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Abstract

A high-performance configurable multi-channel counter is presented. The system has been implemented on a small-
size and low-cost Commercial-Off-The-Shelf (COTS) FPGA/DSP-based board, and features 64 input channels, a
maximum counting rate of 45 MHz, and a minimum integration window (time resolution) of 24 µs with a 23 b
counting depth. In particular, the time resolution depends on both the selected counting bit-depth and the number
of actually used channels: indeed, with a 8 b counting depth, the time resolution reaches the value of 8 µs if all the 64
input channels are enabled, whereas it lowers to 378 ns if only 2 channels are used. Thanks to its flexible architecture
and performance, the system is suitable in highly demanding photon counting applications based on SPAD arrays,
as well as in many other scientific experiments. Moreover, the collected counting results are both real-time processed
and transmitted over a high-speed IEEE 1394 serial link. The same link is used to remotely set up and control the
entire acquisition process, thus giving the system a even higher degree of flexibility. Finally, a theoretical model
which immediately provides the overall system performance is described. The model is subsequently validated by the
reported test results.
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1. Introduction

A multi-channel counter is an electronic system
which is able to count the number of digital pulses
detected on each input channel in a given time inte-
gration window.

Such a system plays a key role in many scientific
and industrial set-ups and, most of all, in pho-
ton counting applications based on single-photon
avalanche diode (SPAD) arrays. For instance, the
number of photons collected by an element of the
SPAD array in astronomical observation experi-
ments is related to the luminance of the celestial
surface focused on that particular element. Since a
SPAD generates a digital pulse for each detected
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photon, the astronomical image can be displayed
on a screen by mapping the counting result into
the brightness of a pixel [15]. As a consequence, the
quality of these experiments strongly depends on the
performance of the involved pulse-counting system
[9], i.e. the number of input channels, the minimum
time integration window width (that is the highest
time resolution) and the maximum input pulse rate.

In the last few years SPADs performance has been
greatly improved [3], thanks to the development of
high-speed quenching circuits [17] and the success-
ful implementation in CMOS technology [10], [8].
For this reason, high performance pulse counters are
needed to make the exploitation of these new de-
vices possible and to significantly improve the ap-
plications in which they are used.

Nowadays there are several commercial counters
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that best meet the requirements of these killer-
applications. In particular, besides the basic func-
tion of counting the incoming pulses, they are also
able to process the collected results in real-time,
thus significantly extending their field of use. How-
ever, since they are mainly based on ASICs, they
are very expensive and only suitable to large volume
applications.

In this paper, we present a high performance and
low-cost 64-channel pulse-counting system, which
has been implemented on a Commercial-Off-The-
Shelf (COTS) FPGA/DSP-based board. A basic
and brief description of it has been given in [1].
Here, we provide an expanded and more general
theoretical analysis of the counting architecture,
which can be a valuable and general tool for de-
signing multi-channel counters. Besides, a larger
experimental characterization of our system is re-
ported and its performance is compared with state-
of-the-art counterparts. It results that the proposed
approach is very appealing because of its competi-
tive performance [4], [6], along with small-size and
low-cost [13], [7].

The main feature of this counting system is its
flexible architecture. This allows us to easily vary
the counter parameters and to adapt them to the
different application requirements. For instance, the
width of the integration window can vary in an ex-
tremely wide range, from few microseconds to some
hundreds of milliseconds, with a step size of few
nanoseconds. This is particularly useful in astron-
omy, since it allows to observe fast and slow phenom-
ena, with either high or low luminescence. Moreover,
the width of the integration window determines the
time interval between two consecutive images, i.e.
the frame rate of the imaging system, and hence
the time-resolution with which the experiment is ob-
served.

The counter can operate in a continuous mode,
where a long term acquisition without dead-times
between two consecutive integration windows is per-
formed. It is also capable to process in real-time
the acquired data for filtering or other elaboration.
Then, it sends both the raw counting data and the
processed results over a IEEE 1394 network [5] for
recording and further off-line processing. As an ex-
ample, Figure 1 shows a typical application scenario,
in which the counter is used for astronomical obser-
vations.

