
Incorporating Surprisingly Popular Algorithm and
Euclidean Distance-based Adaptive Topology into PSO

Xuan Wua,∗, Jizong Hana,∗, Di Wangb, Pengyue Gaoc, Quanlong Cuid, Liang
Chene, Yanchun Liangf, Han Huangg, Heow Pueh Leeh, Chunyan Miaob,i, You

Zhoua,j,∗∗, Chunguo Wua,∗∗

aKey Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of
Education, College of Computer Science and Technology, Jilin University, Changchun,

130012, China
bJoint NTU-UBC Research Centre of Excellence in Active Living for the Elderly, Nanyang

Technological University, 639798, Singapore
cState Key Laboratory of Superhard Materials and International Center for Computational

Method and Software, College of Physics, Jilin University, Changchun 130012, China
dCommercial Quality and Efficiency Department, Baidu Inc, Beijing, 100085, China

eDepartment of Computer Science, Shantou University, Shantou, 515063, China
fSchool of Computer Science, Zhuhai College of Science and Technology, Zhuhai, 519041,

China
gSchool of Software Engineering, the South China University of Technology, Guangzhou,

510641, China
hDepartment of Mechanical Engineering, National University of Singapore, 117575,

Singapore
iSchool of Computer Science and Engineering, Nanyang Technological University, 639798,

Singapore
jCollege of Software, Jilin University, Changchun, 130012, China

Abstract

While many Particle Swarm Optimization (PSO) algorithms only use fitness to

assess the performance of particles, in this work, we adopt Surprisingly Popu-

lar Algorithm (SPA) as a complementary metric in addition to fitness. Con-

sequently, particles that are not widely known also have the opportunity to

be selected as the learning exemplars. In addition, we propose a Euclidean

distance-based adaptive topology to cooperate with SPA, where each particle

only connects to k number of particles with the shortest Euclidean distance

during each iteration. We also introduce the adaptive topology into hetero-

geneous populations to better solve large-scale problems. Specifically, the ex-

ploration sub-population better preserves the diversity of the population while

∗The first two authors contribute equally
∗∗Corresponding author

Preprint submitted to Journal of LATEX Templates September 14, 2023

ar
X

iv
:2

10
8.

11
17

3v
3

 [
cs

.N
E

]
 1

3
Se

p
20

23

the exploitation sub-population achieves fast convergence. Therefore, large-

scale problems can be solved in a collaborative manner to elevate the overall

performance. To evaluate the performance of our method, we conduct exten-

sive experiments on various optimization problems, including three benchmark

suites and two real-world optimization problems. The results demonstrate that

our Euclidean distance-based adaptive topology outperforms the other widely

adopted topologies and further suggest that our method performs significantly

better than state-of-the-art PSO variants on small, medium, and large-scale

problems.

Keywords: Particle swarm optimization, surprisingly popular algorithm,

small-world network, heterogenous PSO, CEC benchmark suites.

1. Introduction

Many swarm intelligence algorithms and their variants have been proposed

to solve diverse types of research and practical problems, such as ordinary dif-

ferential equations optimization [1], hyperparameters optimization [2], neural

architecture search [3, 4], engineering design [5, 6], etc. Owing to its straight-

forward principle, usage of few parameters, and fast convergence rate, Particle

Swarm Optimization (PSO) [7] has been recognized as a popular method for

solving single-objective [8] and multi-objective optimization problems [9, 10].

To better avoid falling into trapping regions, many PSO variants aim to

improve on the parameter setting, learning strategy, hybridization with other

algorithms, and neighborhood topology [11]. In most PSO variants [12, 13, 14],

the selection of the learning exemplars only depends on the particle’s fitness.

However, if not designed carefully, as a measuring metric, the fitness might only

lead the population to a local trapping region, especially when the underlying

problem is complex and multi-objective. Therefore, many multi-metric meth-

ods have been used to yield better results [15, 16, 17]. In [18], both fitness

and improvement rate of fitness are regarded as the key metrics to assess the

performance of particles, because particles with a high improvement rate have

2

a high probability of finding a better solution region.

In fact, the selection method of the learning exemplars based on highly fit in-

dividuals implicitly adopts the idea of democratic voting, which is characterized

by the majority advantage and the independence of individual judgment [19].

Democratic voting, however, tends to emphasize the most popular opinion, not

necessarily the most correct one. In fact, the most popular opinion may often

be superficial and erroneous, while the correct answer may be not widely known

and shared [20, 21]. To overcome the limitations of democratic voting, Prelec

et al. [22] proposed a sociological decision-making method called Surprisingly

Popular Algorithm (SPA) (also known as surprisingly popular decision), which

could preserve the valuable knowledge of the minority.

We introduced SPA as a complementary metric in addition to fitness in

our previous work, named SPA-CatlePSO [23]. If certain particles with high

fitness values are connected by only a few particles in the topology, the other

particles may not learn from those highly fit ones. Adopting the novel metric

of SPA allows particles with high fitness values to share their own position

with other particles. Instead of improving PSO through modifications to the

parameter setting, learning strategy, hybridization with other algorithms, or

neighborhood topology, we used SPA to evaluate the performance of particles

in [23]. However, owing to the loss of individual information of particles, e.g.,

position and velocity, in constructing the topology, SPA-CatlePSO may fail to

provide insightful directional guidance for certain complex optimizing problems

(see Section 4).

Considering the inefficiency of the particle topology used in SPA-CatlePSO,

we propose an adaptive Euclidean distance-based topology based on the small-

world network [24] to cooperate with SPA for performance improvement. In a

small-world network, the probability of having a connection between two nodes

with shorter Euclidean distance is correspondingly higher and vice versa (see

Section 2.1 for more details). By adopting this topology, the influence of indi-

vidual particles is restricted to a local region, thus maintaining the diversity of

the population [25]. To preserve the connectivity of the small-world network in

3

our proposed topology, we stipulate that Particle i connects to particles closer

to it in the Euclidean space. In addition, to deal with the case where there is

no excellent learning exemplar in the neighborhood of certain particles, Particle

i also connects to particles with high fitness values with the correspondingly

higher probability. Furthermore, to better solve large-scale problems, the het-

erogeneity of particles is also ensured by dividing the population into exploration

and exploitation sub-populations. The exploration sub-population is expected

to explore unknown solution regions while the exploitation sub-population is

expected to fine-search in the currently optimal solution regions. In addition,

particles in the same sub-population are closer to each other, while particles in

different sub-population are farther apart. Our proposed approach is called Sur-

prisingly Popular Algorithm-based Adaptive Euclidean Distance-based Topol-

ogy Learning Particle Swarm Optimization (SpadePSO).

To assess the performance of SpadePSO, we conduct extensive experiments

upon a series of optimization problems, including the full CEC2014 benchmark

suite [26], the CEC2013 large-scale benchmark suite [27], the CEC2018 dy-

namic multi-objective optimization benchmark suite [28], the Spread Spectrum

Radar Polyphase (SSRP) code design problem [29], and the HIV model inference

problem [30]. The experimental results on the full CEC2014 benchmark suite

show that SpadePSO performs significantly better than PSO [7], TSLPSO [11],

HCLPSO [31], OLPSO [32], GL-PSO [33], XPSO [34], and DMO [35] measured

by the Wilcoxon signed ranks test. The experimental results on the CEC2013

large-scale benchmark suite demonstrate the superior performance of SpadePSO

on higher dimensionality. On the SSRP code design and the HIV model infer-

ence problems, SpadePSO performs significantly better than all the compared

PSO variants as well, in terms of fitness values, as validated by the one-tailed

t-test.

The key contributions of this work are as follows:

• To cooperate with SPA, we propose an adaptive Euclidean distance-based

topology inspired by small-world network connectivity and demonstrate

4

its effectiveness in achieving better performance by conducting extensive

experiments.

• We propose an algorithm involving two sub-populations with an adaptive

Euclidean distance-based topology. One sub-population better preserves

the diversity of the population while the other achieves fast convergence.

• We evaluate the performance of SpadePSO using three benchmark suites,

and two real-world optimization problems. The experimental results in-

dicate that SpadePSO performs significantly better than the conventional

and state-of-the-art PSO variants.

The remainder of this paper is organized as follows: Section 2 introduces

the related PSO variants and SPA. Section 3 describes the adaptive Euclidean

distance-based topology where each particle is connected to the neighboring par-

ticles. It also presents SpadePSO with two sub-populations. Section 4 discusses

the experimental results. Finally, Section 5 draws the conclusion and proposes

future work.

2. Related Work

In this section, we first introduce relevant PSO variants and then introduce

SPA, its applications, and how to model SPA in PSO.

2.1. PSO and its variants

In the classical PSO [7], Particle i is associated with two attributes, namely

velocity v and position x, whose update formulas are as follows:

vi,j = vi,j + c1r1,j

(
xpbest
i,j − xi,j

)
+ c2r2,j

(
xgbest
j − xi,j

)
, (1)

xi,j = xi,j + vi,j , (2)

where for the jth dimension, vi,j and xi,j respectively denote the velocity and

position of Particle i, r1,j and r2,j are two uniformly distributed random num-

bers independently generated within the [0, 1] range, xpbest
i,j denotes the histor-

5

ical best position of Particle i, xgbest
j denotes the historical best position in the

population, and c1 and c2 are the acceleration coefficients.

To achieve a better balance between exploration and exploitation, four as-

pects, namely, the parameter setting, learning strategy, hybridization with other

algorithms, and neighborhood topology, can be tweaked [11].

Parameter setting can control the convergence tendency of PSO to achieve

a better balance between exploration and exploitation. Classical parameter set-

tings such as the inertia weight [12] and the constriction coefficient [36] can be

set by conducting experiments. Instead of setting parameters through exper-

iments, recent studies adjusted parameter settings adaptively by assessing the

state of the population. For instance, Zhan et al. [37] divided the population

into convergence, exploitation, exploration, and jumping-out categories accord-

ing to the evolutionary state defined by the Euclidean distance between particles

and then adaptively adjusted the inertia weights and acceleration coefficients.

Liu [38] concluded that PSO is stable, if and only if the inertia weight w and

acceleration coefficients c1 and c2 satisfy the following condition:

(1− w)µ2 + (1 + w)σ2 < (1 + w)2(1− w), (3)

where w ∈ (−1, 1), µ = 1+w− (c1+ c2)/2, and σ2 = (c1
2+ c2

2)/12. If the real-

world application only requires a satisfactory level of accuracy, a stable PSO

often performs better than an unstable PSO [38].

Many learning strategies have been proposed to construct the learning ex-

emplars to replace xgbest and xpbest. For instance, Liang et al. [39] proposed the

Comprehensive Learning PSO (CLPSO) based on the Comprehensive Learning

Strategy (CLS). Specifically, each particle learns from its own xpbest with prob-

ability η and learns from others’ xpbest determined by the tournament selection

with probability (1− η), where η denotes the learning probability. The velocity

update formula of CLPSO is as follows:

vi,j = wvi,j + c1r1,j
(
xcl
i,j − xi,j

)
, (4)

where xcl
i,j denotes the learning exemplar constructed by CLS for the jth dimen-

6

sion of Particle i. By making the particle learn from others on each dimension

with probability (1− η), CLS helps particles escape from the local optima, en-

abling wider exploration. Zhan et al. [32] proposed the Orthogonal Learning

PSO (OLPSO), which is designed to search for the best combination of xgbest

and xpbest to construct the learning exemplars. Inspired by OLPSO, Xu et al.

[11] adopted xgbest and the combination of xpbest and xgbest as the learning

exemplars, independently.

Hybridization of PSO with other algorithms is another focus of prior studies.

For instance, Kiran et al. [13] combined xgbest and the best solution of Artificial

Bee Colony (ABC) to generate a new exemplar, named TheBest. Subsequently,

TheBest is given to the populations of PSO and ABC as xgbest and neighboring

food source for onlooker bees, respectively. Gong et al. [33] combined Genetic

Algorithm (GA) and PSO to construct the learning exemplars and proposed

GL-PSO. Yang et al. [14] introduced the idea of Differential Evolution (DE)

into PSO and generated particles randomly as the learning exemplars to solve

large-scale optimization problems.

Depending on diverse information-sharing mechanisms, topology affects the

balance between exploration and exploitation. As sub-populations can be as-

signed with different learning exemplars [40, 41, 42, 43], a large number of het-

erogeneous PSO variants were proposed. For instance, Lynn et al. [31] proposed

the Heterogeneous Comprehensive Learning PSO (HCLPSO), which comprises

the exploration as well as the exploitation sub-populations. The particles in

the exploration sub-population only learn from xcl in the same sub-population

according to Eq. (4); whereas the particles in the exploitation sub-population

learn from xcl in the whole population and xgbest as follows:

vi,j = wvi,j + c1r1,j
(
xcl
i,j − xi,j

)
+ c2r2,j

(
xgbest
j − xi,j

)
. (5)

Yang et al. [14] divided particles equally into four levels according to the de-

scending order of their fitness values. Specifically, level L4 learns from levels

L1,2,3, level L3 learns from levels L1,2, level L2 learns from level L1, and level

L1 remains constant. In addition, the small-world network [24] is also a popular

7

Regular network

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Small-world network Random network

Randomness

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Figure 1: An illustration of a small-world network [25].

topology of PSO. As shown in Figure 1, a small-world network is constructed

based on a regular ring topology network of n vertices. In a regular ring topol-

ogy, each vertex is connected to its k nearest neighbors by undirected edges.

