
Modular software architecture for flexible reservation mechanisms on heterogeneous
resources

Michal Sojka∗,a, Pavel Pı́šaa, Dario Faggiolib, Tommaso Cucinottab, Fabio Checconib, Zdeněk Hanzáleka, Giuseppe Liparib

aCzech Technical University in Prague, Czech Republic
bScuola Superiore Sant’Anna, Pisa, Italy

Abstract

Management, allocation and scheduling of heterogeneous resources for complex distributed real-time applications isa chal-
lenging problem. Timing constraints of applications may befulfilled by a proper use of real-time scheduling policies, admission
control and enforcement of timing constraints. However, itis not easy to design basic infrastructure services that allow for an easy
access to the allocation of multiple heterogeneous resources in a distributed environment.

In this paper, we present a middleware for providing distributed soft real-time applications with a uniform API for reserving
heterogeneous resources with real-time scheduling capabilities in a distributed environment. The architecture relies on standard
POSIX OS facilities, such as time management and standard TCP/IP networking services, and it is designed around CORBA, in
order to facilitate modularity, flexibility and portability of the applications using it. However, real-time scheduling is supported
by proper extensions at the kernel-level, plugged within the framework by means of dedicated resource managers. Our current
implementation on Linux supports reservation of CPU, disk and network bandwidth. However, additional resource managers
supporting alternative real-time schedulers for these resources, as well as additional types of resources, may be easily added.

We present experimental results gathered on both syntheticapplications and a real multimedia video streaming case study, show-
ing advantages deriving from the use of the proposed middleware. Finally, overhead figures are reported, showing sustainability of
the approach for a wide class of complex, distributed, soft real-time applications.

Key words: Real-Time, Operating Systems, Embedded Systems, Distributed Systems, Middleware

1. Introduction

Soft real-time requirements are becoming pervasive in to-
day complex distributed applications. The widespread diffusion
of service oriented applications (SOA) and the advent of cloud
computing have moved the core of computation from single PC
to distributed systems. In this new panorama, in order for ser-
vice providers to gain a competitive advantage, it is very impor-
tant to provide a high level of Quality of Service (QoS) to users
at minimum cost.

In contrast to hard real-time safety critical applications, in
soft real-time ones timing constraints can occasionally bevi-
olated without causing a system failure. However, the quality
of service provided by the system depends on the number of
violated constraints and severity of such violations over atime
interval of interest. Therefore, one of the prominent goalsfor
a soft real-time system is to keep the violation of timing con-
straints under control.

There are many applications that require soft real-time sup-
port, both in the consumer electronics market and in the in-

∗Corresponding author
Email addresses:sojkam1@fel.cvut.cz (Michal Sojka),

pisa@fel.cvut.cz (Pavel Pı́ša),d.faggioli@sssup.it (Dario
Faggioli), t.cucinotta@sssup.it (Tommaso Cucinotta),
f.checconi@sssup.it (Fabio Checconi),hanzalek@fel.cvut.cz
(Zdeněk Hanzálek),g.lipari@sssup.it (Giuseppe Lipari)

dustrial application domain. Many of such applications involve
video processing: for example, distributed video monitoring for
video-surveillance and collection of sensible data (e.g.,people
counting, monitoring of parking lots, etc.). In industrialcon-
trol, image recognition applications for identifying objects on
conveyor belts, or to find defects in products is increasingly
important. In the consumer electronics market, soft real-time
support is needed for teleconferencing, video streaming distri-
bution, and remote interactive applications of all types.

The use of classical hard real-time techniques for designing
and developing such type of applications is rarely appropriate
for many reasons: it requires a long and costly off-line analysis
of the application requirements (execution times and similar); it
makes the application design inflexible; it makes the application
less robust to unexpected changes of external conditions; it ties
the application to a specific hardware/software platform.

In this context, we advocate the use of real-time scheduling
techniques for shared resources, and of a middleware for the
management and allocation of them to the real-time applica-
tions in a distributed environment. In the proposed architecture,
applications negotiate aservice contractspecifying the amount
of resources that are needed for achieving the desired real-time
performance. Contracts are negotiated with our framework,
which is in charge of performing admission control in the dis-
tributed platform and, if the contract is accepted, of resource
allocation. The access to the allocated resources is controlled

Preprint submitted to Elsevier May 26, 2010

by run-time scheduling mechanisms.
Many integrated solutions to support soft real-time and QoS

in distributed environments have been proposed in the academic
literature until now (see Section 2 for a comprehensive state
of the art). However, many problems still remain open that
strongly limit the diffusion of such techniques.

One problem is related to the heterogeneity of hardware/-
software platforms. In fact, clients are becoming more and
more “embedded” and tailored to the user needs and prefer-
ences. As a consequence, a plethora of different hardware de-
vices (smart phones, netbooks, ebooks, etc.) are used to ac-
cess on-line services, each one supporting different operating
systems. While it is possible to find commercial middleware
solutions to support functional requirements that abstract from
the specific implementation (e.g. SOAP-XML), non-functional
requirements (such as soft real-time deadlines, bandwidthand
throughput guarantees, power consumption, etc.) did not re-
ceive the same attention. Therefore, different APIs are provided
to application developers, making it difficult to write portable
real-time applications in a systematic way. Also, many ap-
plications exist that use simple heuristics to adapt themselves
to changing external conditions, thus providing QoS in a best-
effort way.

From the perspective of middleware developers, it is diffi-
cult to build and maintain families of products to cope with such
heterogeneity of hardware, operating systems, and application
techniques. This means an increased cost of development, test-
ing and maintenance of the software.

Contributions of This Paper.To overcome these problems, in
this paper we propose a modular middleware architecture to
support real-time requirements and QoS in heterogeneous dis-
tributed environments. The architecture is based on a lightweight
implementation of CORBA.

The architecture integratessupport for different types of hard-
ware resources– from CPU and disk to wired and wireless net-
work. Support for new types of resources is provided as sepa-
rated components and can be plugged in at run-time. Such com-
ponents encompass the resource scheduling policies and band-
width allocation strategies. Therefore, it is possible tochange
the resource management policyby just changing the underly-
ing modules.

The system allows to specify real-time constraints with dif-
ferent levels of criticalness. The use of resource reservation
techniques allows hard and soft real-time applications to coex-
ist in the same system. The use of a Contract Broker coordi-
nates the allocation on the different resources, thussupporting
QoS in a holistic way.

The architecture provides distributed negotiation of new and
existing applications, seamless reclaiming of spare bandwidth,
and QoS management and control using custom policies.

Our architecture brings the following advantages:

• real-time support: the use of real-time resource alloca-
tion and scheduling strategies makes it possible to pre-
cisely specify real-time constraints;

• uniformity: an uniform API for the application develop-
ers, independent of the specific components;

• modularity: possibility to plug new resource manage-
ment modules specific to a certain application needs or
operating systems;

• dynamism: the ability to change real-time requirements
dynamically as shown in e.g. Figure 14;

• portability of applications and middleware to different
operating systems and hardware platforms.

The architecture has been implemented on the Linux Op-
erating System, and is demonstrated on a complex case study
inspired by a distributed video monitoring context. Therefore,
an important contribution of this paper is constituted by the re-
port on the experience gained in implementing this concreteap-
plication, particularly on the side of tuning the scheduling pa-
rameters for the various involved resources (CPU, network and
disk).

1.1. Paper Structure

The paper is organized as follows. After reviewing related
work in the research literature in Section 2, we describe in Sec-
tion 3 our general software architecture for the integratedreal-
time scheduling of multiple heterogeneous resources. Then, in
Section 4, we provide specific details about how the CPU, disk
and network resource types have been plugged within the gen-
eral architecture. The framework is evaluated on a real-word
case study described in Section 5. Section 6 then presents the
extensive experimental results gathered on both syntheticand
real applications, along with the overhead figures associated to
various critical parts of our framework. Finally, we draw con-
clusions in Section 7, and sketch out in Section 8 possible di-
rections for future work on the topic.

2. Related Work

In this section, related work in the area of real-time support
for general-purposeoperating systems (GPOS) is presented. We
will first give a brief overview of existing work on real-time
scheduling for CPU, disk and network resources. Then, we will
present existing integrated approaches to the problem and dis-
cuss the differences with the work presented in this paper.

Real-Time CPU Scheduling.For real-time scheduling of the
CPU, hard real-time modifications to the Linux kernel have
been proposed, like RT-Linux1, proposed by Yodaiken et al. [2]
and RTAI2, proposed by Mantegazza et al. [13]. These ap-
proaches are more oriented to hard real-time control applica-
tions, where tight response time to interrupts and high priority
activities is necessary. However, as discussed in the introduc-
tion, the use of a hard real-time scheduler cannot be regarded

1More information is available athttp://www.rtlinuxfree.com .
2More information is available athttp://www.rtai.org .

2

as an appropriate solution for supporting soft real-time applica-
tions in GPOSs.

