
� S

S

S

S

S

S

S

º�����������	�
������
������������
������

��
������������������������

S

�
�

�

âââ�����������	��		�	
�

����
�������	��
�

�����������������

������
���

��
�������������S

;�����������������
��

;��������������	��

S

����
�������	��
������������������ ����	���
�� ����
!��
"�
����
!�
��
�!��#���$	�
������
�%�� ��
�%��

&�'((�������)����������*���	S
âââ�����������	��		�	
� � S

��
S

�����������	����
������������
�������
�����������������������������

�������
������
��������������
�������	� �

����� ��
!"�

�������	�����������������������#��$�����%�

����&�'�
��(����)�������������
��������*+,�

*-..�./-�������

�����
���

0��'1�2+3,'--'4+*.3.5��6�71�2+3,'--'4+*.3.5�

$�����1��

	���188999'	�����'����'���'���

�

:�������

o���S�����S ��	
���S��S���S�	��

����S��S�����S����S���
S��
S����S���������S	����������S��S����S��
S
�����	S���������S
��������S ��S ������S ��S ����������S �S 	���	���S �������S ��
S ��������S �����S ��������S ����S �
������S ���S 	��������	�S ��S

�
�������
S ��
S �����
�������
S ���
��
��S �������S ��S ����	������S ���
��S �����������S �������
�S ��S ������S �

�������S

	���	���S ���������S ����S ���S ��
�	���S ���S ��	�������S
�
��
S �������
S 	���	���S ����S ���S 	�������S ��S ����S ����S �����S

�

����
S���	
����S ����S��
S ����S ��������S �������
S 	���	���S ����S ���	����S�����������
S�������S
��
S ��S �	��

��S �����

������S ����S

���S ��S ����S	������
S����S ���S	��	���S ��S ���
��
��S ���������	�S ��S ����	������S��	�����S �������
S ���
��
��S�����S

����S ��S ������
����
���S �����S ���	�S �����S ����
�	��S ��
S �������S ���	�
��	�S 	����������!S ���
����S ��S ������
�S

�����������S��S	����	��S��	�����S��
S	���
������S�����S��S����������So��S�������
S����	���S"�	�����S#����	��S��$#�S

���S�S������S���������	�S��
S�S�����S�������
S����S	������
S�������S�����S���������S���
�����S��
S�����

	��S�S�����S
������	�S��S���������S���	�
��	�S	����������S�����S�����S��S����S���������S��������S

S

A Capacity Sharing and Stealing Strategy for

Open Real-time Systems

Lúıs Nogueira ∗ , Lúıs Miguel Pinho

CISTER Research Centre
School of Engineering of the Polytechnic Institute of Porto (ISEP/IPP)

Rua Dr. António Bernardino de Almeida 431
4200-072 Porto, Portugal

Phone: +351 22 8340529 Fax: +351 228340525

Abstract

This paper focuses on the scheduling of tasks with hard and soft real-time con-
straints in open and dynamic real-time systems. It starts by presenting a capacity
sharing and stealing (CSS) strategy that supports the coexistence of guaranteed
and non-guaranteed bandwidth servers to efficiently handle soft-tasks’ overloads by
making additional capacity available from two sources: (i) reclaiming unused re-
served capacity when jobs complete in less than their budgeted execution time and
(ii) stealing reserved capacity from inactive non-isolated servers used to schedule
best-effort jobs.

CSS is then combined with the concept of bandwidth inheritance to efficiently
exchange reserved bandwidth among sets of inter-dependent tasks which share re-
sources and exhibit precedence constraints, assuming no previous information on
critical sections and computation times is available. The proposed Capacity Ex-
change Protocol (CXP) has a better performance and a lower overhead when com-
pared against other available solutions and introduces a novel approach to integrate
precedence constraints among tasks of open real-time systems.

Key words: Open real-time systems, Dynamic scheduling, Resource reservation,
Residual capacity reclaiming, Reserved capacity stealing, Shared resources,
Precedence constraints

∗ Corresponding author.
Email addresses: lmn@isep.ipp.pt (Lúıs Nogueira), lmp@isep.ipp.pt (Lúıs

Miguel Pinho).

Preprint submitted to Journal of Systems Architecture 10 May 2010

1 Introduction

As an increasing number of users runs both real-time and traditional desktop
applications in the same system the issue of how to provide an efficient resource
utilisation in this highly dynamic, open, and shared environment becomes very
important. The need arises from the fact that independently developed services
can enter and leave the system at any time, without any previous knowledge
about their real execution requirements and tasks’ inter-arrival times.

For most of these systems, the classical real-time approach based on a rigid
off-line design and worst-case execution time (WCET) assumptions would
keep resources unused for most of the time. Usually, tasks’ WCET is rare
and much longer than the average case. At the same time, it is increasingly
difficult to compute WCET bounds in modern hardware without introducing
excessive pessimism [1]. Such a waste of resources can only be justified for
very critical systems in which a single missed deadline may cause catastrophic
consequences.

A more flexible scheduling approach is then needed in order to increase re-
source usage. Flexibility is particularly important for small embedded devices
used in consumer electronics, telecommunication systems, industrial automa-
tion, and automotive systems. In fact, in order to satisfy a set of constraints
related to weight, space, and energy consumption, these systems are typically
built using small microprocessors with low processing power and limited re-
sources.

Guarantees based on average estimations are typically acceptable for soft real-
time tasks since a deadline miss does not constitute a system or application
failure but it is only less satisfactory for the user. Nevertheless, when schedul-
ing soft tasks based on average estimated needs any chosen approach must
handle the case when a task needs to execute more than its guaranteed re-
served time. Not only it is desirable to achieve temporal isolation among soft
tasks as well as the schedulability of hard tasks must not be compromised.

In [2], Mercer et al. propose a scheme based on capacity reserves to remove
the need of knowing the WCET of each task under the Rate Monotonic [3]
scheduling policy. A reserve is a couple (Ci, Ti) indicating that a task τi can
execute for at most Ci units of time in each period Ti. If a task instance needs
to execute for more than Ci, the remaining portion of the instance is scheduled
in background.

Based on a similar idea of capacity reserves, Abeni and Buttazo [4] proposed
the Constant Bandwidth Server (CBS) scheduler to handle soft real-time re-
quests with a variable or unknown execution behaviour under the Earliest
Deadline First (EDF) [3] scheduling policy. To avoid unpredictable delays on

2

hard real-time tasks, soft tasks are isolated through a bandwidth reservation
mechanism, according to which each soft task gets a fraction of the CPU and
it is scheduled in such a way that it will never demand more than its reserved
bandwidth, independently of its actual requests. This is achieved by assigning
each soft task a deadline, computed as a function of the reserved bandwidth
and its actual requests. If a task requires to execute more than its expected
computation time, its deadline is postponed so that its reserved bandwidth
is not exceeded. As a consequence, overruns occurring on a served task will
only delay that task, without compromising the bandwidth assigned to other
tasks.

However, with CBS, if a server completes a task in less than its budgeted
execution time no other server is able to efficiently reuse the amount of com-
putational resources left unused. To overcome this drawback, CBS has been
extended by several reclaiming schemes [5; 6; 7; 8; 9] proposed to support
an efficient sharing of computational resources left unused by early complet-
ing tasks. Such techniques have been proved to be successful in improving
the response times of soft real-time tasks while preserving all hard real-time
constraints.

Nevertheless, not all computational tasks in modern open real-time systems
follow a traditional periodic pattern. For example, aperiodic complex optimi-
sation tasks may take varying amounts of time to complete depending on the
desired solution’s quality or current state of the environment [10; 11; 12; 13;
14; 15]. Furthermore, the existing reclaiming schemes are unable to donate
reserved, but still unused, capacities to currently overloaded servers.

Based upon a careful study of the ways in which unused reserved capacities
can be more efficiently used to meet deadlines of tasks whose resource usage
exceeds their reservations, our previous work [16] proposed the coexistence
of the traditional isolated servers with a novel non-isolated type of servers,
combining an efficient reclamation of residual capacities with a controlled iso-
lation loss. The goal of the Capacity Sharing and Stealing (CSS) scheduler is
to reduce the mean tardiness of periodic guaranteed jobs by handling over-
loads with additional capacity available from two sources: (i) by reclaiming
unused allocated capacity when jobs complete in less than their budgeted exe-
cution time; and (ii) by stealing allocated capacities from inactive non-isolated
servers used to schedule aperiodic best-effort jobs.

However, CSS assumes tasks to be independent. A challenging problem in open
real-time systems is how to schedule inter-dependent tasks that share resources
and exhibit precedence constraints without a complete previous knowledge
about their actual runtime behaviour. The Capacity Exchange Protocol (CXP)
[17] builds upon CSS and integrates its capacity sharing and stealing strategy
with the concept of bandwidth inheritance [18] to mitigate the cost of blocking

3

on soft real-time tasks whose actual execution behaviour is only known by
executing tasks until completion. While preserving the isolation principles of
independent tasks, upon blocking, a task is allowed to be executed on more
than its dedicated server, efficiently exchanging reserved capacities among
servers to reduce the undesirable effects caused by inter-task blocking.

In this paper we provide a complete and consistent description of these proto-
cols and extend the conducted evaluation, simultaneously dealing with capac-
ity sharing, stealing and exchanging. More important, the paper also provides
a proof of correctness of the proposed runtime exchange of reserved capaci-
ties. Hard schedulability guarantees can be provided either for independent
and inter-dependent task sets, even when hard and soft real-time tasks do
share resources and exhibit precedence constraints in open real-time systems.

In the remainder of this paper, we describe the system model and used nota-
tion in Section 2. Section 3 analyses the most significant scheduling approaches
proposed to improve the performance of soft real-time tasks and introduces the
need for the novel capacity sharing and stealing approach described in Section
4. The correctness of the proposed runtime exchange of reserved capacities for
independent task sets is proved in Section 5. CXP is described in detail in
Sections 6 and 7, as a way to efficiently support shared resources and prece-
dence constraints among inter-dependent task sets of open real-time systems.
Although the goal of CXP is to minimise the cost of blocking among soft real-
time tasks, Section 8 describes how hard schedulability guarantees can still
be provided even when hard and soft real-time tasks share resources, at the
expense of some pessimism on the computation of blocking times when tasks
access (nested) critical sections. Section 9 presents and analyses the achieved
evaluation results. Finally, Section 10 concludes this paper.

2 System model

This paper focus on dynamic open real-time systems where all services execute
on a single shared processor, the sum of the reserved capacities is no more
than the maximum capacity of the processor, and the scheduler does not have
any previous complete knowledge about the execution requirements of soft
real-time tasks. We make the reasonable assumption that whenever a service
arrives to the system it advertises its requirements on a certain amount of the
system’s resources based on expected average needs for soft real-time tasks
and WCET measures for hard real-time tasks. If, given the current system’s
load, the required amount can be guaranteed, the service is accepted and the
requested amount is reserved.

A service is composed of a set of hard and/or soft real-time tasks. Each real-

4

time task τi can generate a virtually infinite sequence of jobs. The jth job of
task τi arrives at time ai,j, is released to the ready queue at time ri,j, starts to
be executed at time si,j with deadline di,j = ri,j + pi, with pi being the period
of τi, and finishes its execution at time fi,j. These times are characterised by
the relations ai,j ≤ ri,j ≤ si,j ≤ fi,j.

For a hard real-time task τi, the system must provide an a priori guarantee that
every job must complete at a time fi,j ≤ di,j. As such, pi refers to the minimum
inter-arrival time between successive jobs of τi so that ai,j+1 ≥ ai,j + pi and
its execution requirements ei,j are characterised by the task’s WCET.

