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PAbstract

Several analytical models that predict the memory hierarchy behavior of codes with regular access patterns have been
developed. These models help understand this behavior and they can be used successfully to guide compilers in the appli-
cation of locality-related optimizations requiring small computing times. Still, these models suffer from many limitations.
The most important of them is their restricted scope of applicability, since real codes exhibit many access patterns they
cannot model. The most common source of such kind of accesses is the presence of irregular access patterns because of
the presence of either data-dependent conditionals or indirections in the code. This paper extends the probabilistic miss
equations (PME) model to be able to cope with codes that include data-dependent conditional structures too. This
approach is systematic enough to enable the automatic implementation of the extended model in a compiler framework.
Validations show a good degree of accuracy in the predictions despite the irregularity of the access patterns. This opens the
possibility of using our model to guide compiler optimizations for this kind of codes.
� 2005 Elsevier B.V. All rights reserved.
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R1. Introduction

There has been a growing interest in the study
and understanding of the behavior of the memory
hierarchies in the past years. The reason is the essen-
tial role they play in the performance of modern
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computers, mainly because of the increasing differ-
ence between main memory and processor speeds.
One of the most effective ways to reduce the impact
of this difference is the usage of memory hierarchies
with one or, more typically, several level of caches.
The first approach to study the behavior of these

systems was the usage of trace-driven simulations
[1]. This approach, while very accurate, has many
drawbacks: difficulty to store the traces, large com-
puting times, and lack of an explanation for the
behavior observed in many cases. The first two
problems can be overcome by the usage of hardware
counters [2], but they still offer no explanations
about the behavior observed and they are restricted
.
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to the platforms in which they are available.
Besides, none of those approaches is suitable to
guide the optimization process of a compiler. This
way, a number of analytical models have appeared
that try to address these issues [3–7].
Analytical models suffer typically from two kinds

of problems: a certain lack of accuracy and a limited
scope of applicability, either because of the limited
number of code structures that can model or
because of a restriction to model a given kind of
hardware. Some of the most recent models have
achieved very good degrees of accuracy in their pre-
dictions, and they are general enough to consider
both the direct-mapped and set-associative caches
with LRU replacement that are found nowadays
in almost every computer. Still, they continue to
restrict their applicability to codes that must exhibit
regular access patterns. Unfortunately, most real
codes comprise either indirections or portions of
code whose execution depends on conditions com-
puted at run-time. These structures break the regu-
larity of the accesses and, as a result, they are
beyond the scope of these models.
In this paper we extend one of these models, the

probabilistic miss equations (PME) model [7], to
enable it to analyze automatically codes that include
data-dependent conditional structures. We will
consider codes with any kind and number of condi-
tional sentences, even with references controlled by
several nested conditionals, and nested in any arbi-
trary way. Only two restrictions are set on the
conditions. The first one is that their verification
must follow an uniform distribution, although each
condition may have a different probability of being
fulfilled. The second one is that the conditions must
be independent, this is, the probability a given con-
dition is fulfilled is not influenced by the fact any
other condition(s) is/are fulfilled or not. These
restrictions ease the mathematical treatment of the
problem in this first attempt to model automatically
codes with irregular access patterns, while allowing
to represent the most important modeling problems
derived from such irregularities. Still, we acknowl-
edge these conditions do not hold in most real
codes. This way, we are currently working in the
modeling of conditions that are fulfilled with non-
uniform distributions.
The PME model, which we describe in detail in

Section 2, builds a separate expression for each ref-
erence and each loop that encloses it, that estimates
the number of misses generated by the reference
during the execution of that loop. Its equations
E
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are probabilistic because the number of misses is
estimated as the product of the estimated number
of accesses by the estimated probability each one
of those accesses generates a miss. Such probability
is derived from the footprint on the cache of the dif-
ferent regions accessed between two consecutive
accesses to the same line by the reference that is
being analyzed. This way, the original PME model
in [7] only used probabilities to describe the proba-
bility an access resulted in a miss, while the number
of accesses and the shape of the footprints was fixed.
Our extension also uses probabilities to estimate the
number of accesses, and to estimate the footprint of
the regions that can preclude a reuse in an access.
The reason is that references affected by data-depen-
dent conditionals only take place with a given prob-
ability. As a result, a new strategy to generate
probabilistic miss equations has been developed to
deal with these codes.
Notice that the PME model provides more infor-

mation than other analytical models of the memory
because it generates an individual equation for each
reference and nesting level, and the miss probabili-
ties are computed adding the contributions of the
accesses of the different references found within
the reuse distance. This way, a very detailed individ-
ual analysis for every reference and how it influences
the behavior of other references is provided.
This paper is structured as follows: The following

section provides an introduction to the PME model
extensively described in [7]. Then, Section 3
describes the scope of application of the new exten-
sion and its formulation. Section 4 is devoted to the
validation of the extended model. A brief review of
the related work is presented in Section 5, followed
by our conclusions and a discussion on the future
work in Section 6.

2. Probabilistic miss equations (PME) model

As mentioned in the previous section, the PME
model is originally oriented to the modeling of
codes with regular access patterns. The model con-
siders caches of an arbitrary size, line size and asso-
ciativity whose replacement policy is LRU. It
supports both perfectly and imperfectly nested
loops with a fixed number of iterations. The model
allows several references per data structure and
loop, and it requires the indexing functions for the
different dimensions of the references to be affine
functions of the enclosing loops index variables,
which is the most common situation. The model



T

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

186
187

188

189
190
191
192
193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

214

215
216
217
218
219
220
221
222
223
224

D. Andrade et al. / Journal of Systems Architecture xxx (2005) xxx–xxx 3

SYSARC 639 No. of Pages 17, Model 3+

26 October 2005 Disk Used
ARTICLE IN PRESS
C
O

R
R

E
C

can also take into account the probability of hit due
to the reuse of cache lines in different loop nests,
which enables it to model complete codes. Still,
the inter-nest reuse modeling accuracy is subject to
the fulfillment of certain conditions.
The estimation of the number of misses gener-

ated by the execution of a given code in a certain
cache is made separately for each reference in this
model. In fact, the model generates a separate equa-
tion for each loop and for each reference that esti-
mates the number of misses it generates in that
loop. This is modular and it allows the user to know
which are the hot spots and references in the code.
The model classifies misses in two categories. Com-
pulsory misses are those that take place the very first
time a line is referenced in the code. Interference
misses are attempts to reuse a line that fail because
the line was evicted from the cache since its previous
access. The distinction is reflected in the way the
PMEs are built, as each kind of misses is estimated
separately. The references that can give place to a
reuse are also classified in their turn according to
their reuse distance, this is, the portion of code exe-
cuted since the latest access to the line they try to
reuse. The reason is that different reuse distances
have associated a different probability of resulting
in a miss. The number and type of the different
accesses is estimated from the indexing functions
of the references and the sizes of the loops.
The probabilistic nature of the PME model

comes into play when the interference misses are
estimated. They are calculated separately for each
potential reuse distance, as the product of the
number of accesses that could enjoy a potential
reuse of a line in the cache with that distance, by
the probability each access really results in a miss.
The probability is estimated from the cache foot-
print of those regions that have been accessed since
the latest reference to the line, this is, during the
considered reuse distance.
We will now describe the strategy to represent

these footprints and estimate the corresponding
miss probabilities and how PMEs are built for refer-
U
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ences that are not subject to conditional accesses,
this is, those considered in [7].