One key feature which is usually not implemented, and that
is fundamental in anopen system, is the temporal isolation
property [7], as provided for example by the Sporadic Server[17]
scheduling policy. Without such a mechanism, a higher priority
task runs undisturbed until it blocks, independently of thecom-
putation time that may have been considered at system analy-
sis/design time. This results in the potential disruption of the
guarantees offered to lower priority tasks.

In order to overcome these limitations, other approaches
targeted explicitly soft real-time applications, by comprising a
temporal isolation mechanism. Such an approach, which is also
exploited by the work in this paper, allows for the coexistence
of soft real-time and best-effort applications, all withina GPOS
kernel with potentially long non-preemptive sections.

An overview of these approaches has been carried out by
Gopalan in 2001 [22]. One remarkable example is the Lin-
ux/RK project [41], whose code has also been designed so as
to beportableacross multiple GPOS kernels [35], but it has
been implemented on Linux only, to the best of authors’ knowl-
edge. An effort on portability of a real-time scheduler across
various Operating Systems (Microsoft, Unix and Linux fam-
ilies), is constituted by the DSRT scheduler3 by Nahrstedt et
al. [55].

Also, soft real-time schedulers for Linux have been inves-
tigated and implemented in the context of various European
Projects, like the CBS implementation on Linux developed dur-
ing the OCERA Project4, and its subsequent evolution, the AQu-
oSA [37] scheduler for Linux, developed during the FRESCOR
Project5. More recently, the IRMOS Project6 (which also sup-
ports the research results shown in this paper) is also investi-
gating on the use of real-time scheduling for high-performance
machines, with a strong focus on virtualized distributed real-
time applications. To this purpose, a new multi-core scheduler
for AQuoSA is being investigated [8].

The architecture presented in this paper integrates the real-
time scheduling techniques for CPU, disk and network devel-
oped in the context of the FRESCOR project.

Real-Time Disk Scheduling.Various scheduling algorithms have
been studied in the past for obtaining QoS guarantees and real-
time performance for hard-disk access. Disk scheduling algo-
rithms providing a predictable access to the resource can be
classified in two main groups, the first one composed by real
time disk schedulers, and the second one composed by propor-
tional share disk schedulers.

3More information is available athttp://cairo.cs.uiuc.edu/
software/DSRT-2/dsrt-2.html .

4Open Components for Embedded Real-time Applications (OCERA), Eu-
ropean Project n.IST2001-35102. More information is available at: http:
//www.ocera.org .

5Framework for Real-Time Embedded Systems based on Contracts (FRES-
COR), European Project n.FP6/2005/IST/5-034026. More information is avail-
able at:http://www.frescor.org .

6Interactive Real-Time Multimedia Applications on Service-Oriented In-
frastructures, European Project FP7-214777. More information is available at
http://www.irmosproject.eu .

Real time disk schedulers usually assume to know a dead-
line per each request, or assign them one, and use modified ver-
sions of Earliest Deadline First (EDF [32]) to schedule requests.
As an example, Molano et al. in [33] propose JIT (Just In Time
slack stealing), consisting in an EDF scheduler, modified inor-
der to anticipate the service of requests near to the disk head
position, postponing requests with smaller deadlines but with
enough slack time to allow their completion even after being
reordered. SCAN-EDF, introduced by Reddy et al. in [42], re-
orders requests with the same deadline, sorting them in SCAN
order.

Proportional share disk schedulers try to allocate shares of
the service (or disk service time) provided by the device to
applications. As an example of this class of schedulers, we
describe here YFQ (Yet another Fair Queueing), proposed by
Bruno et al. in [6]. It serves requests in batches; the requests
belonging to each batch are chosen using WFQ [4], and can be
sorted using a SCAN or C-LOOK discipline in order to improve
the disk throughput. The default Linux scheduler, CFQ (Com-
pletely Fair Queuing), belongs to this class, and uses a round
robin policy to schedule the time slices it allocates to applica-
tions.

None of the proposals in the literature deals explicitly with
the deceptive idleness problem, and most of them are not able
to provide the guarantees they are designed for when the arrival
pattern is not independent from the service they provide. We
will see in Section 4.2 how BFQ, the disk scheduler used in our
framework, is able to cope with these two common issues.

Real-Time Network Scheduling.There have been numerous at-
tempts examining the possibilities for the Ethernet to enter the
domain of field buses (see survey articles [18] and [12]) and
there have been many protocols proposed. Some of them have
been realized in industrial standards, such as DDS [36], Eth-
ernet Powerlink [16, 47], or Profinet IO [40]. The suggested
methods usually propose traffic smoothing [30, 3] or time-triggered
approaches [38, 28].

Furthermore, Wireless Local Area Networks (WLANs) are
very attractive for many applications since they enable fast in-
stallation with minimal maintenance costs. The IEEE 802.11
standard [26] defines the Distributed Coordination Function (DCF)
which provides best-effort service at the Medium Access Con-
trol (MAC) layer. The recently accepted IEEE 802.11e standard
[25] specifies the Hybrid Coordination Function (HCF) which
enables prioritized and parametrized QoS at the MAC layer, on
top of DCF. The HCF combines a distributed contention-based
channel access mechanism, referred to as Enhanced Distributed
Channel Access (EDCA) extending the DCF by multiple Ac-
cess Categories (ACs), and an optional centralized polling-based
channel access mechanism, referred to as HCF Controlled Chan-
nel Access (HCCA).

Widely deployed DCF and EDCA use Carrier Sense Multi-
ple Access with Collision Avoidance (CSMA/CA) and slotted
Binary Exponential Backoff (BEB) mechanism as the basic ac-
cess method.

DCF and EDCA cannot provide parametrized QoS for real-
time applications, unless the network is operating in non-saturated

3

state [9]. The admission control algorithm is recommended but
not specified in [25] in order to limit the network load. Inan et
al. [27] considered the problem of multimedia capacity estima-
tion and admission control for the EDCA function and Engel-
stad and Østerbø proposed [15] a probabilistic model used for
delay estimation. Several authors (see [10, 54, 19]) studied how
the QoS parameters of EDCA will affect the performance and
proposed how to control these parameters.

Integrated approaches.Various authors focused on the design
of a middleware architecture to support quality of service.Garcı́a-
Valls et al. proposed Hola-QoS [20], a modular and flexible
software architecture to support multimedia consumer electron-
ics applications. The goals are similar to the ones of the work
presented in this paper, however they only consider controlof
CPU resources and do not address distributed soft-real timesys-
tems.

The Eclipse/BSD [5] Project integrates real-time scheduling
of CPU, network and disk access, and exposes to applications
a file-system based user-space interface. However, the project
does not deal with distributed real-time applications, as we do
in this paper.

Gopalan et al. [23] proposed MURALS, a distributed real-
time architecture built upon TimeSys Linux7, supporting real-
time applications with end-to-end constraints making use of
distributed heterogeneous resources, such as disks, CPUs and
network links. Similarly, Nahrstedt et al. worked on Qual-
Man [34], a distributed real-time resource allocation architec-
ture supporting network, disk and memory allocation, with pro-
totype implementation on the Solaris OS. However, in both
cases the degree of modularity of the architecture is limited,
and they would greatly benefit from a CORBA-oriented design.

Eide et al. [14] presented a CORBA-based middleware for
the CPU management in distributed systems, however they do
not consider other resources.

TAO [46] constitutes a C++ implementation of the Real-
Time CORBA specification [53], which exposes the main func-
tionality of distributed real-time applications via the CORBA
paradigm. Later, TAO was integrated with QuO [29, 21], a
framework that exploits the capabilities of CORBA to reduce
the impact of QoS management on the application code. The
result [45] is a middleware for adaptive QoS control. Recently,
such an architecture has been used by Shankaran et al. within
their HiDRA [48] project for hierarchical management of mul-
tiple resources in distributed real-time systems. However, these
works are focused on issues related to the monitoring of the run-
time application behavior, and the dynamic adaptation of re-
source allocations and/or application behavior to their continu-
ously changing needs. Therefore, they consider only marginally
issues related to the low-level scheduling mechanisms needed
for guaranteeing the respect of timing constraints, neededby
soft real-time applications. Instead, in this paper we build on
real-time resource reservation scheduling strategies which al-
low precise allocation of the resources.

7More information athttp://www.timesys.com .

It is worth to mention the architecture [11] developed in
the context of the RI-MACS project for distributed real-time
applications in the factory automation domain. The architec-
ture relies on the capabilities of service-oriented infrastructures
for providing discovery of resources and their real-time capa-
bilities, self-configuration, fault-tolerance and scheduling pa-
rameters negotiation. The RI-MACS architecture also exploits
AQuoSA [37] as the low-level CPU scheduler (as this work
does), but it lacks both the support for multiple heterogeneous
resources as the work in this paper has (wired and wireless net-
work, CPU, disk), and the well-defined unified API enabling
applications to exploit such real-time capabilities.