For soft real-time tasks, the timing constraints are more relaxed. In particular,
for a soft task τi, pi represents the expected inter-arrival period between suc-
cessive jobs. As such, the arrival time ai,j of a particular job is only revealed
at runtime and the exact execution requirements ei,j can only be determined
by actually executing the job to completion until time fi,j.

Each soft or hard real-time task τi is scheduled through an abstract entity Si

called server. As such, all the jobs generated by task τi are dedicated to server
Si. Each server Si is characterised by a pair (Qi, Ti), where Qi is the server’s
maximum reserved capacity and Ti its period. For a hard real-time task τi,
its dedicated server Si has a reserved capacity Qi equal to the task’s WCET
and a period Ti equal to the task’s period. For soft real-time tasks, Qi and Ti

are set based on the served tasks’ expected average values. It is important to
point out that this paper does not deal with policies to optimally assign or
dynamically change the servers’ parameters according to the actual needs of
the served soft real-time tasks either based on some heuristic algorithms or
feedback control schemes as appear, for example, in [19].

At each instant, the following values are associated with a server Si: its cur-
rently assigned deadline di

k, its remaining execution capacity 0 ≤ ci
k ≤ Qi, the

amount of residual capacity ri
k ≤ ci

k that can be reclaimed by other servers,
and its currently assigned replenishment time hi

k = di
k. If at time t, Si finishes

the execution of its currently served job without exhausting its reserved exe-
cution capacity ci

k and it has no pending work, the remaining amount ci
k > 0

sets the server’s residual capacity ri
k = ci

k that can be reclaimed (ci
k is subse-

quently set to zero). By pending work we refer to the case when there exists
at least a served job such that ri,j ≤ t < fi,j.

This paper considers two different types of servers: isolated servers used to
schedule periodic and sporadic guaranteed tasks and non-isolated servers for
aperiodic best-effort tasks. For an isolated server Si it is ensured that its
amount of reserved capacity Qi is available every period Ti to its dedicated
task τi. On the other hand, a non-isolated server Sj can have some or all of
its reserved capacity Qj stolen by one or several needed overloaded servers

5

and, as such, it is not guaranteed that its dedicated task τj can execute for Qj

every period Tj. At any given time, the earliest deadline server in the ready
queue with unfinished jobs that can use some eligible capacity is selected
for execution, based on the EDF priority assignment [3]. When no server is
selected, the processor is idle or it is executing non-real time tasks.

Served tasks of the same or from different services may simultaneously need
exclusive access to one or more of the system’s resources R, during part or all
of their executions. If task τi is using resource Ri, it locks that resource. Since
no other task can access Ri until it is released by τi, if τj tries to access Ri it
will be blocked by τi. Blocking can also be indirect (or transitive) if although
two tasks do not share any resource, one of them may still be indirectly blocked
by the other through a third task. The conditions under which nested critical
sections are allowed as well as resource sharing among soft and hard real-time
tasks is discussed in detail in Section 8.

Furthermore, tasks within a service may also exhibit precedence constraints
among them. A task τi is said to precede another task τk if τk cannot start
until τi is finished. Such precedence relation is formalised as τi ≺ τk and
guaranteed if fi,j ≤ sk,j. Precedence constraints are defined in the service’s
description at admission time by a directed acyclic graph G, where each node
represents a task and each directed arc represents a precedence constraint
τi ≺ τk between two tasks τi and τk. Given a partial order ≺ on the tasks, the
release times and deadlines are said to be consistent with the partial order if
τi ≺ τk ⇒ ri,j ≤ rk,j and di,j < dk,j.

The schedulability of hard real-time tasks can be guaranteed as long as it
is possible to perform an accurate analysis and bound the execution times of
hard tasks, their minimum inter-arrival times, and the duration of the accessed
critical sections and maximum blocking time. Please refer to Sections 5 and 8
for a detailed analysis.

3 Improving the system’s performance

Since the actual execution time of some tasks can be affected by several factors,
they may use less than the reserved amount of resources, dynamically releasing
extra residual capacity. Similarly, all except hard real-time tasks occasionally
(or even frequently) need more resources than they have reserved. As such,
an efficient reclamation and redistribution of unused reserved capacities can
significantly improve the performance of both soft real-time and best-effort
applications.

By the very nature of open real-time systems, the availability of residual ca-

6

pacities is unknown beforehand and can only be scheduled dynamically when
it is detected. Similarly, overload situations are not known until an unfinished
task has consumed all of its reserved resources. Many researchers have exam-
ined these issues in various contexts and have developed a number of effective
techniques for improving the system’s performance through a better redistri-
bution of unused reserved capacities. Some of the most relevant works are
discussed in the next paragraphs.

In [20], Bernat and Burns propose a capacity sharing protocol for enhancing
soft aperiodic responsiveness in a fixed priority environment, where each task
is handled by a dedicated server. The protocol allows an overloaded server to
steal capacity from other servers to advance the execution of the served tasks,
thus loosing isolation among the served tasks.

The capacity sharing protocol of [20] has been extended by the HisReWri algo-
rithm [21]. The algorithm identifies those tasks that did execute when a hard
task has released some of its maximum allocated capacity and retrospectively
assigns their execution times to the hard task. If there is residual capacity
available, tasks’ budgets are replenished by the amount of residual capacities
they consumed. As execution time is retrospectively reallocated, the authors
describe the protocol as history rewriting.

In dynamic scheduling, CBS [4] is a well known algorithm which is able to
provide temporal protection among tasks, isolating the behaviour of each task
from the rest of the system. As such, it is possible to guarantee the real-time
performance of a task by considering it in isolation. Such property is partic-
ularly useful when mixing hard and soft real-time tasks in the same system.
Since CBS can properly cope with both periodic and aperiodic activations,
it has been used as the baseline reservation-based algorithm in several other
schedulers with the ability to reclaim residual capacities originated by early
completions.

GRUB [5] reduces the number of task preemptions by assigning all the excess
capacity to the currently executing CBS server. Although a greedy reclamation
policy is used, excess capacity always tends to be distributed in a fair manner
among needed servers across the time line. However, GRUB always postpones
a server’s deadline before starting a new job, regardless of the current value
of the server’s budget. A critical parameter of this approach is the time gran-
ularity used in the algorithm, since a small period reduces the scheduling
error, but increases the overhead due to context switches [6]. GRUB has later
been extended to properly schedule both real-time and non-real-time tasks by
following a hard reservation approach [22].

CASH [6] uses a global queue of residual capacities originated by early comple-
tions, ordered by deadline. Whenever a CBS server is scheduled for execution

7

it will first use any queued capacity whose deadline is less than or equal to its
own, reducing the number of deadline shifts and executing periodic tasks with
more stable frequencies. However, CASH may not schedule tasks as expected,
since it immediately recharges the servers’ capacities without suspending the
tasks on every capacity exhaustion [7]. An improvement to CASH’s residual
bandwidth reclaiming and the ability to work in the presence of shared re-
sources has been more recently proposed in [8].

IRIS [7] adds a hard reservation approach [23] to CBS and uses such property
to reclaim unused computation times. It identifies the deadline aging problem
of CBS when scheduling acyclic tasks (tasks that are continuously active for
large intervals of time) and proposes to suspend each task’s replenishment
until a specific time. It is also a fair algorithm in the sense that residual ca-
pacity is equally distributed among the servers that need to execute more
than the reserved time but it may suffer from an excessive number of context
switches. Furthermore, residual capacity reclaiming is only performed after all
the servers had exhausted their reserved capacities, potentially wasting valu-
able bandwidth that could otherwise have been used to advance the execution
of overloaded servers.

BACKSLASH [9] proposes to retroactively allocate residual capacities to tasks
that have previously borrowed their current resource reservations to complete
previous overloaded jobs, using an EDF version of the mechanism implemented
in HisReWri [21]. At every capacity exhaustion, servers’ capacities are immedi-
ately recharged and their deadlines extended as in CBS. However, a task that
borrows from a future job remains eligible to residual capacity reclaiming with
the priority of its previous deadline. The main problem of this approach is that
allowing a task to use resources allocated to the next job of the same task may
cause future jobs of that task to miss their deadlines by larger amounts. Con-
sidering the mean tardiness of a set of periodic tasks on higher system loads,
BACKSLASH can be outperformed by an algorithm that do not borrows from
future resources [9].

While the scheduling schemes discussed above generally improve the system’s
performance, as the number of applications with soft real-time constraints con-
tinues to grow, new scheduling requirements are emerging, particularly where
it may be preferable to have approximate results of a poorer but acceptable
quality delivered within the available computation time, than late results with
the desirable optimal quality [10; 11; 12; 13; 14; 15].

Consider, for example, a route optimiser that is part of the navigation system
of an automated vehicle [12]. Given the state of the external and internal world,
the system is continuously searching for the best path. The task execution is
unbounded, data-driven, not predictably regular, and as a result its operation
is not easily parcelled for a periodic execution. With an anytime approach, the

8

optimisation task can be interrupted at any time and still be able to provide a
solution and a measure of its quality. As such, systems can take advantage of
the flexibility offered by anytime algorithms as long as a scheduling mechanism
that can regulate their behaviour is developed.

As such, while is still crucial to support an efficient reclaiming of residual ca-
pacities, a more flexible overload control of guaranteed services can be achieved
if isolation is also reduced in a controlled fashion in order to donate reserved,
but still unused, capacities to currently overloaded servers. However, all the
previous extensions to CBS are only able to reclaim the unused allocated ca-
pacity made available when jobs complete in less than their budgeted execution
time but unable to reclaim the unused capacities of idle servers.

As it will be shown in the next section, the proposed capacity sharing and
stealing approach is able to distinguish between reclaiming “residual capac-
ity” due to earlier completions of periodic tasks (predictable arrivals) and re-
claiming “non-isolated capacity” from inactive servers which handle aperiodic
best-effort tasks (non-predictable arrivals) in order to advance the execution
of overloaded servers.

4 The Capacity Sharing and Stealing approach

The Capacity Sharing and Stealing (CSS) scheduler integrates and extends
some of the best principles of previous reservation-based scheduling approaches
to improve the responsiveness of soft real-time tasks in the presence of overruns
while ensuring that the schedulability of hard tasks is not compromised. To
ease the algorithm’s discussion, the main principles of the proposed approach
are discussed in the next paragraphs and the CSS scheduler is formally pre-
sented in Section 4.3.

CSS assumes that all tasks in the system are independent and no task is
allowed to suspend itself waiting for a shared resource or a synchronisation
event. The system consists of n CSS servers and a global scheduler based on
the EDF priority assignment. A single ready queue exists and, at each instant,
the active server with the earliest deadline Si is selected and its corresponding
task τi is dispatched to execute.

The algorithm considers two different types of servers: isolated servers used
to schedule periodic and sporadic guaranteed tasks and non-isolated servers
for aperiodic best-effort tasks. For an isolated server Si it is ensured that its
amount of reserved capacity Qi is available every period Ti to its dedicated
task τi. On the other hand, a non-isolated server Sj can have some or all of
its reserved capacity Qj stolen by one or several needed overloaded servers

9

and, as such, it is not guaranteed that its dedicated task τj can execute for
Qj every period Tj.

At time t, an isolated or non-isolated server Si is said to be active if (i) the
served task is ready to execute; (ii) is executing; or (iii) the server is supplying
its residual capacity ri

k > 0 to other servers until its currently assigned deadline
di

k. Otherwise, Si is inactive if (i) there are no pending jobs to serve; and (ii)
the server has no residual capacity that can be reclaimed by other servers,
that is, ri

k = 0.