2.1. Miss probability calculation

The PME model measures reuse distances in
terms of loop iterations. Fig. 1 shows the steps the
PME model follows to derive the miss probability
associated to a given reuse distance. We will now
comment them in turn.

2.1.1. Access pattern identification
In the first step, the access pattern followed by

the references involved in a reuse distance is
extracted from their indexing functions and the
shape of the loops that enclose them. This task is
eased due to the usage of affine indexing functions
in the references considered by the model. The
access patterns can be described by means of the
memory regions they reference, using for example
notations like the Access Region Descriptors [8].
Nevertheless, the PME model represents access pat-
terns as functions whose output is the footprint of
the access on the cache. The model associates a dif-
ferent function to each typical class of access pattern
found in the codes analyzed (sequential access,
access to regions separated by a constant stride,
etc.). The function arguments complete the descrip-
tion of the access pattern. For example, the only
argument required to characterize a sequential
access is the number of words accessed.

2.1.2. Cache impact quantification

The second step evaluates the access pattern
functions to obtain their associated cache foot-
prints. These footprints are represented in the
PME model by what we call area vectors. An area
vector V consists of K + 1 probabilities V0V1 . . .VK,
where K is the degree of associativity of the cache
whose behavior is analyzed. This representation is
designed to be very convenient for the calculation
of the impact of the corresponding accesses on the
miss probability when trying to reuse lines from
ACT
FICATION

AREA
VECTORS
ADDITION

MISS

PROBABILITY

AREA

VECTORS

CHE

ss probabilities from the code.
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other access patterns or even from the access that is
being considered. In fact, two kinds of area vectors
are distinguished:

• Cross-interference area vectors represent the
impact on the cache of the considered access pat-
tern as viewed by lines not involved in the access.
In these vectors, the first component, V0, is the
probability that a set in the cache has received
K or more lines accessed by the pattern. One
can think of this probability also as the ratio of
cache sets that have received K or more lines dur-
ing the access. Then, V1 is the probability a cache
set has received exactly K � 1 lines; V2 is the
probability a cache set has received exactly
K � 2 lines; and so on. In general, except for
i = 0, Vi is the probability a given set has received
exactly K � i lines due to the access.

• Self-interference area vectors represent the impact
of the footprint on the probability of reuse for
the lines it involves. In these vectors, V0 is the
probability that a line of the footprint is compet-
ing in its cache set with other K or more lines of
the footprint. For i > 0, Vi is the probability a
line of the footprint shares its cache set with
other K � i lines of the access.
 T 301
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a 2-way associative cache with eight sets such that 7
of the 8 sets have received two lines, and the other set
has only received one line. The cross-interference
area vector Vcross for this footprint is (7/8,1/8,0),
since 7 out of the 8 sets have received two or more
lines from the access; only one set received a single
line, and no sets received zero lines. These ratios are
conversely the probabilities a randomly chosen set
has two or more, one, or zero lines in it, respectively.
The self-interference area vector Vself for this

footprint is (0,14/15,1/15). Its first component
indicates that none of the lines involved in the
access has to compete for its cache set with other
two or more other lines from the access pattern. The
second component is the ratio of lines of the
footprint that share their cache set with exactly
one line (14 out of 15). Finally, as the third
component points out, only one of the fifteen lines
of the footprint does not share its set with any other
line of the footprint. These ratios are conversely the
probabilities a randomly chosen line of the footprint
has to compete in its set with two or more, one, or
no lines, respectively.
E
D

P
R

O
O

F

Area vectors are derived for each access pattern
either analytically or by simulation or following a
hybrid approach. The method to estimate the area
vectors associated to the most commonly found
access patterns has been described in [7]. Section
3.1 describes the estimation of the area vector for
two new access patterns not previously considered.

2.1.3. Area vectors addition

Interference probabilities are directly obtained
from area vectors because in a K-way associative
cache, the probability of missing in the cache when
trying to reuse a line corresponds to the probability
that K (or more) different lines, mapped to the cache
set associated with that line, have been referenced
since its previous access. This is exactly the first
component of any area vector. The other compo-
nents are also required because several data struc-
tures may be accessed during a given reuse
distance. The PME model estimates the area vector
for the accesses to each structure separately and
then adds them to calculate the global area vector
in the third step of the process depicted in Fig. 1,
the Area Vectors Addition. This way, components
not in the first position of their corresponding area
vectors may be combined to increase the probability
that in the global footprint there are K or more lines
mapped to a cache set. The addition of area vectors,
whose operand is [, is described in detail in [7].

2.2. Condition independent PMEs

The PME model numbers the loops in a nest
from the outermost one, zero, to the innermost
one, Z; and it analyzes the behavior of the refer-
ences beginning in the innermost loop that contains
them and proceeding outwards. This way, the model
generates an estimator Fi(R,RegIn) of the number
of misses generated by each reference R during the
execution of each enclosing loop at nesting level i.
This PME depends on RegIn, the footprints gener-
ated by regions accessed in outer loops that may
interfere with the reuse of the footprint of R in
loop i.
Every estimator is a summatory. The first term

corresponds to the accesses that cannot enjoy reuse
in the considered loop, so it is associated to the
misses that are compulsory from the point of view
of the loop. The miss probability for these accesses
depends on RegIn, the footprint due to accesses in
outer loops. The remaining terms correspond to
the accesses that can enjoy reuse, there being one
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term for each different potential reuse distance.
Every term is a product of the estimated number
of accesses that reuse cache lines with a given reuse
distance multiplied by the miss probability associ-
ated to that distance.
A description on how to derive PMEs both for

references that can and cannot reuse lines accessed
by other references is found in [7]. In order to make
this paper more self-contained and help understand
our extension in Section 3, we will explain here the
construction of PMEs for references that carry no
reuse with other references in its loop nest. These
PMEs are built as

F iðR;RegInÞ ¼ LRiF iþ1ðR;RegInÞ
þ ðNi � LRiÞF iþ1ðR;RegiðR; 1ÞÞ; ð1Þ

where Ni is the number of iterations of the loop at
nesting level i, LRi is the number of iterations in
which R cannot reuse lines in this loop, Fi+1(R,Re-
gIn) is the PME for the same reference R in the
immediately inner loop and Regi(R,n) are the re-
gions accessed during n iterations of the loop i that
may interfere with the accesses of R. The formula
reflects that the miss probability for the LRi loop
iterations in which there can be no reuse in this
loop, depends on the accesses in the outer loops (gi-
ven by RegIn), while the miss probability for the
accesses in the remaining iterations is a function of
the regions accessed during the portion of the pro-
gram executed between those reuses, which is one
iteration of this loop. Notice how the calculation
for the PME in level i provides the RegIn argument
for Fi+1, which estimates the behavior of R during
the execution of the immediate inner loop.
Two special cases must be considered when eval-

uating the PMEs:

• In the innermost loop Fi+1(R,RegIn) = AV0(Re-
gIn), this is, the first element of the area vector
associated to the region RegIn. The reason is that
the estimator is associated here to a single access
in a single iteration of this innermost loop.