A high degree of flexibility is obtained by allow-
ing a remote user to set up and control the entire
acquisition process. Indeed, it is possible to choose
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Figure 1. A typical application of the proposed system in
astronomical experiments.

the width of the integration window from 8 µs to
186 ms with a step size of 11 ns, the counting depth
from 8 to 23 b, the acquisition mode (continuous or
triggered by a dedicated input signal) and – in the
case of triggered acquisition – also the post-trigger
delay and the acquisition length. Moreover, the time
resolution of the measurements depends on both the
number of channels used and the counting depth se-
lected. In particular, if only 2 channels are enabled,
a resolution of 378 ns with a 8 b counting depth is
achievable.

Going into more details, the board used (Orsys
MicroLine C6713Compact [11]) features a 1 M gate
Xilinx Virtex-II Field Programmable Gate Array
(FPGA) [16], a 225 MHz floating point Texas In-
struments TMS320C6713 Digital Signal Processor
(DSP) [14], a general purpose Texas Instruments
TSB12LV32 Link-Layer Controller (LLC) [14] and
a high-speed IEEE 1394 serial interface [5] (see Fig-
ure 2). The 32 b DSP External Memory IF (EMIF)
Data Bus is connected to both the FPGA and the
LLC. The FPGA also receives a 90 MHz clock source
from the DSP EMIF. The LLC manages both the
isochronous and the asynchronous transactions of
the IEEE 1394 bus [5] by means of the Data Mover
and µController interfaces respectively, as shown in
Figure 2. The Orsys MicroLine Connector routes the
64 input channels directly to the FPGA, which im-
plements the acquisition and counting logic. When-
ever a packet of counting results is ready, the FPGA
sends it to the DSP and to the LLC Data Mover IF.
In this way, the DSP can process the data in real-
time, while the LLC transmits them over the IEEE
1394 isochronous link, so that they can be recorded
on a remote device for off-line processing. Once the
DSP has processed a proper number of packets de-
pending on the configured application, it sends the
results to the LLC µController IF, so that the pro-
cessed data can be transmitted over the IEEE 1394
asynchronous link.
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Figure 2. The architecture of the proposed system as part

as the Orsys MicroLine C6713Compact architecture.

2. System Design Considerations

A counter array is generally characterized by the
following parameters: the number of input channels
NC, the maximum value fINmax of the incoming
pulse-rate fIN, the width TW of the time integration
window in which the pulses are accumulated, and
the maximum counting bit-depth LC available for
each channel. These parameters are set according to
the specific application in which the system is used.

In particular, the time integration window is often
required to vary in an extremely wide range, from
microseconds to hundreds of milliseconds. The up-
per bound TWmax of this range is related to LC and
fINmax by the following equation

LC = dlog2(TWmax · fINmax)e. (1)

The greater TWmax and fINmax are, the more logic
resources on the FPGA are needed to implement
each channel counter. As a consequence, being the
available resources limited by the chosen implemen-
tation platform, the maximum number of channels
is constrained by the desired TWmax and fINmax val-
ues.

Since a smaller TW value produces a larger mea-
sured data rate, the lower bound of it depends both
on the available bandwidth between FPGA and
DSP and on the maximum input bit-rate sustain-
able by the DSP for real-time processing. In par-
ticular, given the hardware platform, the minimum
TW depends on how the available bandwidth is used
and how complex is the DSP firmware. Thus, the
main design challenge and goal is to address these is-
sues and to reach the minimum integration window

possible, i.e. the maximum system time resolution.
To this end, data formatting is an important issue.