To construct the small-world network, all edges of the regular ring topology

may be rewired. Specifically, the vertex at one end remains unchanged, while

the vertex at the other end is randomly selected with probability p. Given

that a small-world network could suppress the influence of individual particles

and maintain the diversity of the population [25], it has been widely used for

the connecting topologies in PSO [44, 45, 46]. Other than heterogeneous PSO

variants and small-world networks, Xia et al. [34] generated random permuted

order numbers for particles, and assign each particle’s left and right neighbors

according to the permuted order number.

Including heterogeneous PSO [11, 31], the topologies of many PSO variants

are constructed based on regular networks, which may make them easily fall

into local minima [47]. To counter this, we propose a Euclidean distance-based

topology based on small-world networks and introduce it into the heterogeneous

PSO. In addition, in most PSO variants, the choice of the learning exemplars can

be divided into four categories, xgbest, its own xpbest, xpbest of particles with

high fitness values, and random particles. The first three learning exemplars

are selected merely based on the evaluation of their fitness values, while the

randomly selected learning exemplars have no theoretical basis and are often

8

Philadelphia is the largest
city in Pennsylvania

Harrisburg is the capital
of Pennsylvania

RespondentsKnowledge Answer

Estimate of the
popularity

of their own
answer

Philadelphia is the capital of Pennsylvania, yes or no?

80%

20%

80%

20%

90%

10%

Knowledge

K
no

w
le

dg
e

SPA degree

80 / 90 = 0.89

20 / 10 = 2

Figure 2: An illustration of SPA. Each people gives the answer based on what he/she thinks

of and an estimate of the popularity of the answer. By computation, the importance of the

correct answer can be leveraged.

ineffective [11]. In this work, we use the surprisingly popular degree as an

additional metric to evaluate the performance of particles beyond the mere

evaluation of fitness.

2.2. SPA and its applications

To preserve the potentially correct knowledge that may not be widely known

among the overall population, SPA hinges on asking people two questions,

namely what they think the right answer is, and how popular they think the

answer will be. For example, as shown in Figure 2, when the question of whether

Philadelphia is the capital of Pennsylvania is asked, 80% of the respondents may

only recall that Philadelphia is a large, famous, historically significant city in

Pennsylvania, and hence conclude mistakenly that it is the capital of Pennsylva-

nia. The remaining 20% who vote “no” possess the correct knowledge that the

capital of Pennsylvania is Harrisburg. As illustrated in Figure 2, people with

different knowledge have different perceptions of the popularity of their answers.

People who know that Harrisburg is the capital of Pennsylvania expect the pop-

ularity of their answer to be low. However, the rest of the respondents believe

that most respondents have the same answer as they do. By computing the sur-

prisingly popular degree, i.e., the ratio of the actual turnout over the estimate

9

for the popularity of a given answer, the correct answer “no” is leveraged. In

this and many other cases, the answer having a higher surprisingly popular de-

gree is the correct answer. To better capture the integrity of the knowledge via

the perceived popularity of the corresponding knowledge, based on the inquiries

of popularity, SPA leverages the importance of the correct answer by assigning

high voting weights to more confident answers [22, 48].

As SPA [22] can identify the knowledge possessed by the minority by ask-

ing people two questions, it has been widely used in social science, computer

science, and other disciplines. For instance, Lee et al. [49] used SPA to make

more accurate predictions of the winners of National Football League (NFL)

games and found that SPA could predict better than many NFL media. To

solve classification problems, Luo et al. [50] asked each classifier to predict the

performance of the other classifiers and learn the feedback of the other classi-

fiers. As mentioned earlier, the original study proposing SPA [22] focused on

choosing the right answer from a list of the alternatives. Hosseini et al. [48]

extended SPA to give a ground-truth rank of the alternatives. Cui et al. [23]

introduced SPA into PSO to construct the learning exemplars xsbest to replace

xgbest.

As a fundamental work [23], it is necessary for us to review the technical

details (all notions used are presented in Table 1). Let V and E denote the

vertex set and the edge set of PSO with n particles, respectively. The directed

edge ei,j ∈ E means that Particle i knows the fitness value of Particle j, and is

able to learn from it, where i, j ∈ V . Thus, PSO can be represented by a di-

rected graph G (V ,E), named the knowledge transfer topology. The asymmetry

adjacency matrix A = (ai,j)n×n of G (V ,E) is defined as follows:

ai,j =

 1, ei,j ∈ E,

0, ei,j /∈ E,
i, j ∈ {1, 2, · · · , n} , (6)

where i and j may be set to the same index value.

Figure 3 illustrates the knowledge transfer topology and the asymmetry ad-

jacency matrix A using an illustrating PSO population of five particles. The

10

Table 1: Notations used in this paper

Notation Definition

G (V ,E) Graph G with vertex set V and edge set E

G (V ,Eexp) Graph G with vertex set V and edge set Eexp

G (V ,Etmp) Graph G with vertex set V and edge set Etmp

E Edge set corresponding to the distance information

Eexp Edge set randomly generated by particles with high fitness values

Etmp Edge set generated by E ∪Eexp

A Adjacency matrix corresponding to G (V ,E)

Aexp Adjacency matrix corresponding to G (V ,Eexp)

Atmp Adjacency matrix corresponding to G (V ,Etmp)

f(·) Fitness function

at Actual turnout

et Expected turnout

kp Knowledge prevalence degree

θ Surprisingly popular degree

nexp Number of experts

di,j Euclidean distance between particles i and j

T (nexp) Set of the top nexp particles according to the descending order of fitness values

ij Descending ranking order of the particle j according to its fitness value

p (ij) Connection probability in Eexp

k Out-degree of each particle in G (V ,E)

vk Increasing velocity of k

k0 Out-degree of each particle in G (V ,E) in the initial iteration

surprisingly popular degree is computed as follows: first, Particle i selects the

particle with the maximum fitness value from its first-order neighbors given by

the knowledge transfer topology G (V ,E), named the expected learning exem-

plar xj∗i
. The index j∗i is determined as follows:

j∗i = arg max
aij=1

{f (xj)} , i, j ∈ {1, 2, · · · , n}, (7)

where f(·) denotes the fitness function. The expected learning exemplars of all

particles J∗ are defined as follows:

J∗ = (j∗1 , j
∗
2 , · · · , j∗n) . (8)

For example, J∗ = (1, 3, 1, 3, 2) in Figure 3.

Multiple particles may select the same particle as the expected learning

exemplar, such as Particle 1 and Particle 3 (j∗1 = j∗3 = 1) as shown in Figure 3.

11

Particle Particle

Neighborhood 1

1

2

3

4

5

2 3 4 5

3_
5

3_
5

2_
5

2_
5

3_
5

2

3

4

2

2

Adjacency matrix

sbest

Knowledge prevalence

Knowledge

1 2 3 4 5

Neighbors

1 2

3

4 5

1 2 2 3 5 1 4 1 3 4 5 2 5

Vote vector 1 3 1 3 2

2_
5

2_
5

2_
5

2_
5

1_
5Actual turnout

Surprisingly popular degree (Self)

Surprisingly popular degree (Other)

 18___
125

 6__
25

 36___
625

 9__
25

107___
500

 19___
100

 589____
2500

 4__
25

3_
5

3_
5x = 9__

25

 9__
25

 6__
25

107___
500

 589____
2500

 4__
25+ + + +() / 5 = 0.241921Expected turnout 0.231922 0.142323

Surprisingly popular degree 1
2_
5 / 0.24192 = 1.653 2 0.8622 3 2.81 (max)

1 -() / (5 - 1) = 4__
25

 9__
25

Ranking

Fitness degree

3

1

4

2

5

A

Figure 3: An illustration on the computation of the surprisingly popular degree [23].

Therefore, it is necessary to count the total number of unique exemplars. Let

C denote the set of the expected learning exemplars, where C = unique(J∗).

Let M = |C|, so there are M number of unique particles being selected as the

expected learning exemplars. As shown in Figure 3, C = {1, 3, 2} and M = 3.

Next, the actual turnout atj is defined as the ratio of the votes of Particle j

over the population size, which is computed as follows:

atj =

 (
∑n

i=1 aij) /n, j ∈ C,

0, otherwise.
(9)

As shown in Figure 3, at1 = 2/5, at2 = 1/5, and at3 = 2/5.

To derive the surprisingly popular degree, each particle has to give the ex-

pected learning exemplar and the expected turnout of all the expected learning

exemplars. Then, the expected turnout is computed subsequently. For Particle

i, the expected turnout of all the expected learning exemplars can be divided

into two categories: the expected turnout of its own expected learning exemplar

12

and the turnout of the other expected learning exemplars. To obtain the ex-

pected turnout, the knowledge prevalence degree kpk of Particle k is computed

as follows:

kpk =
(∑n

i=1
aik

)
/n, k ∈ {1, 2, · · · , n}. (10)

As shown in Figure 3, kp1 = 3/5, kp2 = 3/5, kp3 = 2/5, kp4 = 2/5 and

kp5 = 3/5.

Subsequently, for Particle i, the expected turnout of j∗i is computed as fol-

lows:

αi,j∗i
=

∏
{k|k∈{1,2,··· ,n},aik=1}

kpk. (11)

As shown in Figure 3, α1,1 = 9/25.

Furthermore, for Particle i, because all the expected learning exemplars

except xj∗i
share the same popularity, i.e., 1 − αi,j∗i

, their expected turnout is

assumed to be equal and can be computed as follows:

αi,j =
(
1− αi,j∗i

)
/(n− 1), j ∈ C, j ̸= j∗i . (12)

As shown in Figure 3, α1,2 = α1,3 = 4/25.

Finally, the averaged summarization of popularity from all particles is taken

as the expected turnout etj of Particle j, defined as follows:

etj =
(∑n

i=1
αi,j

)
/n. (13)

As shown in Figure 3, et1 = 0.24, et2 = 0.23, and et3 = 0.14.

Hereby, the surprisingly popularity degree θj of Particle j is defined as fol-

lows:

θj = atj/etj . (14)

As shown in Figure 3, θ1 = 1.65, θ2 = 0.86, and θ3 = 2.81.

The learning exemplar xsbest, which is the particle with the maximal sur-

prisingly popular degree, is then identified as follows:

k∗ = argmax
j∈C

{θj} , (15)

xsbest = xk∗ . (16)

13

As shown in Figure 3, Particle 3 has the maximal surprisingly popular degree

of 2.81; therefore, the learning exemplar xsbest is identified as x3.

One of the most important components in SPA-CatlePSO [23] is the knowl-

edge transfer topology G (V ,E), where each particle selects the expected learn-

ing exemplar to guide the population searching direction. Therefore, topology

has considerable influence on the performance of SPA-CatlePSO. The topology

of SPA-CatlePSO is defined as follows. In the initial iteration, Particle i unidi-

rectionally connects to particles numbered from i+ 1 to i+ k, where k denotes

a predefined number of edges for each particle. During each iteration, each par-

ticle is connected to particles with high fitness values with the correspondingly

higher probability temporarily [23]. In addition, if Particle i selects xsbest as the

learning exemplar and the fitness value of Particle i is improved in the current

iteration, Particle i is connected to the particle corresponding to xsbest in the

subsequent iteration. However, the topology proposed in [23] cannot reflect the

positional information of particles. Therefore, in this work, we propose a new

knowledge transfer topology aiming for performance improvement by properly

modeling the positional information.

3. SpadePSO

In this section, we propose an adaptive Euclidean distance-based topology

inspired by the small-world networks, introduce SpadePSO, and analyze the

algorithm complexity and the diversity of sub-populations in SpadePSO.

3.1. Adaptive Euclidean distance-based topology

Watts and Strogatz [24] showed that information transmission through social

networks is affected by three characteristics of the topology structure: the num-

ber of clusters, the number of neighbors, and the average shortest path length

between two nodes. To propose an appropriate topology, we need to consider

the relative position information of particles in a multidimensional space, be-

cause the topology composed of particles with similar positions has excellent

clustering performance [24].

14

In this paper, we propose a new knowledge transfer topology G (V ,E). In

the initial iteration, the edge set E is constructed based on the Euclidean dis-

tance information. Specifically, each particle connects to the first k particles

having the shortest Euclidean distance and can know the fitness values of these

k particles, i.e., the out-degree value [51] of each particle is k. The Euclidean

distance is defined as follows:

di,j =

√∑D

l=1
(xi,l − xj,l)2, (17)

where di,j denotes the Euclidean distance between Particles i and j. Note that

for Particle i, the first k particles include Particle i itself, because the distance

from Particle i to itself is always 0, i.e., always the shortest. In addition, the

in-degree value [51] of Particle i represents how many particles can know its

fitness value and is determined by the Euclidean distance between Particle i

and other particles. The closer Particle i is to multiple particles, the higher its

in-degree value, because it connects to more particles.

The process of small-world network construction involves the risk of breaking

the network connectivity, generating isolated clusters, or accidentally deleting

the key connection [52]. To mitigate these concerns, Newman and Watts [25]

proposed the NW small-world network, where the number of edges increases

rather than remains unchanged. To increase the number of edges, the out-degree

of each particle k in G (V ,E) increases linearly for the successive iteration, with

the updating formula given as follows:

k =

⌊
k0 +

(
vk · t

T

)⌋
, (18)

where k0 denotes the predefined out-degree value in the initial iteration, vk

denotes a predefined parameter indicating the increasing velocity of out-degree

k, t and T denote the current and the total iteration numbers, respectively, and

T is predefined.