More recently, Rajkumar et al. [31] proposed Distributed
Resource Kernels, an extension of Linux/RK adding support for
distributed real-time applications. Unlike our proposal,in Dis-
tributedRK the architecture for the distributed management and
allocation of resources is built inside the kernel, presumably
for improved efficiency as claimed by the authors, but prevent-
ing portability. Also, in DistributedRK the architecture needs
the presence within the kernel of various components that are
traditionally present at a higher level, in user-space, in the sys-
tem, like an HTTP server, a DNS-like server, and an NTP-like
server. Implementation of such services in user-space is highly
beneficial for security and robustness purposes.

3. Modular Architecture of FRSH/FORB

This section describes the internal software architectureof
the FRSH/FORB framework. The basic principle of the ar-
chitecture is its decomposition into four levels (see Fig. 1) —
application programming interface, resource-independent level,
resource-specific level, and operating system abstraction.

The application programming interfaceis used by the ap-
plications to interact with the framework. The FRSH API was
developed in the context of the FRESCOR project as a portable
and generic interface to provide resource reservation services
to hard and soft real-time applications. The main service pro-
vided by the API is contract negotiation: the application spec-
ifies its resource requirements in the form of a contract, and
submits it for negotiation to the framework. If the negotiation
succeeds, the framework provides the application with a setof
so calledvirtual resources(VRES), which is a generic name for
resource reservations. The application then uses FRSH API ser-
vices tobind its entities (threads, communication endpoints) to
the VRESes in order to use the reserved resources. The detailed
description of the API can be found in [24].

The resource-independent levelis represented by thecon-
tract brokerand is intended to implement algorithms for spare
capacity distribution, multi-resource transactions and global QoS
optimization. The contract broker interacts with the resource
managers through abstract interfaces. The framework is im-
plemented on top of a lightweight CORBA-like communica-
tion middleware called FORB [51]. This middleware hides the
complexity and different nature of inter-process and inter-node
communication and provides method-call semantics for remote
application objects.

4

Resource
Allocator
(Network)

Resource
Manager
(Network)

Resource

(CPU)
Manager

Resource
Allocator
(CPU)

Independent
Resource

Level

Resource

Level
Dependent

Operating
System

Abstraction

Application 1 Application 2

DTM
Distributed
Transaction
ManagerBroker Agent

FRSH Contract

FCB

Broker Agent

FRSH Contract

FCBDTM
Distributed
Transaction
Manager

Application 3 Application 4

Resource

(CPU)
Manager

Resource
Allocator
(CPU)

Resource
Allocator
(Network)

FRSH + DTM Interface

FOSA layer

OS / RT Kernel

API

Node 1 Node 2

FRSH + DTM Interface

FOSA layer

OS / RT Kernel

negotiation

Figure 1: Logical block diagram of FRSH/FORB framework.

Global contract ID

Budget [s/bytes]

Period [s]

Workload type

Deadline [s]

Res. specific attr.

Contract

Resource type

Resource ID

Attr. added by FRM

Figure 2: A contract and its attributes.

Theresource-specific levelconsists of several modules called
resource managersandresource allocators, which are in charge
of managing the individual resources (e.g. CPU, network, disk).
Their goal is to implement resource reservation schedulingal-
gorithms supporting real-time execution and temporal isolation
for tasks running on the associated resource. One key feature
of our architecture is that the modules in this level can be eas-
ily plugged in and out, allowing the framework to be used on
various platforms which exploit different resource reservation
mechanisms.

Theoperating system abstractionfacilitates portability across
multiple hardware/software platforms. It consists of the FRSH
Operating-System Abstraction (FOSA) layer, which implements
the FOSA API. This is a cross-platform API designed within
the FRESCOR project for the purpose of abstracting OS ser-
vices related to the management of time, posting of timers,
management of threads and synchronization primitives (e.g.,
signals and mutexes). The use of FOSA simplifies porting of
the FRSH/FORB middleware on different Operating Systems.
Indeed, FOSA has been implemented in a straightforward way
on Linux by means of the POSIX API for the just mentioned
services, with a few Linux-specific extensions which have been
leveraged for performance reasons. Also, FOSA has been im-
plemented on MarteOS8 [43, 44], Partikle9 [39] and Enea’s
OSE10. However, note that the implementation of FRSH/FORB
requires usually extensions at the kernel resource scheduling
level. Such extensions are forcibly OS specific and each has to
be interfaced separately in the resource-specific level. However,
the presence of FOSA allows for the straightforward portingof
all the contract management part of the framework.

The following sections describe the individual modules in
more detail as well as their interactions.

8http://marte.unican.es/
9http://www.e-rtl.org/partikle/

10http://www.enea.com/Templates/Product____27035.
aspx

3.1. Resource Managers and Allocators

Let us start the description of the framework modules with
FRSHresource manager(FRM). This module provides an ad-
mission test for the given resource. The test is usually based
on some kind of schedulability analysis, and its objective is
to check whether the new contract(s) can be accepted without
violating the service guarantees negotiated so far. In caseof
mode-change (i.e. when an application, or a set of applications,
change their operating mode, and need to renegotiate their con-
tracts), the module also able to test the feasibility of the mode
change. Based on the analysis, the resource manager may add a
piece of information to the contract, which can be later utilized
by the scheduler. An example might be a fixed-priority sched-
uler which schedules tasks according to the priority calculated
by deadline-monotonic algorithm in the resource manager.

The second module is FRSHresource allocator(FRA) which
always accompanies the corresponding resource manager. There
can be multiple allocators for a single resource, e.g. in case of
a network, there is one allocator for every network node. The
purpose of the resource allocator is:

1. to interact with the resource scheduler, i.e. to create,
change or cancelvirtual resourcesaccording to “instruc-
tions” from the resource manager and contract broker;

2. to provide an API for binding application entities (threads,
network endpoints, ...) to the virtual resources.

3.2. Contract Broker

The main objective of the FRSHcontract broker(FCB) is to
act as a mediator between applications and individual resources.
Contract broker is a distributed application with an agent run-
ning in every node. Agents collaborate on distribution of infor-
mation about resources and contracts in the whole distributed
system. In the simplest case, the FCB agent only resends the
contracts received in negotiation requests to the appropriate re-
source manager and then, if the admission test succeeds, to the

5

resource allocator and back to the application. More details
on the functionality of the contract broker are provided in Sec-
tions 3.6 and 3.7.

3.3. Examples

Figure 1 shows two nodes running the FRSH/FORB frame-
work and connected by a network. Every node runs two (ar-
bitrary) FRSH/FORB applications and a contract broker agent.
Furthermore, node 1 runs two resource managers: one for the
local CPU and one for the network. Node 2 runs only the re-
source manager for its local CPU. The network resource uses a
centralized manager, which means that the manager runs only
in one node. The figure also contains blocks representing the
allocators. Note that the network resource has an allocatorin
every node even if the manager is located in a single node. The
reason is that the virtual resource implementation must enforce
the application not to use the network bandwidth beyond what
was negotiated and for most networks this can be only imple-
mented at sending side.

To illustrate the interaction of these components we present
two example scenarios of the contract negotiation (a more de-
tailed description is provided in section 3.5).

Example 1. Consider the case in which application 1 wants
to use the local CPU for a periodic task, and requires a guar-
antee for meeting all deadlines. It prepares the contract with
appropriate attributes (period, budget, deadline and resource).
Then it sends the contract to the local contract broker agent.
The agent finds out that the contract refers to the local CPU re-
source and resends the contract to the local CPU resource man-
ager. The manager executes an admission test and returns the
result (accepted/rejected) to the broker. If the contract is ac-
cepted the broker asks the resource allocator to create the vir-
tual CPU resource according to the attributes specified in the
contract.

Example 2. Application 3 wants to periodically communi-
cate over the network with a guarantee of meeting all deadlines.
Negotiation will be accomplished as follows: The application
prepares a contract and sends it to the contract broker agentin
node 2. The FCB agent issues a reservation request to the net-
work resource manager running in node 1. If the contract is
accepted, the FCB agent in node 2 requests the local network
resource allocator to create the network virtual resource.

3.4. Representation of Contracts and Virtual Resources

In order for the framework to be modular enough to support
different resources, a dynamic data structure is used to represent
contracts. By dynamic we mean, that the number of attributes
stored in the contract and their type can vary depending on the
resource and the state of the negotiation process. The graphical
representation of the contract is depicted in Figure 2. Every
contract is identified by an ID which is unique in the whole
distributed system.

The most common contract attributes arebudget, period,
deadlineandworkload type. The first three attributes are self
explaining. The workload type describes the application work-
load model, which can be eitherboundedor indeterminate. Bounded

workload means that the application has a bounded amount of
work (called job) that to do during each virtual resource period,
and it notifies the framework whenever the job is done. As a
consequence, the framework can notify the application about
overrunning its budget or about a deadline miss. Indeterminate
workload model is used when there is no concept of jobs in the
application.

The attributes of a contract can be set and modified not
only by applications, but also by the contract broker and by
resource managers. This makes the framework very flexible
– for example, an application can specify only platform in-
dependent attributes in the contract. The contract broker may
exploit knowledge of the underlying platform to add platform-
dependent attributes, and finally the resource manager may add
“instructions” for the allocator/scheduler.