Let us assume 16 < LC 6 32, as usually happens in
many commercial counters. Let also L be the num-
ber of bits actually used to represent each result,
thus it is L 6 LC. Since the DSP handles 32 b data,
we may format – when it is possible – more than a
single result in a 32 b word. Indeed, if L = LC, then
each 32 b word can hold a single result only, so that
the data format must be 1×32 b. Instead, if L = 16
or L = 8, then 2 or 4 consecutive results may be
packed in a 32 b number respectively, i.e. a 2× 16 b
or a 4× 8 b data format is adopted.

For each of these data formats, the DSP receives a
data packet consisting of NC 32 b-words every TW,
2TW or 4TW respectively. In order to sustain real-
time data processing, the DSP must process each
data packet before the next one is ready. Generally,
the time needed by the DSP to process a packet de-
pends on the packet data format, and increases with
the number of counter readings contained in it. For
this reason, even if a compacted data formatting
improves the bandwidth allocation between FPGA
and DSP, this technique does not guarantee an im-
provement of the minimum TW possible. A better
system time resolution is only achieved under par-
ticular circumstances, as outlined by the following
remarks.

For each of the above mentioned data formats, let
B32, B16 and B8 respectively be the highest input
bit-rate sustainable by the DSP in real-time. As ex-
plained above, the amount of processing needed to
extract the single count results from a compacted
data packet makes

B32 > B16 > B8. (2)

The values of B32, B16 and B8 are determined once
the FPGA is hardware programmed for the given
number of input channels NC and the DSP is pro-
grammed for the real-time processing requested by
the application.

Using the 1×32 b data format, real-time process-
ing is possible only if

32 ·NC

TW
6 B32, (3)

that is

TW >
32 ·NC

B32
≡ TW32. (4)

In other words, TW32 is the minimum allowed value
of TW when the 1× 32 b data format is used.
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In the same way, using the 2 × 16 b data format
we must have

32 ·NC

2TW
6 B16, (5)

that means

TW >
16 ·NC

B16
≡ TW16. (6)

Comparing (6) to (4), the system time resolution
improves only if TW16 < TW32, i.e. only if B32 <
2B16.

Finally, using the 4 × 8 b data format, real-time
processing is possible only if

32 ·NC

4TW
6 B8, (7)

i.e. only if

TW >
8 ·NC

B8
≡ TW8. (8)

Again, comparing (8) to (6), the system resolution
improves only if TW8 < TW16, i.e. only ifB16 < 2B8.

In conclusion, packing 2 or 4 results in a single 32 b
word determines an improvement of the system time
resolution only if the sustainable bit-rate is larger at
least 2 or 4 times that of 1× 32 b format, i.e.

B32 < 2B16 < 4B8. (9)

The main design goal is thus to satisfy (9).
Let us assume (9) is satisfied. It is now interesting

to see if a generic working condition (TW, fIN) will
lead to counters saturation once the data format,
i.e. the value of L = LC, 16, 8 is chosen. In the log-
log plane (TW, fIN) we can plot the curves given by
(see Figure 3):
γC : TW · fIN = 2LC

γ16 : TW · fIN = 216

γ8 : TW · fIN = 28

(10)

The curve γC represents those pairs (TW, fIN) which
exactly cause LC bits-wide counting results. In the
same way, the curves γ16 and γ8 represent those pairs
which cause exactly 16 and 8 bits-wide counting re-
sults respectively.

If the input parameter pair (TW, fIN) sets a point
above γC, the counter will saturate. Instead, if the
array works below γC, we will have three different
cases:
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Figure 3. The (TW, fIN) plane partitioning.

Ajk 1 2 3

1 4× 8 b
2 × 16 b

4 × 8 b

1× 32 b

2× 16 b

4× 8 b

2 4× 8 b
2 × 16 b

4 × 8 b

1× 32 b ?

2× 16 b

4× 8 b

3 4× 8 b
2 × 16 b ?

4 × 8 b

1× 32 b ?

2× 16 b ?

4× 8 b

4 4× 8 b ?
2 × 16 b ?

4 × 8 b ?

1× 32 b ?

2× 16 b ?

4× 8 b ?

Note: a ? means a non-saturating format

Table 1
The (TW, fIN) plane partitioning summary.