State transitions are determined by the (i) release of a new job at time ri,k, if
ri,k ≥ di

k−1, or (ii) non-existence of pending jobs either at the server’s current
replenishment time hi

k or at the exhaustion of the server’s residual capacity
ri
k = 0 (Figure 1). Note that if a soft real-time job arrives earlier than expected,

that is ai,k < di
k−1, and its dedicated server Si is inactive, the task is only

released to the ready queue at the server’s next replenishment time hi
k and

only then Si becomes active. On the other hand, an active server becomes
inactive (i) at a time t < hi

k, if all its reserved capacity is consumed (either
as its own execution capacity ci

k or as residual capacity ri
k consumed by other

servers) and there are no pending jobs to serve; or (ii) at its currently set
replenishment time hi

k, if there are no pending jobs to serve, even with some
reserved capacity left.

Fig. 1. State transitions of a CSS server Si

At the beginning, all servers are inactive with deadlines di
0 = 0 and are only

activated with the arrival of a job of their dedicated tasks. To ensure the
correct behaviour of the system on phased arrivals, the deadline of a server
associated to a hard real-time task is assigned in such a way that the server’s
deadline is coincident with its dedicated task’s deadline. On the other hand, a
soft real-time task simply inherits its server’s deadline, set to di

1 = ri, 1 + Ti,
to enhance its responsiveness.

As with all reservation-based schedulers, CSS is characterised by three mecha-
nisms: accounting, enforcement, and replenishment. Accounting measures the
CPU time consumed by a server Si in order to properly determine its remain-
ing available capacity ci

k. As such, whenever a task served by Si executes for
a period of time ∆t, the server’s available execution capacity ci

k is decreased

10

by ∆t.

Enforcement and replenishment, as opposed to CBS, are performed at a server’s
currently assigned recharging time hi

k rather than immediately after the server’s
capacity exhaustion, thus following a hard reservation approach [23]. When
the server’s capacity is exhausted, the server is said to be depleted and cannot
be recharged (ci

k+1 = Qi) and its deadline postponed (di
k+1 = di

k +Ti) until its
currently assigned recharging time hi

k is reached.

Recall that CBS presents some drawbacks when serving tasks that are active
for long intervals of time, covering therefore many periods of a server [7; 22].
Since CBS automatically recharges a server’s capacity and postpone its dead-
line on every capacity exhaustion, if the server’s deadline, although postponed,
is still the earliest, the renewed capacity can be used within the same period.
This leads to a temporal over execution that may be followed by a starvation
period, altering the rate of periodic tasks.

Furthermore, advancing a server’s recharging time whenever there is pending
work is against our purpose of executing periodic tasks with stable frequencies.
Note that if pending work is a consequence of early arrivals of soft real-time
jobs, executing periodic services with a stable frequency suggests that those
early arrived jobs should only begin their execution in the expected period of
arrival. When pending work is due to a server’s overload, instead of allowing a
task to use resources allocated to the next job of the same task by recharging
the server’s capacity and postponing its deadline, CSS allows an overload
server either to steal reserved capacities from inactive non-isolated servers
or reclaim any new residual capacities that eventually are released until its
currently assigned deadline.

4.1 Capacity reclaiming

Whenever a job of the currently executing sever Si is completed in less than
its budgeted execution time and the server has no pending work, its remaining
reserved capacity ci

k > 0 can (and should) be used by any other active server
to advance the execution of its own tasks.

CSS proposes to efficiently reclaim unused computation times as early as pos-
sible. Note that when using a residual capacity of another server, a task must
be scheduled using the current deadline of the server from which the residual
capacity belongs to. Since capacities expire at their deadlines, it makes sense
to reclaim residual capacities before consuming the server’s reserved capacity
in order to increase the probability of effectively using them.

As such, with CSS, the remaining reserved capacity ci
k > 0 of a server Si

11

without pending work is immediately released as residual capacity ri
k = ci

k

and ci
k is set to zero. Then, ri

k can immediately be reclaimed by any eligible
active server Sj until the currently assigned Si’s deadline di

k.

Definition 1 The set of active servers Ar eligible for residual capacity re-
claiming whenever a server Sj is scheduled for execution is given by Ar =
{Sr|Sr ∈ A, dr

k ≤ dj
k, c

r
k > 0}, where A is the set of all active servers, dr

k is
the current deadline of early completed jobs and dj

k is the currently assigned
deadline of server Sj.

When scheduled with CSS, a server Sj starts by reclaiming the residual ca-

pacity redf
k > 0 supplied by the earliest deadline active server Sedf from the set

of eligible servers Ar, either until the job’s completion or cedf
k ’s exhaustion.

Definition 2 The earliest deadline active server Sedf from the set of eligible
servers Ar is defined as ∃1Sr ∈ Ar : mindr

k
(Ar), Ar 6= ∅.

Please note that the ∃1 relation is guaranteed by the min function which,
whenever there is more than one server with the same earliest deadline, always
returns the first server on the list.

Furthermore, since the execution requirements of each soft real-time job are
not known beforehand, it also makes sense to devote as much excess capacity as
possible to the currently executing server. As such, while there is pending work
to do, remaining residual capacities are greedily consumed by the currently
executing server according to an EDF policy.

We carefully considered this fairness issue. The increased computational com-
plexity of fairly assigning residual capacities to all active servers and the fact
that fairly distributing residual capacities to a large number of servers (usually
in proportion of the servers’ bandwidths) can originate a situation where no
enough excess capacity is provided to any one to avoid a deadline miss, lead
us to assign all residual capacity to the currently executing server Sj. Such a
greedy capacity reclaiming not only has a reduced computational complexity,
it also minimises deadline postponements and the number of preemptions and
tends to be fair in the long run [5].

As such, with CSS, a server Sj only starts to consume its own reserved capacity
cj
k to advance the execution of the currently served job of its dedicated task

whenever all available eligible residual capacities in the system are exhausted,
either until the job’s completion or cj

k’s exhaustion.

12

4.2 Capacity stealing

CSS proposes to reduce isolation in a controlled fashion to donate reserved,
but still unused, non-isolated capacities to currently overloaded servers to
minimise soft tasks’ response times whilst guaranteeing that the deadlines of
hard tasks are met.

In fixed priority environments, similar approaches have been proposed [24; 25].
However, those proposals present some drawbacks that invalidate their use in
dynamic open real-time systems. The work in [24] relies on a pre-computed
table that define the residual capacity present on each invocation of a hard
task. In contrast, [25] determines the amount of available capacity at run time,
but the execution time overhead introduced by the optimal dynamic approach
is infeasible in practice [26].

With CSS, inactive non-isolated servers can have some or all of their reserved
capacity stolen by an active overloaded server Si that has already consumed
all of its own reserved capacity ci

k.

Definition 3 The set of inactive non-isolated servers Is eligible for capacity
stealing by the currently executing server Si which has exhausted all of its own
reserved capacity ci

k is given by Is = {Ss|Ss ∈ I, ds
k ≤ di

k, c
s
k > 0}, where I is

the set of all inactive non-isolated servers, ds
k is the current deadline of each

inactive non-isolated server Ss.

Since the parameters of inactive servers are not automatically updated, when-
ever the currently executing server Si is determining the set of eligible inactive
non-isolated servers Is it needs to verify if an update of the current values of
the deadline and reserved capacity of each inactive non-isolated server Ss is
needed. As such, if the previously generated absolute deadline ds

k of the se-
lected non-isolated server Ss is lower than the current time (ds

k < t), a new
deadline (ds

k = t+Ts) is generated and the server’s capacity is recharged to its
maximum value (cs

k = Qs). Otherwise, Ss’s current values are used. In either
case, Ss is kept in the inactive state.

After determining Is, Si is able to steal the non-isolated capacity of the earliest
deadline inactive non-isolated server Sedf from the set of eligible inactive non-
isolated servers Is.

Definition 4 The earliest deadline inactive non-isolated server Sedf from the
set of eligible servers Is is defined as ∃1Ss ∈ Is : minds

k
(Is), Is 6= ∅.

Non-isolated capacity stealing also follows a greedy approach. Whenever the
inactive capacity cedf

k being stolen is exhausted and the job has not yet been

completed, the next non-isolated capacity cedf ′
k is used (if any) by Si to advance

13

its execution.

However, capacity stealing is interrupted whenever (i) the currently executing
server Si is preempted; (ii) a replenishment event occurs on the inactive capac-
ity cs

k being stolen and the new deadline assigned to Ss either becomes larger
than the one currently assigned to Si or it ceases to be the earliest inactive
non-isolated one; or (iii) a new job arrives for the inactive non-isolated server
Ss, whose reserved capacity is being used by Si. As expected, when a new
job arrives for the inactive non-isolated server Ss, it becomes active with its
currently remaining capacity cs

k and not with its fully recharged capacity. How-
ever, an active non-isolated server can also reclaim eligible residual capacities,
steal inactive non-isolated capacities, and share its own residual capacity with
other servers whenever its job is completed in less than its budgeted execution
time.

4.3 The CSS scheduler

When a new job Ji,k arrives at time ai,k for server Si, if Si is active, the job is
buffered and will be served later. If Si is inactive and if ai,k < di

k, the server
becomes active and the job is served with the last generated deadline di

k, using
the current server’s capacity ci

k. Otherwise, Si’s capacity is recharged to its
maximum value ci

k = Qi, a new deadline is generated to di
k = max{ai,k, d

i
k−1}+

Ti, the server’s recharging time is set to hi
k = di

k and its residual capacity is
set to ri

k = 0.

Whenever a server is executing, the consumed capacity must be decreased
by the same amount. By dynamically managing a pointer to the server from
which the capacity is going to be decreased, the proposed dynamic accounting
mechanism of CSS eliminates the need of extra queues or additional server
states, reducing its overhead. The server from which the accounting is going
to be performed is dynamically determined at the time instant when a capacity
is needed.

CSS uses the following rules to manage reserved capacities:

• Rule A (residual capacity release): Whenever a server Sj completes its
kth job of its associated task τj and it has no pending work, its remaining
reserved capacity cj

k > 0 is released as residual capacity rj
k = cj

k and cj
k is set

to zero. The released residual capacity rj
k can immediately be reclaimed by

eligible active servers until the currently assigned Sj’s deadline dj
k. Sj is kept

active with its current deadline until its residual capacity rj
k is exhausted

by other servers.
• Rule B (residual capacity reclaim): The next active server Si sched-

uled for execution points to the earliest deadline server Sedf from the set of

14

eligible active servers Ar for capacity reclaiming. Si consumes the pointed
residual capacity redf

k , running with the deadline dr
k of the pointed server

Sedf . Whenever redf
k is exhausted and there is pending work, Si disconnects

from Sedf and selects the next available server S ′edf (if any).
• Rule C (dedicated capacity consumption): If all eligible residual ca-

pacities are exhausted and the current kth job of server Si is not yet com-
pleted, Si consumes its own reserved capacity ci

k either until the job’s com-
pletion or ci

k’s exhaustion (whatever comes first). If ci
k is exhausted and

there is still pending work to do, Si is kept active with its current deadline
di

k.
• Rule D (inactive non-isolated capacity steal): A server Si with pend-

ing work and no available execution capacity (ci
k = 0) connects to the earliest

deadline server Sedf from the set of eligible inactive non-isolated server Is. Si

steals the pointed inactive capacity cedf
k , running with its current deadline

di
k. Whenever cedf

k is exhausted and the job has not yet been completed, the

next non-isolated capacity cedf ′
k is used (if any).

Note that the proposed dynamic capacity accounting mechanism ensures that
at time t, the currently executing server Si is using a residual capacity rj

k > 0
originated by an early completion of another active server Sj, its own reserved
capacity ci

k > 0, or is stealing capacity cs
k > 0 from an inactive non-isolated

server Ss. To preserve schedulability, it ensures that the longest time a server
can be connected to another server Sj is bounded by the currently pointed
server’s capacity cj

k and deadline dj
k.