• When the outermost loop is reached, the input
region for F0(R,RegIn), which estimates the total
number of misses generated by R in the nest, is
RegIntotal, an imaginary region that covers the
whole cache and that generates a miss probability
one. The reason is that the PMEs propagate this
region as RegIn for those accesses that carry no
reuse at all in the nest and which, as a result,
are compulsory misses for the nest.
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Since the indices of the references are affine func-
tions of the enclosing loop variables, the accesses of
every reference R have a constant stride SRi associ-
ated to the loop i. Consequently, the number of dif-
ferent lines that are accessed in Ni iterations with
stride SRi, can be calculated as

LRi ¼ 1þ
Ni � 1

maxfLs=SRi; 1g

� �
; ð2Þ

where Ls is the number of array elements a cache
line holds. This LRi value corresponds also to the
number of iterations in which the accesses of R can-
not reuse lines brought to the cache by previous
accesses in this loop. The remaining Ni � LRi itera-
tions can exploit either spatial or temporal locality,
with a reuse distance of a single iteration of the con-
sidered loop.

3. Modeling of condition dependent references

The modeling strategy described in the preceding
section is valid for codes without conditional sen-
tences, which is the scope of application of all the
previous works in the bibliography, as we will see
in Section 5. Only Vera and Xue [9] has considered
codes with conditional sentences, but it is restricted
to conditions on the loop indices, which are com-
pletely predictable and analyzable off-line and
which tend to follow quite regular patterns. In prac-
tice, many codes include data-dependent condition-
als whose outcome depends on computations made
at run-time, and where the pattern of the condition
is highly irregular. As a result, the references
affected by those conditions exhibit very irregular
access patterns that no model has managed to ana-
lyze following a modular and systematic approach.
This is the main contribution of our work.
The scope of application of our model is shown

in Fig. 2. We now consider any number of arbi-
trarily nested conditional statements, with an arbi-
trary number of atomic conditions that involve
any number of data elements. The figure only shows
one data element per condition for simplicity. The
IF structures condition the execution of isolated
references or complete loops or nests. The restric-
tions in the PME model of constant number of loop
iterations and affine indexing continue to hold.
Also, our current systematic strategy to model irreg-
ular access patterns requires the conditions in the
code to follow an uniform distribution and to be
independent. This latter restriction means that the
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Fig. 2. Loop nest with data-dependent conditions.

1 We define the binomial distribution on a non-integer number
of elements n as P(X = x), X 2 B(n, p) = (P(X = x), X 2
B(bnc,p))(1 � (n � bnc)) + (P(X = x), X 2 B(dne,p))(n � bnc).
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probability that a given condition is fulfilled or not
does not depend on the verification of other condi-
tions in the code. We expect to relax these restric-
tions in future works. The different conditions
may be fulfilled with different probabilities each.
Two kinds of extensions are required to consider

irregular accesses. One is the identification of new
access patterns that give place to footprints not con-
sidered by the original PME model, and for which
methods must be developed in order to estimate
their corresponding area vectors. The other one is
the consideration of a new kind of PMEs in which
reuses take place only with a given probability,
and whose reuse distance varies depending on the
behavior of the conditional sentences found in the
nest. We will now consider in turn these two issues.

3.1. Irregular access patterns

The two access patterns usually found in codes
with regular access patterns are the sequential access
and the access to groups of consecutive elements of
the same size that are separated by a constant stride.
Their irregular counterparts, when uniform proba-
bilities of access are considered, are described in a
similar way, with the important difference that
now each one of the elements involved in the pattern
is accessed with a given probability p that is the
same one for every element. The modeling of these
new access patterns, which we detail below, depends
on the cache parameters. A cache is defined by its
total size Cs, its line size Ls, and its associativity
K. For simplicity, both Cs and Ls are measured in
elements or words of the access we are considering.
Two derived parameters that help simplify some
E
D

P
R

O
O

F

expressions are the number of sets in the cache,
NK = Cs/(KLs), and Csk = Cs/K, the cache size
devoted to each level of associativity.

3.1.1. Sequential access with uniform probability

We denote as Ssp(n,p) the cross-interference area
vector associated to an access to n consecutive ele-
ments in which each one of them has a probability
p of being referenced. The K + 1 elements of this
vector are calculated as

Sspiðn; pÞ ¼ P ðX ¼ K � iÞ m < i 6 K;

Sspmðn; pÞ ¼ P ðX P K � mÞ;
Sspiðn; pÞ ¼ 0 0 6 i < m;

where X 2 Bðn=Csk; 1� ð1� pÞLsÞ, being B(n,p) the
binomial distribution1 and m = max{0,K � dn/
Cske}. The formula is based on the fact that, on
average, there are n/Csk lines of the footprint asso-
ciated to each cache set. Since this is a consecutive
memory region, the maximum number of lines a
cache set can receive is dn/Cske, so the area vector
elements Sspi(n,p) for 0 6 i < m must be zero. Also,
because of the uniform distribution of the accesses,
we know that the number of cache lines per set be-
longs to a binomial Bðn=Csk; 1� ð1� pÞLsÞ. The
probability of access per line of this binomial is easy
to calculate, as since each individual element in a
cache line has a probability p of begin accessed,
and a line holds Ls elements, then the probability
that at least one of the elements of the line receives
a reference is 1� ð1� pÞLs . Since position i, i > 0, in
the area vector represents the ratio of sets that
receive K � i lines in the access, its value will be
the probability the variable associated to this bino-
mial takes the value K � i. The lowest element in the
area vector with non-zero probability, m, is the
probability the number of lines accessed is K � m

or more.

3.1.2. Access to groups of elements separated by
a constant stride with uniform probability

We denote as Srp(Nr,Tr,Lr,p) the cross-interfer-
ence area vector associated to an access to Nr
regions of Tr consecutive elements each and sepa-
rated by a constant stride of Lr elements, in which
each individual element has a probability p of being
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referenced. This area vector is calculated in two
phases:

• In a first phase, the region potentially affected by
the references is considered. This region allows to
measure the impact of the access on the cache by
calculating the number of lines that are mapped
to each cache set.

• Since accesses really happen with a given proba-
bility p, a second phase is needed where the differ-
ent combinations of accesses are weighted with
the probability that they happen.