– if L = LC, it must be TW > TW32, and saturation
will never occur;

– if L = 16, it must be TW > TW16, and we have to
consider γ16: saturation will only occur above it,
and not below it;

– if L = 8, it must be TW > TW8, and we have to
consider γ8: saturation will only occur above it,
and not below it.

As a consequence, the plane (TW, fIN) is partitioned
into twelve zones, named Ajk (j = 1, . . . , 4; k =
1, . . . , 3) as shown in Figure 3. The data formats
available in each zone and the related saturation
occurrence are summarized in Table 1.

Finally, the same diagram extended up to show
TWmax is reported in Figure 4. This diagram resumes
the above theory and gives an immediate view of the
performance obtainable by the system for different
input parameters. In particular, Figure 4 gives:
– the narrowest TW for a given fIN;
– the highest fIN for a given TW.
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Figure 4. The diagram for the overall system performance.

Consider, for instance, the first point. Let fINC,
fIN16 and fIN8 be the values of γC, γ16 and γ8 at
TW32, TW16 and TW8 respectively. From 10 we have:

fINC =
232

TW32
=

232

32
· B32

NC

fIN16 =
216

TW16
=

216

16
· B16

NC

fIN8 =
28

TW8
=

28

8
· B8

NC

(11)

If fIN 6 fIN8 then the narrowest integration win-
dow is TW8 and is obtained with a 4× 8 b data for-
mat. Instead, if fIN8 < fIN 6 fIN16 then the narrow-
est window is TW16 and is obtained with a 2× 16 b
data format. Finally, if fIN16 < fIN 6 fINC then the
narrowest window is TW32 and is obtained with a
1× 32 b data format. For fIN > fINC every working
condition (TW, fIN) will lead to counters saturation.
However, it should be noted that the input parame-
ter pairs that represent a real working condition are
those with fIN 6 fINmax and with TW8 6 TW 6
TWmax.

3. FPGA Architecture

The FPGA architecture consists of two main mod-
ules: the Data Processing Module (DPM) and the
Data Mover Port IP Core (DMPORT), which is an
IP module provided by Orsys [11]. The DMPORT
is directly connected to the LLC Data Mover In-
terface, which manages the IEEE 1394 isochronous
data transfers, as shown in Figure 5. The DPM con-
sists of the NC Channel Modules (ChMs) and the
DPM Control Module (DCM).

DMPORT

ChM 1

ChM 2

ChM NC

DPM

DCM
ChM Control

Data Bus

FPGA

DSP EMIF
Data Bus

Ch 1

Ch 2

Ch NC

LLC Data 
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DSP EMIF
Clock Output

Trigger

DSP
EXT_INT5

DSP
EXT_INT4

32

24
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Figure 5. The proposed FPGA architecture.
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REGISTER
Ch j 23 32

DSP EMIF
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ChM Control

ChM j

4

Figure 6. The proposed ChM architecture.

The DPM control module handles the operation of
the counter array according to the acquisition mode
(continuous or triggered) and the related parame-
ters, which can be configured by the DSP. In fact,
the DCM configuration registers can be accessed by
the DSP through read/write operations on its exter-
nal memory space. In this way it is possible to set
the values of TW and L, i.e. the format of the output
data. Moreover, the post-trigger delay and the du-
ration of the acquisition can also be set in the case
of triggered acquisition mode.

The DCM drives each ChM with the same con-
trol signals, so that the synchronous operation of all
the ChMs is achieved. Each ChM (Figure 6) imple-
ments the logic necessary to synchronize and count
the incoming events from its related input channel,
and is able to format 1 × 32 b, 2 × 16 b or 4 × 8 b
consecutive counting results in a single 32 b output
word. When a new word is ready (i.e. a new packet is
ready), it is immediately stored in the ChM Output
Register, without suspending the counting process.
This allows a continuous input acquisition without
dead times. Then, the DCM sends an interrupt sig-
nal to the DSP for the retrieval of the packet.