Virtual resources are represented in applications by a data
structure containing the negotiated contract together with any
data needed by a particular resource allocator implementation
to manipulate the reservation and communicate with the sched-
uler.

3.5. Contract Negotiation Process

In this section the negotiation process will be described briefly.
For a detailed description with figures see [51].

The negotiation starts in an application by preparation of a
contract and filling its attributes. Then the contract is sent to
the contract broker agent by means of calling FRSH API func-
tion frsh_contract_negotiate() . The agent finds the
resource manager and passes the contract to it. The resource
manager executes an admission test to determine whether there
is enough resource capacity to satisfy the application require-
ments. If the contract is accepted, then the resource manager
can add attributes to the contract (e.g. priority which willbe
used to schedule an application task) and sends the modified
contract back to the contract broker agent. After that, the con-
tract broker agent sends the contract to the allocator to create a
new VRES according to the contract attributes. Finally, theap-
plication is informed by the agent about the identity of the new
VRES. This finishes the negotiation process, but the application
usually continues with binding an entity (thread, network end-
point, ...) to the VRES through thebind service of the resource
allocator library.

3.6. Distribution of Spare Capacity

An application can specify in the contract that it is able to
make use of additional resource capacity if that is available.
When the contract broker is requested to negotiate such a con-
tract, it tries to reserve the maximum capacity requested. If that
is not possible, the contract broker tries to find an optimal dis-
tribution of spare capacity among applications and reallocates
the resources according to the result.

As the contracts are represented by the dynamic data struc-
ture, applications have great flexibility in specifying allpossible
uses of spare capacity. For example, an application can spec-
ify two different budgets in the contract and the contract broker
ensures that the highest possible budget is reserved/allocated at

6

all times. Note that resource managers and allocators always re-
ceive a simple contract, i.e. the one with only a single possible
reservation. See [51] for more details on this topic.

3.7. Negotiation of Multi-Resource Transactions

Many applications operate on multiple resources. For such
applications it is beneficial if a set of contracts for the different
resources is negotiated as a unit – either all contracts or none
of them. We call such a set of contractsmulti-resource trans-
action. These transactions are negotiated similarly to what is
described in section 3.5, except that resource reservations (calls
to resource managers) are made for all resources in the trans-
action before any resource is allocated by its resource allocator.
This assures that no resource is allocated before it is knownthat
there is enough capacity on all resources participating on the
transaction. Currently, only contracts without spare capacity
can be negotiated in transactions. In future, we plan to remove
this limitation by using global optimization techniques tofind
optimal distribution of spare capacity across multiple resources.

4. Supported Resources

4.1. CPU Bandwidth Management

Within the architecture described in this paper, real-time
scheduling for the CPU has been supported by integrating the
AQuoSA scheduler. In what follows, for the purpose of com-
pleteness, first we recall briefly basic concepts around AQu-
oSA, then we describe how it has been integrated within the
FRSH/FORB framework.

The AQuoSA Architecture.The Adaptive Quality of Service
Architecture for the Linux kernel (AQuoSA) is an open-source
architecture enriching Linux with soft real-time capabilities,
comprising: EDF-based scheduling, temporal encapsulation and
enforcement of timing constraints, limited support for hierar-
chical scheduling, admission control, controllable and secure
exposure of real-time capabilities to unprivileged processes, and
feedback-based scheduling.

The components of AQuoSA which are relevant for this pa-
per are the following (the reader is referred to [37] for a more
comprehensive description):

• the Generic Scheduler Patch (GSP), a small patch to the
kernel which allows to extend the Linux scheduler by in-
tercepting scheduling events and executing external code
in a kernel module;

• the AQuoSA real-time scheduler, a dynamically loadable
kernel module which, exploiting the GSP patch, enhances
the Linux CPU scheduling with an EDF-based schedul-
ing policy, and precisely a hard-reservation version of the
CBS algorithm [1].

• the AQuoSA Resource Reservation (RR) Library, which
allows applications to request real-time scheduling ser-
vices through a properly designed API, and forwards re-
quests to the real-time scheduler viaioctl() system
calls operated on a special virtual device.

Figure 3:Integration of the AQuoSA scheduler within the FRSH/FORB
architecture.

Integration of AQuoSA in FRSH/FORB.Figure 3 shows how
the AQuoSA scheduler is plugged within the FRSH/FORB frame-
work, where the grayed blocks identify software components
implementing the CPU-related parts of the architecture presented
in this paper. The application uses the FRSH Core API, avail-
able by linking a library. When an application negotiates a new
contract, the library performs admission-control via the Con-
tract Broker CORBA object (FCB Server), which in turn con-
tacts the AQuoSA-specific Resource Manager. The latter per-
forms the admission-test based on the currently admitted con-
tracts, and the parameters provided by the application. This ad-
mission test may be potentially more complex then the simple
utilization-one as currently implemented. Once the new con-
tract has been admitted, the FRSH Core library performs the
actual allocation via the FRSH Resource Allocator (FRA) li-
brary for the CPU, which has a proper plug-in for communi-
cating with the AQuoSA scheduler via the AQuoSA user-space
API. When the FRA allocates resources corresponding to a con-
tract within AQuoSA, it sets the budget to the values indicated
in the FRSH contract, or to ones scaled-up by the spare-capacity
capability of the contract broker.

It must be noted that (see Figure 3), in the FRSH/FORB
over AQuoSA scheme, the CORBA interactions occur only for
those actions that do not have strict real-time requirements, and
not for monitoring actions typically required during a real-time
task activation. For example, a new contract set-up involves the
FCB, FRM and FRA components, whilst reading the current
budget (e.g., as needed for implementinganytimecomputing
algorithms) or the server deadline are actions managed quickly
through a set of function calls to the FRA library. On a related
note, if configured properly, the FCB and FRM CORBA objects
may be given precise scheduling guarantees within the frame-

7

work, in order to provide minimum guarantees on the contract
set-up time, if needed.

Note that, in the just described architecture, Linux tasks
that do not use resource reservations via the FRSH API are still
managed by the default Linux scheduler.

4.2. Disk Bandwidth Management

To provide individual applications with timing guarantees
on disk access we have to consider that requests response time
is something highly variable and dependant on physical diskpa-
rameters. Moreover, many applications (e.g., video streaming)
only issuesynchronousrequests to the disk, i.e., they send the
request and then block waiting for it to complete. Therefore,
work conserving approaches tend to introduce a lot of seeks,
as they see only one request per application, and delaying the
dispatch of a request (which is done by some classes of disk
schedulers) is of no help, since it actually prevents the applica-
tion to issue its next ones.

The Budget Fair Queuing (BFQ [52]) algorithm is a timestamp-
based proportional-sharedisk scheduler designed to provide strong
guarantees on disk bandwidth distribution even in presenceof
synchronous workloads. Bandwidth distribution guarantees can
be turned into soft timeliness guarantees, based on the mere
knowledge of the aggregate throughput in the context of some
workload scenario.

The algorithm maintains a per-application queue, and a B-
WF2Q+ (a slightly modified version of the Worst-case Fair Weighted
Fair Queueing Plus algorithm) scheduler selects the queue to be
dispatched to the disk device. Each application is also assigned
a budget, representing the numbers of sectors to which it is enti-
tled after being selected, and the scheduler involves some idling
(usually referred to asanticipation) in case an application has
no pending request but it still has some budget left.

The interested reader can find an overview of traditional el-
evator algorithms in [49], while BFQ is detailed in [52].

BFQ is able to provide applications with precise service
guarantees. Letaki be the time instant at which thei-th applica-
tion issues itsk-th requestRk

i , cki be the time instant at which
such request is completely served. We are interested in giving a
worst-case upper bound tocki , so we assume that all the applica-
tions are continuously backlogged in the time interval[aki , c

k
i],

except for thei-th one, which can be subject to idling. Let also
Tagg be the minimum aggregate throughput during[aki , c

k
i] un-

der the above worst-case assumption. LetLk
i be the size of the

kth request. If requests of at mostQi sectors, with a period (or
minimum inter-arrival time) of at leastPi seconds are issued,
the following inequality holds:

cki − aki ≤
Qi(a

k−

i) + Lk
i

φiTagg

+ d(Bmax, Lmax, φi, Tagg), (1)

whereQi(a
k−

i) is the sum of the sizes of the requests of the
i − th application not yet completed immediately before time
aki , Bmax is the maximum budget size used by any applica-
tion in the system,Lmax is the maximum request size andφi is
the fraction of the total disk service allocated to the application
(i.e., its normalized weight). The first component represents the

worst-case completion time ofRk
i in an optimal system guar-

anteeing no lagging behind the reserved service over any time
interval, and the quantityd is theworst-case delaywith respect
to the ideal worst-case completion time.

Note that the quantityTagg must be known to some extent,
in order to assess the actual time guarantees provided by BFQ.
The tricky aspect is thatTagg is in its turn a non-decreasing
function of one of the components of the worst-case delay, namely
Bmax. To deal with this aspect, basing upon (1), the desired
trade-off between worst-case delay and expected throughput
boosting can be achieved by iteratively tuning the value ofBmax.