3.1.2.1. Calculation of the code footprint. We first
define the helper function pos(i) = imodCsk, which
calculates which position in the cache corresponds
to an arbitrary memory position i.
In a first step, the first position Ci of every region

i that compounds the pattern mapped on a cache of
size Csk, is calculated as

C1 ¼ 0;
Ci ¼ posðCi�1 þ LrÞ; 1 < i 6 N r.

In the following, CV(i) will stand for the number of
regions that begin in the position i of the cache.
Now we calculate for every cache set, 1 6 j 6 NK,
the number of different lines mapped to the consid-
ered cache set j in which exactly i of their elements
may be referenced by this access pattern. This is
the set of values N(j, i), where 1 6 i 6 Ls.
The value of N(j, i) for i < min(Tr,Ls) is calcu-

lated as

Nðj; iÞ ¼ CV ðposðjLs � T r þ iÞÞ
þ CV ðposðjLs þ Ls � iÞÞ

since only the regions that begin exactly Tr � i posi-
tions before the beginning of the considered set or in
the ith position of the set can contribute with a line
where only i of its elements may be referenced by the
access pattern.
The calculation of the remaining N(j, i) depends

on whether Tr < Ls. If this is the case, then

Nðj; T rÞ ¼
XLs�T r

t¼0
CV ðposðjLs þ tÞÞ;

Nðj; iÞ ¼ 0; T r < i 6 Ls

since the regions beginning in the first Ls � Tr + 1
positions of the set will have one line in which Tr
of its elements may be accessed, and given that
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Tr < Ls, it is impossible that there are regions with
lines where more than Tr elements may be accessed.
Finally, if Tr P Ls, all the N(j, i) but N(j,Ls) have

been calculated. The value for the latter is calculated
as

Nðj; LsÞ ¼
XT r
t¼Ls

CV ðposðjLs � T r þ tÞÞ

because any region that begins either in the first po-
sition of the set or in the Tr � Ls � 1 immediately
preceding positions will have one line mapped to
the considered set j in which all of its elements
may be affected by the access pattern.

3.1.2.2. Weighting the accesses probabilities. In the
previous phase we have estimated the footprint of
this access pattern without taking into account the
probability that each element in the footprint is
really referenced. Let us remember that the foot-
print is represented by the values N(j, i), which are
the number of lines mapped to set j that contain i

words affected by the access pattern. Since the
access to each element happens only with probabil-
ity p, this is an upper bound of the real number of
lines that are accessed. This way, the purpose of this
phase is to estimate how many lines are really
accessed taking into account that the probability
of access to each element in the region is p.
Our strategy to estimate the total area vector for

this access pattern is to calculate the area vector for
each set j independently and to average them. The
area vector for each single set j, Sj, represents the
distribution of probability that the access generated
references to l different lines mapped to this set for
0 6 l < K in the positions Sj(K�l) of the vector, or
to K or more different lines, in the position Sj0. This
distribution of probability is calculated from Ls
binomial variables, Xji, 1 6 i 6 Ls, where Xji is the
number of lines that are really accessed out of the
N(j, i) ones that are mapped to set j and which con-
tain exactly i positions that can be referenced by the
access pattern analyzed. This way, Xji 2 B(N(j, i),
1 � (1 � p)i), where B(n,p) stands for the binomial
distribution. The probability of the binomial is
given by the fact that if in a given line only i

positions may be subject to access, and the access
to each position only happens with probability p,
then the probability the line has really been accessed
is 1 � (1 � p)i. As a result, if we define X j ¼PLs

i¼1X ji, then the area vector for the set j can be esti-
mated as Sj(K�l) = P(Xj = l), 0 6 l < K and Sj0 =
P(Xj P K).
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3.2. Condition dependent PMEs

In order to consider the probabilities that the dif-
ferent conditional statements that may affect a given
reference R in its nest hold, we extend the PME that
estimates the behavior of a reference R in a loop i

with a new argument~p. This vector contains in posi-
tion j the probability pj that the (possible) condition-
als that guard the execution of the reference R in
nesting level j are verified. If a given loop contains
no conditional structures, then pj = 1, which means
the execution in this level is unconditional. When
there are several nested IF statements in the same
nesting level, pj is the product of the probabilities
of holding their respective conditions.
We have found that F iðR;RegIn;~pÞ may take two

different forms when considering codes with data-
dependent conditional statements. If the reference
is not affected by any conditional sentence or if
the variable that indexes loop i does not index any
of the references found in the condition(s) of the
conditional(s) sentence(s) that affect the execution
of R, then the PME takes the form described in Sec-
tion 2.2. This kind of PME disregards its input ~p,
which is not used in the computations. But if this
is not the case, this is, if the variable of the loop is
used in the indexing of a data array involved in a
conditional that controls the execution of the refer-
ence R that is being studied, then a new kind of
PME must be used. From now on we will distin-
guish both kinds of PMEs by calling the former
ones Condition Independent PMEs and these new
ones Condition Dependent PMEs.
Just as we did in Section 2.2, we will now describe

the construction of Condition Dependent PMEs for
references that carry no reuse with other references.
We will do it in two steps. First, we will develop the
general form of a Condition Dependent PME. This
PME is based on the probability that the reference
that is being analyzed actually accesses each one
of the lines of the set that the reference can poten-
tially access during one iteration of the loop i we
are considering. In a second step, an algorithm to
derive this probability will be presented.

3.2.1. General form of a condition dependent PME

A PME must be built for each loop i enclosing a
reference R. The PME is basically a summatory
where each term is the product of the number of
accesses that have a given reuse distance, multiplied
by the PME for the lower level when the input foot-
print corresponds to that reuse distance. When ref-
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erence R is affected by data-dependent conditionals,
this is, when one or more IF structures that depend
on data control the reference, the reuse distances are
not fixed. Depending on the pattern of verification
of the conditions that control the execution of the
reference, its accesses may try to reuse lines with
very different distances. These reuse distances will
have different probabilities of happening, depending
on the distribution of probability of the verification
of the conditionals that control the execution of the
reference. This way, the PMEs for this kind of refer-
ences will use probabilities not only to represent the
miss probability for a given reuse distance, as those
in Section 2.2 did, but also to estimate how many
accesses take place with each possible reuse dis-
tance. Notice that PMEs measure the reuse distance
in terms of iterations of the loop they are associated
to, and the unit of reuse in a cache is the line. As a
result, the base probability to weight the different
reuse distances must be the probability that the ref-
erence that is being analyzed accesses one of the
lines it may potentially access during each iteration
of the loop i that is being considered. In general,
when the conditionals do not follow an uniform dis-
tribution, a set of different probabilities for different
iterations and/or lines must be used. As the scope of
this analysis is restricted to conditionals that follow
an uniform distribution, in this work this probabil-
ity is a single parameter, P iðR;~pÞ, that has the same
value for every iteration of the loop i and for every
line that R may access. This way, the condition
dependent PME for loop i and reference R has the
form