CSS is then able to (i) achieve isolation among guaranteed tasks; (ii) efficiently
reclaim unused computation times, exploiting early completions; (iii) allow
an overloaded server to steal non-isolated reserved capacities from inactive
servers. As will be demonstrated in Section 9, the proposed approach is able
to reduce the mean tardiness of periodic guaranteed jobs in highly dynamic
open real-time systems.

4.4 Handling overloads with CSS

The next example details how CSS can handle soft tasks’ overloads without
postponing deadlines by greedily reclaiming residual capacities and stealing
inactive non-isolated capacities used to schedule aperiodic best-effort services.

Consider the following periodic task set, described by average execution times
and period: τ1 = (2, 5), τ2 = (4, 10), τ3 = (3, 15). τ1 is served by the non-
isolated server S1, while tasks τ2 and τ3 are served by the isolated servers S2

and S3, respectively, with periods and capacities equal to the tasks’ expected
values. A possible scheduling of this task set with CSS is detailed in Figure

15

2. When a server is connected to another server, either reclaiming a residual
capacity or stealing an inactive non-isolated capacity, an arrow indicates where
the capacity accounting is being performed.

Fig. 2. Handling overloads with CSS

At time t = 3, τ2 finishes its job and releases a residual capacity r2
1 = 1 with

deadline d2
1 = 10 (Rule A). Server S3 is scheduled for execution, connects to S2,

the earliest deadline residual capacity available, and starts to execute its task
τ3, consuming the reclaimed residual capacity r2

1 (Rule B). When this residual
capacity is exhausted at time t = 4, S2 becomes inactive and S3 continues
to execute τ3 by using its own reserved capacity until it is exhausted at time
t = 7 (Rule C).

At time t = 7, S3 has pending work and no capacity left (c3
1 = 0). Since there

is inactive non-isolated capacity available, S3 is able to continue its execution
by stealing the inactive non-isolated capacity of server S1 (Rule D). Since
d1

0 < t, a new deadline d1
1 = t + T1 = 5 + 7 = 12 is generated and the server’s

execution capacity is recharged to its maximum value c1
1 = Q1 = 2.

Note that at time t = 9 a new job of τ2 arrives for the inactive server S2 but the
job is only released to the ready queue at time t = 10. Recall that advancing
execution times is against our purpose of executing periodic activities with
stable frequencies.

At time t = 15, after S2 has completed its job by stealing some of the inactive
non-isolated capacity of S1, a new job for server S1 arrives. Note that S1 be-
comes active, keeping its currently available capacity c1

2 = 1 and corresponding
deadline d1

2 = 19.

At time t = 16, server S1 exhausts its capacity and stops executing since

16

there are is no available inactive non-isolated capacity to steal in the system.
The server remains active and, at time t = 19 (the server’s replenishment
time h1

2), a replenishment of S1’s capacity occurs and it continues to execute
the pending job. At time t = 20, completes the job and releases the residual
capacity r1

3 = c1
3 = 1 with deadline d1

3 = 24 and sets c1
3 to zero. This residual

capacity r1
3 is used by server S2 before consuming its own capacity at time

t = 21.

At time t = 25, a new job of τ1 arrives and the inactive non-isolated server S1

becomes active. Note that, like any other active server in the system, it first
reclaims the residual capacity r2

3 = 1 with deadline d2
3 = 30, released at time

t = 24 by an early completion of τ2, before consuming its own capacity.

At time t = 33 an overload of τ2 is first handled by stealing the inactive non-
isolated capacity of server S1 and then, at time t = 38, by consuming the
available residual capacity released after an early completion of task τ3. Recall
that with CSS a server is kept active even if it has exhausted its capacity. As
shown, this behaviour enables an overloaded server to take advantage of any
eligible residual capacity that is released until its currently assigned deadline.

5 Theoretical validation for independent task sets

In this section we analyse the schedulability condition for a hybrid set of hard
and soft real-time tasks. CSS is able to reduce the mean tardiness of soft real-
time tasks through an efficient management of unused reserved capacities. If
each hard real-time task is scheduled by an isolated CSS server with a reserved
capacity equal to the task’s WCET and period equal to the task’s period, it
behaves like a standard hard task scheduled by EDF. The main difference is
that, with CSS, hard tasks can use extra capacities and yield their residual
capacities to other tasks.

In [27], it is proven that a CBS server with parameters (Qi, Ti) cannot occupy a
bandwidth greater than Qi

Ti
. That is, if DSi

(t1, t2) is the server’s bandwidth de-
mand in the interval [t1, t2], it is shown that ∀t1, t2 ∈ N : t2 > t1, DSi

(t1, t2) ≤
Qi

Ti
(t2 − t1). This isolation property allow us to use a bandwidth reservation

strategy to allocate a fraction of a resource to a task whose demand is not
known a priori. The most important consequence of this property is that soft
tasks, characterised by average values, can be scheduled together with hard
tasks, even in the presence of overloads.

Here, we state that the runtime capacity exchange performed by CSS does
not affect the system’s schedulability. By assigning each soft task a specific
capacity, based on an average execution time estimation, the desired activation

17

period, and isolating the effects of tasks’ overloads, a hybrid task set can be
guaranteed using the classical Liu and Layland condition [3].

Before proving the schedulability test, we start by ensuring that all generated
capacities are exhausted before their respective deadlines.

Lemma 1 Given a set I of isolated servers, each isolated capacity generated
during scheduling is either consumed or discharged until its deadline.

Proof

Let ai,k denote the instant at which a new job Ji,k arrives and the isolated
associated server Si ∈ I is inactive. At ai,k, a new capacity ci

k = Qi is generated
and Si is released to the ready queue.

Let ∀i,k di
k = max{ai,k, d

i
k−1} + Ti be the deadline and ∀i,k hi

k = di
k the

replenishment time associated with the isolated capacity ci
k.

Let [t, t + ∆t[denote a time interval during which server Si is executing,
consuming its own capacity ci

k. Consequently, Si has used an amount equal to
ci′
k = ci

k −∆t ≥ 0 of its own capacity during ∆t. As such, the server’s reserved
capacity ci

k must be decreased to ci′
k , until it is exhausted.

Let fi,k denote the time instant at which server Si completes its job Ji,k.
Assume that there are no pending jobs for server Si at time fi,k and ci

k > 0.
According to Rule A, the available residual capacity ri

k = ci
k can immediately

be reclaimed by other servers and the server’s capacity ci
k is set to zero.

At instant fi,k, another active server Sj is scheduled for execution. According
to Rule B, if the inequality di

k ≤ dj
l holds, let [t, t + ∆t[denote the time

interval during which server Sj is executing, consuming the residual capacity
ri
k of server Si. Consequently, ri

k must be decreased to ri′
k = ri

k − ∆t ≥ 0,
until the residual capacity of server Si is exhausted or the currently assigned
deadline di

k of server Si is reached.

At replenishment time t = hi
k, any remaining residual capacity ri

k of server Si

not used by another active server is discharged.

¤

Lemma 2 Given a set S of isolated and non-isolated servers, each non-isolated
capacity generated during scheduling is either consumed or discharged until its
deadline.

Proof

To prove this lemma we analyse the following cases: a) a new non-isolated

18

capacity is generated whenever an overloaded active server needs to steal the
inactive non-isolated server’s capacity; and b) a non-isolated capacity is gen-
erated whenever a new job arrives for the inactive non-isolated server.

Case a.

Let aj,k denote the time instant when an active overloaded server Sj starts to
consume the non-isolated capacity ci

k of the inactive non-isolated server Si.

If the inequality di
k−1 ≤ aj,k holds, a new deadline di

k = aj,k + Ti is generated
for the non-isolated capacity ci

k, the server’s capacity ci
k is recharged to its

maximum value ci
k = Qi and the replenishment time hi

k is set to hi
k = di

k.
Otherwise, the inactive non-isolated server Si keeps its current values of ci

k,
di

k, and hi
k.

Let [t, t + ∆t[denote the time interval during which server Sj is executing,
stealing the non-isolated capacity ci

k of server Si. Consequently, the consumed
non-isolated capacity ci

k must be decreased to ci′
k = ci

k − ∆t ≥ 0, until it is
exhausted.

If a new job arrives at any time ai,k < a′i,k < hi
k, the inactive non-isolated

server Si becomes active, using its current values for ci
k, di

k, and hi
k. If, at time

a′i,k, the capacity ci
k was being stolen by an active overloaded server, capacity

stealing is immediately interrupted.

While active, the behaviour of the non-isolated server Si is equal to any other
active isolated server in the system. As such, the accounting for the remaining
capacity ci is proven by Lemma 1.

Case b.

Let ai,k denote the time instant when a new job Ji,k arrives for the inactive
non-isolated server Si.

If the inequality di
k−1 ≤ ai,k holds, a new deadline di

k = ai,k + Ti is generated,
the server’s capacity ci

k is recharged to its maximum value ci
k = Qi and the

replenishment time hi
k is set to hi

k = di
k. Otherwise, server Si keeps its current

values for ci
k, di

k, and hi
k.

At time ai,k the non-isolated server Si becomes active and it is inserted into
the ready queue. As such, its capacity ci

k is consumed as follows from Lemma
1.

¤

Theorem 1 Let Γhard be a set of n periodic hard real-time tasks, with each

19

task τi ∈ Γhard being scheduled by a dedicated isolated server Si with a reserved
capacity Qi equal to the task’s WCET and Ti equal to the task’s period. Let
Γsoft be a set of soft real-time tasks scheduled by a group of isolated and non-
isolated severs with total utilisation Usoft. Then Γhard is feasible if and only
if

n∑

τi∈Γhard

Qi

Ti

+ Usoft ≤ 1

Proof

The theorem follows immediately from Lemma 1 and Lemma 2. In fact,
Lemma 1 ensures that each generated isolated capacity is always exhausted
before or discharged at its deadline. The same is true for any generated non-
isolated capacity, according to Lemma 2.

Since the worst case response time of a hard task is independent of whether
the reserved capacity of some server is being used by that server to execute
its dedicated task or it is being consumed by any other server in the system,
the system’s schedulability is independent of whether the proposed dynamic
capacity accounting mechanism of CSS is in operation or not. In the worst
case, the longest time a server can be connected to another server is bounded
by the currently pointed server’s capacity and deadline.

¤

6 Sharing resources in open systems

As discussed in the previous sections, CSS can effectively reduce the mean
tardiness of periodic soft real-time tasks through an efficient management of
unused reserved capacities under the assumption that tasks do not share any of
the system’s resources. In fact, if classic mutual exclusion semaphores are used
with CSS, a particular problem arises, usually referred as priority inversion.
If a higher priority task is blocked on a semaphore by a lower priority task
and another medium priority arrives, the latter can preempt the lower priority
task causing an unbounded blocking delay to the higher priority task [28].

A great amount of work has already been addressed to minimise the adverse
effects of blocking when considering shared resources among tasks. Resource
sharing protocols such as the Priority Ceiling Protocol [28], Dynamic Priority
Ceiling [29], and the Stack Resource Policy [30] have been proposed to pro-
vide guarantees to hard real-time tasks accessing mutually exclusive resources.
Based on these protocols, several scheduling solutions were already proposed
[31; 32; 8; 33]. However, they cannot be directly applied to open real-time

20

systems since they all require a previous knowledge of the maximum resource
usage for each task.

Resource sharing among tasks of open real-time systems started to be ad-
dressed in [18]. The proposed Bandwidth Inheritance (BWI) protocol extends
the CBS scheduler to work in the presence of shared resources, adopting the
Priority Inheritance Protocol (PIP) [28] to handle tasks’ blocking. Although
the PIP was initially thought in the context of fixed priority scheduling, it has
been shown that it can be applied to dynamic priority scheduling, holding its
basic properties: it limits the worst-case blocking that must be endured by a
job Ji,k to the duration of at most min(n,m) critical sections where n is the
number of jobs with lower priority than Ji,k and m the number of different
semaphores used by Ji,k.

