Modular software architecture for flexible reservation hreatisms on heterogeneous
resources

Michal Sojka2, Pavel Pi&3 Dario Faggiol?, Tommaso CucinotfaFabio Checcofij Zdenék Hanzalék Giuseppe LipaPi

aCzech Technical University in Prague, Czech Republic
bScuola Superiore Sant'’Anna, Pisa, Italy

Abstract

Management, allocation and scheduling of heterogene@asirees for complex distributed real-time applicationa ishal-
lenging problem. Timing constraints of applications mayfldélled by a proper use of real-time scheduling policiedméssion
control and enforcement of timing constraints. Howevaes ot easy to design basic infrastructure services thawdtr an easy
access to the allocation of multiple heterogeneous resstinca distributed environment.

In this paper, we present a middleware for providing distiell soft real-time applications with a uniform API for resag
heterogeneous resources with real-time scheduling détesbin a distributed environment. The architectureeglon standard
POSIX OS facilities, such as time management and standaRlIP@etworking services, and it is designed around CORBA, i
order to facilitate modularity, flexibility and portabilitof the applications using it. However, real-time schemylis supported
by proper extensions at the kernel-level, plugged withim flamework by means of dedicated resource managers. Owntur
implementation on Linux supports reservation of CPU, disk aetwork bandwidth. However, additional resource marseage
supporting alternative real-time schedulers for theseue®s, as well as additional types of resources, may bly ealsied.

We present experimental results gathered on both syntiqgticcations and a real multimedia video streaming cashyssthow-
ing advantages deriving from the use of the proposed middiewFinally, overhead figures are reported, showing swtdity of
the approach for a wide class of complex, distributed, s&t-time applications.
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1. Introduction dustrial application domain. Many of such applicationiwe
. ) ) .. video processing: for example, distributed video monitgfor
Soft real-time requirements are becoming pervasive in toy;4eq-syrveillance and collection of sensible data (@eaple
day cor_nplex_d|str|buted_appl|catlons. The widespreadiditin counting, monitoring of parking lots, etc.). In industriain-
of service oriented applications (SOA) and the advent.aiid:lo trol, image recognition applications for identifying obig on
computing have moved the core of computation from single PG, nyeyor belts, or to find defects in products is increagingl
to distributed systems. In this new panorama, in order for S jmnortant. In the consumer electronics market, soft rieaét
vice prowdars to gaina competltlva advantage, it is venyom support is needed for teleconferencing, video streamisigidi
tant to provide a high level of Quality of Service (QoS) torsse 1, ;iion and remote interactive applications of all types.
at minimum cost. , - S The use of classical hard real-time techniques for designin
In contrast to har_d real-tlme safety critical appllcatlpl_ms and developing such type of applications is rarely appederi
soft real-time ones timing constraints can occasionallyvibe ¢, many reasons: it requires a long and costly off-line psial
olated without causing a system failure. However, the @uali ot the application requirements (execution times and sirjilt
of service provided by the system depends on the number Qf 5yes the application design inflexible; it makes the apfibo
ylolated co_nstralnts and severity of such V|0Iat|9ns OVBM®  |ass robust to unexpected changes of external conditiotissi
interval of interest. Therefore, one of the prominent géals  {he application to a specific hardware/software platform.
a soft real-time system is to keep the violation of iming-con |, this context, we advocate the use of real-time scheduling
straints under control. _ _ techniques for shared resources, and of a middleware for the
There are many applications that require soft real-time supanagement and allocation of them to the real-time applica-
port, both in the consumer electronics market and in the iNgonsin a distributed environment. In the proposed archite,
applications negotiateservice contracspecifying the amount

*Corresponding author of resources that are needed for achieving the desiredineal-
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by run-time scheduling mechanisms. o uniformity. an uniform API for the application develop-

Many integrated solutions to support soft real-time and QoS ers, independent of the specific components;
in distributed environments have been proposed in the atiade
literature until now (see Section 2 for a comprehensivesstat
of the art). However, many problems still remain open that
strongly limit the diffusion of such techniques.

One problem is related to the heterogeneity of hardware/-
software platforms. In fact, clients are becoming more and
more “embedded” and tailored to the user needs and prefer-
ences. As a consequence, a plethora of different hardware de e portability of applications and middleware to different
vices (smart phones, netbooks, ebooks, etc.) are used to ac- operating systems and hardware platforms.
cess on-line services, each one supporting different tipgra ) , )
systems. While it is possible to find commercial middleware | he architecture has been implemented on the Linux Op-
solutions to support functional requirements that abstracn ~ €rating System, and is demonstrated on a complex case study
the specific implementation (e.g. SOAP-XML), non-functibn mspwed by a dlstrl_but(_ed wdeo_ momtor!ng cont_ext. Theref
requirements (such as soft real-time deadlines, banchaisith 21 important contribution of this paper is constituted by rte-
throughput guarantees, power consumption, etc.) did not rd®Crton the experience gained in implementing this conapie
ceive the same attention. Therefore, different APIs areigeal  Plication, particularly on the side of tuning the schedglpa-
to application developers, making it difficult to write pabte rameters for the various involved resources (CPU, netwodk a
real-time applications in a systematic way. Also, many ap-d'Sk)'
plications exist that use simple heuristics to adapt thérase
to changing external conditions, thus providing QoS in &-bes 1-1. Paper Structure
effort way. The paper is organized as follows. After reviewing related

From the perspective of middleware developers, it is diffi-work in the research literature in Section 2, we describesicr S
cult to build and maintain families of products to cope witicls  tion 3 our general software architecture for the integraéed-
heterogeneity of hardware, operating systems, and afiplica time scheduling of multiple heterogeneous resources. ,Tihen
techniques. This means an increased cost of developmstat, teSection 4, we provide specific details about how the CPU, disk
ing and maintenance of the software. and network resource types have been plugged within the gen-

eral architecture. The framework is evaluated on a realwor
Contributions of This PaperTo overcome these problems, in case study described in Section 5. Section 6 then presents th
this paper we propose a modular middleware architecture textensive experimental results gathered on both synthatic
support real-time requirements and QoS in heterogenesus direal applications, along with the overhead figures assaxtiat
tributed environments. The architecture is based on adigight  various critical parts of our framework. Finally, we drawneo
implementation of CORBA. clusions in Section 7, and sketch out in Section 8 possible di

The architecture integrateapport for different types of hard- rections for future work on the topic.
ware resources from CPU and disk to wired and wireless net-
work. Support for new types of resources is provided as sepa-
rated components and can be plugged in at run-time. Such co%‘- Related Work
ponents encompass the resource scheduling policies add ban , this section, related work in the area of real-time suppor
width allocation strategies. Therefore, it is posmble;hange for general-purpose operating systems (GPOS) is presened
the resource management polisy just changing the underly- iy first give a brief overview of existing work on real-time
ing modules. _ . , __ scheduling for CPU, disk and network resources. Then, we wil

The system allows to specify real-time constraints with dif present existing integrated approaches to the problem isnd d

ferent levels of criticalness. The use of resource resemvat s the differences with the work presented in this paper.
techniques allows hard and soft real-time application®txe

ist in the same system. The use of a Contract Broker coordReal-Time CPU Schedulingzor real-time scheduling of the
nates the allocation on the different resources, supporting  CPU, hard real-time modifications to the Linux kernel have
QoS in a holistic way been proposed, like RT-Lindxproposed by Yodaiken et al. [2]
The architecture provides distributed negotiation of neda and RTAP, proposed by Mantegazza et al. [13]. These ap-
existing applications, seamless reclaiming of spare baitiw  proaches are more oriented to hard real-time control applic
and QoS management and control using custom policies.  tions, where tight response time to interrupts and highrityio
Our architecture brings the following advantages: activities is necessary. However, as discussed in thedntro
tion, the use of a hard real-time scheduler cannot be redarde

e modularity possibility to plug new resource manage-
ment modules specific to a certain application needs or
operating systems;

e dynamism the ability to change real-time requirements
dynamically as shown in e.g. Figure 14;

e real-time support the use of real-time resource alloca-
tion and scheduling strategies makes it possible to pre-