Integration of BFQ in FRSH/FORB.Similarly to what hap-
pens for AQuoSA, BFQ has been integrated within FRSH/-
FORB by implementing a BFQ Resource Manager and a BFQ
Resource Allocator.

The BFQ Resource Manager (FRM) performs admission-
test for disk contracts and lets a new one enter the system only
if the service time over the period it is asking can be guaranteed.
It is possible to ask for abackground contract, which results in
no service guarantees, i.e., the requests will be served when all
the reserved applications are “idle”. This can be used for the
applications that do not need specific disk access guarantees, so
to avoid wasting some bandwidth for them.

The BFQ Resource Allocator (FRA) calculates the actual
BFQ weightφi of a request associated to a contract by a bind
operation, according to the following formula, derived from
equations 1 above and 1 in [52]:

φi =
Bi

Pi −
2·Bmax+Lmax

Tagg

(2)

whereBi andPi are the budget and the period the contract is
requesting, respectively. As said above, the worst-case aggre-
gate throughput figures of the disk device is required, both in
the admission-test (FRM) and allocation phases (FRA). For that
reason, it can be either specified at FRM starting time (if known
in advance), or it is automatically calculated by the systemwith
a benchmarking procedure.

Again, new contract negotiation and first bind of an appli-
cation to it require a CORBA interaction between all the frame-
work components, and therefore should be done before starting
the actual processing of the application. Yet, runtime usage of
the disk — i.e., issuing read and write requests — is not affected
by the overhead of contacting different components neitherlo-
cally or on remote machines.

4.3. Wireless Bandwidth Management

FRSH/FORB framework supports communication over Wi-
Fi networks. The part of the framework responsible for Wi-Fi
resource is calledFRSH Wireless Protocol(FWP) [51]. This
protocol takes advantage of IEEE 802.11e standard [25]. More
specifically it uses medium access technique calledEnhanced
Distributed Channel Access(EDCA) which provides differen-
tiated access to medium by means of four access categories
called (in decreasing “priorities”)voice, video, best effortand
background. Within these categories, the classicalexponential

8

back-off algorithmis used to lower the probability of collision.
Note that although EDCA improves communication capabili-
ties for real-time applications, it still uses a probabilistic ap-
proach in the medium access algorithm and the guaranties are
not “hard”. FWP provides FRSH API for creating communica-
tion endpoints, binding them to virtual resources (VRES) and
sending/receiving messages over them. Internally, FWP uses
UDP protocol for sending the messages.

Integration of FWP in FRSH/FORB.As for any other resource,
FWP implements resource manager and resource allocator com-
ponents. FWP resource manager should provide schedulability
analysis, however, since EDCA technique is not deterministic,
the FWP resource manager cannot calculate an exact schedula-
bility analysis. There exist probabilistic EDCA models such as
[15], which could be used, but FWP uses a simpler approach
which works reasonably well [50]. In short, FWP resource
manager is responsible for two things:

1. It assigns the stream to the one of the four EDCA access
categories according to the deadline specified by the ap-
plication in the contract.

2. It checks that the overall bandwidth requested by all ap-
plications is lower than the bandwidth available. Cur-
rently, the available bandwidth is specified manually when
the manager is started. For every contract, the exact time
needed for transmission of the messages described by the
contract is calculated. The time is divided by contract
period and the results are summed up for all contracts.
If the final sum (total bandwidth utilization) is less than
0.96 the contract is accepted. By keeping the bandwidth
utilization under 96% the wireless channel is not fully
saturated and the number of collisions is low. Therefore,
we do not need complicated models to estimate EDCA
back-off time and we use constant values for this delay,
one for each access category.
Currently, FWP works only when transmission bitrate is
fixed. Since Wi-Fi network interface cards (NIC) nor-
mally change bitrate dynamically to cope with chang-
ing channel conditions, this constraint is quite limiting.
In [51], section 3.6.2, we describe, how FRSH/FRSH
framework could support dynamically changing bitrate.

FWP resource allocator creates FWP virtual resources and
configures their internally used sockets in such a way that the
messages are sent through the EDCA access category specified
by the manager. Every FWP VRES employs a traffic limiter to
ensure that applications do not send more data within a period
than they requested in the contract. If the application exhausts
its budget, it is either blocked until the next replenishment time
(in case of synchronous send) or the message is queued and sent
by VRES at the next replenishment time (asynchronous send).

5. Case Study

The proposed framework has been evaluated from the per-
spective of usability and achievable experimental resultsby re-
alising a concrete case-study application. It is constituted by

Figure 4: Case study block diagram.

a video-surveillance system with multiple cameras deployed in
a building. Cameras are physically connected to the camera
controller which communicates via Wi-Fi with the video server
recording the video on a hard disk. The video is on-line and off-
line surveyed by the operator, who dynamically decides upon
the cameras to be recorded and the required quality of the video.
Given the limited resources (CPU, WiFi and disk) the system
presented in this paper allows the operator to dynamically (on-
line) add/remove cameras and to change the video quality as
long as the resource capacity is not exceeded (demonstratedin
Figure 14).

The main components of the applications are the following
(see Figure 4):

• the Camera Controllergrabs videos from multiple con-
nected video cameras, encodes them for transmission and
sends them over the Wi-Fi network to the video server;

• the Video Serverembeds two distinct components: the
Video Recordersreceive the video streams from the cam-
era controller, re-encode them to an on-disk format and
store them on a local hard drive; theVideo Streamerreads
back the stored videos and streams them over the network
for being visualized by the video client(s);

• the Video Clientsdecode and visualize video streams,
transmitted by the video streamer, on a local display.

In the following, we consider a concrete set-up of the gen-
eral structure presented in Figure 4: one instance of the Camera
Controller acquiring videos from up to three connected cam-
eras and a single video client. This setup is depicted in Figure 5
together with resources involved in individual components.

The application has been realized by exploiting the open-
source multimedia library FFMPEG11, and the FRSH API de-
scribed previously. The Video Client has been realized by using
the VLC media player12.

The video grabbing rate was selected to be 30 frames per
second (FPS) and the size of one frame was 320×240 pixels.

11More information is available at:http://ffmpeg.org/ .
12More information is available at:http://www.videolan.org/vlc .

9

Planned parameters
Video rate 30 FPS
Video resolution 320x240
Maximal video bandwidth 1 Mbit/s

Measured parameters
Average frame size 3192 B
Avg video bandwidth 3192*30*8 = 751 kbit/s
I-frame every 12 frames = 0.4 s
Avg (max) I-frame size 8377 (8825)
Avg (max) P-frame size 2697 (5990)
CPU load of video encoding 15 %
CPU load of video recording 6 %

Table 1: Application parameters.

The acquired video was encoded to an MPEG-4 stream with an
h263 codec and a bitrate of 1 Mbit/s. The stream was transmit-
ted to the recording server using the real-time transport protocol
(RTP)13 which is based on the non-reliable UDP protocol. The
recording server decoded each received stream, re-encodedit
and stored it in MPEG-4 format onto the local disk. The video
streamer is capable of streaming the recorded video either at
full quality (same as used by the camera controller) or at lower
quality 15 FPS, 160×120, 100 kbit/s. Due to the environmen-
tal set-up and the distance between the Camera Controller and
the Video Server, the wireless link between the Camera Con-
troller and the Video Server was operating at a fixed bitrate of
12 Mbit/s.

5.1. Parameter Tuning

The biggest difference between developing an application
with and without FRSH/FORB framework is that the develop-
ers need to provide contract parameters to the framework. It
should be easy for strictly periodic applications with constant
workload but it is more difficult for an application involving
video compression where the workload differers every period
(every processed video frame). This section summarizes our
experience with determining proper contract parameters.

To properly setup contract parameters for a video process-
ing application, some knowledge of video encoding and pro-
cessing is required: The video stream is composed of differ-
ent types of frames (I-frame, P-frame) and each type requires
different CPU processing time, network and disk bandwidth.
I-frames represent the full video frames while P-frames con-
tain only differences from the previous frame(s). In our exper-
iments, the size of an encoded I-frame was, in average, three
times bigger than the size of a P-frame.

A correct set-up of the contract parameters is obviously de-
termined by the application parameters. The parameters affect-
ing resources requirements have been identified and measured.
They are summarised in Table 1.

A correct set-up of the contract parameters has been fine-
tuned based on a benchmarking phase. It was sufficient to

13More information is available at:ftp://ftp.isi.edu/in-notes/
rfc3550.txt .

WebCAM Grabber/Encoder FWP

AQuoSA

CPU.1

Camera controller Recording server

FWP Video recorder

AQuoSA

CPU.0
BFQ

WebCAM Grabber/Encoder FWP FWP

WebCAM Grabber/Encoder FWP FWP Video recorder

Video recorder

Video client

AQuoSA - CPU.2

FWP Video streamerFWP

Video client

Figure 5: Detailed case study block diagram.

benchmark the individual components separately because, as
can be seen from the results in Section 6.5, the framework guar-
antees that after integration the negotiated parameters are re-
served for the components in the same way as when the com-
ponents were benchmarked in isolation.