The only FPGA clock source is the DSP EMIF
Clock Output, the frequency fCLK of which
is 90 MHz. The design style adopted is fully-
synchronous, so that we chose to represent TW as a
multiple of the FPGA clock cycle with a 24 b value.
TW thus varies from few microseconds to hundreds
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of milliseconds with the clock cycle time as the nar-
rowest step. In this way, TW can reach TWmax =
224/fCLK ' 186 ms, with a 1/fCLK ' 11 ns step
size.

A conventional two flip-flop synchronizer (in
which the first flip-flop is asynchronously reset by
the second one) provides the synchronization of
the incoming events in each ChM. For this reason,
the maximum frequency of the synchronized sig-
nal which drives the counter is fCLK/2 = 45 MHz.
Incoming asynchronous events with a pulse rate
fIN > fCLK/2 are not recognized by the system,
thus fINmax = fCLK/2. As a consequence, being
TWmax = 224/fCLK, we have from (1) LC = 23. In
other words, the highest achievable count result is
223, so that a 23 b counter is implemented in each
ChM.

Finally, the ChM Formatter prepares the related
32 b output word according to the chosen data for-
mat. In particular, should the count exceed the max-
imum representable value, the result is fixed to that
value, avoiding the counter roll-over and the trans-
mission of wrong results.

4. DSP Firmware

The DSP provides the real-time data processing
and the board communication to the external world.
It receives the acquisition setting and control com-
mands from the remote user by means of the IEEE
1394 asynchronous link, and sets up the DPM and
the DMPORT. Moreover, the same link is used to
periodically send back to the user the results ob-
tained during the real-time processing.

The DSP main program manages the asyn-
chronous transfers by means of a callback functions
queue, i.e. a pointer-to-function queue implemented
in the DSP internal memory. Whenever the LLC
has to interact with the processor, it triggers an in-
terrupt request. Once started, the related Interrupt
Service Routine (ISR) reads the LLC interrupt code
and inserts in the callback queue a pointer to that
specific function which performs the operations re-
quested by the LLC. However, this function is not
immediately called, and the main program contin-
ues its normal execution when the ISR returns. It
is up to the main program to periodically check the
callback queue and, if it is not empty, to extract the
first pointer and call the pointed callback function.

The packet transfers from FPGA to DSP are
managed in background by the processor Enhanced

DMA (EDMA), using a Ping-Pong buffering ap-
proach. Two buffers are allocated in the internal
processor memory. Each of them is able to store
M incoming packets. While one buffer is filled by
the EDMA, the other is processed by the DSP, and
vice versa. In particular, the EDMA continuously
listens to the interrupt requests coming from the
DPM. Whenever the DPM triggers a request, the
EDMA downloads a new packet. Finally, when one
of the two buffers is filled, the EDMA triggers an
interrupt request to the processor. The related ISR
simply tells the main program which of the two
buffers is ready to be processed, by setting an ap-
propriate flag. Again, it is up to the main program
to periodically check this flag and start the buffer
processing if the flag is set.

Anytime the DSP is interrupted, it spends a fixed
amount of time to set up the ISR and another time
to execute it, the amount of which is variable and
depends on the interrupt routine complexity. There-
fore, the body of each ISR should be rather small,
in order to reduce the time during which the main
program execution is suspended.

In our real-time system, the critical code section
is represented by the Ping-Pong buffer processing
routines. Let TPRC be the time needed by the DSP to
process a single packet, and let TPKT = TW ·F be the
lifetime of each packet, where F – according to the
data format chosen – is the number of consecutive
results in each 32 b ChM output word, i.e. 1, 2 or
4. In order to sustain real-time data processing we
must obviously have

TPKT > TPRC. (12)

Let TISR be the time needed by the DSP to handle
an EDMA interrupt request. Since the EDMA inter-
rupts the processor just when a buffer is filled, the
DSP must complete the ISR and process an entire
buffer before the next EDMA interrupt occurs. As
a consequence, we must have

TISR +M · TPRC < M · TPKT, (13)

hence, by (12),

M >
TISR

TPKT − TPRC
. (14)

Moreover, if one or more LLC interrupt requests oc-
cur while processing a buffer, we have also to con-
sider the overall time τ spent by the processor to
handle the callback queue. Hence
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M >
TISR + τ

TPKT − TPRC
. (15)

It is worth noting that the LLC interrupt requests
should never be disabled, otherwise the callback
queue layer – as the asynchronous link itself – would
fail. This means that it is not possible to guarantee
τ = 0.