The approach in BWI is that when a task executing in a lower priority server
blocks a higher priority one it is inherited by the blocked server, allowing
a task to be executed on more than its dedicated server, thus not requiring
any prior knowledge about the tasks’ structure and temporal behaviour while
guaranteeing that tasks that do not access those shared resources are not
affected by the behaviour of other tasks.

However, its main drawback is its unfairness in bandwidth distribution. A
blocking task can use most (or all) of the reserved capacity of one or more
blocked tasks, without compensating the tasks it blocked. Blocked tasks may
then lose deadlines that could otherwise be met. At the same time, servers keep
postponing their deadlines and recharging their capacities on every capacity
exhaustion, potentially severely delaying blocked tasks with earlier deadlines
which will finish later than tasks with longer deadlines. It is known that al-
lowing a task to use resources allocated to the next job of the same task may
cause future jobs of that task to miss their deadlines by larger amounts [16; 9].
This violation of the original capacity distribution can have a huge negative
impact in the overall system’s performance.

Figure 3 illustrates these problems with a simple example. Three servers S1 =
(2, 5), S2 = (1, 3), and S3 = (1, 4) serve tasks τ1, τ2, and τ3, respectively. Tasks
τ1 and τ2 share access to resource R for the entire duration of their execution
times, while τ3 is independent from the other two.

Note how an early arrival of the second job of task τ1 at time t = 4 allows
τ1 to consume 3 units of reserved bandwidth in the interval [0, 5], more than
its initial reservation. The nonexistence of a compensation mechanism and
the automatically deadline update are responsible for the deadline miss of the
second job of task τ2.

To address this lack of a compensation mechanism, BWE [34] and CFA [35] try
to fairly compensate blocked servers in exactly the same amount of capacity

21

Fig. 3. BWI’s drawbacks

that was consumed by a blocking task while executing in a blocked server.
To achieve this, BWI maintains a global n ∗ n matrix (n is the number of
servers in the system) in order to record the amount of capacity that should
be exchanged between servers, a capacity list at each server to keep track of
available budgets, and dynamically manages resource groups (groups of tasks
that access a particular resource) at each blocking and releasing of a shared
resource. CFA requires each server to manage two task lists with different
priorities and a counter that keeps track of the amount of borrowed capacity
from a higher priority server, converting the inheritor into a debtor. Contracted
debts are payed by blocking servers, until the blocked servers’ counters are
successively decremented to zero.

The increased computational complexity of these attempts to fairly compen-
sate borrowed capacities and the fact that CSS tends to fairly distribute resid-
ual capacities in the long run, lead us to propose a simple and efficient capacity
exchange protocol that merges the benefits of a smart greedy capacity sharing
policy with the concepts of bandwidth inheritance. Adding to the lower com-
plexity of our approach, achieved results detailed in Section 9 demonstrate that
taking advantage of all of the available capacity instead of only exchanging ca-
pacities within the same resource group leads to a better system’s performance
in dynamic open real-time systems.

6.1 The Capacity Exchange Protocol

The Capacity Exchange Protocol merges the benefits of the capacity shar-
ing and stealing approach of CSS with the concept of bandwidth inheritance,
allowing a task τi to be executed on more than its dedicated server Si and ef-

22

ficiently exchanging capacities among servers to reduce the undesirable effects
caused by inter-application blocking.

CXP adds, to each CSS server, a list of served tasks ordered by the tasks’
deadlines. Initially, each server has only its dedicated task in the task list and,
as long as no task is blocked, servers behave as in the original CSS scheduler.
With blocking, the following rules are introduced:

• Rule E (capacity inheritance): When a high priority task τi is blocked
by a lower priority task τj when accessing the shared resource R, τj is
inherited by server Si. The execution time of τj is now accounted to the
currently pointed server by Si. If task τj has not yet released the shared
resource R when Si exhausts all the capacity it can use, τj continues to be
executed by the earliest deadline server with available capacity that needs
to access R, until τj releases R.

• Rule F (capacity inheritance compensation): If a blocking task τj is
inherited by a blocked server Si, delaying the execution of its dedicated task
τi, then τi is also added to Sj’s task list. When task τi is unblocked it is
executed by the earliest deadline server which has τi in its task list until it
is finished or the server exhausts all the capacity it can use (whatever comes
first).

• Rule G (unfinished tasks inheritance): If at time t, no active server
with pending jobs can continue to execute through one of the rules B, C, or
D, and there is at least one active server Sr with residual capacity greater
than zero, it is possible to use those available residual capacities with dead-
lines greater than the one assigned to the current job Jp,k of the earliest
deadline server Sp with pending work to execute Jp,k through bandwidth
inheritance.

Rule E describes the integration of the bandwidth inheritance mechanism
in the dynamic capacity accounting of CSS. The currently executing server
always consumes the pointed capacity, either its own or another available
valid capacity in the system.

Rule F proposes to exchange reserved capacities among servers due to blocking
without the goal of a fair compensation, reducing the complexity and overhead
of CXP. It allows a blocked task τi that has been delayed in its execution to
be executed by the earliest deadline server with available capacity which has
τi in its task list. Note that, with bandwidth inheritance, this server may now
be different from Si.

In general, the hard reservation approach may cause the loss of more deadlines
since once a server’s capacity is depleted, capacity recharging is suspended un-
til the server’s next activation. To minimise its drawbacks and take advantage
of a more constant rate in tasks’ execution, Rule G allows the use of bandwidth

23

inheritance to execute unfinished tasks, including those from servers that do
not directly or indirectly share any resource with the selected server, if at a
particular time no active server in the system is able to reclaim new residual
capacities or steal inactive non-isolated capacities to continue executing its
pending work after a capacity exhaustion.

Note that since the queue of active servers is ordered by deadlines, CXP easily
keeps track of the earliest deadline server with pending work and no capacity
left Sp, as well as the earliest deadline server with available residual capacity
Sr, when traversing the queue to select the next running server. If the end of
the active queue is reached without finding a server with pending work and
available capacity, server Sr is selected as the running server and inherits the
first task of Sp’ list. Sr executes the task, consuming its own residual capacity.
Since a server always starts to consume the earliest residual capacity available,
no modification to the capacity accounting mechanism is needed to correctly
account for the consumed capacity.

Note that Rules A and B of the original CSS scheduler ensure that residual
capacities originated by earlier completions can be reclaimed by any active
eligible server. Blocked servers can then take advantage of any residual capac-
ity, even if it is released by a server that does not share any resource with the
reclaiming server.

6.2 Minimising the cost of blocking with CXP

While preserving the isolation principles of independent tasks and inheritance
properties of critical sections of BWI, CXP introduces significant improve-
ments in the system’s performance. Figure 4 illustrates how CXP can min-
imise the cost of blocking by efficiently exchanging reserved capacities among
servers, scheduling the same set of tasks used to analyse the BWI’s drawbacks
in Figure 3.

At time t = 1, task τ2 is added the task list of server S1 (Rule F). At time
t = 2, task τ2 is unblocked and it is executed by server S1, since it is the
earliest deadline server with remaining capacity with τ2 in its task list (the
same happens at time t = 8). Note that capacities are exchanged between all
the system’s servers and not only within a specific resource group, maximising
the use of extra capacities to handle overloads and still meet deadlines. An
overload of the independent task τ3 was handled by reclaiming the residual
capacity originated by an earlier completion of task τ1 at time t = 12.

Since the execution and inter-arrival times of soft real-time jobs are not known
in advance it is important to minimise the impact of misbehaved tasks that
exceed their expected execution times or have a shorter inter-arrival time of

24

Fig. 4. Sharing resources with CXP

jobs. Note that despite the earlier arrival of the second job of task τ1 at time
t = 4, the deadline of server S1 is not set to d1

2 = 9 and the job is only released
at time t = 5.

7 Handling precedence constraints in open systems

It is well known that precedence constraints, i.e when the execution of the
data’s producer must precede the execution of the consumer of that data, can
be guaranteed in real-time scheduling by priority assignment. In fact, with
dynamic scheduling, any task will always precede any other task with a later
deadline. This suggests that precedence constraints that are consistent with
the tasks’ deadlines do not affect the schedulability of the task set.

In fact, the idea behind the consistency with the partial order is to enforce
a precedence constraint by using an earlier deadline [36]. Formal work exists
showing how to modify deadlines in a consistent manner so that EDF can
be used without violating the precedence constraints. Garey et al. [37] show
that the consistency of release times and deadlines can be used to integrate
precedence constraints in the task model. Spuri and Stankovic [36] introduce
the concept of quasi-normality to give more freedom to the scheduler so that
it can also obey shared resource constraints, and provide sufficient conditions
for schedules to obey a given precedence graph. The authors prove that with
deadline modification and some type of inheritance it is possible to integrate
precedence constraints and shared resources. Mangeruca et al. [38] consider
situations where the precedence constraints are not all consistent with the
tasks’ deadlines and show how schedulability can be recovered by considering

25

a constrained scheduling problem based on a more general class of precedence
constraint.

However, all these works base their modifications of deadlines on a previous
knowledge of the tasks’ execution times. To make use of these previous results
in open real-time systems, the consistency of release times and deadlines with
the partial order must be enforced considering estimated execution times when
applying some known technique [37; 39; 38; 40; 41] at admission time. Never-
theless, such approach immediately raises two questions: (i) what happens if
a precedent soft real-time task requires more than its reserved capacity? (ii)
how can a task know if all its predecessors have already finished?

CXP provides answers for both questions and can be used to handle blocking
due to precedence violations in the same way as for a critical section blocking,
minimising the impact of misbehaved tasks on the overall system’s perfor-
mance. We base our approach on the idea that if task τj ≺ τi has not yet
finished at time si,k, when the kth job of τi is selected to execute, it is blocking
its successor.

Given a partial order ≺ on the tasks, described by a directed graph G, servers’
state changes in CXP allow an easy verification of the current condition of a
precedent task τj. Recall that a server that has completed its job is only kept
active until its deadline if it is supplying residual capacity to other servers.
By adding the following rule to CXP, we are able to handle precedence con-
straints among tasks of open real-time systems without any previous complete
knowledge of their actual behaviour during runtime.

• Rule H (unfinished precedent tasks): If Sj, the dedicated server of a
precedent task τj ≺ τi, is active at time si,k when server Si is scheduled for
execution, Si checks the current value of Sj’s residual capacity rj

k. If it is
set to zero, the current task τj of Sj has not yet been completed and must
be added to Si’s task list.

Note that the addition of Rule H to CXP does not introduce any overhead.
Since CXP reclaims available residual capacities as earlier as possible, when-
ever a server Si is scheduled for execution it already checks the current state
of the residual capacity of active earlier deadline servers. By combining this
property with bandwidth inheritance, precedence constraints can be handled
as an access to a shared resource in open real-time systems without introduc-
ing overhead in the protocol.

26

7.1 Handling tasks’ precedences with CXP

The next example illustrates how CXP can easily handle precedence con-
straints among tasks whose actual computation times are only revealed at
run time. Figure 5 shows a possible scheduling of three servers S1 = (2, 8),
S2 = (4, 10), and S3 = (3, 15) used to serve three periodic soft real-time tasks,
based on their estimated average execution times and periods, exhibiting the
following precedence constraints τ1 ≺ τ2 ≺ τ3.

Fig. 5. Handling tasks’ precedences with CXP

At time t = 3, the successor server S2 knows it has to complete its predecessor’s
task since S1 is still active and its residual capacity is set to zero. As such,
task τ1 needs to be executed in server S2, prior to the execution of τ2.