Wi-Fi contract. With the setting given in Table 1, the Wi-Fi net-
work becomes the most limiting resource. It allows for trans-
mission of approximately four streams, but the FWP manager
admits only three streams. Although the maximal video band-
width is 1 Mbit/s, the FWP manager needs to account for the
real communication overhead (packet fragmentation, UDP and
IP headers, MAC/LLC overhead – inter-frame spaces, contention
window size etc.), which is in this case 47 %. Also note that
every packet is transmitted two times – once from the source
station to the access point (AP) and once from the AP to the
destination station. Therefore we get the total used Wi-Fi band-
width as 3× 1 Mbit/s× 1.47× 2 = 8.82 Mbit/s.

As a consequence of different sizes of I-frames and P-frames,
if the contract period is set to match the video frame rate, and
the budget is set to be big enough for processing every I-frame,
then approximately 64% (1−3192/8825) of the reserved band-
width would be wasted due to the low resource utilization by
P-frames. Since the Wi-Fi network is the bottleneck in our sce-
nario, it was decided to set the period in the Wi-Fi contractsto
1 second and the budget to 125 KB, which corresponds to the
maximum stream bandwidth. Deadline was set to1/30 seconds
so that the proper EDCA access category was used by FWP.
The exact values of Wi-Fi contract attributes can be seen in the
screen shot of a simple framework monitoring application in
Figure 6. The list on the left side of the figure shows negotiated
Wi-Fi contracts. For every video transmission there are two
contracts: one for RTP protocol itself and one for accompany-
ing RTCP protocol. The right side of the screen shot shows the
attributes of the highlighted RTP contract.

CPU contract. The CPU capacity on both the camera controller
and the recording server was sufficient (one stream needs on
average 15% of CPU on the camera controller and 6% on the
recording server). Given the maximum of three streams, we can
waste some CPU bandwidth by reserving more CPU than is ac-
tually needed. The period was set to match the frame rate and
the budget was set to 25% of the period on the sender side, and
to 10% of the period on the receiver side. It was experimentally

10

Figure 6: Screen shot of the graphical application for inspecting negotiated
contracts in resource managers.

Camera Controller
Grabber/encoder budget 9 ms
Grabber/encoder period = deadline 1/30 s
FWP Budget 125 kB
FWP Period 1 s
FWP Deadline 1/30 s
Recording Server
Writer CPU budget 5 ms
Writer CPU period = deadline 1/30 s
Writer Disk budget 5 kB
Writer Disk period 1/30 s
Streamer Disk budget 5 kB
Streamer Disk period 1/30 s
Streamer FWP Budget 12 (125) kB
Streamer FWP Period 1 s
Streamer FWP Deadline 1/15 (1/30) s
Video Client
CPU budget 5 ms
CPU period = deadline 1/30 s

Table 2: Parameter values set in the FRSH contracts. The two values for
Streamer correspond to the low and full video quality.

checked that these values are sufficient even for processingthe
biggest I-frames.

Disk contract. The disk throughput was measured to be 22 MB/s.
Therefore, storing 125 KB/s video streams represented verylow
load for the disk. However, disk performance depends not only
on bandwidth but also on seek patterns and therefore it was very
important to setup the contracts correctly. It can be seen inFig-
ure 13 d) that the additional disk load has significant perfor-
mance impact even on such low-bandwidth streams. It must
be noted that in the current version of the framework, in order
to get the benefit from using disk reservations, the applications
must use “direct I/O” services when accessing the disk.

The disk contract period was chosen to match the frame rate
and the budget was set to 5 kB.

Summary.Summarizing, the parameters for the various con-
tracts in the FRSH API have been set-up as in Table 2. The
results of experimental case study are presented in Section6.5.

 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
eg

ot
ia

tio
n

tim
e

of
a

si
ng

le
 c

on
tr

ac
t [

m
s]

Number of negotiated contracts in the system

Negotiation (local)
Negotiation (remote)
Renegotiation (local)

Figure 7: Contract negotiation time as a function of the number of negotiated
contracts.

5.2. Lessons Learned

It was very helpful to have acentral view of the state of
the framework. We had a real-time monitoring application (see
Figure 6) and the log of all framework operations (the excerpt is
shown in Figure 14). It helped us to find quickly the reasons for
reservation failures. We were able to generate the log because
we setup the framework in a way that all contract negotiations
went through the contract broker agent running in the recording
server.

Resource reservation helped us indiscovering certain er-
rors earlier than during integration phase. It happened when the
actually used video stream bandwidth was higher (by mistake)
than was allowed by the negotiated network contract. This mis-
take was noticed due to jerky video on the video client. It would
not be noticed without the framework because the available net-
work bandwidth was sufficient for that single video stream.

Determining the contract parameters often requires a bench-
marking phase. In our case study, this benchmarking was done
manually, which is time consuming and error prone. It would
be much easier if the framework providedresource usage statis-
ticssuch as the minimum/maximum/average consumed budget,
deadline miss and budget overrun counts etc. Therefore, we
plan to add such functionality to the framework in the future.

6. Experiments

In this section we present experimental results for the vali-
dation of the proposed approach. The experimental validation
aims to gather overhead figures for the contract negotiations in
the proposed architecture, and to highlight its capabilities in the
provisioning of guarantees to individual applications. The capa-
bility of the framework to temporally isolate applicationsfrom
each other is shown first when applications are reserving con-
tracts for only one type of resource. Then, we present the exper-
imental results gathered on the integrated case-study presented
in Section 5, where contracts for the three types of resources
(CPU, network and disk) are all used at the same time.

All experimental results have been gathered on a Pentium
4 at 2.4 GHz with 2 GB of RAM, running a Linux OS with a
2.6.29.1 kernel patched with BFQ and AQuoSA.

6.1. Negotiation Overhead Evaluation Experiments

First, we measured the overhead of the negotiation proce-
dure. To measure only the overhead of the framework and not

11

the computation times of schedulability analysis and of VRES
creation for a particular resource, we created a dummy resource,
whose manager and allocator did nothing. In the experiment,
we successively negotiated ten thousand contracts and mea-
sured the time of every single contract negotiation. The results
are shown in Figure 7, with the lines labeled as “Negotiation”.
In case of local negotiation, both contract broker, resource man-
ager and allocator were running on the same node. For remote
negotiation, the manager was running on the second computer
connected by a 100 Mbps Ethernet. The result is that the remote
negotiation has a slightly higher overhead (as expected) and that
in both cases the negotiation time is almost linearly dependent
on the number of contracts in the system.

Then, we evaluated the overhead involved in renegotiation
of existing contracts. This evaluation was done similarly to the
previous experiment: we had several contracts in the system
and we measured the time needed to renegotiate a single con-
tract. The result is depicted again in Figure 7, with the line
labeled as “Renegotiation”. It can be seen that renegotiation
takes, in average, slightly less time than the initial negotiation.
The reason is that renegotiation involves less work to be done.

6.2. AQuoSA Experiments

To evaluate the behavior of the AQuoSA resource reserva-
tion component, and to validate its usage in the framework de-
scribed in the paper, we used a synthetic periodic real-timeap-
plication calledrt-app 14. Its purpose is emulating the behav-
ior of a multimedia or control application, where computation
phases (e.g., frame decoding or control action computation) and
sleeping phases, waiting for the next activation instant, are reg-
ularly interleaved. The actual finishing time of each of these
periodic jobs (relatively to its activation instant) is being mea-
sured in microseconds.

This section reports the results of many experiments with
the following configurations:

• the number ofrt-app instances simultaneously running
in the system has been varied from1 to 14;

• eachrt-app instance had a random period uniformly
chosen in the[2ms, 200ms] range. These values have
been selected since they are considered representative of
typical multimedia and/or audio-video processing appli-
cations;

• eachrt-app instance had a load approximately equal
to 6%. This implies the overall system load varied from
6% to 84% during the various experiments.

Each experiment has been repeated under various schedul-
ing policies:

• with theSCHEDOTHERbest effort scheduling policy (la-
beled asLinux bein the figures);

14Available for download at:http://aquosa.sf.net/rt-app.c .

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000

P
r{

R
es

po
ns

e
T

im
e

<
=

 t}

t (usec)

Linux be
Linux rt

AQuoSA

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

P
r{

R
es

po
ns

e
T

im
e

<
=

 t}

t (usec)

Linux be
Linux rt

AQuoSA

Figure 8: Cumulative distribution function of the responsetime for the real-
time task with the shortest period under light (top figure) and heavy (bottom
figure) system load, equal to∼ 48% and∼ 84%, respectively.

• with the SCHEDRRpolicy at a fixed priority (Linux rt
in the figures), thus achieving a Round-Robin schedul-
ing policy; however, other tasks of the OS are forced in
the background and cannot interfere with thert-app
instances, in this case;

• with the AQuoSA scheduler (AQuoSAin the figures), where
each task has been attached a separate reservation with
reservation period equal to the task period and budget
tuned so to achieve a utilization of6.6%, corresponding
to a 10%, of over-provisioning with respect to the ex-
pected average application load.