As shown in Figure 4, to further understand the definitions of out-degree

and in-degree, we illustrate the connection relationships between particles. In

Figure 4, k is set to four (the graph has self-loops wherein each particle has a

15

Exploration

Exploitation

1

2

3

4

5

6

7
8

Fitness valueParticle out-degree valuein-degree value
1

3

2

4
5

6

7
8

7

2

4

2
4

3

6
4

4

4

4

4
4

4

4
4

8

10

5

9
7

7

3
9

Figure 4: An illustration of connection relationships between particles. The population has 8

particles, and all particles have the same out-degree value, but have different in-degree values.

self-connected edge not shown in the figure for brevity), the exploration sub-

population size is set to three, the exploitation sub-population size is set to five,

and the dimension is set to two (heterogeneous populations are described in

the following subsection). Therefore, each particle connects to four neighboring

particles (inclusive of itself) with the shortest Euclidean distance. As mentioned

earlier, all particles have the same out-degree value but different in-degree val-

ues. As shown in Figure 4, it is obvious that Particle 1, which resides in the

center of the graph, has the highest in-degree value of seven as it is connected

by Particles 1, 2, 3, 4, 5, 7, and 8. Particles 2 and 4, located at the boundary

of the current search space, have the smallest in-degree value of 2 as they are

only connected by each other.

Besides G (V ,E), we use the temporary directed graph G (V ,Eexp) to deal

with the case where there is no excellent learning exemplar in the neighborhood

of certain particles. During each iteration, G (V ,Eexp) is generated by nexp

number of particles having the highest fitness values, called experts, with a

certain probability p (ij) obtained as follows:

16

p (ij) =

 n− ij

nexp−1

/ n

nexp

 , ij ∈ T (nexp), (19)

where (·) denotes the combinatorial function, ij denotes the descending rank-

ing order, and T (nexp) denotes the set of experts. The generating rule of the

adjacency matrix Aexp = (bi,j)n×n of G (V ,Eexp) is obtained as follows:

bi,j =

 1, if j ∈ T (nexp) and rand() < p (ij) ,

0, otherwise,
(20)

where j ∈ {1, 2, · · · , n}, and rand() produces a uniformly distributed random

number generated within the [0, 1] range. As shown in Figure 4, there is no

excellent learning exemplar in Particle 2’s first-order neighbors. With the help

of G (V ,Eexp), Particle 2 may connect to Particle 7. In each iteration, the

joint-directed graph G (V ,Etmp), i.e., Gt (V ,E ∪Eexp), is used to construct

the learning exemplars in SpadePSO. Specifically, the adjacency matrix Atmp =

(ti,j)n×n of G (V ,Etmp) is obtained as follows:

ti,j =

 1, if ai,j = 1 or bi,j = 1,

0, otherwise,
(21)

where i, j ∈ {1, 2, · · · , n}. Through this construction of Atmp, all particles can

identify their excellent learning exemplars, which are generated according to

either A or Aexp. When ai,j = 1, A is used, and vice versa.

As shown in Figure 5, we illustrate the update process of Gt (V ,E) and

the generation process of Gt (V ,Eexp) and Gt (V ,Etmp). To ensure that each

particle is always connected to particles having the shortest Euclidean distance,

we update Gt (V ,E) during each iteration. In addition, as mentioned earlier,

Gt (V ,Eexp) and Gt (V ,Etmp) are generated to avoid the situation where there

is no excellent learning exemplar in the neighborhood of certain particles. As-

suming k in Gt (V ,E) is set to 3 in the tth iteration, Particle i connects to two

particles with the shortest Euclidean distance and connects to itself. Assuming

k increases by 1 according to Eq. (19), Particle i connects to three particles

17

(1) Step 1: Generate Eexp

(2) Step 2: Generate Etmp

Gt+1(V, Etmp)

Gt+1(V, EUEtmp)

t+1

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Gt(V, E)

(3) Step 3: Update E 1

2

3

4

5
6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Gt(V, Eexp)

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Gt(V, Etmp)

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Gt+1(V, E)

k Increase by 1

Figure 5: An illustration of the update process of Gt (V ,E) and the generation process of

Gt (V ,Eexp) and Gt (V ,Etmp).

with the shortest Euclidean distance and connects to itself for the successive

iteration, as shown in the central part of Figure 5.

3.2. Heterogeneous populations

To better solve large-scale problems, we propose SpadePSO, which comprises

two heterogeneous sub-populations. The velocity of particles in the exploration

sub-population is updated according to Eq. (4). Besides xcl, xsbest is also

regarded as the learning exemplar in the exploitation sub-population. The ve-

locity update formula of particles in the exploitation sub-population is then

given as follows:

vi,j = wvi,j + c1r1,j
(
xcl
i,j − xi,j

)
+ c2r2,j

(
xsbest
j − xi,j

)
, (22)

where xsbest
j denotes the learning exemplar constructed by SPA on the jth

18

Algorithm 1 SpadePSO algorithm

1: Randomly initialize x and v of all particles

2: Evaluate the fitness value of x

3: Construct learning exemplar xcl according to CLS

4: Construct the knowledge transfer topology G (V ,E) (see Eq. (17))

5: Construct learning exemplar xsbest according to G (V ,E) (see Eqs. (6)∼

(16))

6: while (FEs ≤ Max FEs) do

7: Update v of particles in the exploration sub-population (see Eq. (4))

8: Update v of particles in the exploitation sub-population (see Eq. (22))

9: Update x of all particles (see Eq. (2))

10: Update the learning exemplar xcl according to CLS

11: Update the knowledge transfer topology G (V ,E) (see Eq. (17))

12: Construct graph G (V ,Eexp) (see Eq. (20))

13: UniteG (V ,E) andG (V ,Etmp) to constructG (V ,Etmp) (see Eq. (21))

14: Construct the learning exemplar xsbest according to G (V ,Etmp) (see

Eqs. (6) ∼ (16))

15: end while

dimension, which is used to guide the exploitation sub-population searching

direction.

In the exploration sub-population, particles learn only from xpbest of its own

and the other particles in the same sub-population. Hence, there is no accumula-

tion of population common-learning experience regarding the searching direction

in the exploration sub-population. Therefore, the exploration sub-population

generally has a wider exploration ability and high population diversity [11, 31].

As G (V ,Etmp) covers the entire population and xsbest is determined by the en-

tire population, particles in the exploitation sub-population can learn from the

best experience among the entire population. Therefore, the exploitation sub-

population generally has a finer exploitation ability [11, 31]. The pseudocode

of SpadePSO is presented in Algorithm 1, where FEs and Max FEs denote the

19

current and total number of fitness function evaluations predefined, respectively.

The source code of SpadePSO is available online1.

3.3. Algorithm complexity analysis

For PSO, the computation cost is determined by the initialization, evalua-

tion, velocity update, and position update costs, each of which has a complexity

of O(nD), where n and D denote the population size and dimension, respec-

tively. Compared with PSO, SpadePSO needs to additionally construct the

learning exemplars xcl and xsbest. For each particle in the exploration and

exploitation sub-populations, its own xcl is constructed. Therefore, the com-

plexity of constructing xcl is O(n1D) + O(n2D), where n1 and n2 denote the

exploration and exploitation sub-populations size, respectively. Conversely, only

particles in the exploitation sub-population need to construct xsbest. To con-

struct xsbest, a series of formulae having with the complexity O(n2) are used

(see Eqs. (6)∼ (16)). Therefore, the overall complexity of SpadePSO is O(nD),

which is the same as that of PSO.

3.4. Population diversity in SpadePSO

Population diversity can be regarded as a metric to measure the balance

between exploration and exploitation [53]. In this subsection, we compare the

diversities of the exploration sub-population, the exploitation sub-population,

and the entire population of SpadePSO. The population diversity Div is com-

puted as follows:

Div =

(∑n

i=1

√∑D

j=1
(xi,j − xj)

2

)
/n, (23)

xj = (
∑n

i=1
xi,j)/n, (24)

where xj denotes the center position of the population on the jth dimension.

1URL: https://github.com/wuuu110/SpadePSO

20

0 1000 2000 3000 4000 5000 6000 7000 8000

Iterations

0

50

100

150

200

250

300

350

D
iv

er
si

ty

F1

Whole population
Exploration sub-population
Exploitation sub-population

(a) F1 function

0 1000 2000 3000 4000 5000 6000 7000 8000

Iterations

0

50

100

150

200

250

300

350

D
iv

er
si

ty

F4

Whole population
Exploration sub-population
Exploitation sub-population

(b) F4 function

0 1000 2000 3000 4000 5000 6000 7000 8000

Iterations

0

50

100

150

200

250

300

350

400

D
iv

er
si

ty

F17

Whole population
Exploration sub-population
Exploitation sub-population

(c) F17 function

0 1000 2000 3000 4000 5000 6000 7000 8000

Iterations

0

50

100

150

200

250

300

350

D
iv

er
si

ty

F23

Whole population
Exploration sub-population
Exploitation sub-population

(d) F23 function

Figure 6: Diversity comparisons between the exploration sub-population, the exploitation

sub-population, and the entire population.

To show the diversity of SpadePSO quantitatively, we select the CEC2014

benchmark suite, which comprises 30 test functions divided into four groups,

namely three unimodal functions (F1 ∼ F3), thirteen simple multimodal func-

tions (F4 ∼ F16), six hybrid functions (F17 ∼ F22), and eight composite func-

tions combing multiple test problems into a complex landscape (F23 ∼ F30).

The full CEC2014 benchmark suite is designed with a high difficulty level, be-

cause it involves composing test problems by extracting features dimension-wise

from several problems, graded level of linkages, and rotated trap problems. In

addition, the search range of the CEC2014 benchmark suite is [−100, 100]D.

21

Table 2: Difference between the exploration and the exploitation sub-populations

Stat.

Function
F1 F4 F17 F23

Mean 161.05 55.92 143.17 56.29

Max 197.30 174.79 195.70 142.68

Min 27.00 11.96 19.39 6.88

Std 32.17 31.14 26.30 34.63

In Figure 6, we present the diversity curves of F1, F4, F17, and F23 (the first

function from each group), where the dimension of the search space, population

size, and maximum number of fitness function evaluations are set to 30, 40,

and 7500, respectively. As presented in Table 2, we list the minimum difference

(Min), maximum difference (Max), averaged difference (Mean), and standard

deviation (Std) between the exploration and the exploitation sub-populations

across the entire optimization process. The results show that the exploration

sub-population maintains the highest diversity consistently, which may allow

SpadePSO to escape from the local trapping regions. Furthermore, the exploita-

tion sub-population maintains the smallest diversity, which can fine-search in

the currently optimal solution regions. As shown, the heterogeneous population

design achieves our original intention.

4. Performance Evaluations of SpadePSO with Comparisons

In this section, we first introduce the experimental setups, and then present

the determination of parameter values in SpadePSO. Subsequently, we evalu-

ate the influence of various topologies on SpadePSO. Finally, we present the

experimental results on solving the full CEC2014 benchmark suite, CEC2013

large-scale benchmark suite, CEC2018 dynamic multi-objective optimization

problem benchmark suite and two real-world optimization problems.

4.1. Experimental setups

For all the experiments reported in this paper, we set the population size

consistently to 40, the maximum value of velocity vmax to 10% of the search

22

Table 3: Parameters settings of the benchmarking algorithms

Algorithm Parameters settings

1. PSO (1995) [7] w : 0.9∼0.4, c1 = c2 = 2

2. CLPSO (2006) [39] w : 0.9∼0.4, c1 = c2 = 1, c = 0.5

3. OLPSO (2011) [32] w : 0.9∼0.4, c1 = c2 = 1, c = 0.5

4. L-SHADE (2014) [55] rN
init

= 18, rarc = 2.6, p = 0.11, H = 6

5. HCLPSO (2015) [31]
w : 0.99∼0.2, c1 : 2.5∼0.5, c2 : 0.5∼2.5,

c : 3∼1.5

6. GL-PSO (2016) [33]
w = 0.7298, c1 = c2 = 1.49618, CR = 0.5,

I = 4, δ = 0.2, Fi ∈ [− 1,−0.4] ∪ [0.4, 0.1]

7. TSLPSO (2019) [11] w : 0.9∼0.4, c1 = c2 = 1.5, c3 : 0.5∼2.5

8. SPA-CatlePSO (2019) [23]
w = 0.99∼0.2, c1 = 2.5∼0.5, c2 = 0.5∼2.5

c : 3∼1.5, k = 8, vk = 8, nexp = 3

9. XPSO (2020) [34] η = 0.5, Stagmax = 5, p=0.2

10. CC-RDG3 (2019) [56] ϵn = 50, ϵs = 100,

11. DMO (2022) [35] babysitters=3, alpha group = scouts = 37, alpha female = 2

12. SpadePSO (ours)
w = 0.99∼0.2, c1 = 2.5∼0.5, c2 = 0.5∼2.5

c : 3∼1.5, k0 = 2, vk = 6, nexp = 5

range, the number of runs per function to 30, and the maximum number of fit-

ness function evaluations per run to 10000·D following the settings used in [54].