The real-time processing routines are entirely
application-dependent. We chose to implement a
medium-complex algorithm, with a complexity of
200-650 elementary instructions per packet depend-
ing on the data format, in order to estimate the
performance of our system when used in a particu-
lar application. This algorithm performs, for each
channel, a periodic accumulation of the counting
results coming from the FPGA, and stores the accu-
mulated data in a dedicated Accumulation Buffer.
This buffer is allocated in the internal DSP mem-
ory, and it is NC × 32 b wide. Every time P · M
packets have been processed (i.e. Ping and Pong
buffers have been processed P times), the Accu-
mulation Buffer is uploaded to the user by means
of the asynchronous link. To do this, the transfer
between the DSP and the LLC µController IF is
carried out in background by the processor Quick
DMA (QDMA). Then the Accumulation Buffer is
re-initialized and the algorithm restarts. In this
way, the DSP performs a further integration of the
counting values in a window TACC = P ·M ·TW ·F .
Once the user has set TW and F , the value of P is
chosen by the DSP to have for TACC the smallest
value greater than 100 ms. Figure 7 shows the main
program flow-diagram that the DSP executes.

5. Design Implementation

The FPGA was designed with the Xilinx ISE
Foundation development system [16]. With NC =
64, the FPGA logic resources occupation is 97%.
Table 2 reports the occupation statistics for both
the entire design and every single module.

It is worth noting that the entire design has an
equivalent gate count larger than the number of
gates available in the FPGA. Indeed, the synthesis
was forced to map as many logic functions as pos-
sible in the internal FPGA RAM Blocks, to fit the
design in the target device. Moreover, the total slice
count is much lower than the sum of each module
slice count, since many slices are shared between two
or more modules. The same happens to LUTs. How-
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STOP
acquisition?

START
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Ping/Pong
buffer ready?
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Stop DCM
and DMPORT

Acc. Buffer
initialization

Set-up/Start DCM
and DMPORT

T

T

F

T

T

TF

F

F

F

Figure 7. The DSP main program flow-diagram.

Design

Module

Slices LUTs Equivalent

Gates# % # %

Entire Design 5,003 97.71 9961 97.28 2,747,130

DCM 154 3.01 244 2.38 10,016

ChM Sync 2 0.04 0 0.00 32

ChM Counter 14 0.27 27 0.26 357

ChM Formatter 64 1.25 122 1.19 924

ChM Out Reg 16 0.31 0 0.00 355

DMPORT 327 6.39 403 3.94 275,141

Table 2
FPGA resources occupation statistics (NC = 64).

ever, the values reported give a good comparative
figure of the complexities of the different modules.

As far as the DSP firmware is concerned, the time-
to-completion of the critical code section has been
optimized by letting the compiler unroll the Ping-
Pong buffer processing loop M times. In particular,
in order to determine the value of M , we measured
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Data
Format

Channel
Processing Time [ns]

Buffer
Processing Time [µs]

Min Avg Max Min Avg Max

4× 8 b 459 461 465 470.300 471.891 476.046

2× 16 b 388 389 394 397.596 398.708 397.596

1× 32 b 345 345 346 353.195 353.601 353.963

Table 3
DSP critical code section statistics (NC = 64, M = 16).

both the time spent by the DSP to process a single
32 b channel word – obtaining the values reported
in the first section of Table 3 – and the average time
needed to handle the callback queue and the DMA
interrupt requests – obtaining a value of about 16 µs
for each main program cycle. In this way, M has
been chosen as a compromise between (15) and the
DSP memory allocation, since its value determines
the size of both the Ping-Pong buffer and the un-
rolled code section. As a good trade-off, we set M =
16, thus obtaining the values reported in the second
section of Table 3.