In Figure 8 the cumulative distribution function of two runs
of the previously described experiment are presented, in both
cases for the task with the shortest period. This is because such
task is the one that will suffer most, and that will more likely
miss its deadline, because of the interference of other tasks.
Vertical lines close to9ms (top figure) and6ms (bottom fig-
ure) indicate such period (equal to the relative deadline),there-
fore the values of the plotted functions at those instants are the
probability of deadline hit for the given configuration.

It can be easily seen that, both under light and heavy sys-
tem load conditions, running the task inside an AQuoSA reser-
vation results in a deadline hit probability almost equal toone,
with only few instances finishing too late. On the other hand,
existing Linux scheduling policies are not able to make the task
respect all its deadlines even in a lightly loaded system, and
things get severely worse as long as more real-time tasks are
added and the load increases.

Figure 9 depicts the normalized slack (or tardiness, in case
of deadline miss) again for thert-app with the smallest pe-
riod, varying the total number of tasks, and consequently the
system load. In formulafi−Pi

Pi
, wherefi andPi are the fin-

12

-100

-50

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
or

m
al

iz
ed

 T
ar

di
ne

ss
 (

%
)

Number of Applications

Linux be (avg)
Linux rt (avg)

AQuoSA (avg)

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
or

m
al

iz
ed

 T
ar

di
ne

ss
 (

%
)

Number of Applications

Linux rt (95th)
Linux rt (max)

AQuoSA (95th)
AQuoSA (max)

Figure 9: Average (top figure), maximum and 95th percentile (bottom figure)
of the normalized slack/tardiness for the real-time task with the shortest period,
varying the number of real-time tasks in the system.

ishing time and the period of the smallest period task for the
i − th run. Therefore,0 means the task respected its deadline
with no slack time and negative values means deadline hit with
some slack time. Finally, positive values are deadline violation
with some tardiness, e.g.,100%means the task finished one full
period away from the deadline.

The top inset of Figure 9 shows how the slack time of the
task –with standard Linux scheduling policies– decreases while
the system load increases, and this seems to yield to system-
atic deadline miss when the number of tasks reaches13, cor-
responding to an overall system load of∼ 78%. However, the
bottom inset shows that, even when Linux rt policies are used,
the large part of the instances start missing their deadlines as the
number of tasks in the system reaches7, which is just a∼ 42%
load. Moreover, the maximum experienced tardiness within the
whole experiment is much worse than the average, and than the
95th percentile too, it increases with system load and reaches
values higher than1200% when the number of tasks is14, i.e.,
a load of∼ 84%. On the other hand, exploiting the resource
reservation capabilities of AQuoSA, not only the average and
the 95th percentile figures of the slack time are flattened to a
constant value far below0%, but also the maximum experi-
enced tardiness is hardly greater than0, showing that the task
ability to meet its deadline is almost independent from the sys-
tem load conditions.

6.3. BFQ Experiments

Evaluation of the BFQ performance has been done by two
experiments. The first one shows that BFQ does not cause
losses in the overall throughput as compared to the default Linux
disk scheduler. The second one shows that BFQ improves the
disk access times of delay-sensitive applications.

 0

 10

 20

 30

 40

 50

2 4 8 16

A
gg

re
ga

te
 T

hr
ou

gp
ut

 (
M

iB
/s

)

Concurrent Readers

BFQ
CFQ

Figure 10: Comparison between the aggregate throughput of BFQ and CFQ.

Flows BFQ CFQ
32 23.92± 143.80 55.84± 250.90
24 12.08± 85.29 57.37± 249.13
20 6.53± 64.63 51.75± 226.76
16 4.05± 49.25 48.94± 215.46
8 2.14± 32.87 51.84± 220.11

Table 3: Streaming latency of BFQ and CFQ.

We usedfio 15, a well known micro-benchmarking tool to
collect our results. In the first experiment we set it up to ex-
ecute, respectively,2, 4, 8 and16 parallel sequential readers,
doing32 KiB back to back reads, each one over a different file.
The experiment was carried out over anext3 filesystem. We
let each configuration run for two minutes, then we measured
the aggregate throughput. As shown in Figure 10, there is no
throughput loss with respect to the default Linux disk sched-
uler (CFQ). Actually, the experiments show that BFQ exhibits
a little improvement over CFQ.

In the second experiment we configuredfio to simulate
a latency-sensitive application. We set up ten parallel greedy
readers, simulating an interfering best effort load, and a vary-
ing number of parallel streamers, each one performing32 KiB-
sized reads, with a think-time of40 ms between each iteration.
The average latencies and the standard deviation on each mea-
sure are shown in Table 3. BFQ is able to serve each streamer in
time, while under CFQ the streamers have to wait on the same
round robin list with the background greedy readers. The big
values for the standard deviation are due to the order of mag-
nitude of the allocated slices. For example, CFQ allocates by
default100 ms time slices, so in the worst case a streamer may
have to wait for ten times the slice of a greedy reader, plus any
other streamer enqueued before it woke up. This kind of ser-
vice is inherently subject to high variability, as the actual delay
depends on the position which a newly activated flow gets in
the round robin list. With BFQ, applications are served on the
basis of the timestamps they get, so the effect is similar to a

15Available for download atgit://git.kernel.dk/fio.git

13

 10

 100

 1000

 0 2 4 6 8 10 12
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

C
om

m
un

ic
at

io
n

de
la

y
[m

s]

P
ac

ke
t l

os
s

[%
]

Number of simultaneously generated 50 kB/s streams

Maximal delay w/o FWP [ms]
95th percentile w/o FWP [ms]
Packet loss w/o FWP [%]
Maximal delay with FWP [ms]
95th percentile with FWP [ms]
Packet loss with FWP [%]

Figure 11: Illustration of how FWP resource manager maintains feasible band-
width allocation.

round robin only among the latency-sensitive streamers (they
all have the same timing constraints), and, as we can see from
the results, only the number of streamers affects the perceived
latency.

6.4. FWP Experiments

To evaluate the FWP protocol we mounted four Wi-Fi net-
work interface cards (NICs) on our testbed PC, and an EDCA
enabled Wi-Fi access point. The transmission bitrate was fixed
to 12 Mbit/s. The Linux kernel was patched withsend-to-self
patch16 which allows the messages addressed to the same com-
puter to be sent over the external network. The messages were
sent through one NIC and received through another NIC. There-
fore, we did not need synchronized clocks on multiple comput-
ers to measure the communication delay.

Our testing application generated multiple data streams com-
posed of messages with a 1024 bytes size, sent every 20 ms.
The streams were received by the same application in differ-
ent threads and the communication delays were measured. The
messages of theith stream were sent from the(i mod 4)-th
NIC to the ((i + 1) mod 4)-th NIC. Every test was run for
20 seconds so that every stream transmitted one thousand mes-
sages. We compared the results with FWP and without it.

The first experiment shows the consequence of limiting the
total used bandwidth in the resource manager. The results can
be seen in Figure 11. The horizontal axis shows the num-
ber of simultaneously generated streams and the vertical axis
shows the maximal measured communication delay, its 95th

percentile and the packet loss. From the figure, it can be seen
that the communication delay increases when the utilization
grows. The highest bandwidth allowed by the FWP resource
manager corresponds to eight streams. When the same exper-
iment is repeated without FWP (dashed lines), both communi-
cation delays and packet loss rise dramatically (note the log-
arithmic scale used for the delay axis) for nine simultaneous
streams and beyond. By limiting the total bandwidth (here at
eight streams), FWP is able to keep delays and packet loss low.

16More information is available athttp://www.ssi.bg/ ˜ ja/#loop .

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

C
om

m
un

ic
at

io
n

de
la

y
[m

s]

P
ac

ke
t l

os
s

[%
]

Number of simultaneously generated 50 kB/s streams

Maximal delay w/o FWP [ms]
95th percentile w/o FWP [ms]
Packet loss w/o FWP [%]
Maximal delay with FWP [ms]
95th percentile with FWP [ms]
Packet loss with FWP [%]

Figure 12: Demonstration of how traffic limiter in FWP VRES helps when
Wi-Fi channel gets saturated.

Also note that the maximal delay is strongly influenced by the
non-determinism of the EDCA medium access algorithm and
by external disturbances. This explains why the maximal de-
lay curve relative to FWP was occasionally higher than the one
without it (for five streams).

In the second experiment we highlight the influence of the
traffic limiter in FWP virtual resources (see the last paragraph
of Section 4.3). The previous experiment was modified so that
the delay between sending of messages in one stream was not
fixed to 20 ms, but was a random variable uniformly distributed
between 0 and 40 ms. The results can be seen in Figure 12. In
order to see the difference, we had to bypass the FWP resource
manager in all experiments, because the differences showedup
only when the medium was saturated which is what the man-
ager tries to prevent (see the limit of 8 streams in Figure 11).
However, such situation may happen even when the manager is
in use with disturbances which lower the link quality and de-
crease the available bandwidth. The results show that the max-
imum experienced delay (lines labeled as+) is approximately
the same with and without the traffic limiter. The difference
can be found in the 95th percentile (lines labeled as∗). For low
utilization values, when the traffic limiter is active, the maxi-
mal delay is obviously close to the VRES period because some
packets are delayed by the limiter. Without the limiter the de-
lay is lower. However, the limiter helps when the medium is
more saturated. For ten or more streams, the packet loss (lines
labeled as�) is lower with FWP than without it. Furthermore,
for seven and more streams, the delay rises slower with the lim-
iter than without it.