F iðR;RegIn;~pÞ ¼ piLRi

XGRi

j¼1
WMRiðR;RegIn; j;~pÞ;

ð3Þ
where LRi is the number of iterations in which new
different lines would be accessed by reference R due
to the stride in loop i if it were not subject to condi-
tional execution, and pi is the probability the condi-
tional sentences that control the execution of R in
this loop level are true. The product of these two
terms gives the average number of iterations in
which R accesses different lines due to its stride for
this loop. This number of iterations must be multi-
plied by the PME for the immediately lower level
evaluated with the appropriate reuse distance area
vector, which is what the term WMRi stands for,
a weighted number of misses for a reference in level
i. As stated before, because of the control by data-
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dependent conditionals, a range of different reuse
distances with different probabilities may take place.
This range has an average upper bound GRi, the
number of iterations that can potentially reuse the
lines accessed in the LRi iterations that give place
to accesses to new lines. The product of both terms
must be equal to the number of iterations of the
loop, thus GRi = Ni/LRi.
Let us now develop the value of WMRi

ðR; RegIn; j; ~pÞ, the weighted number of misses gen-
erated by reference R in loop i when RegIn is the
region accessed since the last access to any of the
lines affected by the reference of R before loop i

begins its execution, and the line is used in the jth
possible iteration in which the line could be
accessed. This function is computed as

WMRiðRegIn; j;~pÞ

¼ P iðR;~pÞ
j�1

F iþ1ðR;RegIn [ RegiðR; j� 1Þ;~pÞ

þ
Xj�1
k¼1

P iðR;~pÞP iðR;~pÞ
k�1

F iþ1ðR;RegiðR; kÞ;~pÞ;

ð4Þ

where P iðR;~pÞ, the probability that R accesses dur-
ing one iteration of loop i one of the lines that be-
long to its potential access pattern, is used to
weight the probabilities that the different reuse dis-
tances take place. In this equation p stands for
1 � p, this is, the converse probability of p. Let us
remember that Regi(R,n) stands for the regions ac-
cessed during n iterations of the loop i that may
interfere with the accesses of R. The first term in
Eq. (4) considers the case that the line has not been
accessed during any of the previous j � 1 iterations.
In this case, the RegIn region that could generate
interference with the new access to the line when
the execution of the loop begins, must be added to
the regions accessed during these j � 1 previous iter-
ations of the loop in order to estimate the complete
interference region. The second term weights the
probability that the last access took place in each
of the j � 1 previous iterations of the considered
loop.

3.2.2. Line access probability

The probability P iðR;~pÞ that reference R accesses
one of the lines that belong to the region that it can
potentially access during one iteration of loop i is a
basic parameter to derive F iðR;RegIn;~pÞ, as we
have just seen. This probability depends not only
on the access pattern of the reference in this nesting
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level, but also in the inner ones, so its calculation
takes into account all the loops from the ith down
to the one containing the reference. If fact, this
probability is calculated recursively in the following
way:

• If i is the innermost loop containing R, then

P iðR;~pÞ ¼
1 if the accesses of R are consecutive

with respect to loop i;

pi otherwise;

8><
>:

where a consecutive access with respect to a given
loop implies that the accesses that take place in con-
secutive iterations of the loop do reference consecu-
tive memory positions. The condition for this to
happen even when the accesses of R depend on an
IF statement is that the index for the first dimension
of R only makes (sequential) progress within the
same IF statement that controls R. As an example,
this is what happens with references B(posB) and
jB(posB) in the innermost loop of the CRS code
(Fig. 4) that we use in Section 4 to validate our mod-
el: their index posB only advances when these refer-
ences take place; thus consecutive accesses affect
consecutive memory positions, even if the references
are controlled by a condition.
• If i is not the innermost loop containing R, then

P iðR;~pÞ

¼

piP iþ1ðR;~pÞ if the index of loop iþ1 is
not used in the references found in

conditions that control R;

piP iþ1ðR;~pÞ
GRiþ1 otherwise;

8>>>><
>>>>:

where we must remember that p ¼ 1� p and that pi
is the product of all the probabilities associated to
the conditional sentences affectingR in nesting level i.
4. Validation

Our validation of the model is based on the
comparison of its cache miss predictions with the
result of trace-driven simulations. We have used
three simple kernels shown in Figs. 3–5. The first
code is a synthetic kernel with a conditional sen-
tence that control the access to a data structure
C. Then, Fig. 4 implements the storage of a matrix
in CRS format (Compressed Row Storage), which
is widely used to store sparse matrices in a com-
pressed form. The code has two nested loops and
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Fig. 4. CRS storage algorithm.

Fig. 5. Optimized product of matrices.

Fig. 3. Synthetic kernel code.
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Oa conditional sentence that affects three of the ref-

erences. Finally, Fig. 5 is an optimized product of
matrices that contains references inside several
nested conditional sentences. These conditionals
try to avoid unuseful computations when one of
their inputs is a zero.
In order to illustrate in detail our modeling

strategy, we will explain step by step the modeling
of the matrix product code, which is the most com-
plex one. Then, the formulas for the references that
experience non-regular access patterns in the other
two codes will be provided for the sake of com-
plexness. Finally, we will discuss the validation
results.
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4.1. Optimized product modeling

The code in Fig. 5 implements the product of two
matrices, A and B, which may have many zero
entries. As an optimization, when the element of A
to be used in the current product is 0, then all its
products with the corresponding elements of B are
not performed. As an additional optimization, if
the element of B to be used in the current product
is 0 then that operation is not performed either. This
avoids two floating point operations and the load
and storage of C(I,J).
Without loss of generality, we assume a compiler

that maps scalar variables to registers and which
tries to reuse the memory values recently read in
processor registers. Under these conditions, the
code in Fig. 5 contains three references to memory.
The model in [7] can estimate the behavior of the
reference A(I,K), which takes place in every itera-
tion of its enclosing loops. This, way we will focus
our explanation on the modeling of the behavior
of the references C(I,J) and B(K,J), since the
access to A(I,K) is not conditional, and thus it is
already covered in previous publications.

4.1.1. Modeling of C(I,J)
The analysis of the behavior of this reference,

which we will call R along this explanation for sim-
plicity, begins in the innermost loop, in level two. In
this level the loop variable indexes one of the refer-
ences of one of the conditions that control the acces-
ses of C(I,J), so the PME for this loop will be Eq.
(3). As for its parameters, since SR2 = P, then
LR2 = 1 + N and GR2 ’ 1; and p2 is the component
in vector ~p associated to the probability that the
condition inside the loop in nesting level 3 holds.
Also, when expanding Eq. (4) we must take into
account that this loop is in the innermost level, thus
F 3ðR;RegIn;~pÞ ¼ AV 0ðRegInÞ. After the simplifica-
tion the formulation is

F 2ðR;RegIn;~pÞ ¼ p2PAV 0ðRegInÞ.
In the next upper level, level one, the loop vari-

able indexes also one reference of one of the condi-
tions, so the same equations are to be applied. In
this loop, SR1 = 0, LR1 = 1 and GR1 = N, so

F 1ðR;RegIn;~pÞ ¼ p1
XN
j¼1
WMR1ðR;RegIn; j;~pÞ.