All experiments run on the same computer with an Intel Core i7 @ 2.90 GHz

CPU and 16G memory. The parameter settings of all benchmarking algorithms

are listed in Table 3.

4.2. Determination of parameter values in SpadePSO

Other than the common PSO parameters, the performance of SpadePSO is

also determined by three dedicated parameters, namely (i) the out-degree k0

(see Eq. (18)), (ii) the increasing velocity of out-degree vk (see Eq. (18)), and

(iii) the number of expert particles nexp (see Eq. (19)). If the values of k0,

vk, and nexp are too large, the topology would be akin to a fully connected

structure, which may result in the search getting trapped in the local minima

regions. Conversely, if the values are too small, the topology would be akin

to a ring structure, which does not easily converge [57]. The common PSO

parameters, including the population size of two sub-populations, inertia weight

w, and acceleration coefficients c, c1, and c2, are adopted from those used in

HCLPSO [31] for fair comparisons.

23

Table 4: Determination of parameter values in SpadePSO (the lower the Ave. rank value, the

better the performance of SpadePSO)

Evaluation of k0 + vk without G (V ,Eexp)

k0 + vk 4 8 12 16 20

Ave. rank 3.19 2.66 2.84 3.16 3.16

Final rank 5 1 2 3 4

Evaluation of k0 and vk without G (V ,Eexp)

k0 1 2 3 4 5 6 7 8

vk 7 6 5 4 3 2 1 0

Ave. rank 4.13 3.88 4.84 4.49 4.59 5.19 5.22 5.22

Final rank 3 1 6 4 5 7 8 2

Evaluation of nexp with k0 = 2, vk = 6

nexp 2 3 4 5 6

Ave. rank 3.28 2.97 3.06 2.75 2.94

Final rank 5 3 4 1 2

The optimization problem is adopted from the first sixteen functions of the

CEC2014 benchmark suite (see Section 3.4 for more details) [26], whose D is

30. We adopt the same parameter value determination method as used in [23],

i.e., we sequentially determine the out-degree value, i.e., k0 + vk, the values of

k0 and vk, and the value of nexp by trial-and-error. As presented in Table 4,

the results are ranked based on the mean of fitness values. According to the

evaluation of k0 + vk, we set k0 + vk to 8 to further determine the values of k0

and vk. According to the experimental results for various values of k0 and vk,

we set k0 and vk to 2 and 6, respectively. Finally, according to the evaluation

of nexp, we set nexp to 5. These parameter values are used for all subsequent

experiments.

4.3. Influence of various topologies on SpadePSO

An appropriate topology may improve the performance of SpadePSO. To

evaluate our proposed Euclidean distance-based topology, in Table 5, we com-

pare the performance of SpadePSO with three different topologies on the full

CEC2014 benchmark suite, with D = 10, 30, 50, and 100.

The first topology is the one adopted by SpadePSO (see Section 3.1). In

24

Table 5: Wilcoxon signed ranks test of three different topologies of SPA

First topology (SpadePSO)

VS. Difference

Dimension
10D 30D 50D 100D

+ 13 15 17 19

- 15 14 12 10

≈ 2 1 1 1
Second topology

p 0.75 0.56 0.36 0.21

+ 13 15 16 17

- 15 14 13 11

≈ 2 1 1 2
Third topology

p 0.82 0.74 0.84 0.08

the initial iteration, the connections between particles are merely determined

by the Euclidean distance. During each subsequent iteration, other than the

Euclidean distance information, particles with high fitness values are also used

to construct the contemporary topology. The second topology is the one used

in SPA-CatlePSO [23], i.e., Particle i is unidirectionally connected to particles

numbered from i + 1 to i + k in the initial iteration. During each subsequent

iteration, particles with high fitness values are used to construct the contempo-

rary topology. In addition, if Particle i selects xsbest as the learning exemplar

and its fitness value is improved in the current iteration, Particle i is connected

to the particle corresponding to xsbest in the subsequent iteration. In the third

topology, we combine the first and second topologies such that the connections

between particles are determined by the Euclidean distance in the initial itera-

tion. During the iteration, the topology is constructed in the same way as the

first topology. Furthermore, the particle corresponding to xsbest is connected in

the same way as the second topology.

To better quantitatively assess the experimental results, we adopt the well-

known, widely-used nonparametric statistics analysis Wilcoxon signed ranks

test [58]. In Table 5, the symbols +, -, and ≈ indicate that the first topol-

ogy performs significantly better (+), significantly worse (-), or not significantly

different (≈) compared to another topology. An algorithm can be considered

significantly better than another if p ≤ 0.1. As presented in Table 5, the first

25

Table 6: Wilcoxon signed ranks test of the CEC2014 benchmark suite

SpadePSO (ours)

VS. Difference

Dimension
10D 30D 50D 100D

SpadePSO (ours)

VS. Difference

Dimension
10D 30D 50D 100D

+ 29 23 28 28 + 29 24 26 24

- 1 7 2 2 - 1 6 4 6

≈ 0 0 0 0 ≈ 0 0 0 0
PSO (1995)

p-value 0.00 0.01 0.00 0.00

GL-PSO (2016)

p-value 0.00 0.00 0.00 0.00

+ 19 15 15 17 + 17 19 15 18

- 11 15 14 13 - 13 11 14 12

≈ 0 0 1 0 ≈ 0 0 1 0
CLPSO (2006)

p-value 0.08 0.88 0.58 0.88

TSLPSO (2019)

p-value 0.73 0.19 0.19 0.09

+ 25 19 22 20 + 13 15 17 19

- 5 11 7 10 - 15 14 12 10

≈ 0 0 1 0 ≈ 2 1 1 1
OLPSO (2011)

p-value 0.00 0.01 0.00 0.02

SPA-CatlePSO (2019)

p-value 0.75 0.56 0.36 0.21

+ 4 1 2 4 + 25 26 27 25

- 25 28 24 26 - 4 4 3 5

≈ 1 1 4 0 ≈ 1 0 0 0
L-SHADE (2014)

p-value 0.00 0.00 0.00 0.00

XPSO(2020)

p-value 0.00 0.00 0.00 0.00

+ 25 20 21 19 + 29 22 22 27

- 5 10 8 10 - 1 8 8 3

≈ 0 0 1 1 ≈ 0 0 0 0
HCLPSO (2015)

p-value 0.01 0.32 0.05 0.27

DMO (2022)

p-value 0.00 0.00 0.01 0.00

topology performs best on 30, 50, and 100 dimensions but worst on 10 dimen-

sions. Among the three topologies being evaluated, SpadePSO performs best

on higher dimensionality.

4.4. Experimental results on CEC2014 benchmark suite

To assess the performance of SpadePSO, we conduct experiments on the full

CEC2014 benchmark suite, with D = 10, 30, 50, and 100. Table 6 presents

the Wilcoxon signed ranks test of SpadePSO and all benchmarking algorithms,

where the results are compared based on the mean of fitness values. The Best,

Mean, and Std of fitness values of SpadePSO are presented in Appendix A.

In this subsection, the benchmarking algorithms selected for performance

comparison include PSO [7], TSLPSO [11], SPA-CatlePSO [23], HCLPSO [31],

OLPSO [32], GL-PSO [33], XPSO [34], DMO [35], CLPSO [39], and L-SHADE

[55]. HCLPSO, TSLPSO, and XPSO are algorithms that improve the neigh-

borhood topology of the population. HCLPSO and TSLPSO are heterogeneous

PSO algorithms, with two separate sub-populations responsible for exploration

26

and exploitation, respectively. In XPSO, particles learn locally and globally

from populations’ historical best position and dynamically update the topology.

CLPSO uses CLS, which leads to a wider exploration. OLPSO searches for

the best combination of xgbest and xpbest to construct the learning exemplars.

L-SHADE was the best algorithm of the CEC2014 benchmark suite [11]. In L-

SHADE, Linear Population Size Reduction is adopted, which reduces the pop-

ulation size linearly during the iteration to better balance between exploration

and exploitation. GL-PSO combines GA and PSO to construct the learning

exemplars. DMO is a novel metaheuristic algorithm consisting of three social

groups, which mimics the foraging behavior of the dwarf mongoose.

As presented in Table 6, SpadePSO performs significantly better than PSO,

OLPSO, GL-PSO, XPSO, and DMO for 10, 30, 50, and 100 dimensions. Al-

though the difference between SpadePSO and HCLPSO is not statistically sig-

nificant, SpadePSO shows better results than HCLPSO on most of the test func-

tions for 30 and 100 dimensions. SpadePSO has an exploitation sub-population

that leads to finer exploitation. This may explain why SpadePSO performs bet-

ter than CLPSO for 10 dimensions with a p-value of 0.08. With the increase

of dimensions, SpadePSO performs better than TSLPSO and SPA-CatlePSO,

which is further confirmed in the following subsection on the CEC2013 large-

scale benchmark suite. As the Linear Population Size Reduction is adopted

in L-SHADE, the initial population size of L-SHADE is much larger than that

of PSO variants, i.e., 180, 540, 900, and 1800 on the 10, 30, 50, and 100 di-

mensions, respectively. This may explain why L-SHADE performs significantly

better than all PSO variants.

In Figure 7, we present the convergence curves of F1, F4, F17, and F23 (the

first function from each group) for 30 dimensions, to investigate why SpadePSO

performs better than the other PSO variants. The horizontal axis represents the

number of fitness evaluations, and the vertical axis represents the fitness value.

For the F1 function, it can be clearly seen in Figure 7 that OLPSO, GLPSO, and

TSLPSO fall into the local minima. In addition, it seems difficult for PSO and

DMO to converge quickly, after 1E+5 fitness function evaluations. For the F4

27

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

0 50000 100000 150000 200000 250000 300000

F1

(a) F1 function

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

0 50000 100000 150000 200000 250000 300000

F4

(b) F4 function

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

0 50000 100000 150000 200000 250000 300000

F17

(c) F17 function

1.00E+02

1.00E+03

1.00E+04

0 50000 100000 150000 200000 250000 300000

F23

(d) F23 function
1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

0 50000 100000 150000 200000 250000 300000

F1

PSO CLPSO OLPSO HCLPSO GL-PSO TSLPSO SPA-CatlePSO XPSO DMO SpadePSO

(e) legend

Figure 7: Convergence curves of different algorithms.

function, all algorithms fall into the local minima for a long time. After 2.5E+5

fitness function evaluations, only SpadePSO, HCLPSO, and DMO escape from

the local minima. In the end, SpadePSO finds a much better solution than

the other algorithms do. For the F17 function, many algorithms fall into the

local minima as with the F1 function. For the F23 function, all algorithms find

the global optimal solution. As shown in Figure 7, the convergence curves well

demonstrate that SpadePSO is better at escaping local minima and producing

better solutions.

4.5. Experimental results on CEC2013 large-scale benchmark suite

To assess the performance of SpadePSO on higher-dimensionality problems,

we conduct experiments on the CEC2013 large-scale benchmark suite, whose

D is 905 (F13, F14) or 1000 (F1 ∼ F12, F15). The benchmark suite consists

of fifteen test functions divided into four groups, three fully-separable functions

28

(F1 ∼ F3), eight partially-separable functions (F4 ∼ F11), three overlapping

functions (F12 ∼ F14), and a non-separable function (F15). In the field of con-

tinuous optimization, interaction between variables is commonly referred to as

non-separability. Non-separability is one of the reasons why large-scale opti-

mization problems are challenging for many algorithms. In addition, the over-

lapping implication is that the subcomponent functions share certain decision

variables. Similarly, the overlapping problem is also partially-separable.

In this subsection, other than PSO and its variants, we select CC-RDG3

[56] as the benchmarking algorithm for performance comparison. CC-RDG3

was designed for large-scale problems with overlapping subcomponents and is

also the best algorithm of the CEC2013 large-scale benchmark suite. To solve

overlapping problems, CC-RDG3 modifies the Recursive Differential Grouping

(RDG) method and subdivides a large-scale problem into a set of smaller sub-

problems. We compare the Mean and Std of fitness values of all algorithms

for comparison in Table 7. We also present the Wilcoxon signed ranks test of

SpadePSO and all benchmarking algorithms in Table 8.

As presented in Table 7, on fully-separable functions (F1 ∼ F3), HCLPSO,

TSLPSO, Spa-CatlePSO, and SpadePSO perform better than the other PSO

variants. It is worth noting that they all adopt a heterogeneous population

topology. This may be the direction to solving large-scale fully-separable func-

tions. For partially-separable (F4 ∼ F11) and overlapping problems (F12 ∼

F14), TSLPSO performs worse than HCLPSO, Spa-CatlePSO and SpadePSO

on many functions. On the non-separable function (F15), SpadePSO performs

significantly better than all PSO variants, including HCLPSO, TSLPSO, and

Spa-CatlePSO. It is thus shown that SpadePSO is better suited to solve for

non-separable functions than other PSO variants. As presented in Table 8,

SpadePSO performs significantly better than PSO, CLPSO, OLPSO, GL-PSO,

TSLPSO, XPSO, and DMO. CC-RDG3 is specially designed to solve large-scale

problems by breaking the linkage among variables shared by multiple subcom-

ponents. It is extremely encouraging to see that the performance of SpadePSO

is not significantly different from that of CC-RDG3 (p=0.23).

29

Table 7: Comparison of SpadePSO with other algorithms on the CEC2013 large-scale bench-

mark suite

Function
Stat.