C'Sely SpeCIfy real-time constraints; IMore information is available atttp://www.rtlinuxfree.com
2More information is available atttp://www.rtai.org




as an appropriate solution for supporting soft real-timaiap- Real time disk schedulers usually assume to know a dead-
tions in GPOSs. line per each request, or assign them one, and use modified ver
One key feature which is usually not implemented, and thasions of Earliest Deadline First (EDF [32]) to schedule exis.
is fundamental in aropen systemis the temporal isolation As an example, Molano et al. in [33] propose JIT (Just In Time
property [7], as provided for example by the Sporadic SgtWér  slack stealing), consisting in an EDF scheduler, modifieatin
scheduling policy. Without such a mechanism, a higher fityior der to anticipate the service of requests near to the disd hea
task runs undisturbed until it blocks, independently ofdcbe-  position, postponing requests with smaller deadlines btit w
putation time that may have been considered at system analgnough slack time to allow their completion even after being
sis/design time. This results in the potential disruptibthe  reordered. SCAN-EDF, introduced by Reddy et al. in [42], re-

guarantees offered to lower priority tasks. orders requests with the same deadline, sorting them in SCAN
In order to overcome these limitations, other approachesrder.
targeted explicitly soft real-time applications, by comsprg a Proportional share disk schedulers try to allocate shdres o

temporal isolation mechanism. Such an approach, whicls@s al the service (or disk service time) provided by the device to
exploited by the work in this paper, allows for the coexiseen applications. As an example of this class of schedulers, we
of soft real-time and best-effort applications, all witlhiGPOS  describe here YFQ (Yet another Fair Queueing), proposed by
kernel with potentially long non-preemptive sections. Bruno et al. in [6]. It serves requests in batches; the reques
An overview of these approaches has been carried out blgelonging to each batch are chosen using WFQ [4], and can be
Gopalan in 2001 [22]. One remarkable example is the Linsorted usinga SCAN or C-LOOK discipline in order to improve
ux/RK project [41], whose code has also been designed so dke disk throughput. The default Linux scheduler, CFQ (Com-
to be portable across multiple GPOS kernels [35], but it has pletely Fair Queuing), belongs to this class, and uses adroun
been implemented on Linux only, to the best of authors’ knowl robin policy to schedule the time slices it allocates to &gl
edge. An effort on portability of a real-time scheduler asro tions.
various Operating Systems (Microsoft, Unix and Linux fam-  None of the proposals in the literature deals explicitlyhwit
ilies), is constituted by the DSRT scheddldry Nahrstedt et the deceptive idleness problem, and most of them are not able
al. [55]. to provide the guarantees they are designed for when thahrri
Also, soft real-time schedulers for Linux have been invespattern is not independent from the service they provide. We
tigated and implemented in the context of various Europeawill see in Section 4.2 how BFQ, the disk scheduler used in our
Projects, like the CBS implementation on Linux developed du framework, is able to cope with these two common issues.
ing the OCERA Projeét and its subsequent evolution, the AQu-
0SA [37] scheduler for Linux, deve|oped during the FRESCORReal-TIme Network SChedUling—.here have been numerous at-
Projecf_ More recenﬂy, the IRMOS Pro]éi:(whu:h also sup- tempts examining the pOSSibilitieS for the Ethernet to etite
ports the research results shown in this paper) is alsotinves domain of field buses (see survey articles [18] and [12]) and
gating on the use of real-time scheduling for high-perfaroea  there have been many protocols proposed. Some of them have
machines, with a strong focus on virtualized distributeal-re been realized in industrial standards, such as DDS [36}, Eth
time applications. To this purpose, a new multi-core schedu ernet Powerlink [16, 47], or Profinet |0 [40]. The suggested
for AQUOSA is being investigated [8]. methods usually propose traffic smoothing [30, 3] or tiniggtered
The architecture presented in this paper integrates the res@pproaches [38, 28].
time scheduling techniques for CPU, disk and network devel- Furthermore, Wireless Local Area Networks (WLANSs) are

oped in the context of the FRESCOR project. very attractive for many applications since they enableifas
stallation with minimal maintenance costs. The IEEE 802.11

Real-Time Disk Scheduling/arious scheduling algorithms havestandard [26] defines the Distributed Coordination FumeidCF)
been studied in the past for obtaining QoS guarantees ahd reavhich provides best-effort service at the Medium Access-Con
time performance for hard-disk access. Disk scheduling-alg trol (MAC) layer. The recently accepted IEEE 802.11e statida
rithms providing a predictable access to the resource can 5] specifies the Hybrid Coordination Function (HCF) which
classified in two main groups, the first one composed by reaénables prioritized and parametrized QoS at the MAC layer, o
time disk schedulers, and the second one composed by propasp of DCF. The HCF combines a distributed contention-based

tional share disk schedulers. channel access mechanism, referred to as Enhanced Disttibu
Channel Access (EDCA) extending the DCF by multiple Ac-
3More information is available abttp:/cairo.cs.uiuc.edu/ cess Categories (ACs), and an optional centralized peliged
software/DSRT-2/dsrt-2.html . channel access mechanism, referred to as HCF ControllettCha

40Open Components for Embedded Real-time Applications (Q®ERu- nel Access (HCCA).

ropean Project n.IST2001-35102. More information is a@d at: http: - . .
IPwW.OCRra.0g Widely deployed DCF and EDCA use Carrier Sense Multi

SFramework for Real-Time Embedded Systems based on CanfieRes-  Ple Access with Collision Avoidance (CSMA/CA) and slotted
COR), European Project n.FP6/2005/IST/5-034026. Momrinétion is avail-  Binary Exponential Backoff (BEB) mechanism as the basic ac-
able at:http://www.frescor.org . cess method.

SInteractive Real-Time Multimedia Applications on Servideiented In- . .
frastructures, European Project FP7-214777. More infoomas available at DCF and EDCA cannot prowde parametrlzed QoS for real-

http://www.irmosproject.eu . time applications, unless the network is operating in natthsted



state [9]. The admission control algorithm is recommended b It is worth to mention the architecture [11] developed in
not specified in [25] in order to limit the network load. Inan e the context of the RI-MACS project for distributed real-6m
al. [27] considered the problem of multimedia capacityreati  applications in the factory automation domain. The archite
tion and admission control for the EDCA function and Engel-ture relies on the capabilities of service-oriented inftagures
stad and @sterbg proposed [15] a probabilistic model used fdor providing discovery of resources and their real-timpaa
delay estimation. Several authors (see [10, 54, 19]) stidthiey  bilities, self-configuration, fault-tolerance and schiguy pa-
the QoS parameters of EDCA will affect the performance andameters negotiation. The RI-MACS architecture also diplo
proposed how to control these parameters. AQUuUOSA [37] as the low-level CPU scheduler (as this work
does), but it lacks both the support for multiple heterogeise
Integrated approachesVarious authors focused on the design resources as the work in this paper has (wired and wireldss ne
of amiddleware architecture to support quality of servigarcia- work, CPU, disk), and the well-defined unified API enabling
Valls et al. proposed Hola-QoS [20], a modular and flexibleapplications to exploit such real-time capabilities.
software architecture to support multimedia consumeteae More recently, Rajkumar et al. [31] proposed Distributed
ics applications. The goals are similar to the ones of the&kwor Resource Kernels, an extension of Linux/RK adding supjport f
presented in this paper, however they only consider coofrol distributed real-time applications. Unlike our propogaiDis-
CPU resources and do not address distributed soft-reatiisie  tributedRK the architecture for the distributed manageraad
tems. allocation of resources is built inside the kernel, presbigna
The Eclipse/BSD [5] Project integrates real-time schewuli - for improved efficiency as claimed by the authors, but preven
of CPU, network and disk access, and exposes to applicationsg portability. Also, in DistributedRK the architectureeds
a file-system based user-space interface. However, thegbroj the presence within the kernel of various components theat ar
does not deal with distributed real-time applications, @sdo  traditionally present at a higher level, in user-spacehedys-
in this paper. tem, like an HTTP server, a DNS-like server, and an NTP-like
Gopalan et al. [23] proposed MURALS, a distributed real-server. Implementation of such services in user-spacesyhi

time architecture built upon TimeSys Lin{psupporting real-  peneficial for security and robustness purposes.
time applications with end-to-end constraints making uke o

distributed heterogeneous resources, such as disks, GRlUs a ,
network links. Similarly, Nahrstedt et al. worked on Qual- > Modular Architecture of FRSH/FORB

Man [34], a.d'St”bUted rez_il-t|me resource aIIocayon H_Em This section describes the internal software architeatfire
ture supporting network, disk and memory allocation, wiii-p the FRSH/FORB framework. The basic principle of the ar-

totype implementation on thg Solaris OS. However, N t.)mhchitecture is its decomposition into four levels (see Fig—
cases the degree of modularity of the architecture is lohite

. . .~ _application programming interface, resource-indepetideal,
and they would greatly benefit from a CORBA-oriented deSIgnresource-speciﬁc level, and operating system abstraction

Eide et al. [14] presented a CORBA-based middleware for The application programming interfacis used by the ap-

the CPU management in distributed systems, however they d[9ications to interact with the framework. The FRSH APl was

not consider other resources. ; :
. . . developed in the context of the FRESCOR project as a portable
' TAO [46] const!tgtes_, aCt+ |mplementat|on of thg Real'and generic interface to provide resource reservationcesv
Tlme .CORBA speC|f|cat|on [.53]’ Whlc.h €Xposes the main funC'to hard and soft real-time applications. The main service pr
t|onaI|_ty of distributed real-nme apphcatlo_ns via the BBA vided by the API is contract negotiation: the applicatioresp
paradigm. - Later, TAQ was mtegr_a_t_ed with QuO [29, 21J, difies its resource requirements in the form of a contract, and
framework that exploits the capabilities of CORBA to reducesubmits it for negotiation to the framework. If the negdtat

the |Impgct. of QQ? drlnanag?mer:jt on the apspllcatlor|1 (I::de. Thgucceeds, the framework provides the application with afset
result [45] is a middleware for adaptive QoS control. Relent so calledvirtual resourcegVRES), which is a generic name for

tsr:J C.h Ha%aRith:Cturg ha':sf ber:a_n user(]:i_ b3|/ Shankaran ett "’;I' W:twgsource reservations. The application then uses FRSHe&PI s
el [48] project for hierarchical management of mu vices tobind its entities (threads, communication endpoints) to

t|plekresoufrces n dd'Str.'bUted rela It-tlgwte i’%’ stems:thwahtelzts'e the VRESes in order to use the reserved resources. Theadketall
works are focused on issues related to the monitoring ofthe r description of the API can be found in [24].

time application behavior, and the dynamic adaptation ef re The resource-independent levisl represented by theon-

source allocations and/or application behavior to theiticoi- tract brokerand is intended to implement algorithms for spare

_ously chalngglr:jgtnetidsl. Thleref?re,;h§y|90n3|derhonly maﬂe%len d capacity distribution, multi-resource transactions aothgl QoS
ISSues refated 1o the low-level scheduling mechanismseatse optimization. The contract broker interacts with the reseu

for guarar_neemg the r_espect of “”‘”?9 cqnstramts, neélyed managers through abstract interfaces. The framework is im-
soft rgal-nme applications. .Instead, n .th'S baper .Wed)m.h plemented on top of a lightweight CORBA-like communica-
real-tlme_ resource reservation scheduling strategiestwak tion middleware called FORB [51]. This middleware hides the
low precise allocation of the resources. complexity and different nature of inter-process and imiede
communication and provides method-call semantics for temo
application objects.