In order to compute WMR1 we need to calculate the
value for two functions. One is P 1ðR;~pÞ, which for
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our reference takes the value p1p2, where pi is the ith
element in vector ~p. The other one is Reg1(R, i), the
region accessed during i iterations of loop 1 that can
interfere with the accesses of our reference:

Reg1ðR; iÞ¼Rrpself ðP ;1;M ;1�ð1�p1p2Þ
iÞ

[ Rrði;1;MÞ [ RrpðP ; i;N ;1�ð1�p1p2Þ
iÞ.

The first term is associated to the self-interference of
the reference we are studying. It is associated to the
access to P groups of one element with strideM and
every access takes place with a given probability.
This access pattern was analyzed in Section 3.1.2,
where the calculation of its cross-interference area
vector was explained in detail. The self-interference
area vector, which would be the one to apply in this
equation, follows similar steps. The second term,
Rr(i,1,M), represents the access to i groups of 1 ele-
ment separated by a distance M. The last term rep-
resents the access to P groups of i elements
separated by a constant stride N, each individual
access taking place with a given probability 1 �
(1 � p1p2)

i. Here the cross-interference area vector
is used, so the explanation in Section 3.1.2 applies.
In the outermost level, the loop variable indexes

a reference used in one of the conditions. As a
result, Eq. (3) is to be applied again. In this case,
SR0 = 1, LR0 = 1 + b(M � 1)/Lsc and GR0 ’ Ls, so
the formulation is

F 0ðR;RegIn;~pÞ ¼ 1þ bðM � 1Þ=Lscð Þ

�
XLs
j¼1
WMR0ðR;RegIn; 0; j;~pÞ.

As before, two functions must be evaluated to
compute WMR0. They are P 0ðR;~pÞ ¼ 1� ð1�
p1p2Þ

M and Reg0(R, i), given by

Reg0ðR; iÞ ¼ Rrpself ðP ; 1;M ; 1� ð1� p1p2Þ
N Þ

[ RrðN ; i;MÞ [ RlðPN ; 1� ð1� p1Þ
LsÞ.

The first term is associated to the self-interference of
our reference, which is the access to P groups of one
element separated by a difference M and every ac-
cess takes place with a given probability. The second
term represents the access to N groups of i elements
separated by a distance M. The last element repre-
sents the access to PN consecutive elements with a
given probability.
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4.1.2. Modeling of B(K,J)
The innermost loop for this reference, which we

will now call R along this section, is also the one
in level 2. The variable that controls this loop, J,
is not used in the indexing of referenced found in
conditions that control the execution of this refer-
ence, thus Eq. (1) is to be applied. As this is the
innermost loop, in the evaluation of this equation,
F 3ðR;RegIn;~pÞ ¼ AV 0RegIn. Since SR2 = N and
LR2 = P, the formulation for this nesting level is

F 2ðR; SðRegInÞ;~pÞ ¼ PAV 0ðRegInÞ.
The next level is level one. In this level the

variable of the loops indexes references in the two
conditional statements than affect our reference, so
Eq. (3) applies again. In this case, SR1 = 1, LR1 =
1 + b(N � 1)/Lscand GR1 ’ Ls, so the formulation
is

F 1ðR;RegIn;~pÞ ¼ p1ð1þ bðN � 1Þ=LscÞ

�
XLs
j¼1
WMR1ðR;RegIn; j;~pÞ.

We need to know P 1ðR;~pÞ ¼ p1 and the value of
the accessed regions Reg1(R, i) to compute WMR1:

Reg1ðR; iÞ ¼ Rrself ðP ; 1;NÞ [ Rrði; 1;MÞ
[ RrpðP ; 1;M ; p2Þ.

The first term is associated to the self-interference of
B, which is the access to P groups of 1 elements sep-
arated with stride N. The second term represents the
access to A: i groups of one element separated by a
distance M. The last element describes the access to
C: P groups of one element separated by a distance
M, every access takes place with a given probability
p2.
In the outermost level, the variable of the loop

indexes a reference in one of the conditions, so we
have to apply again Eq. (3). For this loop and refer-
ence, SR0 = 0, LR0 = 1 and GR0 =M, so the formu-
lation is

F 0ðR;RegIn;~pÞ ¼
XM
j¼1
WMR0ðR;RegIn; j;~pÞ.

In this loop, WMR0 is a function of P 0ðR;~pÞ ¼
1� ð1� p1Þ

Ls and the value of the accessed regions
Reg0(R, i):

Reg0ðR; iÞ ¼ Rlself ðPN ; 1� ð1� p1Þ
LsÞ [ RrðN ; i;MÞ

[ RrpðP ; i;M ; 1� ð1� p1p2Þ
N Þ.
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our reference, which is the access to PN elements
with a given probability. The second term represents
the access to N groups of i elements separated by a
distanceM. The last element represents the access to
P groups of i elements separated by a distance M,
every access takes place with a given probability.
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4.2. PMEs for the irregular accesses

in the synthetic benchmark

In the synthetic benchmark in Fig. 3 the only refer-
ence that generates an irregular access pattern is
C(J), and it is due to the enclosing IF structure that
depends on a condition on B(J). The PME that
reflects the behavior of C(J) in the innermost loop is

F 1ðR;RegIn;~pÞ ¼ p1N=Ls
XLs
j¼1
WMR1ðR;RegIn; j;~pÞ;

substituting LRi = N/Ls and GRi = Ls for i = 1 in
Eq. (3). In the calculation of WMR1ðR;RegIn;
j; ~pÞ in Eq. (4) we would use P 1ðR;~pÞ ¼ p1 and
Reg1ðR; iÞ ¼ RsðiÞ [ Rlself ði; 1� ð1� p1Þ

minði;lsÞÞ.
The PME associated to the behavior of C(J) in

the outermost loop, which provides the prediction
for the whole nest for this reference, is

F 0ðR;RegInÞ ¼ F 1ðR;RegInÞ
þ ðM � 1ÞF 1ðR;Reg0ðR; 1ÞÞ;

substituting Ni =M and LRi = 1 for i = 0 in Eq. (1).
In this PME, Reg0ðR; 1Þ ¼ Rsð1Þ [ RsðNÞ [ Rlself
ðN ; 1� ð1� p1Þ

LsÞ.