Algorithm PSO

(1995)

CLPSO

(2006)

OLPSO

(2011)

HCLPSO

(2015)

GL-PSO

(2016)

TSLPSO

(2019)

SPA-CatlePSO

(2019)

XPSO

(2020)

CC-RDG3

(2019)

DMO

(2022)

SpadePSO

(ours)

Mean 5.79E+08 4.17E+10 0.00E+00 0.00E+00 3.17E+08 2.41E-18 9.92E-09 1.22E+09 1.23E-18 3.39E+11 9.65E-09
F1

Std 1.04E+08 3.88E+09 0.00E+00 0.00E+00 3.88E+07 3.41E-18 2.99E-11 1.02E+08 7.26E-20 6.45E+09 1.80E-10

Mean 3.62E+03 2.75E+04 3.89E+02 2.39E+00 2.74E+03 9.95E-01 3.48E+00 6.28E+03 2.35E+03 1.12E+05 1.99E+00
F2

Std 4.43E+02 4.58E+02 4.20E+00 1.51E+00 1.03E+02 1.18E-12 2.11E+00 5.78E+02 9.78E+01 1.24E+03 1.09E+00

Mean 1.47E+01 1.97E+01 4.78E+00 1.19E-12 8.41E+00 5.22E-10 9.95E-09 1.06E+01 2.00E+01 2.15E+01 9.90E-09
F3

Std 5.65E+00 2.14E-02 2.36E-01 9.13E-14 1.33E-01 5.95E-10 3.27E-11 1.71E+00 1.15E-02 3.00E-03 9.33E-11

Mean 7.09E+10 5.48E+11 7.78E+10 2.61E+09 2.62E+11 1.52E+11 1.98E+09 5.76E+10 3.15E-18 1.43E+13 2.59E+09
F4

Std 4.46E+10 1.27E+11 4.20E+10 1.37E+09 1.07E+11 1.13E+10 6.06E+08 2.69E+10 2.30E-19 5.79E+11 5.55E+08

Mean 3.98E+06 4.61E+06 7.46E+06 1.88E+07 5.00E+06 7.61E+06 2.17E+07 2.28E+06 2.29E+06 6.27E+07 2.00E+07
F5

Std 9.42E+05 4.91E+05 1.50E+06 3.30E+06 1.13E+06 1.05E+06 2.77E+06 4.67E+05 7.76E+04 3.57E+06 2.57E+06

Mean 2.11E+05 6.13E+05 1.65E+05 9.84E+05 2.09E+05 4.98E+05 9.84E+05 1.74E+05 9.96E+05 1.06E+06 3.83E+05
F6

Std 9.91E+03 5.85E+04 5.98E+04 1.64E+03 1.66E+04 5.40E+05 3.40E+03 1.97E+04 2.64E-01 3.93E+04 8.33E+04

Mean 6.92E+08 1.58E+10 1.03E+09 4.40E+04 1.23E+09 3.50E+08 1.17E+05 5.11E+08 1.44E-21 1.06E+06 5.50E+04
F7

Std 9.20E+08 5.04E+09 3.02E+08 1.12E+04 3.37E+08 2.31E+07 2.19E+04 4.55E+08 1.27E-22 7.36E+14 9.96E+03

Mean 5.01E+14 3.57E+15 3.56E+16 6.56E+13 7.07E+14 3.93E+15 7.10E+13 1.67E+14 6.03E+03 1.25E+18 6.79E+13
F8

Std 2.28E+14 3.15E+15 2.65E+16 2.73E+13 5.49E+14 9.35E+14 9.53E+12 1.27E+15 1.89E+03 2.48E+17 1.70E+13

Mean 4.11E+08 4.75E+08 4.87E+08 1.31E+09 3.31E+08 5.01E+08 1.01E+09 2.67E+08 1.76E+08 4.33E+09 1.18E+09
F9

Std 7.48E+07 6.84E+07 6.69E+07 1.27E+08 1.27E+08 2.78E+07 4.20E+08 6.79E+07 4.71E+06 5.98E+08 3.27E+08

Mean 1.04E+07 1.75E+07 2.71E+07 8.83E+07 1.13E+07 5.86E+07 8.87E+07 7.11E+06 9.05E+07 9.35E+07 4.29E+07
F10

Std 1.25E+06 7.23E+06 5.31E+06 1.39E+06 2.84E+06 1.74E+07 6.57E+05 8.29E+06 2.83E+01 9.68E+05 3.72E+07

Mean 1.57E+09 4.78E+12 1.57E+11 8.35E+07 3.26E+11 8.62E+10 7.65E+07 7.00E+09 1.57E-19 1.19E+17 4.38E+07
F11

Std 6.64E+08 1.63E+12 1.01E+11 5.98E+07 1.59E+11 1.11E+10 2.86E+07 1.22E+09 2.86E-20 5.26E+16 2.19E+07

Mean 7.26E+08 7.30E+11 3.74E+01 2.45E+01 7.64E+08 8.76E+02 1.98E+01 6.73E+08 2.62E+02 8.05E+12 2.11E+01
F12

Std 2.19E+07 9.71E+10 4.90E+01 3.33E+00 1.54E+08 4.26E+01 3.53E+00 1.40E+07 1.02E+02 3.66E+10 2.50E+00

Mean 1.02E+10 3.67E+11 1.49E+10 5.88E+07 1.30E+10 1.90E+10 4.15E+07 1.70E+10 1.90E+04 1.68E+17 3.12E+07
F13

Std 3.12E+09 3.40E+11 1.61E+09 3.22E+07 1.40E+09 1.80E+10 6.04E+06 6.13E+09 4.47E+02 2.67E+16 4.58E+06

Mean 4.63E+10 5.21E+12 2.42E+11 2.50E+07 1.91E+11 2.91E+11 2.29E+07 1.03E+11 2.37E+09 1.96E+17 2.70E+07
F14

Std 6.40E+09 1.69E+12 5.80E+10 2.91E+06 6.44E+10 5.71E+10 3.68E+06 4.78E+10 3.29E+09 5.90E+16 8.04E+05

Mean 1.33E+07 3.00E+08 5.03E+07 8.62E+07 2.71E+07 1.52E+07 5.04E+07 1.93E+07 7.74E+04 3.14E+17 2.18E+06
F15

Std 1.24E+06 4.21E+07 1.23E+07 1.79E+07 5.61E+06 8.72E+06 6.95E+07 1.77E+06 2.29E+04 1.68E+16 4.23E+05

Table 8: Wilcoxon signed ranks test of the CEC2013 large-scale benchmark suite

Stat.

SpadePSO

VS.
PSO

(1995)

CLPSO

(2006)

OLPSO

(2011)

HCLPSO

(2015)

GL-PSO

(2016)

TSLPSO

(2019)

SPA-CatlePSO

(2019)

CC-RDG3

(2019)

XPSO

(2020)

DMO

(2022)

+ 11 12 10 9 11 10 11 6 11 15

- 4 3 5 6 4 5 4 9 4 0

≈ 0 0 0 0 0 0 0 0 0 0

p-value 0.04 0.04 0.07 0.23 0.03 0.03 0.23 0.25 0.04 0.00

4.6. Experimental results on CEC2018 dynamic multi-objective optimization

benchmark suite

Dynamic optimization problems are challenging but critical, requiring an

algorithm to respond to evolving environmental changes within a certain time

period (usually short). To assess the performance of SpadePSO on real-time, dy-

namic optimization problems, we conduct experiments on the CEC2018 dynamic

multi-objective optimization benchmark suite, whose D is 10. The benchmark

suite consists of fourteen test functions: nine bi-objective (F1 ∼ F9) and five

30

tri-objective (F10 ∼ F14) functions. For the CEC2018 dynamic multi-objective

optimization benchmark suite, the environment changes after every τt itera-

tions, i.e., the global optimal solution changes after every τt iterations. In our

experiment, τt is set to 10, i.e., fast-changing environments. Therefore, we set

the maximum number of iterations per run to 100·τt and adopt the modified

version of Inverted Generational Distance (MIGD) [59] for performance evalua-

tions. Specifically, we average the fitness of each algorithm in all environments.

The formula of MIGD is as follows:

MIGD =
1

T

T∑
t=1

IGD(P ∗
t , Pt) =

1

T

T∑
t=1

nPt∑
j=1

djt
nPt

, (25)

where Pt and P ∗
t denote a set of uniformly distributed points in the true Pareto

Front (PF) and an approximation of the PF at time t, respectively, nPt
= |Pt|,

djt denotes the Euclidean distance between the jth member in Pt and its nearest

member in P ∗
t , and T is a set of discrete time points. We present the Mean and

Std of fitness values of all algorithms for comparison in Table 9. Furthermore,

because certain algorithms evaluate the fitness of many candidate solutions in

each iteration, we also list the gaps of all algorithms. The gap is defined as

follows:

gap =
g

gmin
− 1, (26)

where g denotes the number of fitness function evaluations of an algorithm,

and gmin denotes the minimum number of fitness function evaluations across all

algorithms. In Table 10, we present the Wilcoxon signed ranks test of SpadePSO

and all benchmarking algorithms.

As presented in Table 9, the performance of CLPSO, OLPSO, and HCLPSO

is worse than that of PSO. There is a plausible reason that they only focus on

exploration and ignore exploitation. In addition, for dynamic optimization prob-

lems, the response time for environmental changes is often tight. Therefore, the

number of fitness function evaluations is vital for real-time applications. The gap

of PSO, CLPSO, HCLPSO, SPA-CatlePSO, XPSO, and SpadePSO is 0.00%,

which means they are the best choices for real-time problems requiring imme-

31

Table 9: Comparison of SpadePSO with other algorithms on the CEC2018 dynamic multi-

objective optimization benchmark suite

Function
Stat.

Algorithm PSO

(1995)

CLPSO

(2006)

OLPSO

(2011)

HCLPSO

(2015)

GL-PSO

(2016)

TSLPSO

(2019)

SPA-CatlePSO

(2019)

XPSO

(2020)

DMO

(2022)

SpadePSO

(ours)

F1
Mean 3.60E-01 3.82E-01 3.72E-01 3.72E-01 3.60E-01 3.56E-01 3.54E-01 3.60E-01 3.60E-01 3.53E-01

Std 5.87E-06 2.90E-03 6.46E-03 7.21E-03 3.99E-06 1.39E-03 2.86E-03 2.86E-07 1.33E-04 3.62E-03

F2
Mean 3.19E-01 3.36E-01 3.27E-01 3.27E-01 3.19E-01 3.20E-01 3.23E-01 3.19E-01 3.20E-01 3.23E-01

Std 1.74E-05 3.41E-03 2.05E-03 1.99E-03 3.78E-07 4.23E-04 1.96E-04 1.53E-07 1.36E-04 5.49E-04

F3
Mean 3.67E-01 4.30E-01 4.07E-01 3.96E-01 3.62E-01 3.63E-01 3.50E-01 3.63E-01 3.67E-01 3.48E-01

Std 4.67E-04 2.32E-02 2.15E-02 1.18E-02 1.13E-04 9.27E-04 3.21E-03 5.35E-04 2.22E-03 5.78E-03

F4
Mean 4.25E-01 6.00E-01 5.03E-01 4.96E-01 4.10E-01 4.21E-01 4.17E-01 3.85E-01 4.21E-01 4.14E-01

Std 1.72E-03 4.12E-02 3.56E-02 1.12E-02 1.93E-02 6.19E-05 7.93E-03 2.56E-04 1.85E-02 9.07E-03

F5
Mean 3.55E-01 3.85E-01 3.64E-01 3.63E-01 3.54E-01 3.54E-01 3.59E-01 3.54E-01 3.55E-01 3.59E-01

Std 1.55E-04 3.37E-03 2.60E-03 1.66E-03 1.03E-05 8.10E-05 1.15E-03 3.76E-05 2.96E-04 7.38E-04

F6
Mean 1.53E+00 3.61E+00 2.98E+00 3.36E+00 2.91E-01 7.18E-01 1.42E+00 5.33E-01 3.19E-01 1.39E+00

Std 1.51E-01 1.68E-01 6.94E-01 4.25E-01 9.00E-02 2.64E-01 1.40E-01 2.20E-01 3.59E-02 1.11E-01

F7
Mean 5.00E-01 5.15E-01 5.03E-01 5.04E-01 5.00E-01 5.00E-01 4.93E-01 4.89E-01 5.00E-01 4.93E-01

Std 1.07E-04 4.59E-03 1.32E-03 1.38E-03 4.29E-06 5.32E-05 1.55E-03 1.14E-05 1.78E-04 2.42E-03

F8
Mean 3.45E-01 3.52E-01 3.46E-01 3.45E-01 3.45E-01 3.45E-01 3.43E-01 3.43E-01 3.52E-01 3.43E-01

Std 2.89E-05 3.42E-03 3.38E-04 1.71E-04 2.70E-02 7.97E-05 2.64E-04 4.44E-04 4.05E-03 1.15E-04

F9
Mean 1.87E-01 3.91E-01 3.49E-01 2.54E-01 1.78E-01 1.82E-01 2.28E-01 1.83E-01 1.92E-01 2.14E-01

Std 4.39E-03 5.19E-02 3.93E-02 2.24E-02 5.04E-04 4.98E-03 8.94E-03 3.48E-03 1.04E-02 2.37E-02

F10
Mean 4.02E-01 4.48E-01 4.03E-01 4.31E-01 4.46E-01 4.10E-01 3.78E-01 4.26E-01 4.39E-01 3.77E-01