"More information ahttp://www.timesys.com



Node 1 Node 2

Application 1 Application 2 Application 3 Application 4
APl 3 3 3 7
! FRSH + DTM Interface ! ! FRSH + DTM Interface !
Resource v v v ¥
Independent
Level FCB DTM ‘ nogotiation DTM FCB
FRSH Contract Distributed 9 Distributed FRSH Contract
Transaction Transaction
Broker Agent Manager ‘ Manager Broker Agent Contract
[ [ [ Global contract ID
Resource v v v
Dependent Resource Resource Resource Resource type
Level Manager Manager Manager Resource ID
(CPU) (Network) (CPU)
Budget [s/bytes]
Resource Resource Resource Resource Period [s]
Allocator Allocator Allocator Allocator
(CPU) (Network) (CPU) (Network) Workload type
Operating Deadline [s]
em
b action FOSA layer FOSA layer -
Res. specific attr.
[ OS / RT Kernel ] [ OS /RT Kernel ] Attr. added by FRM
Figure 1: Logical block diagram of FRSH/FORB framework. Figure 2: A contract and its attributes.

Theresource-specific levebnsists of several modules called3.1. Resource Managers and Allocators

resource managemndresource allocatorswhich are in charge Let us start the description of the framework modules with
of managing the individual resources (e.g. CPU, netwosk)di  FRSHresource manageFRM). This module provides an ad-
Their goal is to implement resource reservation schedallng mission test for the given resource. The test is usuallyase
gorithms supporting real-time execution and temporabisoh  on some kind of schedulability analysis, and its objective i
for tasks running on the associated resource. One key &atUfy check whether the new contract(s) can be accepted without
of our architecture is that the modules in this level can I ea yjg|ating the service guarantees negotiated so far. In oéise
ily plugged in and out, allowing the framework to be used onmgge-change (i.e. when an application, or a set of appiicati
various platforms which exploit different resource res#ion  change their operating mode, and need to renegotiate their ¢
mechanisms. tracts), the module also able to test the feasibility of thelen
Theoperating system abstractidacilitates portability across change. Based on the analysis, the resource manager may add a
multiple hardware/software platforms. It consists of the&SH  piece of information to the contract, which can be laterizi
Operating-System Abstraction (FOSA) layer, whichimpleise y the scheduler. An example might be a fixed-priority sched-
the FOSA API. This is a cross-platform API designed within jjer which schedules tasks according to the priority calea
the FRESCOR project for the purpose of abstracting OS seby geadline-monotonic algorithm in the resource manager.
vices related to the management of time, posting of timers,  The second module is FRS#source allocato(FRA) which
management of threads and synchronization primitives, (€.9always accompanies the corresponding resource managge Th
signals and mutexes). The use of FOSA simplifies porting otan be multiple allocators for a single resource, e.g. ie cds
the FRSH/FORB middleware on different Operating Systemsy network, there is one allocator for every network node. The
Indeed, FOSA has been implemented in a straightforward way,rpose of the resource allocator is:
on Linux by means of the POSIX API for the just mentioned . . )
services, with a few Linux-specific extensions which haverbe 1. to interact with the resource scheduler, i.e. to create,
leveraged for performance reasons. Also, FOSA has beenim- ~ change or canceiirtual resourcesaccording to “instruc-

plemented on MarteO$[43, 44], Partikle® [39] and Enea’s tions” from the resource manager and contract broker;
OSE™. However, note that the implementation of FRSH/FORB 2. to provide an API for binding application entities (thisa
requires usually extensions at the kernel resource scimgdul network endpoints, ...) to the virtual resources.

level. Such extensions are forcibly OS specific and eachdas t
be interfaced separately in the resource-specific levakeder, ~ 3.2. Contract Broker
the presence of FOSA allows for the straightforward portihg The main objective of the FRStbntract broker(FCB) is to

all the contract management part of the framework. act as a mediator between applications and individual ressu
The following sections describe the individual modules inContract broker is a distributed application with an agemntr
more detail as well as their interactions. ning in every node. Agents collaborate on distribution dbin
mation about resources and contracts in the whole disgtbut
8http://marte.unican.es/ system. In the simplest case, the FCB agent only resends the
®http:/iwww.e-rtl.org/partikle/ contracts received in negotiation requests to the apptgme-

Ohttp://www.enea.com/Templates/Product 27035.

aspx source manager and then, if the admission test succeeti® to t



resource allocator and back to the application. More detailworkload means that the application has a bounded amount of
on the functionality of the contract broker are provided @cS work (called job) that to do during each virtual resourceaqugr

tions 3.6 and 3.7. and it notifies the framework whenever the job is done. As a
consequence, the framework can notify the application abou
3.3. Examples overrunning its budget or about a deadline miss. Indeteatain

Figure 1 shows two nodes running the FRSH/FORB framework_loaq model is used when there is no concept of jobs in the
work and connected by a network. Every node runs two (ar@Pplication. .
bitrary) FRSH/FORB applications and a contract broker igen The attributes of a contract can be set and modified not
Furthermore, node 1 runs two resource managers: one for ti0ly by applications, but also by the contract broker and by
local CPU and one for the network. Node 2 runs only the re/€Source managers. This makes the framework very flexible
source manager for its local CPU. The network resource usesafor €xample, an application can specify only platform in-
centralized manager, which means that the manager runs orfigPendent attributes in the contract. The contract brokgr m
in one node. The figure also contains blocks representing treXploit knowledge of the underlying platform to add platfer
allocators. Note that the network resource has an allogator dependentattributes, and finally the resource manager diay a
every node even if the manager is located in a single node. Thénstructions” for the allocator/scheduler.
reason is that the virtual resource implementation musireaf Virtual resources are represented in applications by a data
the application not to use the network bandwidth beyond whagtructure containing the negotiated contract togethetn anty
was negotiated and for most networks this can be only impledata needed by a particular resource allocator implementat
mented at sending side. to manipulate the reservation and communicate with thedsche

To illustrate the interaction of these components we presert/€r-
two example scenarios of the contract negotiation (a more de o
tailed description is provided in section 3.5). 3.5. Contract Negotiation Process

Example 1. Consider the case in which application 1 wants  In this section the negotiation process will be describésflyr
to use the local CPU for a periodic task, and requires a guafor a detailed description with figures see [51].
antee for meeting all deadlines. It prepares the contrattt wi The negotiation starts in an application by preparation of a
appropriate attributes (period, budget, deadline andures).  contract and filling its attributes. Then the contract istden
Then it sends the contract to the local contract broker agenthe contract broker agent by means of calling FRSH API func-
The agent finds out that the contract refers to the local CPU rdion frsh_contract_negotiate() . The agent finds the
source and resends the contract to the local CPU resource maresource manager and passes the contract to it. The resource
ager. The manager executes an admission test and returns thanager executes an admission test to determine whether the
result (accepted/rejected) to the broker. If the contra@d-  is enough resource capacity to satisfy the applicationirequ
cepted the broker asks the resource allocator to creatdarthe vments. If the contract is accepted, then the resource manage
tual CPU resource according to the attributes specifieden thcan add attributes to the contract (e.g. priority which il
contract. used to schedule an application task) and sends the modified

Example 2. Application 3 wants to periodically communi- contract back to the contract broker agent. After that, e ¢
cate over the network with a guarantee of meeting all deasllin tract broker agent sends the contract to the allocator ttei®
Negotiation will be accomplished as follows: The applioati new VRES according to the contract attributes. Finally,ape
prepares a contract and sends it to the contract broker agentplication is informed by the agent about the identity of tlegvn
node 2. The FCB agent issues a reservation request to the n®RES. This finishes the negotiation process, but the apjgita
work resource manager running in node 1. If the contract isisually continues with binding an entity (thread, netwonkie
accepted, the FCB agent in node 2 requests the local netwogoint, ...) to the VRES through th®nd service of the resource
resource allocator to create the network virtual resource. allocator library.