4.3. PMEs for the irregular accesses in the CRS

benchmark

The references that generate irregular accesses in
the CRS storage algorithm depicted in Fig. 4 are
B(posB) and jB(posB), which are controlled
by a condition on A(I,J). Both references follow
exactly the same irregular access pattern, so we only
provide here the formulas for the modeling of
B(posB), as those of jB(posB) are analogous.
Starting the analysis in the innermost loop, we get

F 1ðR;RegIn;~pÞ ¼ pM=Ls
XLs
j¼1
WMR1ðR;RegIn; j;~pÞ;

substituting pi = p, LRi =M/Ls and GRi = Ls for
i = 1 in Eq. (3). In the calculation of WMR1
E
D

P
R

O
O

F

ðR;RegIn; j;~pÞ in Eq. (4) we would use P 1ðR;~pÞ ¼
1 and Reg1(R, i) = Rs(i) [ Rs(ip).
Finally, in the outermost loop, the number of

misses can be predicted as

F 0ðR;RegInÞ ¼ NF 1ðR;RegInÞ;
substituting Ni = N and LRi = N for i = 0 in Eq. (1).

4.4. Validation results

In order to validate our model its predictions
were compared with the results of trace drive sim-
ulations using different cache configurations, prob-
lem sizes and probabilities for the fulfillment of the
conditionals for the three example codes. The com-
binations used to validate the model for each code
are shown in Table 1. Rows M, N and P corre-
spond to the problem size, this is, the number of
iterations of each loop, expressed as the value of
its upper limit. Then come the probabilities pi that
the conditional sentences found in the codes are
true. The synthetic and the CRS codes have a sin-
gle conditional and no P loop, thus rows P and p2
are empty for them. Then, the cache configurations
used in the validation are shown in the format (Cs–
Ls–K), this is (cache size–line size–associativity).
The cache and line sizes are expressed in words
or elements of the matrices accessed, not in bytes.
Then, Table 1 shows the total number of parame-
ter combinations tried for each code taking into
account the previous rows. For each one of these
combinations a total of twenty five different simu-
lations were made using different base addresses
for the data structures. This improves the valida-
tion of the model by taking into account many dif-
ferent relative positions for the mapping on the
cache of the different data structures. The last
two rows in the table show the average and the
maximum value for each code of the metric DMR
that we use to measure the accuracy of the model.
This metric is the average of the absolute value of
the difference between the predicted and the
measured miss rate (MR) in each one of the 25
simulations performed for each parameter combi-
nation. As expected, the average and maximum
errors grow with the complexity of the code. Still,
we consider that a maximum absolute error of only
about 11% is very satisfactory. Also, the large dif-
ference between the average and the maximum
DMR shows that (relatively) large errors are very
infrequent and, in general, the predictions estimate
well the cache behavior.
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Table 1
Parameter combinations used for the validation and average and maximum miss rate prediction error

Parameter Kernel

Synthetic CRS Matrix product

M 950,1750,2000,4500,6000 1000,1200,1400,1600,1800 350,550,400,600
1200,2500,3000,4000,9500 1250,1350,2450,2650,3000 250,350,450,650

P – – 600,700,750,800

p1 0.1,0.2,0.3,0.4,0.5 0.1,0.2,0.3,0.4,0.5 0.1,0.2,0.3,0.4
p2 – – 0.1,0.2,0.3,0.4

4K–4–1 4K–4–1 4K–4–1
Cache 4K–4–2 4K–4–2 4K–4–2
Configurations 8K–4–1 8K–4–1 –
(Cs–Ls–K) 8K–4–2 8K–4–2 8K–4–2
Sizes in words 16K–8–2 16K–8–2 16K–8–2
Combinations 625 625 4096

Avg DMR 0.22% 1.43% 2.23%
Max DMR 3.81% 8.05% 11.32%
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Tables 2–4 show the validation results for some
randomly chosen combinations of the problem size,
the conditional probabilities and the cache configu-
rations for the three codes proposed in Figs. 3–5,
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Table 2
Validation data for the synthetic kernel in Fig. 3 for several cache con

M N p Cs Ls K

50,000 47,500 0.4 16K 8 2
50,000 47,500 0.2 8K 32 4
22,000 14,500 0.4 32K 16 4
22,000 14,500 0.4 8K 8 1
18,000 22,000 0.2 32K 16 2
18,000 22,000 0.1 16K 8 2
18,000 22,000 0.3 4K 32 4
14,500 19,500 0.7 64K 8 8
14,500 19,500 0.2 16K 4 2
14,500 19,500 0.3 8K 4 1
1750 1750 0.4 8K 4 8
1750 1750 0.7 8K 8 4

Table 3
Validation data for the CRS code in Fig. 4 for several cache configura

M N p Cs Ls K

6200 10,150 0.4 32K 8 4
4200 17,150 0.1 4K 4 2
16,220 7200 0.2 16K 4 2
6200 14,250 0.3 32K 8 4
9200 14,250 0.1 4K 4 8
1100 15,550 0.5 4K 4 8
2900 17,250 0.3 32K 16 4
8900 9250 0.1 64K 8 4
4200 12,150 0.1 4K 4 2
5000 15,000 0.3 32K 8 4
7200 12,250 0.1 4K 4 8
Prespectively. The columns in the three tables have
the same meaning as the respective rows in Table
1. Many of the combinations chosen in these tables
do not belong to the set of experiments described by
E
D

figurations, problem sizes and condition probabilities

DMR Tsim Texe Tmod

0.015 182.211 68.022 0.005
0.004 138.187 50.003 0.005
0.001 28.244 7.033 0.003
0.067 65.002 7.129 0.004
0.574 23.021 7.586 0.004
0.076 22.112 6.012 0.004
0.141 95.223 8.010 0.004
0.000 32.224 7.697 0.005
0.252 20.269 5.331 0.005
0.124 20.901 6.465 0.004
0.000 1.123 1.000 0.003
0.000 0.988 0.322 0.003

tions, problem sizes and condition probabilities

DMR Tsim Texe Tmod

0.01 16.308 4.022 1.225
0.04 14.797 6.401 0.246
0.03 27.477 5.011 3.646
0.00 21.089 5.891 1.221
0.04 37.768 11.001 1.196
0.02 2.724 1.668 0.021
0.17 10.363 4.573 0.572
0.64 17.119 11.228 2.516
0.04 9.364 3.880 0.246
0.11 17.852 10.330 0.804
0.04 18.224 9.646 0.721
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Table 4
Validation data for the optimized matrix product code in Fig. 5 for several cache configurations, problem sizes and condition probabilities