Std 4.15E-02 3.91E-03 4.36E-02 2.29E-02 1.41E-06 3.05E-02 1.32E-02 4.47E-02 7.02E-03 7.95E-03

F11
Mean 2.61E+01 2.60E+01 2.52E+01 2.55E+01 2.56E+01 2.50E+01 2.53E+01 2.54E+01 2.49E+01 2.53E+01

Std 4.14E-01 1.12E-01 3.65E-02 5.09E-02 1.44E-01 2.31E-02 3.89E-02 3.08E-01 2.25E-03 2.20E-02

F12
Mean 5.08E-01 5.65E-01 5.30E-01 5.25E-01 5.03E-01 5.05E-01 5.17E-01 5.04E-01 5.05E-01 5.18E-01

Std 1.34E-03 7.72E-03 4.24E-03 3.33E-03 1.68E-04 7.78E-04 2.42E-03 4.19E-04 5.97E-04 3.20E-03

F13
Mean 9.34E-01 9.47E-01 9.41E-01 9.38E-01 9.59E-01 9.36E-01 9.34E-01 9.32E-01 9.42E-01 9.34E-01

Std 1.24E-03 9.02E-03 2.57E-03 1.86E-03 1.11E-05 2.77E-03 4.24E-04 3.32E-04 4.41E-03 1.01E-03

F14
Mean 1.84E-01 2.04E-01 1.91E-01 1.89E-01 1.83E-01 1.83E-01 1.87E-01 1.83E-01 1.84E-01 1.86E-01

Std 1.84E-04 6.66E-03 1.99E-03 4.40E-04 5.66E-06 2.70E-05 3.01E-04 2.62E-05 1.75E-04 1.08E-03

gapgapgap 0.00%0.00%0.00% 0.00%0.00%0.00% 263.11%263.11%263.11% 0.0%0.0%0.0% 100.00%100.00%100.00% 21.31%21.31%21.31% 0.0%0.0%0.0% 0.0%0.0%0.0% 70.49%70.49%70.49% 0.0%0.0%0.0%

Table 10: Wilcoxon signed ranks test of the CEC2018 dynamic multi-objective optimization

benchmark suite

Stat.

SpadePSO

VS.
PSO

(1995)

CLPSO

(2006)

OLPSO

(2011)

HCLPSO

(2015)

GL-PSO

(2016)

TSLPSO

(2019)

SPA-CatlePSO

(2019)

XPSO

(2020)

DMO

(2022)

+ 8 14 13 14 7 7 7 4 7

- 5 0 1 0 7 7 1 9 7

≈ 0 0 0 0 0 0 6 1 0

p-value 0.24 0.00 0.01 0.00 0.84 0.47 0.04 0.54 0.96

diate responses. As presented in Table 10, the difference between SpadePSO

and PSO, GL-PSO, TSLPSO, XPSO, and DMO is not statistically significant.

Comprehensively considering both the time and fitness value factors, XPSO is

the algorithm that performs best on this benchmark suite, while SpadePSO is

the second best. This also shows that there is still room to further extend our

SpadePSO method beyond its current design to better to solve multi-objective

dynamic problems.

32

4.7. Spread spectrum radar polyphase (SSRP) code design

In this subsection, we conduct experiments to solve the real-world optimiza-

tion problem of SSRP code design, whose D is 20. As the problem is NP-hard

and its fitness function is piecewise-smooth, SSRP code design has been widely

used as the optimization objective of swarm intelligence algorithms [60, 61].

Therefore, we select SSRP code design as a real-world problem to compare the

performance of various algorithms. We adopt the min-max nonlinear optimiza-

tion problem model [29] as the fitness function, which is defined as follows:

min
x∈X

f(x) = max{ϕ1(x), ..., ϕ2m(x)},

X = {(x1, ..., xn) ∈ Rn|0 ≤ xj ≤ 2π, j = 1, ..., n},
(27)

where m = 2n− 1, and

ϕ2i−1(x) =

n∑
j=i

cos

(j∑
k=|2i−j−1|+1

xk

)
, i = 1, ...n,

ϕ2i(x) = 0.5 +

n∑
j=i+1

cos

(j∑
k=|2i−j|+1

xk

)
, i = 1, ...n− 1,

ϕm+i(x) = −ϕi(x), i = 1, ...m.

(28)

To better quantitatively assess the experimental results, we select the Mean

and Std of fitness values and the one-tailed t-test results as the performance eval-

uation metrics. One-tailed t-test is performed on the mean value with freedom

at the 0.1 level. As presented in Table 11, SpadePSO performs significantly bet-

ter than CLPSO, OLPSO, HCLPSO, GLPSO, TSLPSO, and SPA-CatlePSO.

Although the mean values of SpadePSO, PSO, and XPSO are not significantly

different, the Std of SpadePSO is approximately half of PSO and XPSO, which

demonstrates that SpadePSO is relatively more stable.

4.8. Ordinary differential equations models inference

Modeling dynamic systems in the field of physics, biology, and chemistry

is commonly achieved by inferring the Ordinary Differential Equation (ODE)

based on the observed time-series data [62, 63]. Owing to the requirement of

33

Table 11: Comparison of SpadePSO with state-of-the-art PSO variants on the SSRP code

design problem

Stat.

Algorithm PSO

(1995)

CLPSO

(2006)

OLPSO

(2011)

HCLPSO

(2015)

GL-PSO

(2016)

TSLPSO

(2019)

SPA-CatlePSO

(2019)

XPSO

(2020)

DMO

(2022)

SpadePSO

(ours)

Mean 1.53 1.73 1.91 1.58 1.83 1.65 1.74 1.53 1.61 1.52

Std 0.18 0.10 0.25 0.15 0.18 0.14 0.12 0.19 0.06 0.12

t-test ≈ + + + + + + ≈ +

higher computational resources and the design of the solution space, inferring

the structure and parameters of ODE models simultaneously is a challenging

task [1, 63]. Moreover, such problems normally have both discrete and continu-

ous variables, making them more challenging. To demonstrate the effectiveness

of SpadePSO, we simultaneously infer the structure and parameters of the HIV

model [64], a well-known ODE instance, from scratch. Specifically, we do not

know about the values of parameters and interrelation between variables but

only know the number of variables and the raw time-series data. In our ex-

periment, the time-series data are obtained by computing the HIV model [64],

which is described as follows:

dC/dt = 80− 15 · C − 0.00002 · C · V,

dI/dt = 0.00002 · C · V − 0.55 · I,

dV/dt = 495 · I − 0.5 · V − 0.00002 · C · V,

(29)

where C, I, and V denote the number of uninfected cells, the number of infected

CD4+T lymphocytes, and the number of free viruses, respectively. The initial

conditions (variable values at time t = 0) for computing the time-series data are

as follows: C0 = 100, I0 = 150, and V0 = 50, 000 [30].

There are three equations in the HIV model. Tian et al. [30] defined the

general form of these three equations as follows:

dxi/dt = ±k1 · xi ± k2 · xa ± k3 · xb · xc ± k4, (30)

where k1, k2, k3, and k4 denote the parameters of the equation, symbol± denotes

one of the addition or subtraction operators, and xi, xa, xb, and xc denote the

variables used in the model. In addition, i, b, c ∈ {1, 2, 3} and a ∈ {1, 2, 3} \ {i}.

34

Table 12: Enumeration of ODE structures of Eq. (30), when i = 1

Serial number ODE structures

1 (+,+,+,+, x2, x1, x1)

2 (+,+,+,+, x2, x1, x2)

3 (+,+,+,+, x2, x1, x3)

4 (+,+,+,+, x2, x2, x2)

5 (+,+,+,+, x2, x2, x3)

6 (+,+,+,+, x2, x3, x3)

7 (+,+,+,+, x3, x1, x1)

...

13 (+,+,+,−, x2, x1, x1)

...

192 (−,−,−,−, x2, x3, x3)

For example, if i = 1, xa represents one of the variables x2 and x3, where xb

and xc represent one of the variables x1, x2 and x3.

The first variable xi must exist in Eq. (30) because Eq. (30) is a differ-

ential equation about xi, so we do not code xi into the corresponding PSO

representation. Therefore, the representation of Eq. (30) is formulated as

{k1, k2, k3, k4, (±,±,±,±, xa, xb, xc)}, and there are 192 possible structures for

each general form as presented in Table 12. To solve the ODE inference problem,

each possible structure is represented by an index as a dimension of the prob-

lem. Therefore, the structure of an equation can be regarded as a dimension of

the problem, and parameters k1, k2, k3, and k4 are regarded as four dimensions

of the problem. As the HIV model has three equations, the dimension of the

problem is fifteen, out of which twelve dimensions represent the parameters and

three dimensions represent the structure of three equations.

The fitness function of particles is defined as the squared error between the

time-series data computed by the inferred HIV model using PSO variants and

the given target time-series data, which can be expressed as follows:

35

Table 13: Comparison of SpadePSO with the state-of-the-art PSO variants on ODE models

inference

Stat.

Algorithm PSO

(1995)

CLPSO

(2006)

OLPSO

(2011)

HCLPSO

(2015)

GL-PSO

(2016)

TSLPSO

(2019)

SPA-CatlePSO

(2019)

XPSO

(2020)

DMO

(2022)

SpadePSO

(ours)

Mean 8.91E+03 6.49E+03 5.92E+03 7.76E+03 7.59E+03 7.43E+03 7.04E+03 6.21E+03 7.40E+03 6.58E+03

Std 2.31E+03 3.32E+03 3.95E+03 2.72E+03 1.25E+03 1.96E+03 2.78E+03 3.48E+03 4.83E+02 1.62E+03

t-test + ≈ ≈ + + + + ≈ +

f(x) =

U∑
i=1

H∑
s=0

(x′
i(h0 + s∆h))− (xi(h0 + s∆h))

2
, (31)

where s ∈ {0, 1, 2, . . . ,H−1}, h0 denotes the starting time, ∆h denotes the step

size, U denotes the number of the state variables, and H denotes the number

of data points. The term xi(h0 + s∆h) denotes the given target time-series

data, and the term x′
i(h0 + s∆h) denotes the time-series data computed by the

inferred HIV model using PSO variants. If the inferred model is identical to the

HIV model, the fitness value is 0. The larger the fitness value, the higher the

difference between the inferred model and the HIV model.

Table 13 presents the Mean and Std of fitness values of PSO variants, as well

as the one-tailed t-test results. The one-tailed t-test results show that SpadePSO

performs significantly better than PSO, HCLPSO, GL-PSO, TSLPSO, and SPA-

CatlePSO. The mean values of CLPSO, OLPSO, XPSO, and SpadePSO are not

significantly different, but the Std of SpadePSO is approximately half of CLPSO,

OLPSO, and XPSO. Thus, SpadePSO is shown to be relatively more stable.

5. Conclusion

We propose an adaptive topology based on Euclidean distance and incorpo-

rate it along with the surprisingly popular algorithm into the novel SpadePSO

model. We conduct experiments on three benchmark suites and two real-world

optimization problems. The experimental results show that SpadePSO outper-

forms the state-of-the-art PSO variants on the full CEC2014 benchmark suite,

CEC2013 large-scale benchmark suite, and two real-world applications.

36

Through the introduction of Linear Population Size Reduction, L-SHADE,

a DE variant, performs significantly better than PSO variants with a relatively

large population size. We plan to introduce Linear Population Size Reduction

into SpadePSO for further performance improvement.

6. Acknowledgement

This work is supported by the National Natural Science Foundation of China

(61972174 and 61972175), the Jilin Natural Science Foundation (20200201163JC),

the Guangdong Science and Technology Planning Project (2020A0505100018),

Guangdong Universities’ Innovation Team Project (2021KCXTD015), and Guang-

dong Key Disciplines Project (2021ZDJS138).

Appendix A.

In Table A.14, we show the Best, Mean and Std of fitness values obtained

by SpadePSO on the CEC2014 benchmark suite.

37

Table A.14: Results of SpadePSO on the CEC2014 benchmark suite (D = 10, 30, 50 and 100)

Dim. 10D 30D 50D 100D

Func.