3.4. Representation of Contracts and Virtual Resources 3.6. Distribution of Spare Capacity

In order for the framework to be modular enough to support ~ An application can specify in the contract that it is able to
different resources, a dynamic data structure is used tesept make use of additional resource capacity if that is avaglabl
contracts. By dynamic we mean, that the number of attribute®hen the contract broker is requested to negotiate such-a con
stored in the contract and their type can vary dependingen thtract, it tries to reserve the maximum capacity requesfatiat
resource and the state of the negotiation process. Theigedph is not possible, the contract broker tries to find an optinisd d
representation of the contract is depicted in Figure 2. ¥evertribution of spare capacity among applications and reates
contract is identified by an ID which is unique in the whole the resources according to the result.
distributed system. As the contracts are represented by the dynamic data struc-

The most common contract attributes dmedget period ~ ture, applications have great flexibility in specifyingpdissible
deadlineandworkload type The first three attributes are self uses of spare capacity. For example, an application can spec
explaining. The workload type describes the applicationkao ify two different budgets in the contract and the contrackier
load model, which can be eithkoundedrindeterminateBoundednsures that the highest possible budget is reserveditdibat
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all times. Note that resource managers and allocators alreay Dependency (via function call) —— i
ceive a simple contract, i.e. the one with only a single fesi Application serrspace omer space cal
p » 1S y g FRSH CORBA Interaction ===

reservation. See [51] for more details on this topic. AP

I . . FRSH Core FCB FRM Server
3.7. Negotiation of Multi-Resource Transactions m for AQUOSA I
I

Many applications operate on multiple resources. For such

L S . ‘ ' FOSA
applications it is beneficial if a set of contracts for thdefiént v‘ ABI
resources is negotiated as a unit — either all contracts ioe no F"?’A BETSW FOSA Library
of them. We call such a set of contraatsilti-resource trans- or for Linux
action These transactions are negotiated similarly to what is AQUOSA | POSIX

API

described in section 3.5, except that resource reserseioails — —| = = API v
v

pthread

to resource managers) are made for all resources in the trans | ! Linux C

action before any resource is allocated by its resourceatio. | | AQuosA || Library I Library

This assures that no resource is allocated before it is kiioatn | { RR Library J | ioctl() 5 — System
there is enough capacity on all resources participatinghen t ‘ i S S Calls
transaction. Currently, only contracts without spare cépa A e

can be negotiated in transactions. In future, we plan to vemo Real-Time

this limitation by using global optimization techniquesfited Scheduler Signals, Mutex,

optimal distribution of spare capacity across multipletgses. Threads

4. Supported Resources _ _ i
Figure 3:Integration of the AQuUoSA scheduler within the FRSH/FORB

4.1. CPU Bandwidth Management architecture.

Within the architecture described in this paper, real-time
scheduling for the CPU has been supported by integrating thtegration of AQUoSA in FRSH/FOREigure 3 shows how
AQuUOSA scheduler. In what follows, for the purpose of com-the AQuoSA scheduler is plugged within the FRSH/FORB frame-
pleteness, first we recall briefly basic concepts around AQuwork, where the grayed blocks identify software components
0SA, then we describe how it has been integrated within th@mplementing the CPU-related parts of the architectureqreed
FRSH/FORB framework. in this paper. The application uses the FRSH Core API, avail-

: . . . able by linking a library. When an application negotiatega n
The AQuUOSA ArchitectureThe Adaptive Quality of Service contract, the library performs admission-control via then€

ArcE_lttectture for Fhﬁ.l"nlﬂ).( kerne_lﬂ(]AQl;fSA)l Its' an oper;;;nrc tract Broker CORBA object (FCB Server), which in turn con-
archi e_c_ure. EGBIr:'Cbmgd 'mi]x &NII' S(: rear |Ime cap | ti('1 tacts the AQuoSA-specific Resource Manager. The latter per-
comprising: -based scheduling, lemporal encapsuiar forms the admission-test based on the currently admitted co
en_forcement O.f timing constraints, limited support forrafe tracts, and the parameters provided by the applicatiors ddhi
chical schedulmg_, admlsqu _control, cgr)trollable anduse mission test may be potentially more complex then the simple
exposure of real-time capabilities to unprivileged preessand utilization-one as currently implemented. Once the new-con

feedback-based scheduling. tract has been admitted, the FRSH Core library performs the

The componer_ns of AQUOSA V_Vh'Ch are relevant for this P& ctual allocation via the FRSH Resource Allocator (FRA) li-
per are the following (the reader is referred to [37] for a en

. N or brary for the CPU, which has a proper plug-in for communi-
comprehensive description): cating with the AQuUoSA scheduler via the AQUOSA user-space
e the Generic Scheduler Patch (GSP), a small patch to th&Pl. When the FRA allocates resources correspondingtoacon
kernel which allows to extend the Linux scheduler by in-tract within AQUOSA, it sets the budget to the values indidat
tercepting scheduling events and executing external codé the FRSH contract, or to ones scaled-up by the spare-tgpac
in a kernel module; capability of the contract broker.
. ) It must be noted that (see Figure 3), in the FRSH/FORB
e the AQuUoSA real-_tlme sche_d_uler, a dynamically loadabley,,qr AQUOSA scheme, the CORBA interactions occur only for
kernel module which, exploiting the GSP patch, enhanceg,gse actions that do not have strict real-time requiresyemd
the Linux CPU scheduling with an EDF-based schedul,; for monitoring actions typically required during a réiahe
ing policy, and precisely a hard-reservation version of thgagk activation. For example, a new contract set-up inlre
CBS algorithm [1]. FCB, FRM and FRA components, whilst reading the current

o the AQUOSA Resource Reservation (RR) Library, whichPudget (e.g., as needed for implementarg/timecomputing
allows applications to request real-time scheduling ser@lgorithms) or the server deadline are actions manageglguic
vices through a properly designed API, and forwards re_through a set of function calls to the FRA library. On a ral_iate
quests to the real-time scheduler viatl() system note, if co_nﬂgured properly, the_ FCB and FRM CQRBA objects
calls operated on a special virtual device. may be given precise scheduling guarantees within the frame



work, in order to provide minimum guarantees on the contractorst-case completion time d@t¥ in an optimal system guar-
set-up time, if needed. anteeing no lagging behind the reserved service over arg/ tim

Note that, in the just described architecture, Linux taskdnterval, and the quantity is theworst-case delawith respect
that do not use resource reservations via the FRSH API #lre stto the ideal worst-case completion time.

managed by the default Linux scheduler. Note that the quantit{,,, must be known to some extent,
in order to assess the actual time guarantees provided by BFQ
4.2. Disk Bandwidth Management The tricky aspect is thdl, 4, is in its turn a non-decreasing

To provide individual applications with timing guarantees function of one of the components of the worst-case delaggtya
on disk access we have to consider that requests resporese tiffmaz- 10 deal with this aspect, basing upon (1), the desired
is something highly variable and dependant on physicalptisk trade-off between worst-case delay and expected throughpu
rameters. Moreover, many applications (e.g., video stiegin Poosting can be achieved by iteratively tuning the valug,of....

only issuesynchronousequests to the disk, i.e., they send the _ _ .
request and then block waiting for it to complete. Therefore Ntégration of BFQ in FRSH/FORBSimilarly to what hap-

work conserving approaches tend to introduce a lot of seek®€nS for AQUOSA, BFQ has been integrated within FRSH/-
as they see only one request per application, and delayéng tff ORB by implementing a BFQ Resource Manager and a BFQ

dispatch of a request (which is done by some classes of digresource Allocator. o
schedulers) is of no help, since it actually prevents thdiegp The BFQ Resource Manager (FRM) performs admission-
tion to issue its next ones. test for disk contracts and lets a new one enter the systeyn onl

The Budget Fair Queuing (BFQ [52]) algorithmis a timestanim_he seryice time over the period it is asking can be guaaral_ht
based proportional-share disk scheduler designed togestiong 't 1S Possible to ask for aackground contractwhich results in
guarantees on disk bandwidth distribution even in presefice N° Service guarantees, i.e., the“_req’sjests_ will be served alhe
synchronous workloads. Bandwidth distribution guarasites the r_ese_rved applications are |dle_ N T_h|s can be used fer th
be turned into soft timeliness guarantees, based on the mef@Plications that do not need specific disk access guamrstee

knowledge of the aggregate throughput in the context of somi @void wasting some bandwidth for them.
workload scenario. The BFQ Resource Allocator (FRA) calculates the actual

The algorithm maintains a per-application queue, and a gBFQ weightg; of a request associated to a contract by a bind

WF2Q+ (a slightly modified version of the Worst-case Fair WeigfiPeration, according to the following formula, derivedriro
Fair Queueing Plus algorithm) scheduler selects the quebe t €duations 1 above and 1 in [52]:

dispatched to the disk device. Each application is alsgassi B,
a budget, representing the numbers of sectors to whichritis e ¢i = D ZBummrtlow (2
tled after being selected, and the scheduler involves sdling i ‘ Tagg

(usually referred to aanticipatior) in case an application has whereB; and P, are the budget and the period the contract is

T et o oo vaiona e OUESING eSpeCely A i sbove, e wors-cogea
evator algorithms in [49], while BFQ is detailed in [52]. gate throughput figures of the disk device is required, both i

BFQ is able to provide applications with precise servicethe admission-test (FRM) and allocation phases (FRA). tiradr t
P P b reason, it can be either specified at FRM starting time (ifkmo

guar_antees: Let;’ e the t|mke |r]1€stant at Whlch theth appllcq in advance), or it is automatically calculated by the systéth
tion issues its-th requestR?, ¢; be the time instant at which :
i a benchmarking procedure.