On the other hand, at times t = 6 and t = 10, both servers S3 and S1 can
start executing their dedicated tasks. At time t = 6, S2 becomes inactive by
completing τ2 and exhausting its capacity. Its inactive state clearly indicates
that task τ2 has been completed. Similarly, at time t = 10, the predecessor
server S1 is active but with residual capacity available. This is only possible
when a server has completed its current task using less that its budgeted
capacity, releasing residual capacity.

8 Theoretical validation for inter-dependent tasks

As shown, CXP is particularly suitable to schedule soft real-time tasks without
requiring any offline knowledge of how many services will be concurrently
executed neither which resources will be accessed and by how long they will

27

be held. However, enabling resource sharing among hard (HRT) and soft real-
time (SRT) tasks in open systems is not straightforward. Demanding that SRT
tasks declare the maximum duration of the critical sections on each accessed
resource at admission time is against the basic purpose of an open system itself.
Nevertheless, HRT tasks still need to be guaranteed based on the knowledge
of their worst-case behaviour.

One way to achieve such guarantee in an open system is to implement the
critical sections as library functions whose WCET can be determined. Of
course, this comes at the cost of some pessimism. However, serving HRT tasks
must always be based on a reserved capacity equal to their WCETs.

Furthermore, if nested critical sections are allowed, the system’s libraries must
also impose a totally ordered access to resources, since for a deadlock to be
possible a blocking chain must exist in which there is a circular relationship.
Deadlocks can be detected and exceptions raised if a misbehaving task at-
tempts to acquire resources in a improper order, by following the chain of
accessed resources and detecting a resource that is already in the list.

In the remaining of this section, we assume that resources are orderly accessed
through shared libraries and discuss how to assign the maximum capacity Qi

and period Ti to an isolated server which has to serve a hard real-time task
in an open system with n hard reservation servers with a total utilisation of∑n

i=1
Qi

Ti
≤ 1. We start by proving the correctness of the proposed capacity

exchange mechanism of CXP.

Definition 5 At a particular time instant t, the total amount of available ex-
ecution capacity Ca in the system is the sum of the remaining reserved capac-
ities greater than zero that can be used to execute a task (either the remaining
execution or residual capacities of active servers or the remaining execution
capacities of inactive non-isolated servers whose capacity can be stolen by ac-
tive servers).

Lemma 3 Just after a task τi releases the shared resource R, the total amount
of available execution capacity Ca in the systems is the same as in the non-
resource sharing case.

Proof

While task τi is accessing the shared resource R during t units of time, it can
block some other task. It follows from the bandwidth inheritance protocol that
when a task blocks another one it inherits the latter’s server. Furthermore, as
proven by Theorem 1, the dynamic budget accounting mechanism used in
CXP does not affect the system’s schedulability.

Hence, the total amount of available system’s execution capacity Ca when

28

task τi releases the shared resource R is independent of whether the task was
executed only by its dedicated server Si or not. In the worst case, the longest
time a server can be connected to another server is bounded by the currently
pointed server’s capacity and deadline.

¤

Lemma 4 No capacity is exchanged after its deadline.

Proof

Let ai,k denote the time instant at which the kth instance of task τi arrives and
its dedicated server Si is inactive. At ai,k, a new execution capacity ci

k = Qi

is always generated for an isolated server. For a non-isolated server Si, if
ai,k < di

k, the server becomes active with the remaining execution capacity
ci
k = Qi−ci′

k , where ci′
k is the amount of reserved capacity stolen by overloaded

active servers. Otherwise, it becomes active with its full reserved capacity
ci
k = Qi.

Let ∀i,k di
k = max{ai,k, d

i
k−1} + Ti be the deadline and ∀i,k hi

k = di
k be the

replenishment time associated with the generated capacity ci
k.

Let L be the task list of server Si. L is composed at least by jobs of task τi,
but can also contain, due to blocking, inherited tasks (Rule E) and tasks that
were delayed by the execution of τi in high priority servers (Rule F).

Let [t, t + ∆t[denote a time interval during which server Si is executing the
earliest unblocked task of L, consuming its own reserved capacity ci

k. Conse-
quently, ci

k must be decreased to ci′
k = ci

k −∆t ≥ 0, until it is exhausted.

Let fi,k denote the time instant when server Si completes the last job of L. The
remaining execution capacity ci

k > 0 is released as residual capacity ri
k = ci

k

and ci
k is set to zero. At the time instant fi,k, the next active server Sj with

pending work and remaining execution capacity is scheduled for execution
according to the EDF policy. If the inequality di

k ≤ dj
l holds, server Sj can

use the released residual capacity ri
k until its associated deadline di

k or ri
k’s

exhaustion.

Let [t, t + ∆t[denote a time interval during which server Sj is executing,
consuming the residual capacity ri

k. Consequently, the residual capacity ri
k of

server Si must be decreased to ri′
k = ri

k −∆t ≥ 0, until it is exhausted.

If at some instant t all active servers have exhausted the amount of execution
capacities they can use and there are unfinished jobs, the job of the earliest
deadline unfinished task τu is added to the task list of the earliest deadline
active server Sedf with residual capacity redf

k > 0. Assume that Si is the selected

29

server.

Let [t, t + ∆t[denote a time interval during which server Si is executing,
consuming its own residual capacity ri

k. Consequently, ri
k must be decreased

to ri′
k = ri

k −∆t ≥ 0, until it is exhausted.

At replenishment time t = hi
k any remaining unused residual capacity ri

k of
server Si is discharged.

¤

Theorem 2 Given a system with n servers with utilisation U =
∑n

i=1
Qi

Ti

which uses CXP for accessing shared resources, it can be guaranteed that, at
any time, the system’s utilisation U is no more than the case when the served
tasks do not share access to some resources.

Proof

Without resource sharing, CXP ensures that no server consumes more than
its reserved capacity Qi every period Ti and the amount of capacity that can
be reclaimed or stolen is limited in the worst case by the reserved capacity and
deadlines of the pointed servers. By directly applying the results of Lemma 3
and Lemma 4, the same properties hold in CXP when tasks share access to
resources.

¤

Theorem 3 A blocked task scheduled by CXP never has less available time
to complete its execution than under the basic BWI protocol.

Proof

From Rule F, CXP guarantees that a blocked task τi resumes its execution in
the earliest deadline server which has τi in its task list, which may be different
from its dedicated server Si. With BWI, however, the blocked task τi is only
able to resume its execution when its dedicated server Si has no more blocking
tasks in its task list and is the earliest deadline among all active servers.

As a consequence, the time that is available for a blocked task τi to complete
its execution may be increased with CXP but never reduced when compared
against BWI.

¤

After proving the correctness of the capacity exchange mechanism of CXP, we
now discuss how to provide guarantees to hard real-time tasks starting with
some important definitions that help to clarify the following analysis.

30

Definition 6 Two tasks are in the same resource group if they directly or
indirectly share some resource.

Definition 7 Given a task τi served by server Si, the blocking time Bi is
defined as the maximum time that all other tasks can be executed by Si, for
each job of τi.

Lemma 5 Given a task τi served by server Si, only tasks in the same resource
group can be added to Si’s task list and contribute to Bi, for each instance of
τi.

Proof

Initially, each active server has exactly one task in its task list. It follows from
the bandwidth inheritance protocol that if a task τi is blocked by task τj when
accessing a resource R, then τj is added to the task list of server Si. If τj is
also blocked on another resource, the chain of blocking is followed and all the
blocked tasks are added to Si until a non-blocked task is reached. The task list
of all other servers remains unchanged. Hence, the number of tasks that can
contribute to Bi is restricted to those tasks that belong to the same resource
group.

¤

Theorem 4 If a HRT task τi is served by an isolated server Si with parame-
ters (Qi, Ti), where the reserved capacity Qi = Ci +Bi is determined by adding
the WCET Ci of τi to the maximum blocking Bi that can be experienced by an
instance of τi, and Ti is the minimum inter-arrival time of τi’s jobs, then τi

will meet its deadline.

Proof

From Theorem 2 it follows that each isolated server Si always receives Qi

units of execution capacity every Ti units of time. Lemma 5 assures that the
set of tasks that can be executed by Si is restricted to those tasks in the same
resource group. Hence, if a HRT task τi does not access any shared resource
it is not affected by the behaviour of other tasks. Therefore, if each instance
of τi consumes up to Ci ≤ Qi units of execution capacity and instances are
separated at least by Ti, is is guaranteed that task τi finishes no later than
Si’s capacity exhaustion and it will meet all its deadlines.

If a HRT task τi accesses some shared resources during its execution, we have
to consider the maximum time that other tasks can be executed by Si through
bandwidth inheritance. It follows from Lemma 5 that whether task τi meets
its deadline depends only on the timing requirements Ci of task τi and on the
maximum blocking time Bi that can be experienced by each instance of task

31

τi. Hence, in order not to miss any deadline of a HRT task τi it is sufficient to
assign a capacity of Qi = Ci + Bi to the isolated server Si.

¤

From Theorem 4 it is possible to derive sufficient conditions for the schedu-
lability of HRT tasks scheduled by CXP. HRT tasks which do not access any
shared resource can be guaranteed exactly like in the original CSS algorithm
by assigning them to isolated servers with capacities Qi = Ci, where Ci is the
WCET of task τi, and periods Ti equal to the minimum inter-arrival times of
τi’s jobs. A HRT task τi which accesses shared resources during its execution
can be guaranteed if it is assigned to an isolated server Si whose capacity
Qi = Ci + Bi also accounts for the maximum blocking time Bi that can be
experienced by each instance of τi.

8.1 Blocking time computation

An exact computation of the worst-case blocking time Bi for a HRT task τi is
a complex problem in open systems where the unpredictable behaviour of SRT
tasks may cause the associated servers to exhaust their capacities while inside
the critical sections, causing many possible situations in which a SRT task can
block a HRT task. Without a complete knowledge of the number, type, and
behaviour of tasks that may, directly or indirectly, interact through shared
resources with a HRT task τi, it is impossible to perform an accurate offline
analysis and compute the worst case blocking Bi that can be experienced by
τi without imposing some pessimism.

The dynamic properties of an open real-time systems only allow us to assume
that the WCET of the critical sections that may be accessed by any task
through the system’s libraries can be indirectly computed through an offline
analysis of those shared libraries. With nested critical sections, the WCET
must consider the worst possible path in the blocking chain. The reader may
refer to [42] for an extensive survey of the current methods and tools to com-
pute WCETs.

This may be considered too pessimistic since, to guarantee a set of n HRT
tasks, the blocking times must all be summed together at admission time,
but the dynamic nature of an open system and lack of information impose
such pessimism. It is impossible to completely identify the conditions under
which any task that is dynamically admitted in the system can interfere with
a HRT task. Of course, this comes at the cost of a lower system’s utilisation
to guarantee HRT tasks. However, with CXP, SRT tasks can benefit from the
unused reserved capacities of HRT tasks, minimising this waste of resources.

32

If a resource group is guaranteed to be composed only by HRT tasks, it is pos-
sible to explore all possible blocking situations and compute a more accurate
and less pessimistic value for Bi, using, for example, an algorithm similar to
the one presented in [43].

9 Evaluation

The performance of the proposed scheduling algorithms in dynamic open real-
time environments was evaluated through extensive simulations with a special
attention being devoted to introduce a high variability in the characteristics
of the conducted simulations.

The reported results were observed from multiple and independent simulation
runs, with initial conditions and parameters, but different seeds for the ran-
dom values 1 used to drive the simulations, obtaining independent and iden-
tically distributed variables. Although the outputs of individual simulation
runs are not independent, it is still possible to obtain independent observa-
tions across the results of several simulation runs (or simulation replicas) with
a reasonably good statistical performance [45]. Each simulation replica ran
until t = 250000, producing a large variety of inheritance and preemption
situations among tasks, and was repeated several times to ensure that stable
results were obtained.