Stat.
Best Mean Std Best Mean Std Best Mean Std Best Mean Std

1 7.75E+01 1.09E+04 1.34E+04 2.79E+04 2.11E+05 1.52E+05 3.43E+05 6.31E+05 2.45E+05 1.39E+06 3.05E+06 8.78E+05

2 5.32E-02 3.74E+01 5.00E+01 6.89E-05 1.11E+01 2.69E+02 3.58E+00 1.70E+02 3.33E+02 3.29E+00 5.62E+02 8.03E+02

3 9.59E-03 6.43E+01 9.44E+01 3.61E-01 1.28E+02 1.28E+02 1.37E+02 1.68E+03 9.72E+02 2.68E+02 1.89E+03 1.30E+03

4 2.05E-03 1.44E+00 3.71E+00 3.30E-02 3.91E+01 3.26E+01 2.17E+01 8.59E+01 2.01E+01 1.11E+02 1.98E+02 3.67E+01

5 0.00E+00 1.85E+01 5.40E+00 2.01E+01 2.02E+01 3.92E-02 2.00E+01 2.03E+01 9.49E-02 2.00E+01 2.02E+01 1.68E-01

6 1.13E-04 1.25E-02 2.17E-02 6.26E-01 2.11E+00 1.10E+00 2.31E+00 9.46E+00 3.04E+00 4.03E+01 5.55E+01 6.13E+00

7 3.25E-03 4.22E-02 2.28E-02 0.00E+00 2.87E-04 1.11E-03 0.00E+00 5.76E-03 7.24E-03 0.00E+00 1.39E-03 3.85E-03

8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.58E-02 2.34E-01

9 1.53E+00 4.48E+00 1.68E+00 1.59E+01 4.35E+01 1.12E+01 3.98E+01 9.22E+01 2.33E+01 1.84E+02 2.79E+02 3.66E+01

10 0.00E+00 1.84E-01 6.55E-01 4.17E-02 4.91E-01 8.01E-01 1.13E-01 1.22E+01 3.52E+01 2.52E-01 1.74E+01 4.69E+01

11 1.87E+01 1.60E+02 1.21E+02 1.17E+03 1.91E+03 3.15E+02 3.07E+03 4.22E+03 4.34E+02 9.30E+03 1.11E+04 7.00E+02

12 5.60E-02 2.10E-01 5.90E-02 5.51E-02 2.39E-01 5.83E-02 1.03E-01 2.13E-01 5.82E-02 1.75E-01 2.87E-01 7.33E-02

13 2.54E-02 8.67E-02 3.37E-02 1.09E-01 2.27E-01 6.27E-02 2.22E-01 3.30E-01 5.84E-02 2.84E-01 4.13E-01 5.10E-02

14 2.61E-02 8.26E-02 3.43E-02 1.66E-01 2.36E-01 3.11E-02 1.94E-01 2.69E-01 2.91E-02 2.50E-01 3.15E-01 2.60E-02

15 3.99E-01 7.66E-01 2.15E-01 1.52E+00 4.32E+00 1.53E+00 4.84E+00 9.05E+00 2.20E+00 2.19E+01 3.69E+01 8.04E+00

16 2.07E-01 1.32E+00 4.28E-01 7.30E+00 9.36E+00 6.76E-01 1.42E+01 1.77E+01 9.49E-01 3.89E+01 4.05E+01 6.24E-01

17 1.88E+01 8.49E+02 7.01E+02 1.49E+03 8.82E+04 5.61E+04 1.83E+04 1.32E+05 1.07E+05 2.64E+05 8.04E+05 3.24E+05

18 4.24E+00 3.02E+02 6.94E+02 3.19E+01 1.49E+02 1.36E+02 6.28E+01 1.52E+02 5.10E+01 2.51E+02 3.99E+02 1.48E+02

19 3.91E-02 5.64E-01 3.66E-01 2.84E+00 4.71E+00 1.12E+00 8.37E+01 1.34E+01 3.01E+00 2.94E+01 7.41E+01 1.81E+01

20 2.44E+00 3.07E+01 4.62E+01 1.05E+02 8.56E+02 5.91E+02 3.44E+02 1.29E+03 8.34E+02 1.62E+03 4.50E+03 1.94E+03

21 6.62E+00 8.53E+01 8.13E+01 3.51E+03 3.86E+04 3.35E+04 2.43E+04 1.72E+05 1.68E+05 1.29E+05 5.03E+05 3.74E+05

22 1.98E-02 1.94E+00 5.12E+00 2.81E+01 1.91E+02 7.33E+01 1.59E+02 6.93E+02 1.85E+02 1.12E+03 1.88E+03 3.13E+02

23 3.29E+02 3.29E+02 2.59E-13 3.15E+02 3.15E+02 1.90E-12 3.44E+02 3.44E+02 1.03E-12 3.48E+02 3.48E+02 2.93E-11

24 1.00E+02 1.12E+02 2.93E+00 2.24E+02 2.25E+02 1.12E+00 2.56E+02 2.60E+02 3.60E+00 3.57E+02 3.62E+02 1.98E+00

25 1.04E+02 1.31E+02 2.18E+01 2.03E+02 2.06E+02 1.50E+00 2.07E+02 2.14E+02 2.76E+00 2.46E+02 2.56E+02 5.10E+00

26 1.00E+02 1.00E+02 2.96E-02 1.00E+02 1.00E+02 5.51E-02 1.00E+02 1.06E+02 2.24E-02 1.00E+02 1.96E+02 1.94E-01

27 9.45E-01 4.44E+01 1.06E+02 3.45E+02 3.97E+02 1.52E+01 4.25E+02 5.45E+02 8.30E+02 5.09E+02 1.54E+03 4.88E+02

28 3.44E+02 3.75E+02 2.25E+01 7.66E+02 8.88E+02 4.81E+01 1.17E+03 1.52E+03 2.01E+02 3.46E+03 5.26E+03 7.65E+02

29 2.33E+02 2.79E+02 3.56E+01 7.95E+02 9.52E+02 1.05E+02 9.27E+02 1.21E+03 1.85E+02 1.36E+03 1.74E+03 3.06E+02

30 4.96E+02 6.58E+02 1.01E+02 1.11E+03 1.87E+03 4.42E+02 8.55E+03 1.05E+04 9.50E+02 7.87E+03 9.68E+03 8.32E+02

38

References

[1] M. Usman, W. Pang, G. M. Coghill, Inferring structure and parameters of

dynamic system models simultaneously using swarm intelligence approaches,

Memetic Comp. 12 (3) (2020) 267–282. doi:10.1007/s12293-020-00306-5.

[2] O. N. Oyelade, A. E.-S. Ezugwu, T. I. A. Mohamed, L. Abualigah, Ebola op-

timization search algorithm: a new nature-inspired metaheuristic optimization

algorithm, IEEE Access 10 (2022) 16150–16177. doi:10.1109/ACCESS.2022.

3147821.

[3] F. E. F. Junior, G. G. Yen, Particle swarm optimization of deep neural networks

architectures for image classification, Swarm Evolut. Comput. 49 (2019) 62–74.

doi:https://doi.org/10.1016/j.swevo.2019.05.010.

[4] M. Suganuma, M. Kobayashi, S. Shirakawa, T. Nagao, Evolution of deep convo-

lutional neural networks using Cartesian Genetic Programming, Evolut. Comput.

28 (1) (2020) 141–163. doi:10.1162/evco_a_00253.

[5] L. Abualigah, A. Diabat, M. A. Elaziz, Improved slime mould algorithm by

opposition-based learning and levy flight distribution for global optimization and

advances in real-world engineering problems, J. Ambient Intell. Human Comput.

in press. doi:10.1007/s12652-021-03372-w.

[6] H. Wang, Y. Jin, J. Doherty, Committee-based active learning for surrogate-

assisted particle swarm optimization of expensive problems, IEEE Trans. Cybern.

47 (9) (2017) 2664–2677. doi:10.1109/TCYB.2017.2710978.

[7] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Pro-

ceedings of International Symposium on Micro Machine and Human Science,

IEEE, 1995, pp. 39–43. doi:10.1109/MHS.1995.494215.

[8] M. R. Bonyadi, Z. Michalewicz, Particle swarm optimization for single objective

continuous space problems: A review, Evolut. Comput. 25 (1) (2017) 1–54. doi:

10.1162/EVCO_r_00180.

[9] X.-F. Liu, Z.-H. Zhan, Y. Gao, J. Zhang, S. Kwong, J. Zhang, Coevolutionary

particle swarm optimization with bottleneck objective learning strategy for many-

39

http://dx.doi.org/10.1007/s12293-020-00306-5
http://dx.doi.org/10.1109/ACCESS.2022.3147821
http://dx.doi.org/10.1109/ACCESS.2022.3147821
http://dx.doi.org/https://doi.org/10.1016/j.swevo.2019.05.010
http://dx.doi.org/10.1162/evco_a_00253
http://dx.doi.org/10.1007/s12652-021-03372-w
http://dx.doi.org/10.1109/TCYB.2017.2710978
http://dx.doi.org/10.1109/MHS.1995.494215
http://dx.doi.org/10.1162/EVCO_r_00180
http://dx.doi.org/10.1162/EVCO_r_00180

objective optimization, IEEE Trans. Evol. Comput. 23 (4) (2019) 587–602. doi:

10.1109/TEVC.2018.2875430.

[10] C. Steenkamp, A. P. Engelbrecht, A scalability study of the multi-guide particle

swarm optimization algorithm to many-objectives, Swarm Evolut. Comput. 66

(2021) 100943. doi:10.1016/j.swevo.2021.100943.

[11] G. Xu, Q. Cui, X. Shi, X. Shi, Z.-H. Zhan, H. P. Lee, Y. Liang, R. Tai, C. Wu,

Particle swarm optimization based on dimensional learning strategy, Swarm Evol.

Comput. 45 (2019) 33–51. doi:10.1016/j.swevo.2018.12.009.

[12] Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Proceedings of

IEEE International Conference on Evolutionary Computation, IEEE, 1998, pp.

69–73. doi:10.1109/ICEC.1998.699146.

[13] M. S. Kıran, M. Gündüz, A recombination-based hybridization of particle swarm

optimization and artificial bee colony algorithm for continuous optimization prob-

lems, Appl. Soft Comput. 13 (4) (2013) 2188–2203. doi:https://doi.org/10.

1016/j.asoc.2012.12.007.

[14] Q. Yang, W.-N. Chen, J. D. Deng, Y. Li, T. Gu, J. Zhang, A level-based learning

swarm optimizer for large-scale optimization, IEEE Trans. Evolut. Comput. 22 (4)

(2018) 578–594. doi:10.1109/TEVC.2017.2743016.

[15] L. M. Q. Abualigah, Feature Selection and Enhanced Krill Herd Algorithm for

Text Document Clustering, Springer International Publishing, 2019. doi:10.

1007/978-3-030-10674-4.

[16] G. George, L. Parthiban, Multi objective hybridized firefly algorithm with group

search optimization for data clustering, in: Proceedings of IEEE International

Conference on Research in Computational Intelligence and Communication Net-

works, 2015, pp. 125–130. doi:10.1109/ICRCICN.2015.7434222.

[17] A. K. Alok, S. Saha, A. Ekbal, Feature selection and semi-supervised clustering

using multiobjective optimization, in: Proceedings of International Conference

on Soft Computing and Machine Intelligence, 2014, pp. 126–129. doi:10.1109/

ISCMI.2014.19.

40

http://dx.doi.org/10.1109/TEVC.2018.2875430
http://dx.doi.org/10.1109/TEVC.2018.2875430
http://dx.doi.org/10.1016/j.swevo.2021.100943
http://dx.doi.org/10.1016/j.swevo.2018.12.009
http://dx.doi.org/10.1109/ICEC.1998.699146
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2012.12.007
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2012.12.007
http://dx.doi.org/10.1109/TEVC.2017.2743016
http://dx.doi.org/10.1007/978-3-030-10674-4
http://dx.doi.org/10.1007/978-3-030-10674-4
http://dx.doi.org/10.1109/ICRCICN.2015.7434222
http://dx.doi.org/10.1109/ISCMI.2014.19
http://dx.doi.org/10.1109/ISCMI.2014.19

[18] X. Xia, L. Gui, F. Yu, H. Wu, B. Wei, Y.-L. Zhang, Z.-H. Zhan, Triple archives

particle swarm optimization, IEEE Trans. Cybern. 50 (12) (2020) 4862–4875.

doi:10.1109/TCYB.2019.2943928.

[19] J. Lorenz, H. Rauhut, F. Schweitzer, D. Helbing, How social influence can un-

dermine the wisdom of crowd effect, P Natl. Acad. Sci. Usa. 108 (22) (2011)

9020–9025. doi:10.1073/pnas.1008636108.

[20] J. P. Simmons, L. D. Nelson, J. Galak, S. Frederick, Intuitive biases in choice

versus estimation: Implications for the wisdom of crowds, J. Consum. Res. 38 (1)

(2011) 1–15. doi:10.1086/658070.

[21] K.-Y. Chen, L. R. Fine, B. A. Huberman, Eliminating public knowledge biases

in informationa aggregation mechanisms, Manage. Sci. 50 (7) (2004) 983–994.

doi:10.1287/mnsc.1040.0247.

[22] D. Prelec, H. S. Seung, J. McCoy, A solution to the single-question crowd wisdom

problem, Nature 541 (2017) 532–535. doi:10.1038/nature21054.

[23] Q. Cui, C. Tang, G. Xu, C. Wu, X. Shi, Y. Liang, L. Chen, H. P. Lee, H. Huang,

Surprisingly popular algorithm based comprehensive adaptive topology learning

pso, in: Proceedings of IEEE Congress on Evolutionary Computation, IEEE,

2019, pp. 2603–2610. doi:10.1109/CEC.2019.8790002.

[24] D. J. Watts, S. H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature

393 (6684) (1998) 440–442. doi:10.1038/30918.

[25] M. E. J. Newman, D. J. Watts, Renormalization group analysis of the small-

world network model, Phys. Lett. A 263 (4-6) (1999) 341–346. doi:10.1016/

S0375-9601(99)00757-4.

[26] J. J. Liang, B. Y. Qu, P. N. Suganthan, Problem definitions and evaluation cri-

teria for the CEC 2014 special session and competition on single objective real-

parameter numerical optimization (2013).

[27] X. Li, K. Tang, M. N. Omidvar, Z. Yang, K. Qin, H. China, Benchmark functions

for the cec 2013 special session and competition on large-scale global optimization

(2013).