\?VL:)Crrs]tfg:szt 'Sg;)gc]) zlre](t;:g Ss%r\\;\?edézgiriftll:;;ellsttﬁg;nggl?ga- Again, new contract negotiation and first bind of an appli-
tions are conFt)iﬁuousI baci<lo ed in the time interl p,f)] cation to it require a CORBA interaction between all the feam
_ y backiogg ; - “l work components, and therefore should be done beforergjarti
except for the-th one, which can be subject to idling. Let also h | . fth lication. Vi . ot
T4, be the minimum aggregate throughput durjaf, ¢¥] un- the a_ctua processing o the app |c_at|on. et, runfume 8529
a9g v the disk —i.e., issuing read and write requests — is not &dtec

gshr ;tzeuaebS(:Vﬁ( \;\/eorsg;:g ngaa?Sr:]J%F;tfenc.tﬁibsv;[tr;]eaSIZ(aerig]:jt?:r by the overhead of contacting different components neltier
q ' q ’ b cally or on remote machines.

minimum inter-arrival time) of at leasP; seconds are issued,

the following inequality holds: 4.3. Wireless Bandwidth Management

vk Qilaf )+ Lk FRSH/FORB framework supports communication over Wi-

0 < W +d(Bmazs Limaz, 9 Tagg), (1) Fi networks. The part of the framework responsible for Wi-Fi
resource is calleéFRSH Wireless ProtocdFWP) [51]. This

whereQ;(al 7) is the sum of the sizes of the requests of theprotocol takes advantage of IEEE 802.11e standard [25]eMor

i — th application not yet completed immediately before timespecifically it uses medium access technique caietianced

a¥, Bpax iS the maximum budget size used by any applica-Distributed Channel Acceg€DCA) which provides differen-

tion in the systemL,,,... is the maximum request size apgdis  tiated access to medium by means of four access categories

the fraction of the total disk service allocated to the aggilon ~ called (in decreasing “prioritiesjoice videq best effortand

(i.e., its normalized weight). The first componentrepréstite  background Within these categories, the classieaponential
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back-off algorithris used to lower the probability of collision.
Note that although EDCA improves communication capabili- .

ties for real-time applications, it still uses a probalbitisap- g || Crabber & [ Video .| Decoder &
Encoder | _Recorder -1 _Visualizer

[ "] M

proach in the medium access algorithm and the guaranties a
not “hard”. FWP provides FRSH API for creating communica-

tion endpoints, binding them to virtual resources (VRES) an g Grabber &
sending/receiving messages over them. Internally, FWR usd:a*

UDP protocol for sending the messages.

Video Client

Camera " Video "Decoder &J
Integration of FWP in FRSH/FORBAs for any other resource, Controller L _Streamer . Visualizer
FWP implements resource manager and resource allocater com , ) .
Video Server Video Client

ponents. FWP resource manager should provide schedtjabili
analysis, however, since EDCA technique is not deternidnist
the FWP resource manager cannot calculate an exact schedula
bility analysis. There exist probabilistic EDCA models ks

[15], which could be used, but FWP uses a simpler approach yigeo-surveillance system with multiple cameras dedge
which works reasonably well [S0]. In short, FWP resourcey pyiiding. Cameras are physically connected to the camera
manager is responsible for two things: controller which communicates via Wi-Fi with the video serv
1. It assigns the stream to the one of the four EDCA accesicording the video on a hard disk. The video is on-line afid of
categories according to the deadline specified by the agine surveyed by the operator, who dynamically decides upon
plication in the contract. the cameras to be recorded and the required quality of te®vid
2. It checks that the overall bandwidth requested by all apGiven the limited resources (CPU, WiFi and disk) the system
plications is lower than the bandwidth available. Cur-Presented in this paper allows the operator to dynamicafiy (
rently, the available bandwidth is specified manually whefin€) add/remove cameras and to change the video quality as
the manager is started. For every contract, the exact tim@nd as the resource capacity is not exceeded (demonsinated
needed for transmission of the messages described by tfddure 14). o _
contract is calculated. The time is divided by contract ~ The main components of the applications are the following
period and the results are summed up for all contracts(See Figure 4):
If the final sum (total bandwidth utilization) is less than
0.96 the contract is accepted. By keeping the bandwidth
utilization under 96% the wireless channel is not fully
saturated and the number of collisions is low. Therefore,

we do not need complicated models to estimate EDCA 4 the Video Serveembeds two distinct components: the

Figure 4: Case study block diagram.

o the Camera Controllergrabs videos from multiple con-
nected video cameras, encodes them for transmission and
sends them over the Wi-Fi network to the video server;

back-off time and we use constant values for this delay, Video Recorderseceive the video streams from the cam-
one for each access category. L _ era controller, re-encode them to an on-disk format and
Currently, FWP works only when transmission bitrate is store them on a local hard drive: thieleo Streamereads
fixed. Since Wi-Fi network interface cards (NIC) nor- back the stored videos and streams them over the network
mally change bitrate dynamically to cope with chang- for being visualized by the video client(s);

ing channel conditions, this constraint is quite limiting.
In [51], section 3.6.2, we describe, how FRSH/FRSH e the Video Clientsdecode and visualize video streams,
framework could support dynamically changing bitrate. transmitted by the video streamer, on a local display.

FWP resource allocator creates FWP virtual resources and |, the following, we consider a concrete set-up of the gen-

configures their internally used sockets in such a way th&t therg structure presented in Figure 4: one instance of thes@am
messages are sent through the EDCA access category specifiegntroller acquiring videos from up to three connected cam-
by the manager. Every FWP VRES employs a traffic limiter togras and a single video client. This setup is depicted inrgigu
ensure that applications do not send more data within agerioggether with resources involved in individual components
than they requested in the contract. If the application estsa The application has been realized by exploiting the open-
its budget, it is either blocked until the next replenishtrténe o rce multimedia library FFMPEG and the FRSH API de-
(in case of synchronous send) or the message is queued dnd sg&iped previously. The Video Client has been realized byqs
by VRES at the next replenishment time (asynchronous send}ne vi.C media playé?.

The video grabbing rate was selected to be 30 frames per
5. Case Study second (FPS) and the size of one frame was>x32D pixels.

The proposed framework has been evaluated from the per-
spective of usability and achievable experimental redaytse- EMOFG information is available ahttp://ffmpeg.org/ .
alising a concrete case-study application. It is conaatniid]y More information is available abttp://www.videolan.org/vic
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Planned parameters Camera controller Recording server
Video rate 30 FPS Ao

Video resolution 320x240

Maximal video bandwidth 1 Mbit/s WebCAM [—p>| Grabber/Encoder [ FWP_| A VideorecorTer‘
Measured parameters \ WebCAM }—-)} Grabber/Encoder [>{ FWP | $ FWP 3 Video rccor&cr‘
Average frame size 3192B WebCAM |—p>{_Grabber/Encoder [>{  FWP_| $ FWP P~ Video recorder
Avg video bandwidth 3192*30*8 = 751 kbit/s ES—— — — -
I-frame every 12 frames=0.4s J ‘ L Videostroame
Avg (max) I-frame size 8377 (8825) e

Avg (max) P-frame size 2697 (5990) , , ,

CPU load of video encoding 15% Figure 5: Detailed case study block diagram.
CPU load of video recording 6%

benchmark the individual components separately becasse, a
can be seen from the results in Section 6.5, the framewonk gua
antees that after integration the negotiated parametersear
The acquired video was encoded to an MPEG-4 stream with agerved for the components in the same way as when the com-
h263 codec and a bitrate of 1 Mbit/s. The stream was transmitponents were benchmarked in isolation.

ted to the recording server using the real-time transpotbgol

(RTP)® which is based on the non-reliable UDP protocol. TheWi-Fi contract. With the setting givenin Table 1, the Wi-Fi net-
recording server decoded each received stream, re-eniodedVork becomes the most limiting resource. It allows for trans
and stored it in MPEG-4 format onto the local disk. The videoMission of approximately four streams, but the FWP manager
streamer is capable of streaming the recorded video either 8dmits only three streams. Although the maximal video band-
full quality (same as used by the camera controller) or aelow Width is 1 Mbit/s, the FWP manager needs to account for the
quality 15 FPS, 162120, 100 kbit/s. Due to the environmen- réal communication overhead (packet fragmentation, UDP an
tal set-up and the distance between the Camera Controtier ahP headers, MAC/LLC overhead —inter-frame spaces, coiotent
the Video Server, the wireless link between the Camera Corl¥indow size etc.), which is in this case 47 %. Also note that
troller and the Video Server was operating at a fixed bitrite o€Very packet is transmitted two times — once from the source

Table 1: Application parameters.

12 Mbit/s. station to the access point (AP) and once from the AP to the
destination station. Therefore we get the total used Wialfids
5.1. Parameter Tuning width as 3x 1 Mbit/s x 1.47 x 2 = 8.82 Mbit/s.