The conducted experiments can be divided in two major sets. The first one
evaluates the effectiveness of CSS in reducing the mean tardiness of indepen-
dent periodic tasks. It starts by comparing the performance of CSS against
other similar approaches considering only sets of isolated servers in Section
9.1, while Section 9.2 details the impact of allowing overload servers to steal
inactive non-isolated capacities in the improvement of the overall system’s
performance.

The second set evaluates how the proposed flexible management of reserved
capacities of CXP can minimise the degree of deviation from the ideal sys-
tem’s behaviour caused by inter-application blocking due to shared resources
(Section 9.3) or precedence constraints (Section 9.4).

1 The random values were generated by the Mersenne Twister algorithm [44] with
an uniform distribution.

33

9.1 Residual capacity reclaiming

Similarly to CSS, CASH [6] and BACKSLASH [9] also greedily assign resid-
ual capacities as early as possible to the highest priority server but propose
different approaches to deal with a server’s capacity exhaustion. The first con-
ducted study evaluated the effect of those approaches in lowering the mean
tardiness of independent periodic jobs. The mean tardiness was determined
by

∑n
i=0 trdi/n, where trdi is the tardiness of task τi, and n the number of

periodic tasks. For a fair comparison, only isolated servers were used with
CSS.

Random workloads were created in order to evaluate the performance of each
algorithms when the tasks’ parameters differ in open real-time scenarios with
a high variability in the jobs’ overload probabilities. Different sets of 6 periodic
servers, with varied capacities ranging from 20 to 50, and period distributions
ranging from 60 to 600 were used, creating different types of load, from short
to long deadlines and capacities. The execution time of each job varied in the
range [0.7Qi, 1.4Qi] of its dedicated server’s reserved capacity Qi.

Figure 6 shows the performance of the three algorithms as a function of the
system’s load, measuring the mean tardiness of periodic tasks under random
workloads for different probabilities of jobs’ overload.

Fig. 6. Performance in dynamic scenarios

As expected, all the algorithms perform better when there is more residual
capacity available to handle overloads. Furthermore, they all behave very sim-
ilarly when tasks have a lower probability (until near 30%) of exhausting their
servers’ reserved capacity. The behaviour of a server is determined by two pa-
rameters: (i) the server’s reserved capacity, which defines the fraction of the
processor allocated to the task it is serving; and (ii) the server’s period, which
defines the time granularity of the allocation. As such, without applying any
technique to dynamically adapt the server’s parameters based on the average

34

response times of the served tasks, as for example the one proposed in [19], it
is clear that the system’s performance will severely decrease as the probability
and size of tasks’ overloads increases.

Nevertheless, without such adaptation, the approach follow CSS outperforms
the other algorithms in lowering the mean tardiness of periodic jobs with in-
creased probabilities of jobs’ overloads. Recall that CASH and BACKSLASH
automatically update a server’s capacity and deadline on every capacity ex-
haustion. As these results demonstrate, allowing a task to use resources allo-
cated to the next job of the same task may cause future jobs to miss their
deadlines by larger amounts, particularly with a high probability of overloads.

Furthermore, by keeping a depleted server active until its deadline allows it
to take advantage of new residual capacities released by earlier completions
of other servers, which also contributes to the better results achieved by CSS.
Recall that while BACKSLASH and CSS do share the same concept of using
original deadlines for residual capacity reclaiming, a CSS server does not use
capacities reserved for future jobs of its dedicated task.

9.2 Allowing capacity stealing

A second study evaluated the impact of non-isolated capacity stealing on the
performance of soft real-time tasks, either with short or long variations from
mean execution times.

The workload consisted of a hybrid set of periodic isolated and non-isolated
servers. The maximum capacity and inter-arrival times of the isolated servers
were randomly generated in order to achieve a desired processor utilisation fac-
tor of Uisolated. The maximum capacity and period of the non-isolated servers
were uniformly distributed in order to obtain an utilisation of Unon−isolated =
1− Uisolated.

To evaluate the weight of non-isolated capacity stealing in lowering the mean
tardiness of tasks, the probability of arrival of new jobs to non-isolated servers
varied in the range [0.1, 1.0]. The mean tardiness of isolated and non-isolated
jobs was measured when using both residual capacities and non-isolated ca-
pacity stealing or when only using residual capacities.

In the first simulation, periodic tasks were served by 1 non-isolated server
S1 = (2, 10) and 4 isolated servers S2 = (3, 15),S3 = (4, 20),S4 = (5, 25),
S5 = (6, 30), with utilisation of Unon−isolated = 0.2 and Uisolated = 0.8. The
execution time of each job shortly varied in the range [0.8Qi, 1.2Qi] of its
dedicated server’s reserved capacity Qi.

35

Fig. 7. Small variation in execution times

The achieved results are shown in Figure 7. As expected, when overloaded
active servers have more opportunities to steal non-isolated capacities, the
obtained mean tardiness lowers accordingly. When only using residual capaci-
ties, the mean tardiness is higher as the probability of non-isolated jobs’ arrival
lowers, since there is less residual capacities available, released by active non-
isolated servers. The experiment shows that with a low variation in the jobs’
computation times, the ability to steal non-isolated capacity achieves better
results, although the single use of an efficient residual capacity reclaiming
mechanism is able to achieve a similar, albeit lower, performance.

Furthermore, Figure 7 also shows that the performance of non-isolated servers
is worse than the achieved performance of isolated servers. Two reasons ex-
plain this behaviour. First, when a new job arrives for a inactive non-isolated
server, some of its reserved capacity might have been stolen by a needed active
overload server. As such, if the now active non-isolated server cannot reclaim
any available residual capacity, the job must be executed with less capacity
than expected, probably resulting in a deadline miss. Second, there is a big
difference on the performance of a server for different configurations of Qi

and Ti, even if they result in the same server utilisation [20]. It is well known
that the higher the priority the smaller the capacity available, since there is
a tradeoff between capacity size and interference. A server with parameters
(2Qi, 2Ti) has the same utilisation but a higher probability of using residual
capacities and steal inactive non-isolated time due to the increased period.

The second simulation has been generated with the same characteristics of the
first one, except that a greater variance of jobs’ execution time was introduced,
ranging from [0.6Qi, 1.8Qi] of the dedicated server’s reserved capacity Qi. Note
that in this experiment the average value of the jobs’ execution requirements
is greater than the reserved capacity of their servers, necessarily leading to
a greater tardiness. Figure 8 clearly shows a perceptibly improved system’s
performance when it is possible to steal inactive non-isolated capacities in the
presence of a large variation in jobs’ computation times. One can conclude

36

Fig. 8. Large variation in execution times

that, with CXP, severe overloads can be efficiently handled through a residual
capacity reclaiming and non-isolated capacity stealing approach, reducing the
mean tardiness of periodic jobs.

9.3 Sharing resources among tasks

The first conducted study compared the cumulative capacity that was con-
sumed by the shortest period (SP) and longest period (LP) tasks of a randomly
generated task set when tasks share resources to the amount of capacity that
would be consumed if the same set of tasks did not shared any resources. The
cumulated capacities consumed by the SP and LP tasks were recorded every
200 time ticks and the mean values of all generated samples plotted in Figures
9 and 10, respectively.

Different sets of 5 tasks were randomly generated, with varied execution re-
quirements ranging from 20 to 60 units, and period distributions ranging from
100 to 300 time units, always ensuring a system’s utilisation U ≤ 1. An iso-
lated server was assigned to each task, with a reserved capacity Qi equal to the
task’s execution requirements and period Ti equal to the task’s period. The
execution requirements of each job were always equal to the reserved capacity
of its dedicated server and all jobs accessed the shared resource R during all
their executions, with a new job being released immediately after a task has
completed its current job.

The achieved results show that with BWI, and due to blocking, while higher
priority tasks can consume less than their initial allocations, tasks with longer
deadlines can consume more than their reserved capacities since BWI is af-
fected by the absence of a compensation mechanism. In contrast, the efficient
capacity exchange mechanism of CXP ensures that both tasks are able to get
their allocated capacities even when accessing shared resources thus providing

37

Fig. 9. Capacity consumed by the SP task

Fig. 10. Capacity consumed by the LP task

a better fairness than BWI and sustaining the conclusions drawn from the
examples in Section 6.

A second study compared the efficiency of the studied protocols BWI, BWE,
CFA and CXP in lowering the mean tardiness of a set of periodic jobs with
variable execution times in highly dynamic scenarios. At each simulation run, a
random number of servers with a system’s utilisation up to 70% contended for
the system’s resources with a dynamic traffic that demanded up to 30% of the
system’s capacity. Resource sharing protocols that require a prior knowledge
of the maximum resource usage time for each task such as the Priority Ceiling
Protocol, the Dynamic Priority Ceiling, or the Stack Resource Policy were
not considered in the studies since they cannot be directly applied to open
real-time systems.

All servers were generated with varied reserved capacities Qi ranging from 15
to 50 units of execution and period distributions ranging from 50 to 500 time
units, creating different types of load, from short to long deadlines and capac-
ities. Tasks arrived at randomly generated times and remained in the system

38

for a variable period of time with each job having an execution time in the
range [0.8Qi, 1.2Qi] of its dedicated server’s reserved capacity Qi, originating
both overloads and residual capacities due to early completions. There were 6
resources, whose access and duration of use was randomly distributed by the
servers, creating direct and transitive blocking situations and distinct resource
groups. For a fair comparison, only isolated servers were used in CXP.

Figure 11 illustrates the performance of the evaluated protocols as a function
of the system’s load, measuring the mean tardiness of periodic tasks under
random workloads for different probabilities of jobs’ overload.

Fig. 11. Performance in dynamic scenarios

As expected, the achieved results clearly justify the use of a capacity exchange
mechanism to minimise the impact of blocking on the system’s performance.
Without any compensation for the extra work on blocked servers, BWI obtains
the poorest result. Recall that with BWI, a blocked task is only able to use
the remaining capacity of its dedicated server, if any.

BWE and CFA achieve similar performances when handling tasks with vari-
able execution times. Both algorithms are unable to reclaim residual capac-
ities originated by early completions, wasting available resources to handle
overloads and minimise the number of deadline misses. Also, both algorithms
immediately recharge a server’s capacity and extend its deadline at every ca-
pacity exhaustion, allowing a task to use resources allocated to a future job,
contributing for future jobs of that task to miss their deadlines by larger
amounts.

On the other hand, by reclaiming as much extra capacity as possible, CXP
outperforms BWE and CFA in lowering the mean tardiness of periodic tasks
in highly dynamic scenarios. CXP not only exchanges capacities between all
active servers, not restricting capacity exchange to the same resource group,
but it also reclaims all the available residual capacity to handle overloads of
soft real-time tasks.

39

Furthermore, these better results in highly dynamic scenarios were achieved
with a less complex approach to exchange reserved capacities among servers.
Figure 12 illustrates the average overhead introduced by the optimisations of
BWE, CFA, and CXP in terms of the needed scheduling time and memory
consumption during the previous study, using the base BWI protocol as a
reference.

Fig. 12. Overhead using BWI as reference

As expected, the optimisations performed by BWE, CFA, and CXP introduce
some overhead when compared against BWI in terms of needed time and
memory. Although all the three algorithms need only slightly more time than
BWI to determine which capacity is going to be accounted by the currently
executing server, they substantially differ in terms of storage information de-
mands. BWE requires a global n ∗ n matrix to record the amount of capacity
that must be exchanged between servers and an extra list at each server to
keep track of available capacities. CFA enhances BWI by adding a new task
queue to each server and one extra variable for each contracted debt between
servers Si and Sj. On the other hand, CXP focuses on minimising the cost
of blocking by exchanging reserved capacities as early, and not necessarily as
fairly, as possible. As such, it does not not account the amount of borrowed
capacity on each server neither manages individual resource groups.