41

http://dx.doi.org/10.1109/TCYB.2019.2943928
http://dx.doi.org/10.1073/pnas.1008636108
http://dx.doi.org/10.1086/658070
http://dx.doi.org/10.1287/mnsc.1040.0247
http://dx.doi.org/10.1038/nature21054
http://dx.doi.org/10.1109/CEC.2019.8790002
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1016/S0375-9601(99)00757-4
http://dx.doi.org/10.1016/S0375-9601(99)00757-4

[28] S. Jiang, S. Yang, X. Yao, K. C. Tan, M. Kaiser, N. Krasnogor, Benchmark

functions for the cec’2018 competition on dynamic multiobjective optimization

(2018).

[29] M. Dukic, Z. Dobrosavljevic, A method of a spread-spectrum radar polyphase

code design, IEEE J. Sel. Area. Comm. 8 (5) (1990) 743–749. doi:10.1109/49.

56381.

[30] X. Tian, W. Pang, Y. Wang, K. Guo, Y. Zhou, LatinPSO: An algorithm for si-

multaneously inferring structure and parameters of ordinary differential equations

models, Biosystems 182 (2019) 8–16. doi:10.1016/j.biosystems.2019.05.006.

[31] N. Lynn, P. N. Suganthan, Heterogeneous comprehensive learning particle swarm

optimization with enhanced exploration and exploitation, Swarm Evol. Comput.

24 (2015) 11–24. doi:10.1016/j.swevo.2015.05.002.

[32] Z.-H. Zhan, J. Zhang, Y. Li, Y.-H. Shi, Orthogonal learning particle swarm op-

timization, IEEE Trans. Evolut. Comput. 15 (6) (2011) 832–847. doi:10.1109/

TEVC.2010.2052054.

[33] Y.-J. Gong, J.-J. Li, Y. Zhou, Y. Li, H. S.-H. Chung, Y.-H. Shi, J. Zhang, Genetic

learning particle swarm optimization, IEEE Trans. Cybern. 46 (10) (2016) 2277–

2290. doi:10.1109/TCYB.2015.2475174.

[34] X. Xia, L. Gui, G. He, B. Wei, Y. Zhang, F. Yu, H. Wu, Z.-H. Zhan, An expanded

particle swarm optimization based on multi-exemplar and forgetting ability, Inf.

Sci. 508 (2020) 105–120. doi:10.1016/j.ins.2019.08.065.

[35] J. O. Agushaka, A. E. Ezugwu, L. Abualigah, Dwarf mongoose optimization

algorithm, Comput. Method. Appl. M 391 (2022) 114570. doi:10.1016/j.cma.

2022.114570.

[36] M. Clerc, J. Kennedy, The particle swarm - explosion, stability, and convergence

in a multidimensional complex space, IEEE Trans. Evolut. Comput. 6 (1) (2002)

58–73. doi:10.1109/4235.985692.

[37] Z.-H. Zhan, J. Zhang, Y. Li, H.-H. Chung, Adaptive particle swarm optimization,

IEEE Trans. Syst., Man, Cybern., B 39 (6) (2009) 1362–1381. doi:10.1109/

TSMCB.2009.2015956.

42

http://dx.doi.org/10.1109/49.56381
http://dx.doi.org/10.1109/49.56381
http://dx.doi.org/10.1016/j.biosystems.2019.05.006
http://dx.doi.org/10.1016/j.swevo.2015.05.002
http://dx.doi.org/10.1109/TEVC.2010.2052054
http://dx.doi.org/10.1109/TEVC.2010.2052054
http://dx.doi.org/10.1109/TCYB.2015.2475174
http://dx.doi.org/10.1016/j.ins.2019.08.065
http://dx.doi.org/10.1016/j.cma.2022.114570
http://dx.doi.org/10.1016/j.cma.2022.114570
http://dx.doi.org/10.1109/4235.985692
http://dx.doi.org/10.1109/TSMCB.2009.2015956
http://dx.doi.org/10.1109/TSMCB.2009.2015956

[38] Q. Liu, Order-2 stability analysis of particle swarm optimization, Evolut. Comput.

23 (2) (2015) 187–216. doi:10.1162/EVCO_a_00129.

[39] J. Liang, A. Qin, P. Suganthan, S. Baskar, Comprehensive learning particle swarm

optimizer for global optimization of multimodal functions, IEEE Trans. Evol.

Comput. 10 (3) (2006) 281–295. doi:10.1109/TEVC.2005.857610.

[40] S.-Z. Zhao, P. N. Suganthan, S. Das, Dynamic multi-swarm particle swarm op-

timizer with sub-regional harmony search, in: IEEE Congress on Evolutionary

Computation, 2010, pp. 1–8. doi:10.1109/CEC.2010.5586323.

[41] S. Ghosh, S. Das, D. Kundu, K. Suresh, A. Abraham, Inter-particle communica-

tion and search-dynamics of lbest particle swarm optimizers: An analysis, Inf. Sci.

182 (1) (2012) 156–168. doi:https://doi.org/10.1016/j.ins.2010.10.015.

[42] N. Lynn, M. Z. Ali, P. N. Suganthan, Population topologies for particle swarm

optimization and differential evolution, Swarm Evolut. Comput. 39 (2018) 24–35.

doi:10.1016/j.swevo.2017.11.002.

[43] J.-J. Wang, G.-Y. Liu, Saturated control design of a quadrotor with heterogeneous

comprehensive learning particle swarm optimization, Swarm Evolut. Comput. 46

(2019) 84–96. doi:10.1016/j.swevo.2019.02.008.

[44] Y.-j. Gong, J. Zhang, Small-world particle swarm optimization with topology

adaptation, in: Proceeding of Annual Conference on Genetic and Evolutionary

Computation Conference, ACM Press, 2013, p. 25–32. doi:10.1145/2463372.

2463381.

[45] T. Qiu, B. Li, X. Zhou, H. Song, I. Lee, J. Lloret, A novel shortcut addition

algorithm with particle swarm for multisink internet of things, IEEE Trans. Ind.

Inf. 16 (5) (2020) 3566–3577. doi:10.1109/TII.2019.2925023.

[46] Q. Liu, S. Du, B. J. van Wyk, Y. Sun, Niching particle swarm optimization based

on Euclidean distance and hierarchical clustering for multimodal optimization,

Nonlinear Dyn. 99 (3) (2020) 2459–2477. doi:10.1007/s11071-019-05414-7.

[47] R. Mendes, J. Kennedy, J. Neves, The fully informed particle swarm: simpler,

maybe better, IEEE Trans. Evol. Comput. 8 (3) (2004) 204–210. doi:10.1109/

TEVC.2004.826074.

43

http://dx.doi.org/10.1162/EVCO_a_00129
http://dx.doi.org/10.1109/TEVC.2005.857610
http://dx.doi.org/10.1109/CEC.2010.5586323
http://dx.doi.org/https://doi.org/10.1016/j.ins.2010.10.015
http://dx.doi.org/10.1016/j.swevo.2017.11.002
http://dx.doi.org/10.1016/j.swevo.2019.02.008
http://dx.doi.org/10.1145/2463372.2463381
http://dx.doi.org/10.1145/2463372.2463381
http://dx.doi.org/10.1109/TII.2019.2925023
http://dx.doi.org/10.1007/s11071-019-05414-7
http://dx.doi.org/10.1109/TEVC.2004.826074
http://dx.doi.org/10.1109/TEVC.2004.826074

[48] H. Hosseini, D. Mandal, N. Shah, K. Shi, Surprisingly popular voting recovers

rankings, surprisingly!, in: Proceedings of International Joint Conference on Ar-

tificial Intelligence, 2021, pp. 245–251. doi:10.24963/ijcai.2021/35.

[49] M. D. Lee, I. Danileiko, J. Vi, Testing the ability of the surprisingly popular

method to predict NFL games, Judgm. Decis. Mak. 13 (4) (2018) 322–333.

[50] T. Luo, Y. Liu, Machine truth serum: a surprisingly popular approach to improv-

ing ensemble methods, Mach. Learn.doi:10.1007/s10994-022-06183-y.

[51] Z. Su, D. Wang, X. Zhang, L. Cui, C. Miao, Efficient Reachability Query with Ex-

treme Labeling Filter, in: Proceedings of ACM International Conference on Web

Search and Data Mining, 2022, pp. 966–975. doi:10.1145/3488560.3498446.

[52] W. Wang, l. Li, X. Xu, X. Cheng, Y. Zhao, Research on hydropower station

optimal scheduling considering ecological water demand, in: Proceedings of IEEE

Symposium on Computational Intelligence for Engineering Solutions, IEEE, 2013,

pp. 35–42. doi:10.1109/CIES.2013.6611726.

[53] O. Olorunda, A. P. Engelbrecht, Measuring exploration/exploitation in particle

swarms using swarm diversity, in: Proceedings of IEEE Congress on Evolutionary

Computation, IEEE, 2008, pp. 1128–1134. doi:10.1109/CEC.2008.4630938.

[54] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Problem definitions and eval-

uation criteria for the CEC 2005 special session on real-rarameter optimization

(2005).

[55] R. Tanabe, A. S. Fukunaga, Improving the search performance of SHADE using

linear population size reduction, in: Proceedings of IEEE Congress on Evolution-

ary Computation, IEEE, 2014, pp. 1658–1665. doi:10.1109/CEC.2014.6900380.

[56] Y. Sun, X. Li, A. Ernst, M. N. Omidvar, Decomposition for large-scale optimiza-

tion problems with overlapping components, in: Proceedings of IEEE Congress on

Evolutionary Computation, 2019, pp. 326–333. doi:10.1109/CEC.2019.8790204.

[57] J. Kennedy, R. Mendes, Population structure and particle swarm performance,

in: Proceedings of IEEE International Congress on Evolutionary Computation.,

Vol. 2, IEEE, 2002, pp. 1671–1676. doi:10.1109/CEC.2002.1004493.

44

http://dx.doi.org/10.24963/ijcai.2021/35
http://dx.doi.org/10.1007/s10994-022-06183-y
http://dx.doi.org/10.1145/3488560.3498446
http://dx.doi.org/10.1109/CIES.2013.6611726
http://dx.doi.org/10.1109/CEC.2008.4630938
http://dx.doi.org/10.1109/CEC.2014.6900380
http://dx.doi.org/10.1109/CEC.2019.8790204
http://dx.doi.org/10.1109/CEC.2002.1004493

[58] J. Derrac, S. Garćıa, D. Molina, F. Herrera, A practical tutorial on the use of

nonparametric statistical tests as a methodology for comparing evolutionary and

swarm intelligence algorithms, Swarm Evol. Comput. 1 (1) (2011) 3–18. doi:

10.1016/j.swevo.2011.02.002.

[59] A. Zhou, Y. Jin, Q. Zhang, A population prediction strategy for evolutionary

dynamic multiobjective optimization, IEEE Trans. Cybern. 44 (1) (2014) 40–53.

doi:10.1109/TCYB.2013.2245892.

[60] N. Mladenović, J. Petrović, V. Kovačević-Vujčić, M. Čangalović, Solving spread

spectrum radar polyphase code design problem by tabu search and variable neigh-

bourhood search, Eur. J. Oper. Res. 151 (2) (2003) 389–399. doi:10.1016/

S0377-2217(02)00833-0.

[61] S. Das, A. Abraham, U. K. Chakraborty, A. Konar, Differential evolution using

a neighborhood-based mutation operator, IEEE Trans. Evol. Computat. 13 (3)

(2009) 526–553. doi:10.1109/TEVC.2008.2009457.

[62] H. Xue, H. Miao, H. Wu, Sieve estimation of constant and time-varying coef-

ficients in nonlinear ordinary differential equation models by considering both

numerical error and measurement error, Ann. Statist. 38 (4) (2010) 2351–2387.

doi:10.1214/09-AOS784.

[63] M. Heinonen, C. Yildiz, H. Mannerström, J. Intosalmi, H. Lähdesmäki, Learning

unknown ode models with gaussian processes, in: Proceedings of International

Conference on Machine Learning, PMLR, 2018, pp. 1959–1968.

[64] A. S. Perelson, P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,

SIAM Rev. 41 (1) (1999) 3–44. doi:10.1137/S0036144598335107.

45

http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1109/TCYB.2013.2245892
http://dx.doi.org/10.1016/S0377-2217(02)00833-0
http://dx.doi.org/10.1016/S0377-2217(02)00833-0
http://dx.doi.org/10.1109/TEVC.2008.2009457
http://dx.doi.org/10.1214/09-AOS784
http://dx.doi.org/10.1137/S0036144598335107

	Introduction
	Related Work
	PSO and its variants
	SPA and its applications

	SpadePSO
	Adaptive Euclidean distance-based topology
	Heterogeneous populations
	Algorithm complexity analysis
	Population diversity in SpadePSO

	Performance Evaluations of SpadePSO with Comparisons
	Experimental setups
	Determination of parameter values in SpadePSO
	Influence of various topologies on SpadePSO
	Experimental results on CEC2014 benchmark suite
	Experimental results on CEC2013 large-scale benchmark suite
	Experimental results on CEC2018 dynamic multi-objective optimization benchmark suite
	Spread spectrum radar polyphase (SSRP) code design
	Ordinary differential equations models inference

	Conclusion
	Acknowledgement
	