As a consequence of different sizes of I-frames and P-frames
he contract period is set to match the video frame ratd, an
e budget is set to be big enough for processing every ldram
then approximately 64% (— 3192/8825) of the reserved band-
width would be wasted due to the low resource utilization by

video compression where the workload differers every gerio P-frames. Since the Wi-Fi network is the bottleneck in oa+sc

(every processed video frame). This section summarizes 0L51’1a”0’ It \(/jvas geﬁ'di’;d (tjo set thlezg(:,(rg)d 'E.thhe Wi-Fi cont(;amts h
experience with determining proper contract parameters. second and the budget to » Which corresponds to the

To properly setup contract parameters for a video procesdl'@Ximum stream bandwidth. Deadline was st &0 seconds

ing application, some knowledge of video encoding and pro-s’0 that the proper EDCA access category was used by FWP.

cessing is required: The video stream is composed of differThe exact values of Wi-Fi contract attributes can be seemdn t

; hot of a simple framework monitoring application in
ent types of frames (I-frame, P-frame) and each type requwes?reen S i . .
different CPU processing time, network and disk bandwidth'9Ure 8. The liston the left side of the figure shows negedat

I-frames represent the full video frames while P-frames—conW"FI con.tracts. For every V|de_o transmission there are two
tain only differences from the previous frame(s). In our@xp contracts: one for RTP protocol itself and one for accompany

iments, the size of an encoded I-frame was, in average, thrégg RTCP protocol. The right side of the screen shot shows the

times bigger than the size of a P-frame. attributes of the highlighted RTP contract.
A. correct set-up qf th_e contract parameters is obviously deCPU contract. The CPU capacity on both the camera controller
termined by the application parameters. The parametezstaff

. . . o and the recording server was sufficient (one stream needs on
ing resources requirements have been identified and mmsur%verage 15% of CPU on the camera controller and 6% on the
They are summarised in Table 1.

__recording server). Given the maximum of three streams, we ca
A correct set-up of the con'Fract parameters has be.e.n f'n%\'/aste some CPU bandwidth by reserving more CPU than is ac-
tuned based on a benchmarking phase. It was sufficient tRjally needed. The period was set to match the frame rate and
the budget was set to 25% of the period on the sender side, and
13More information is available aftp://ftp.isi.edu/in-notes/ to 10% of the period on the receiver side. It was experimntal
rfc3550.txt

The biggest difference between developing an applicationf
with and without FRSH/FORB framework is that the develop—I t
ers need to provide contract parameters to the framework.
should be easy for strictly periodic applications with cans$
workload but it is more difficult for an application involwn
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block label (0) 29 . Xy KEL ™
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RTCP (558511b671b05cc) 13 8,8’ . XX FLR* * Negotiation (local) +
RTCP (7d90ffcadgfosddb) block basic (2) o 1 YXE G RH Negotiation (remote) x 7]
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e roracted Figure 7: Contract negotiation time as a function of the nemndf negotiated

contracts.

Figure 6: Screen shot of the graphical application for ioipg negotiated
contracts in resource managers. 5.2. Lessons Learned

It was very helpful to have aentral view of the state of

Camera Controller the frameworkWe had a real-time monitoring application (see
Grabber/encoder budget _ 9ms Figure 6) and the log of all framework operations (the extisrp
Grabber/encoder period = deadline  1/30s shown in Figure 14). It helped us to find quickly the reasonms fo
FWP Budget 125kB reservation failures. We were able to generate the log Isecau
FWP Period 1s we setup the framework in a way that all contract negotiation
FWP Deadline 1/30s went through the contract broker agent running in the reingrd
Recording Server server.

Writer CPU budget Sms Resource reservation helped usdiscovering certain er-
Writer CPU period = deadline 1/30s rors earlier than during integration phase. It happened when the
Writer Disk budget 5kB actually used video stream bandwidth was higher (by mijtake
Writer Disk period 1/30s than was allowed by the negotiated network contract. Thés mi
Streamer Disk budget SkB take was noticed due to jerky video on the video client. Itidou
Streamer Disk period 1/30s not be noticed without the framework because the availagtie n
Streamer FWP Budget 12 (125) kB work bandwidth was sufficient for that single video stream.
Streamer FWP Period 1s Determining the contract parameters often requires a bench
Streamer FWP Deadline 1/15 (1/30) s marking phase. In our case study, this benchmarking was done
Video Client manually, which is time consuming and error prone. It would
CPU budget Sms be much easier if the framework providesdource usage statis-
CPU period = deadline 1/30s ticssuch as the minimum/maximum/average consumed budget,

deadline miss and budget overrun counts etc. Therefore, we

Table 2: Parameter values set in the FRSH contracts. The &l for . . .
plan to add such functionality to the framework in the future

Streamer correspond to the low and full video quality.

checked that these values are sufficient even for proceging 6. Experiments

biggest I-frames. In this section we present experimental results for the vali
dation of the proposed approach. The experimental vatidati

Disk contract. The disk throughput was measured to be 22 MBlﬁims to gather overhead figures for the contract negotisfion

Therefore, storing 125 KB/s video streams representedeery

. . the proposed architecture, and to highlight its capagdiin the
load for th_e disk. However, disk performance depend; not Onlprovisioning of guarantees to individual applicationseTapa-
on bandwidth but also on seek patterns and therefore it wags ve

) tant to setun th tract . It b 2 bility of the framework to temporally isolate applicatiofiem
Important to setup the contracts correctly. It can be seéign each other is shown first when applications are reserving con

ure 13 d) that the additional disk load has significant perfor,[racts for only one type of resource. Then, we present therexp

Lnance :jmﬁact. evr:e n on such Iovy-bar;d;:wdfth streamks " It n:juﬂ‘nental results gathered on the integrated case-studgimess
e noted that in the current version of the framework, In Drde;, gefion 5, where contracts for the three types of ressurce

to get the benefit from using disk reservations, the apjitinat (CPU, network and disk) are all used at the same time.

must use direct /O services when accessing the disk. All experimental results have been gathered on a Pentium
The disk contract period was chosen to match the frame ratg at 2.4 GHz with 2 GB of RAM, running a Linux OS with a

and the budget was set to 5 kB. 2.6.29.1 kernel patched with BFQ and AQUOSA.
Summary.Summarizing, the parameters for the various con-

tracts in the FRSH API have been set-up as in Table 2. Thg'l' Negotiation Overhead Evaluation Experiments

results of experimental case study are presented in Se&on First, we measured the overhead of the negotiation proce-
dure. To measure only the overhead of the framework and not
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the computation times of schedulability analysis and of 8RE

creation for a particular resource, we created a dummy respu Y . R N s
whose manager and allocator did nothing. In the experiment, £ os} St =

we successively negotiated ten thousand contracts and mea-g 06 5 //

sured the time of every single contract negotiation. Thaltes s {

are shown in Figure 7, with the lines labeled as “Negotidgtion ~ ¢ 04 Linux be

In case of local negotiation, both contract broker, researan- & o2 ALC;TJ%XSQ B
ager and allocator were running on the same node. For remote o 000 4000 6000 8000 10'000 12'000
negotiation, the manager was running on the second computer t (usec)

connected by a 100 Mbps Ethernet. The resultis that the mot

negotiation has a slightly higher overhead (as expectedtiiat T

in both cases the negotiation time is almost linearly depand é 08

on the number of contracts in the system. i '

Then, we evaluated the overhead involved in renegotiation £ 06 -
of existing contracts. This evaluation was done similaolyhte & Al S |;1uxbe’:_
previous experiment: we had several contracts in the system % ; memsnmmsmEET LINUX It ==-mmm 7
and we measured the time needed to renegotiate a single con-~  **[] AQUOSA = 7
tract. The result is depicted again in Figure 7, with the line 0 1000 2000 3000 4000 5000 6300 7000 8000 9000
labeled as “Renegotiation”. It can be seen that renegotiati t(usec)

takes, in average, slightly less time than the initial negion.

. .. . Figure 8: Cumulative distribution function of the respotisee for the real-
The reason is that renegotiation involves less work to bedon 9 P

time task with the shortest period under light (top figure)l &eavy (bottom
figure) system load, equal to 48% and~ 84%, respectively.
6.2. AQUOSA Experiments

To evaluate the behavior of the AQUOSA resource reserva-
tion component, and to validate its usage in the framework de
scribed in the paper, we used a synthetic periodic real-ipe
plication calledt-app !4 Its purpose is emulating the behav-
ior of a multimedia or control application, where compudati
phases (e.g., frame decoding or control action compufgdiath

e with the SCHEDRR policy at a fixed priority Linux rt
in the figures), thus achieving a Round-Robin schedul-
ing policy; however, other tasks of the OS are forced in
the background and cannot interfere with tit@pp
instances, in this case;

sleeping phases, waiting for the next activation instanetreg- o with the AQUOSA scheduleAQuoSAn the figures), where
ularly interleaved. The actual finishing time of each of thes each task has been attached a separate reservation with
periodic jobs (relatively to its activation instant) is bgimea- reservation period equal to the task period and budget
sured in microseconds. tuned so to achieve a utilization 6f6%, corresponding

This section reports the results of many experiments with to a 10%, of over-provisioning with respect to the ex-
the following configurations: pected average application load.