Using the average channel processing time values
reported in Table 3, the values of B32, B16 and B8

can be estimated as follows:

B32 =
M ·NC · 32

(M ·NC · 345 · 10−3 + 16) µs

B16 =
M ·NC · 32

(M ·NC · 389 · 10−3 + 16) µs

B8 =
M ·NC · 32

(M ·NC · 461 · 10−3 + 16) µs

(16)

thus obtaining
B32 ' 88.73 Mbps

B16 ' 79.09 Mbps

B8 ' 67.14 Mbps

(17)

These values satisfy (9). Moreover, according to (4),
(6) and (8) we have:
TW32 ' 23.1 µs

TW16 ' 13 µs

TW8 ' 7.6 µs

(18)

Finally, from (17) and (11) we also have: fIN16 ' 5.06 GHz

fIN8 ' 33.57 MHz
(19)

so that the 45 MHz threshold given by fINmax can
easily be traced on the diagram reported in Figure 4.

6. Test

The multi-channel counter has been tested by con-
necting the board to a Linux PC with an IEEE 1394
standard cable [2]. A user interface developed in
C++ allows the user to choose and send to the DSP
the acquisition parameters, to monitor the accumu-
lation data coming from the DSP every TACC sec-
onds, and to store on the hard-disk each data packet
coming from the FPGA. The counter-array channel
inputs have been connected to a waveform genera-
tor that provides the input pulses to be counted.

Several experiments have been carried out, by
changing the input parameters (input data rate and
integration window) and reading the counted re-
sults. The experimental tests confirms the expected
system performance. In particular, the actual values
T̃W32, T̃W16 and T̃W8 for the minimum integration
windows have been measured. The values are the
following
T̃W32 ' 24 µs

T̃W16 ' 14 µs

T̃W8 ' 8 µs

(20)

and they are very close to those given by (18).
In conclusion, we can state that the innovative and

flexible architecture adopted makes this 64 channel
counter array capable of acquiring and counting in-
coming events with the following correspondence be-
tween the highest time resolution and the maximum
counting depth: 8 µs - 8 b, 14 µs - 16 b, and 24 µs
- 23 b. In particular, for a given pair (TW, fIN) with
fIN 6 fINmax and TW8 6 TW 6 TWmax, the diagram
in Figure 4 let us immediately know the allowed bit
depths and the possibility of count saturation.

In order to further show the power of the archi-
tecture used, the system has also been implemented
and tested for a lower number of channels, i.e. for
NC = 32, 16, 8, 4, 2. The results are reported in the
first section of Table 4. It is worth noting that, asNC

decreases from 64 to 32, M increases from 16 to 32,
so that the Ping-Pong buffer size remains the same,
whereas the unrolled code section size doubles. In-
stead, as NC decreases from 32 to 16, M cannot be
further increased from 32 to 64, since the size of the
unrolled code section would become too large to fit
in the DSP internal memory. The same happens in
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Real-time

processing

NC M T̃W8 T̃W16 T̃W32

enabled

64 16 8 µs 14 µs 24 µs

32 32 4 µs 7 µs 12 µs

16 55 2 µs 4 µs 6 µs

8 90 1 µs 2 µs 3 µs

4 93 789 ns 1.4 µs 2.1 µs

2 95 378 ns 744 ns 1.4 µs

disabled
64 16 2.7 µs 5.4 µs 10.5 µs

2 95 88 ns 189 ns 378 ns

Table 4

Maximum system performance.

the other cases. However, by lowering the number of
channels and increasing the value of M , the overall
performance increases. In particular, the system is
able to reach the maximum time resolution of 378 ns,
when configured for only 2 channels.