9.4 Precedence constraints

Another study compared the time and memory needed by CXP to schedule
the same task set with and without precedence constraints among its tasks.
10000 tasks sets were randomly generated, with different system’s utilisation in
the range [0.6, 1.0]. For each task set, a random set of precedence constraints
consistent with the tasks’ deadlines was determined. Each job had random
execution requirements in the range [0.7Qi, 1.3Qi] of its dedicated server’s
reserved capacity Qi.

40

Fig. 13. Overhead of handling precedence constraints

The achieved results, plotted in Figure 13, allow us to conclude that CXP
is able to efficiently handle precedence constraints among tasks whose exact
behaviour is not known beforehand without any significant overhead. Recall
that precedence constraints are handled by CXP as an access to a shared re-
source and the proposed residual capacity reclaiming policy already checks the
current state of earlier deadline servers, since residual capacities are consumed
before the server’s reserved capacity.

10 Conclusions

This paper integrates and extends recent advances in dynamic deadline schedul-
ing with resource reservation. Namely, while achieving isolation among tasks,
the proposed Capacity Sharing and Stealing (CSS) approach can efficiently re-
claim residual capacities originated by earlier completions and steal reserved
unused capacities from inactive non-isolated servers, effectively reducing the
mean tardiness of soft real-time tasks.

CSS is then combined with the concept of bandwidth inheritance to tackle the
challenging problem of how to schedule tasks that share resources and exhibit
precedence constraints without any previous knowledge of how many services
will need to be concurrently executed neither which resources will be accessed
and by how long they will be held. Rather than trying to account borrowed
capacities and exchanging them later in the exact same amount, the proposed
Capacity Exchange Protocol (CXP) focus on greedily exchanging extra capac-
ities as early, and not necessarily as fairly, as possible and introduces a novel
approach to integrate precedence constraints into the task model.

The achieved results clearly justify the use of a capacity exchange mechanism
that reclaims as much capacity as possible and does not restrict itself to ex-
change capacities only within a resource sharing group. It is proven that CXP

41

achieves a better system’s performance when compared against other available
solutions and has a lower overhead.

References

[1] A. Colin, S. M. Petters, Experimental evaluation of code properties for
wcet analysis, in: Proceedings of the 24th IEEE RTSS, 2003, pp. 190–199.

[2] C. W. Mercer, S. Savage, H. Tokuda, Processor capacity reserves: Oper-
ating system support for multimedia applications, in: Proceedings of the
IEEE International Conference on Multimedia Computing and Systems,
1994, pp. 90–99.

[3] C. L. Liu, J. Layland, Scheduling algorithms for multiprogramming in a
hard-real-time environment, Journal of the ACM 1 (20) (1973) 40–61.

[4] L. Abeni, G. Buttazzo, Integrating multimedia applications in hard real-
time systems, in: Proceedings of the 19th IEEE Real-Time Systems Sym-
posium, Madrid, Spain, 1998, p. 4.

[5] G. Lipari, S. Baruah, Greedy reclamation of unused bandwidth in
constant-bandwidth servers, in: Proceedings of the 12th EuroMicro Con-
ference on Real-Time Systems, Stockholm, Sweden, 2000, pp. 193–200.

[6] M. Caccamo, G. Buttazzo, L. Sha, Capacity sharing for overrun control,
in: Proceedings of 21th IEEE RTSS, Orlando, Florida, 2000, pp. 295–304.

[7] L. Marzario, G. Lipari, P. Balbastre, A. Crespo, Iris: A new reclaiming
algorithm for server-based real-time systems, in: Proceedings of the 10th
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, Toronto, Canada, 2004, p. 211.

[8] M. Caccamo, G. C. Buttazzo, D. C. Thomas, Efficient reclaiming in
reservation-based real-time systems with variable execution times, IEEE
Transactions on Computers 54 (2) (2005) 198–213.

[9] C. Lin, S. A. Brandt, Improving soft real-time performance through better
slack reclaiming, in: Proceedings of the 26th IEEE RTSS, 2005, pp. 410–
421.

[10] N. Hawes, Anytime deliberation for computer game agents, Ph.D. thesis,
School of Computer Science, The University of Birmingham (November
2003).

[11] M. Agrawal, D. Cofer, T. Samad, Real-time adaptive resource manage-
ment for advanced avionics, IEEE Control Systems Magazine 23 (1)
(2003) 6–86.

[12] J. Shackleton, D. Cofer, S. Cooper, Anytime scheduling for real-time em-
bedded control applications, in: Proceedings of the 23rd Digital Avionics
Systems Conference, Vol. 2, Salt Lake City, UT, USA, 2004, pp. 101–110.

[13] R. Bhattacharya, G. J. Balas, Anytime control algorithm: Model reduc-
tion approach, Journal of Guidance, Control, and Dynamics 27 (5) (2004)
767–776.

42

[14] J. van den Berg, D. Ferguson, J. Kuffner, Anytime path planning and
replanning in dynamic environments, in: Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, Orlando, Florida,
USA, 2006, pp. 2366– 2371.

[15] L. Nogueira, L. M. Pinho, Time-bounded distributed qos-aware service
configuration in heterogeneous cooperative environments, Journal of Par-
allel and Distributed Computing 69 (6) (2009) 491–507.

[16] L. Nogueira, L. M. Pinho, Capacity sharing and stealing in dy-
namic server-based real-time systems, in: Proceedings of the 21th IEEE
International Parallel and Distributed Processing Symposium, Long
Beach,CA,USA, 2007, p. 153.

[17] L. Nogueira, L. M. Pinho, Shared resources and precedence con-
straints with capacity sharing and stealing, in: Proceedings of the 22th
IEEE International Parallel and Distributed Processing Symposium, Mi-
ami,Florida,USA, 2008, p. 97.

[18] G. Lamastra, G. Lipari, L. Abeni, A bandwidth inheritance algorithm
for real-time task synchronization in open systems, in: Proceedings of
the 22nd IEEE Real-Time Systems Symposium, London, UK, 2001, pp.
151–160.

[19] G. Buttazzo, E. Bini, Optimal dimensioning of a constant bandwidth
server, in: Proceedings of the 27th IEE International Real-Time Systems
Symposium, Rio de Janeiro, Brasil, 2006, pp. 169–177.

[20] G. Bernat, A. Burns, Multiple servers and capacity sharing for imple-
menting flexible scheduling, Real-Time Systems 22 (1-2) (2002) 49–75.

[21] G. Bernat, I. Broster, A. Burns, Rewriting history to exploit gain time,
in: Proceedings of the 25th IEEE RTSS, 2004, pp. 328–225.

[22] L. Abeni, C. Scordino, G. Lipari, P. L., Serving non real-time tasks in
a reservation environment, in: Proceedings of the 9th Real-Time Linux
Workshop, Linz, Austria, 2007, pp. 1–10.

[23] R. Rajkumar, K. Juvva, A. Molano, , S. Oikawa, Resource kernels: A
resource-centric approach to real-time and multimedia systems, in: Pro-
ceedings of the SPIE/ACM Conference on Multimedia Computing and
Networking, 1998, pp. 150–164.

[24] J. P. Lehoczky, S. Ramos-Thuel, An optimal algorithm for scheduling
soft-aperiodic tasks fixed-priority preemptive systems, in: Proceedings of
the 13th RTSS, 1992, pp. 110–123.

[25] R. I. Davis, K. W. Tindell, A. Burns, Scheduling slack time in fixed
priority preemptive systems, in: Proceedings of the 14th RTSS, 1993, pp.
222–231.

[26] R. I. Davis, Approximate slack stealing algorithms for fixed priority pre-
emptive systems, Tech. rep., Department of Computer Science, University
of York (November 1993).

[27] L. Abeni, Server mechanisms for multimedia applications, Tech. rep.,
Scuola Superiore S. Anna (1998).

[28] L. Sha, R. Rajkumar, J. P. Lehoczky, Priority inheritance protocols: an

43

approach to real-time synchronisation, IEEE Transaction on Computers
39 (9) (1990) 1175–1185.

[29] M.-I. Chen, K.-J. Lin, Dynamic priority ceilings: a concurrency control
protocol for real-time systems, Real-Time Systems 2 (4) (1990) 325–346.

[30] T. P. Baker, A stack-based resource allocation policy for realtime pro-
cesses., in: Proceedings of the IEEE Real-Time Systems Symposium, Lake
Buena Vista, Florida, USA, 1990, pp. 191–200.

[31] K. Jeffay, Scheduling sporadic tasks with shared resources in hard-real-
time systems, in: Proceedings of the IEEE Real-Time Systems Sympo-
sium, Phoenix, Arizona, USA, 1992, pp. 89–99.

[32] M. Caccamo, L. Sha, Aperiodic servers with resource constraints, in: Pro-
ceedings of the 22nd IEEE Real-Time Systems Symposium, London, UK,
2001, pp. 161–170.

[33] S. K. Baruah, Resource sharing in edf-scheduled systems: A closer look,
in: Proceedings of the 27th IEEE Real-Time Systems Symposium, Rio de
Janeiro,Brazil, 2006, pp. 379–387.

[34] S. Wang, K.-J. Lin, S. Peng, Bwe: A resource sharing protocol for multi-
media systems with bandwidth reservation, in: Proceedings of the 4th
IEEE International Symposium on Multimedia Software Engineering,
New-port Beach,CA,USA, 2002, pp. 158–165.

[35] R. Santos, G. Lipari, J. Santos, Scheduling open dynamic systems: The
clearing fund algorithm, in: Proceedings of the 10th International Confer-
ence on Real-Time and Embedded Computing Systems and Applications,
Gothenburg, Sweden, 2004, pp. 114–129.

[36] M. Spuri, J. A. Stankovic, How to integrate precedence constraints and
shared resources in real-time scheduling, IEEE Transactions on Comput-
ers 43 (12) (1994) 1407–1412.

[37] M. R. Garey, D. S. Johnson, B. B. Simons, R. E. Tarjan, Scheduling unit-
time tasks with arbitrary release times and deadlines, SIAM Journal on
Computing 10 (2) (1981) 256–269.

[38] L. Mangeruca, A. Ferrari, A. L. Sangiovanni-Vincentelli, Uniprocessor
scheduling under precedence constraints, in: Proceedings of the 12th
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, San Jose, CA, USA, 2006, pp. 157–166.

[39] M. Spuri, G. Buttazzo, Efficient aperiodic service under earliest deadline
scheduling, in: Proceedings of the 15th IEEE Real-Time System Sympo-
sium, San Juan, Puerto Rico, 1994, pp. 2–11.

[40] J. Blazewicz, Scheduling dependent tasks with different arrival times to
meet deadlines, in: Proceedings of the International Workshop on Mod-
elling and Performance Evaluation of Computer Systems, Ispra,Italy,
1977, pp. 57–65.

[41] H. Chetto, M. Silly, T. Bouchentouf, Dynamic scheduling of real-time
tasks under precedence constraints, Real-Time Systems 2 (3) (1990) 181–
194.

[42] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,

44

G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Muller, I. Puaut,
P. Puschner, J. Staschulat, P. Stenström, The worst-case execution time
problem - overview of methods and survey of tools, ACM Transactions
on Embedded Computing Systems.

[43] G. Lipari, G. Lamastra, L. Abeni, Task synchronization in reservation-
based real-time systems, IEEE Transactions on Computers 53 (12) (2004)
1591–1601.

[44] M. Matsumoto, T. Nishimura, Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator, ACM Trans-
actions on Modeling and Computer Simulation (TOMACS) 8 (1) (1998)
3–30.

[45] A. M. Law, W. D. Kelton, Simulation modeling and analysis, 3rd Edition,
McGraw-Hill, 2000.

45