e the number oft-app instances simultaneously running In Figure 8 the cumulative distribution function of two runs

in the system has been varied frdno 14; of the previously described experiment are presented, th bo

cases for the task with the shortest period. This is becaige s
task is the one that will suffer most, and that will more likel
ss its deadline, because of the interference of othestask
rtical lines close t®ms (top figure) andsms (bottom fig-
ure) indicate such period (equal to the relative deadlithe)e-
fore the values of the plotted functions at those instargsta
e eachrt-app instance had a load approximately equalProbability of deadline hit for the given configuration.

to 6%. This implies the overall system load varied from It can be easily seen that, both under light and heavy sys-
6% to 84% during the various experiments. tem load conditions, running the task inside an AQUOSA reser

vation results in a deadline hit probability almost equabie,
Each experiment has been repeated under various schedulith only few instances finishing too late. On the other hand,
ing policies: existing Linux scheduling policies are not able to make #s&t

t all its deadli i lightly loaded system,
o withtheSCHEDOTHEPRest effort scheduling policy (la- fespect al 1Is ceactiines even In a Ighty ‘0acec sysient an
beled ad.inux bein the figures);

e eachrt-app instance had a random period uniformly
chosen in thg2ms, 200ms| range. These values have mi
been selected since they are considered representative\gi
typical multimedia and/or audio-video processing appli-
cations;

added and the load increases.

things get severely worse as long as more real-time tasks are

Figure 9 depicts the normalized slack (or tardiness, in case

of deadline miss) again for tte-app ~ with the smallest pe-
riod, varying the total number of tasks, and consequenty th
system load. In formuldii;TPi, where f; and P; are the fin-
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Applications Flows BFQ CFQ
32 23.92 £+ 143.80 | 55.84 + 250.90
Figure 9: Average (top figure), maximum and 95th percenbiettom figure) 24 12.08 £85.29 | 57.37 +249.13
of the normalized slack/tardiness for the real-time tagk e shortest period, 20 6.53 + 64.63 51.75 + 226.76
varying the number of real-time tasks in the system. 16 1.05 + 49.25 18.94 1 215.46
8 2.14 £+ 32.87 51.84 + 220.11

ishing time and the period of the smallest period task for the
i — th run. Therefore) means the task respected its deadline
with no slack time and negative values means deadline Hit wit
some slack time. Finally, positive values are deadlineatioh We usedio %, a well known micro-benchmarking tool to
with some tardiness, e.d.00% means the task finished one full collect our results. In the first experiment we set it up to ex-
period away from the deadline. ecute, respectivel\2, 4, 8 and 16 parallel sequential readers,
The top inset of Figure 9 shows how the slack time of thedoing32 KiB back to back reads, each one over a different file.
task —with standard Linux scheduling policies— decreaselew The experiment was carried out overext3 filesystem. We
the system load increases, and this seems to yield to systeret each configuration run for two minutes, then we measured
atic deadline miss when the number of tasks readBesor-  the aggregate throughput. As shown in Figure 10, there is no
responding to an overall system load-0f78%. However, the  throughput loss with respect to the default Linux disk sehed
bottom inset shows that, even when Linux rt policies are usediler (CFQ). Actually, the experiments show that BFQ exlsibit
the large part of the instances start missing their deaslinghe  a little improvement over CFQ.
number of tasks in the system reacligwhich is just a~ 42% In the second experiment we configurgal to simulate
load. Moreover, the maximum experienced tardiness withén t a latency-sensitive application. We set up ten paralletdye
whole experiment is much worse than the average, and than thieaders, simulating an interfering best effort load, ancrg-v
95th percentile too, it increases with system load and esmch ing number of parallel streamers, each one perforraihigiB-
values higher than200% when the number of tasks 14, i.e.,  sized reads, with a think-time @b ms between each iteration.
a load of~ 84%. On the other hand, exploiting the resource The average latencies and the standard deviation on each mea
reservation capabilities of AQUoSA, not only the average an sure are shown in Table 3. BFQ is able to serve each streamer in
the 95th percentile figures of the slack time are flattened to #ime, while under CFQ the streamers have to wait on the same
constant value far below%, but also the maximum experi- round robin list with the background greedy readers. The big
enced tardiness is hardly greater tiiarshowing that the task values for the standard deviation are due to the order of mag-
ability to meet its deadline is almost independent from §® s  nitude of the allocated slices. For example, CFQ allocages b
tem load conditions. default100 ms time slices, so in the worst case a streamer may
have to wait for ten times the slice of a greedy reader, plys an
6.3. BFQ Experiments other streamer enqueued before it woke up. This kind of ser-

Evaluation of the BFQ performance has been done by twd/iC€ is inherently subject to high variability, as the a¢telay
experiments. The first one shows that BFQ does not causgePends on the position which a newly activated flow gets in
losses in the overall throughput as compared to the defauit.  the round robin list. With BFQ, applications are served aa th
disk scheduler. The second one shows that BFQ improves t&sis of the timestamps they get, so the effect is similar to a

disk access times of delay-sensitive applications.

Table 3: Streaming latency of BFQ and CFQ.

15Available for download apit:/git.kernel.dk/fio.git
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Figure 11: lllustration of how FWP resource manager maistéeasible band-  Figure 12: Demonstration of how traffic limiter in FWP VRESIg®e when
width allocation. Wi-Fi channel gets saturated.

round robin only among the latency-sensitive streame®sy(th Also note that the maximal delay is strongly influenced by the
all have the same timing constraints), and, as we can see frofbn-determinism of the EDCA medium access algorithm and
the results, only the number of streamers affects the perdei by external disturbances. This explains why the maximal de-

latency. lay curve relative to FWP was occasionally higher than the on
_ without it (for five streams).
6.4. FWP Experiments In the second experiment we highlight the influence of the

To evaluate the FWP protocol we mounted four Wi-Fi net-traffic limiter in FWP virtual resources (see the last paagagr
work interface cards (NICs) on our testbed PC, and an EDCAf Section 4.3). The previous experiment was modified so that
enabled Wi-Fi access point. The transmission bitrate waslfix the delay between sending of messages in one stream was not
to 12 Mbit/s. The Linux kernel was patched wiknd-to-self ~ fixed to 20 ms, but was a random variable uniformly distridute
patch® which allows the messages addressed to the same cofdetween 0 and 40 ms. The results can be seen in Figure 12. In
puter to be sent over the external network. The messages wepgder to see the difference, we had to bypass the FWP resource
sent through one NIC and received through another NIC. Fhergnanager in all experiments, because the differences shopved
fore, we did not need synchronized clocks on multiple computonly when the medium was saturated which is what the man-
ers to measure the communication delay. ager tries to prevent (see the limit of 8 streams in Figure 11)

Our testing application generated multiple data streams co However, such situation may happen even when the manager is
posed of messages with a 1024 bytes size, sent every 20 nig.use with disturbances which lower the link quality and de-
The streams were received by the same application in differcrease the available bandwidth. The results show that tixe ma
ent threads and the communication delays were measured. THBum experienced delay (lines labeled-gsis approximately
messages of thé" stream were sent from thg mod 4)-th  the same with and without the traffic limiter. The difference
NIC to the ((i + 1) mod 4)-th NIC. Every test was run for can be found in the 95percentile (lines labeled ag. For low
20 seconds so that every stream transmitted one thousand melization values, when the traffic limiter is active, theaxir
sages. We compared the results with FWP and without it. mal delay is obviously close to the VRES period because some

The first experiment shows the consequence of limiting thgpackets are delayed by the limiter. Without the limiter tiee d
total used bandwidth in the resource manager. The resuits cday is lower. However, the limiter helps when the medium is
be seen in Figure 11. The horizontal axis shows the nummore saturated. For ten or more streams, the packet loss (lin
ber of simultaneously generated streams and the vertitsl axlabeled agl) is lower with FWP than without it. Furthermore,
shows the maximal measured communication delay, its 95for seven and more streams, the delay rises slower withrtie i
percentile and the packet loss. From the figure, it can be sedter than without it.
that the communication delay increases when the utilinatio A careful reader may wonder why there is “non-zero” packet
grows. The highest bandwidth allowed by the FWP resourcéoss for nine and more streams in Figure 11 and in Figure 12
manager corresponds to eight streams. When the same expeply for twelve and more streams (the non-dashed line in the
iment is repeated without FWP (dashed lines), both communiatter figure should roughly correspond to the dashed lirlaén
cation delays and packet loss rise dramatically (note te lo former figure). The reason is the difference in channel condi
arithmic scale used for the delay axis) for nine simultaseoutions caused by external disturbances. When the experiment
streams and beyond. By limiting the total bandwidth (here awas run during working hours (the first one), other Wi-Fi net-
eight streams), FWP is able to keep delays and packet loss loworks on close channels disturbed us, while the second exper
iment was run in the evening when other wireless traffic was
lower.

18More information is available dtttp://www.ssi.bg/ ~ jal#loop
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Figure 13: Results of the case study.