Moreover, we disabled the real-time processing
routines and measured the system performance in
the two cases for NC = 64 and NC = 2. In these
cases, the DSP only handles the out-board commu-
nications, by configuring the DPM and the DM-
PORT with the acquisition parameters supplied by
the remote user, and it is not asked to execute any
processing algorithm. This set up is very similar to
the typical working condition of many commercial
counters, for which real-time processing, if any, is
provided only by the remote PC and not by on-board
resources. The results are reported in the second sec-
tion of Table 4. It is worth noting that, with only 2
channels, a value of 88 ns for the time resolution is
achieved.

Let us now compare this counting system with
other state-of-the-art counters. To the best of our
knowledge, this is the only implementation of a
general purpose and flexible multi-channel counter
based on COTS components, like FPGAs or DSPs.
Most advanced counters are generally based on
ASICs designed to satisfy the specific requirements
of the targeted application. Usually they feature
very high time resolutions thanks to integrated
Time-to-Digital Converters (TDC). This is paid in
terms of high development times and costs and very
low flexibility. Also, their performance parameters
are related to the specific application they are de-
signed for, and result rather inhomogeneous from
counter to counter. As a consequence, it is first
necessary to extract form the performance reported

in their datasheets a set of parameters like the one
used in our analysis, in order to set-up an effective
comparison.

As a significant example, let us consider one of
the most advanced commercial counters for photon
counting applications [12]. From its features we ex-
tracted the following equivalent parameters: NC =
2, TWmin = 260 ns, TWmax = 33 µs, 4 ps TW step
size, fINmax = 10 MHz, L = 16, no real-time pro-
cessing which is performed by an external PC. It can
be noted that our counter, configured with NC = 2,
L = 16, and without any on-board processing to
make a fair comparison, can reach a lower TW.

Instead, the outstanding TW step size feature is
significantly lower than ours, thanks to a dedicated
internal TDC. However, the comparison demon-
strates that our counting system shows comparable
performance with the state-of-the-art multi-channel
counters and adds to them the flexibility that makes
it adaptable to many different applications and con-
figurations. Furthermore, the use of programmable
COTS hardware makes possible to build a recon-
figurable counting system, the parameters of which
could be adapted on-the-fly to the application re-
quirements.

7. Conclusion

A high-performance architecture for multi-
channel counter implementation has been presented.
It is a flexible architecture where the computing
power provided by a DSP is joined to an efficient
synthesis of the counting logic on an FPGA. The
proposed system features up to 64 input channels
and is able to acquire incoming events with a pulse
rate up to 45 MHz.

The main feature of this counter is the flexibil-
ity, that allows us to choose the width of the time
integration window between 8 µs and 186 ms with
a step size of 11 ns, and a counting depth of 8, 16
or 23 b. The acquisition mode can be continuous or
triggered by a dedicated input signal, for which the
post-trigger delay and the acquisition length can be
set. In any case, the counter results are real-time
processed to realize a further integration step over
consecutive windows, and the count results are up-
loaded on an external PC. If the counter is pro-
grammed to manage only 2 channels, the minimum
integration window width – i.e. the system time res-
olution – lowers to 378 ns. The counter is realized
with COTS programmable hardware and could be
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designed to be reconfigurable on-the-fly, by adapt-
ing its parameters to the application needs.

The raw counting and the processed results are
transmitted over a high-speed IEEE 1394 serial link,
for remote data recording and off-line processing. A
remote user controls the acquisition parameters with
commands uploaded over the same link, by means
of a user interface on the external PC.

Finally, a theoretical model which allows us to
calculate the overall system performance has been
provided. This model is validated by test results, and
can easily be reused for every other FPGA/DSP-
based counter array.

A comparison with state-of-the-art multi-channel
counters shows that the performance obtained is
comparable, but the flexible architecture and the
theoretical model developed allow the designer to
efficiently adapt our counter to many applications
which differ for number of channels, time integration
window, input data rate and amount of real-time
processing requirements.
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