27
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb27
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb27
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb28
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb28
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb28
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb28
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb28
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb29
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb29
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb29
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb29
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb29
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb29
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb29
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb30
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb30
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb30
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb30
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb30
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb31
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb31
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb31
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb32
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb32
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb32
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb33
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb33
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb33
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb33
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb33
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb34
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb34
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb34
http://arxiv.org/abs/1706.03470
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb36
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb36
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb36
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb37
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb37
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb37
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb37
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb37
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb38
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb38
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb38
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb38
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb38
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb38
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb38
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb39
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb39
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb39
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb40
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb40
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb40
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb40
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb40
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb41
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb41
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb41
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb42
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb42
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb42
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb42
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb42
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb43
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb43
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb43
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb43
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb43
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb44
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb44
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb44
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb44
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb44
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb44
http://refhub.elsevier.com/S2210-6502(22)00169-9/sb44

	Evolutionary Multitask Optimization: Fundamental research questions, practices, and directions for the future
	Introduction
	Evolutionary Multitask Optimization: Concepts and Relationship to other Areas in Meta-heuristic Research
	Fundamental Issues in Evolutionary Multitask Optimization
	FQ1 (Why?): Is Multitask Optimization a concept that occurs in the real-world?
	FQ2 (What?): Are evolutionary algorithms used for multitask optimization coherent with the state-of-the-art in meta-heuristic research?
	FQ3 (How?): Are evolutionary multitasking approaches evaluated properly, with right metrics and in fair comparison benchmarks?

	Prospective: Something Else is Needed in Evolutionary Multitask Optimization
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