6.5. Integrated Case Study
In the case study, we ran the involved applications (deedrib Time[s] Message

in Section 5) with and without the FRSH framework and under o ooa: waiting for requests
different loads. Every experiment lasted for 500 frames (cc 0.111: Registering manager "AQuoSA" (0.0)
. . . . 0.115: Registering manager "AQuoSA" (0.1)
16 seconds). During those experiments several timing osetri 1571 Registering manager "AQUOSA" (0.2)
were measured. The first metric was the average number of.125: Registering manager "WLAN" (1.3)
. . . 19: Registering manager "Disk BFQ" (3.0)
frames per second processed by the video recorder appficati
The second metric was the standard deviation of the time-inte 5.389: Negotiation request: NET.3 RTP
. . 5.391: Negotiation request: NET.3 RTCP
val between the end of processing of two consecutive framesg zgg. Negotiation request: CPU.1 camera_ctr
The results can be seen on the graphs in Figure 13. Graphs ag)402: Negotiation request: NET.3 RTP
.462: Negotiation request: NET.3 RTP
and f) represent the case when all resources were loaded only 63: Negotiation request: NET.3 RTCP
by the applications of our case study. There are no signtfican 5465: Negotiation request: NET.3 RTCP
diff in th df d th deied d .468: Negotiation request: CPU.1 camera_ctrl
Ifferences in the measured frame rates, and the stan € 5.469: Negotiation request: CPU.1 camera_ctrl
ations show that the execution with FRSH is only slightly enor »

. 9.259: Negotiation request: CPU.0 recorder
regular than the one without FRSH. The reason why the meag 1. Negotiation request: DISK.0 stream0.mpé4
sured frame rate is greater than 30 is that our cameras sdppli 9:565: Negotiation request: CPU.0 recorder

. . 9.606: Negotiation request: DISK.0 stream2.mp4
approximately 31 frames per second even if we requested 0Nl 62>: Negotiation request: CPU.O recorder

30 frames per second. 9.663: Negotiation request: DISK.0 streaml.mp4

Graphs b) and g) show the metrics when the Wi-Fi networkg 5o Negotiation request: CPU.2 client
was loaded by a concurrently running communication. We con20.519: Negotiation request: NET.3 RTP

. R 10.521: Negotiation request: NET.3 RTCP
nected two additional computers to the Wi-Fi network and letig s23: Negotiation request: CPU.O client_streamer
them interchange some data (all zeros) as fast as possibig us 10:559: Negotiation request: DISK.0 stream.mp4
17 h . . 13.931: Renegotiation request: CPU.0 client_streamer

the netcat program. These communications were not UN-13.933: Renegotiation request: NET.3 RTP
der control of the FRSH framework (it can be considered and3.942: Contract(s) was/were rejected

. . .17.235: Cancelation request: CPU.O client_streamer
disturbances) and we setup two simultaneous streams @INNIA7235. Cancelation request: DISK.0 stream.mp4
in opposite directions. 17.236: Cancelation request: NET.3 RTP

A . 17.237: Cancelation request: NET.3 RTCP
It can be seen that the load on the Wi-Fi channel influ-17240: Cancelation request: cPU.2 client
ences the achieved frame rate. Clearly the impact increases _

. . . A77: Cancelation request: CPU.O recorder
with the number of transmitted streams but it is smaller wherg 477: Cancelation request: DISK.0 stream2.mpa
the FRSH framework is employed. The explanation of why the?9.548: Cancelation request: CPU.0 recorder

. 9.548: Cancelation request: DISK.0 streaml.mp4
framework cannot guarantee a constant frame rate is thaBEDCyg 574 Cancelation request: CPU.0 recorder
is not a deterministic medium access protocol and changingp-575: Cancelation request: DISK.0 stream0.mp4

the EDCA access category can only increaseptiobability of

Figure 14: Log of the contract broker running in the videoseer

L7http://netcat.sourceforge.net/
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faster medium access. On the other hand, one may wonder wity Conclusions
the impact on the frame rate is not higher when running with- . .
out FRSH. This can be explained by the netcat use of the TCP I this paper we presented a software architecture for the
protocol, which automatically adapts its bandwidth acougd Management of multiple heterogeneous resources shaxessacr
to the detected channel capacity. We tried to generate a mofeset of distributed soft real-time applications. The aedture
aggressive load (UDP floods) on the Wi-Fi link, but the cam-€XPoses to the application developers the FRSH API, whish ha
era controller started disconnecting from the network dred t been designed so as to allow access to real-time schedating s
experiment could not be finished. We blame the used networkices of heterogeneous resources, such as CPU, disk and net-
adapter and/or its Linux driver for this problematic beloavi work, in away that is as uniform as possible. This way, usersd
Graphs ¢) and g) represent the case where the CPU on i@t need to deal with different APIs for reserving resouimes
video server was loaded by 20 additional CPU intensive nonthe underlying OS, but they can declare the applicationiregu
FRSH applications. Here we can see that AQUOSA is highlynents using natural attributes such as deadlines and eefuir
successful in keeping the requested frame rate and reguar e COMputation times or throughput figures, instead of piigsit
cution (low variance of inter-frame times). This allows for an easier deployment of real-time applmagi
Similarly the disk scheduler (BFQ) achieves constant fram@Ver a distributed system, especially in those cases inwthie
rate — see graphs d) and i)) — when the disk was loaded b ystem is dynamic, i.e., applications can be started dyceliyi
two processes which read from two different places on the disPY users, depending on the environmental conditions.
as fast as possible. Our framework is effective in the provisioning of temporal
Finally, we ran all the three above mentioned loads simuldsolation for distributed real-time applications that shanul-
taneously. The results are presented in graphs e) and j). THP!e heterogeneous resources with real-time schedubpg.c
framework was able to keep the resources available for the apilities, as shown by the presented experimental resteith-g
plications in a way that no significant loss of quality was de-€red on areal implementation of the proposed frameworken th
tected. The small decrease of quality can be attributedeio thlinux OS. We reported results from synthetic applicatiomkyo
Wi-Fi network, which, in this case, constitutes the actuztib 10ads stressing each resource individually, in order tosthe
tieneck. When the same experiment was run without the FRSegree of achievable temporal isolation. More importamiy
framework, the results are, as expected, very bad—onlyappr eported results from a real case-study application, dpeel
imately 12 frames per seconds were successfully transbortearound the theme of video recording, showing the main bene-
Given the fact that in such a case it is very likely that the |-fits of adopting the proposed architecture. Also, we repbrte
frames are lost, the recorded video is almost useless. Wath t @boutour experience in how the proposed framework was used,
FRSH framework, the recorded video is of good quality with and specifically how the resource allocation was _carriedron,
only occasional small disturbances caused by dropped fame the context of the proposed case-study, constituting aaidgu
To highlight the dynamic nature of our framework, in Fig- €xperience that can be leveraged by future researcheesdgev
ure 14 we provide the timed log of important operations ex-€rs who may want to make use of it.
ecuted by the contract broker agent in the recording server, Finally, we collected results about the overheads assatiat
which has “connected” all resource managers needed for tH€ our framework, comprising contract negotiation oversea
case study. Shortly after the contract broker was startee, fi 1Ne obtained figures are sustainable for complex soft need-t
resource managers registered to it. According to Figurereth embedded systems.
were three CPUs (CPU.0 — video server, CPU.1 — camera con- The framework and the case study have been released with
troller, and CPU.2 — video client), one disk and one Wi-Finet & Open-source license and they can be downloaded frontproje
work. The disk resource manager probes for available disk/eb sitehttp://frsh-forb.sourceforge.net
throughput for five seconds after start and registers itsedir
the probe is finished. Then, at 5.38, three video steaming ag Future Work
plications were started in the camera controller. Appratity
four seconds later, three recording applications weréestan The FRSH/FORB framework provides a bidirectional com-
the video server and they negotiated their CPU and disk cormunication channel between applications and resource man-
tracts. A second later (10 seconds after start), the videatcl agers/allocators. Applications specify their requiretadn.g.,
started on the '$ computer to play back a formerly recorded in terms of possible budgets that they are capable of usint)) a
stream. Initially, the stream was played back at low qudlity  the framework responds with precise information about what
at time 13, the operator decided to increase the quality. Thbas been allocated. However, the allocation of the spatersys
renegotiation happened while the old reservation wadrisgf-  capacity, if any, can change independently of applicaten r
fect, so the video playback was not interrupted. Unfortelyat quests, e.g., as a consequence of another applicatioega)ating
the Wi-Fi bandwidth was not available to satisfy that requesa contract or terminating. Therefore, every applicatiat tises
so the quality remained the same until time 17 when the videgpare capacity needs to be able, by definition, to adapt to the
client was terminated. Finally, approximately 25 secorftera changed (spare) allocation. The natural extension of ttupp
the start, all the recorder applications were terminatettheir  erty would be that the applications adapt similarlyctanges
reservations were canceled. of the resource capacitfe.g., Wi-Fi bit-rate). For example, a
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video streaming application could be instructed to de&éas
frame rate if the framework detects a lower Wi-Fi link qualit

Another advanced feature which was left for future Work[1 4]
is the implementation ahulti-resource transactionsombined
with spare capacity distribution. This will enable the opi
allocation of resources to applications with respect ttedons
like perceived QoS or total power consumption. Continulrey t
example from the previous paragraph, if the Wi-Fi capacity d
creases and there is enough CPU capacity, instead of layveriri16]
the frame rate, the streaming application could be ingtdict

! . 17

to use the available CPU capacity to encode the stream wnh
a more powerful algorithm, which will also lead to the lower
network utilization but with a better video quality. [18]

Finally, there are many things which, when implemented,[19
will make the framework more robust. One such thing is the
automatic release of resources after an application crash. [20]

(13]

[15]
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