M N P p1 p2 Cs Ls K DMR Tsim Texe Tmod

750 750 1000 0.2 0.1 16K 8 8 0.79 24.444 11.233 0.203
750 750 1000 0.8 0.3 16K 16 16 1.31 86.845 72.069 0.987
900 850 900 0.9 0.1 64K 8 8 0.59 85.358 65.266 0.990
900 950 1500 0.1 0.4 32K 8 4 6.62 31.768 16.201 0.511
900 950 1500 0.8 0.3 16K 4 2 2.04 171.755 85.023 0.149
1000 850 900 0.7 0.5 4K 8 2 3.13 110.328 108.211 0.139
200 250 150 0.8 0.2 16K 4 2 0.48 0.764 0.550 1.034
200 250 150 0.1 0.3 32K 8 4 5.91 0.134 0.112 0.301
200 250 150 0.3 0.1 4K 4 8 1.45 0.406 0.323 0.030
100 350 90 0.8 0.5 4K 4 8 0.14 0.500 0.201 0.031
100 350 90 0.4 0.4 8K 8 4 0.40 0.218 0.122 0.586
100 350 90 0.2 0.3 4K 8 2 0.05 0.104 0.101 0.309
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Table 1, so that the behavior of the model can be
analyzed for a wider scope of parameters. The last
three columns in each table correspond, respec-
tively, to the simulation time, execution time and
modeling times expressed in seconds and measured
in a Athlon 2400 processor-based system
(2086 GHz). As we see, modeling times are much
shorter than trace-driven simulation times despite
the fact hat we use a very fast and simple simulator.
In fact, many times they are even faster than the
native execution times. Furthermore, sometimes
modeling times are several orders of magnitude
shorter than trace-driven simulation and even exe-
cution times. The modeling time does not include
the time required to build the formulas for the
example codes. This will be made automatically by
U
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Fig. 6. Measured versus predicted (a) misses and (b) miss rates for sever
the conditionals for the CRS code with M = 1500 and N = 10,000. Th
matrix elements.
E
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P
Ra tool we are currently developing. According to

our experience in [10], the overhead of such tool is
negligible.
Figs. 6 and 7 show the evolution of both the

number of misses and the miss rate measured and
predicted for different cache configurations and
probabilities of the conditionals for the CRS and
the matrix product codes, respectively. The figures
show, as the previous tables, that the model is suc-
cessful in predicting the behavior of the cache. A
new interesting conclusion we can draw from these
figures is that our extended model is indeed required
to predict correctly the behavior of the memory
hierarchy when irregular access patterns are
involved. We can see that a simplified model that
did not support irregular access patterns and which
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T

P
R

O
O

F

1059
1060
1061
1062
1063

1064

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116

 4K–4–1  16K–8–1 16K–16–4 32K–16–2  32K–8–4
0

0.5

1

1.5

2

2.5

3
x 107

Cache configuration

N
u

m
b

er
 o

f 
m

is
se

s

p=0 measured
p=0 predicted
p=0.1 measured
p=0.1 predicted
p=1 measured
p=1 predicted

 4K–4–1  16K–8–1 16K–16–4 32K–16–2  32K–8–4
0

10

20

30

40

50

60

70

80

90

Cache configuration

M
is

s 
ra

te

p=0 measured
p=0 predicted
p=0.1 measured
p=0.1 predicted
p=1 measured
p=1 predicted

(a) (b)

Fig. 7. Measured versus predicted (a) misses and (b) miss rates for several cache configurations and different probabilities of verification of
the conditionals for the optimized matrix product code with M = 300, N = 300 and P = 300. The cache configurations are expressed as
(Cs–Ls–K), with sizes in matrix elements.
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chose to make all probabilities either 0 or 1 (the two
extremes cases) would yield predictions very differ-
ent from the real values obtained for intermediate
probabilities like 0.1, shown in the figures. This jus-
tifies the interest of our research.

5. Related work

There are a number of previous works that also
try to study and improve the behavior of the mem-
ory hierarchy by means of analytical models based
on the structure of the code. Among those works
we find [11], which is restricted to the modeling of
direct-mapped caches and that lacks an automatic
implementation. Later [12,4], overcame some of
these limitation. This way [12], is based on the con-
struction of the cache miss equations (CMEs),
which are lineal system of Diophantine equation,
where each solution corresponds to a potential
cache miss. One of its main limitations is its high
computing cost. The computing times required by
[4] are much shorter, and similar to those of our
model, however, its errors are larger than those of
our model. Both works share the limitation that
their modeling is only applicable to regular access
patterns found in perfectly nested loops, and they
do not take into account the possible reuses in struc-
tures that have been accessed in previous loops. This
is a very important subject, as most misses in
numerical codes are inter-nest misses [13], which
E
Dimplies that optimizations should consider several

nests.
More recently [5,6], allow the analysis of non-

perfectly nested loops and consider the reuse
between loops in different nests. The former is based
on Presburger formulas and provides very accurate
estimations for small kernels but it can only handle
modest levels of associativity (for example its vali-
dation only considers degrees of associativity one
and two), and it is very time-consuming, which
reduces its applicability. In fact, running a simula-
tion is much faster than solving the equations this
model generates. As for the latter, it is based on
the extension of [14] in order to quantify the reuse,
and it applies the CMEs of [12] in order to estimate
the number of misses. The time it requires to solve
the CMEs is reduced considerably by applying sta-
tistical techniques that allow to provide a prediction
within a confidence interval. This model can analyze
complete programs, imposing the conditions that
the accesses follow regular patterns and that the
codes do not contain data-dependent constructions,
neither in the loop conditions nor in the conditional
sentences. The model precision is similar to that of
ours in most of the cases, however its computing
times are longer. In a later work [9], this model
was extended to consider continual sentences that
could be analyzed statically at compile-time and
were based on the indexes of the loops, not on the
data read or computed in the program. These condi-
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tionals follow predictable and mostly regular access
patterns, so there is little relation to our work.
Unlike our model, all these approaches require

knowing the base addresses of the data structures.
This restricts their scope of application, as these
addresses are not available in many situations
(physically-addressed caches, dynamically allocated
data structures, . . .). Besides, none of them can
model codes with data-dependent conditions.
Indeed, it is the probabilistic nature of our model
what allows us to consider this broad scope of
codes.

6. Conclusions

In this work we have presented an extension to
the PME model described in [7]. The extension
allows this model to be the first one that can analyze
codes with data-dependent conditionals. The
extended model can handle conditionals nested in
any arbitrary way that can affect isolated references
or whole loop nests. We are currently limited by the
fact that the conditions must follow an uniform dis-
tribution, but we think our research is an important
step in the direction of broadening the scope of
applicability of analytical models. This raises the
possibility of driving compiler optimizations for
codes with irregular access patterns based on com-
pile-time estimations of the model, and helps under-
stand better the complex behavior of these codes.
Our experiments show that the model provides
accurate estimations of the number of misses
generated by a given code while requiring quite
short computing times. Typical prediction errors
and within 2% of the miss rate, and maximum
errors, which are quite infrequent, range between
3.8% and 11.3% depending on the complexity of
the code.
We are now working in an extension of our

model to consider non-uniform distributions of
probability for the accesses. We are also developing
an automatic implementation of the extension of the
model described in this paper in order to integrate it
in a compiler framework, in a similar way to what
was done with the original model [10]. We plan to
use the Polaris [15] compiler framework as platform
for this purpose, although the model can be coupled
with any other front-end and used to model any
programming language. As for the scope of the pro-
gram structures that we wish to be amenable to
analysis using the PME model, our next step will
1224
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be to consider codes with irregular accesses due to
the use of indirections or pointers.
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