A careful reader may wonder why there is “non-zero” packet
loss for nine and more streams in Figure 11 and in Figure 12
only for twelve and more streams (the non-dashed line in the
latter figure should roughly correspond to the dashed line inthe
former figure). The reason is the difference in channel condi-
tions caused by external disturbances. When the experiment
was run during working hours (the first one), other Wi-Fi net-
works on close channels disturbed us, while the second exper-
iment was run in the evening when other wireless traffic was
lower.

14

 10

 15

 20

 25

 30

 35

 40

 1 2 3

F
ra

m
es

 p
er

 s
ec

on
d

Number of video streams

a) No load

FRSH
No FRSH

 10

 15

 20

 25

 30

 35

 40

 1 2 3

b) Wi-Fi loaded

FRSH
No FRSH

 10

 15

 20

 25

 30

 35

 40

 1 2 3

c) CPU loaded

FRSH
No FRSH

 10

 15

 20

 25

 30

 35

 40

 1 2 3

d) Disk loaded

FRSH
No FRSH

 10

 15

 20

 25

 30

 35

 40

 1 2 3

e) All 3 resources loaded

FRSH
No FRSH

 0

 0.05

 0.1

 0.15

 0.2

 1 2 3

S
ta

nd
ar

d
de

vi
at

io
n

of
in

te
r-

fr
am

e
tim

e
[s

]

Number of video streams

f) No load

FRSH
No FRSH

 0

 0.05

 0.1

 0.15

 0.2

 1 2 3

g) Wi-Fi loaded

FRSH
No FRSH

 0

 0.05

 0.1

 0.15

 0.2

 1 2 3

h) CPU loaded

FRSH
No FRSH

 0

 0.05

 0.1

 0.15

 0.2

 1 2 3

i) Disk loaded

FRSH
No FRSH

 0

 0.05

 0.1

 0.15

 0.2

 1 2 3

j) All 3 resources loaded

FRSH
No FRSH

Figure 13: Results of the case study.

6.5. Integrated Case Study

In the case study, we ran the involved applications (described
in Section 5) with and without the FRSH framework and under
different loads. Every experiment lasted for 500 frames (cca
16 seconds). During those experiments several timing metrics
were measured. The first metric was the average number of
frames per second processed by the video recorder application.
The second metric was the standard deviation of the time inter-
val between the end of processing of two consecutive frames.
The results can be seen on the graphs in Figure 13. Graphs a)
and f) represent the case when all resources were loaded only
by the applications of our case study. There are no significant
differences in the measured frame rates, and the standard devi-
ations show that the execution with FRSH is only slightly more
regular than the one without FRSH. The reason why the mea-
sured frame rate is greater than 30 is that our cameras supplied
approximately 31 frames per second even if we requested only
30 frames per second.

Graphs b) and g) show the metrics when the Wi-Fi network
was loaded by a concurrently running communication. We con-
nected two additional computers to the Wi-Fi network and let
them interchange some data (all zeros) as fast as possible using
the netcat 17 program. These communications were not un-
der control of the FRSH framework (it can be considered and
disturbances) and we setup two simultaneous streams running
in opposite directions.

It can be seen that the load on the Wi-Fi channel influ-
ences the achieved frame rate. Clearly the impact increases
with the number of transmitted streams but it is smaller when
the FRSH framework is employed. The explanation of why the
framework cannot guarantee a constant frame rate is that EDCA
is not a deterministic medium access protocol and changing
the EDCA access category can only increase theprobabilityof

17http://netcat.sourceforge.net/

Time[s] Message

0.004: Waiting for requests
0.111: Registering manager "AQuoSA" (0.0)
0.115: Registering manager "AQuoSA" (0.1)
0.121: Registering manager "AQuoSA" (0.2)
0.125: Registering manager "WLAN" (1.3)
5.219: Registering manager "Disk BFQ" (3.0)

5.389: Negotiation request: NET.3 RTP
5.391: Negotiation request: NET.3 RTCP
5.396: Negotiation request: CPU.1 camera_ctrl
5.402: Negotiation request: NET.3 RTP
5.462: Negotiation request: NET.3 RTP
5.463: Negotiation request: NET.3 RTCP
5.465: Negotiation request: NET.3 RTCP
5.468: Negotiation request: CPU.1 camera_ctrl
5.469: Negotiation request: CPU.1 camera_ctrl

9.259: Negotiation request: CPU.0 recorder
9.261: Negotiation request: DISK.0 stream0.mp4
9.565: Negotiation request: CPU.0 recorder
9.606: Negotiation request: DISK.0 stream2.mp4
9.622: Negotiation request: CPU.0 recorder
9.663: Negotiation request: DISK.0 stream1.mp4

10.502: Negotiation request: CPU.2 client
10.519: Negotiation request: NET.3 RTP
10.521: Negotiation request: NET.3 RTCP
10.523: Negotiation request: CPU.0 client_streamer
10.559: Negotiation request: DISK.0 stream.mp4
13.931: Renegotiation request: CPU.0 client_streamer
13.933: Renegotiation request: NET.3 RTP
13.942: Contract(s) was/were rejected
17.235: Cancelation request: CPU.0 client_streamer
17.235: Cancelation request: DISK.0 stream.mp4
17.236: Cancelation request: NET.3 RTP
17.237: Cancelation request: NET.3 RTCP
17.240: Cancelation request: CPU.2 client

29.477: Cancelation request: CPU.0 recorder
29.477: Cancelation request: DISK.0 stream2.mp4
29.548: Cancelation request: CPU.0 recorder
29.548: Cancelation request: DISK.0 stream1.mp4
29.574: Cancelation request: CPU.0 recorder
29.575: Cancelation request: DISK.0 stream0.mp4

Figure 14: Log of the contract broker running in the video server.

15

faster medium access. On the other hand, one may wonder why
the impact on the frame rate is not higher when running with-
out FRSH. This can be explained by the netcat use of the TCP
protocol, which automatically adapts its bandwidth according
to the detected channel capacity. We tried to generate a more
aggressive load (UDP floods) on the Wi-Fi link, but the cam-
era controller started disconnecting from the network and the
experiment could not be finished. We blame the used network
adapter and/or its Linux driver for this problematic behavior.

Graphs c) and g) represent the case where the CPU on the
video server was loaded by 20 additional CPU intensive non-
FRSH applications. Here we can see that AQuoSA is highly
successful in keeping the requested frame rate and regular exe-
cution (low variance of inter-frame times).

Similarly the disk scheduler (BFQ) achieves constant frame
rate — see graphs d) and i)) — when the disk was loaded by
two processes which read from two different places on the disk
as fast as possible.

Finally, we ran all the three above mentioned loads simul-
taneously. The results are presented in graphs e) and j). The
framework was able to keep the resources available for the ap-
plications in a way that no significant loss of quality was de-
tected. The small decrease of quality can be attributed to the
Wi-Fi network, which, in this case, constitutes the actual bot-
tleneck. When the same experiment was run without the FRSH
framework, the results are, as expected, very bad—only approx-
imately 12 frames per seconds were successfully transported.
Given the fact that in such a case it is very likely that the I-
frames are lost, the recorded video is almost useless. With the
FRSH framework, the recorded video is of good quality with
only occasional small disturbances caused by dropped frames.

To highlight the dynamic nature of our framework, in Fig-
ure 14 we provide the timed log of important operations ex-
ecuted by the contract broker agent in the recording server,
which has “connected” all resource managers needed for the
case study. Shortly after the contract broker was started, five
resource managers registered to it. According to Figure 4 there
were three CPUs (CPU.0 – video server, CPU.1 – camera con-
troller, and CPU.2 – video client), one disk and one Wi-Fi net-
work. The disk resource manager probes for available disk
throughput for five seconds after start and registers itselfafter
the probe is finished. Then, at 5.38, three video steaming ap-
plications were started in the camera controller. Approximately
four seconds later, three recording applications were started in
the video server and they negotiated their CPU and disk con-
tracts. A second later (10 seconds after start), the video client
started on the 3rd computer to play back a formerly recorded
stream. Initially, the stream was played back at low quality, but
at time 13, the operator decided to increase the quality. The
renegotiation happened while the old reservation was stillin ef-
fect, so the video playback was not interrupted. Unfortunately,
the Wi-Fi bandwidth was not available to satisfy that request
so the quality remained the same until time 17 when the video
client was terminated. Finally, approximately 25 seconds after
the start, all the recorder applications were terminated and their
reservations were canceled.

7. Conclusions

In this paper we presented a software architecture for the
management of multiple heterogeneous resources shared across
a set of distributed soft real-time applications. The architecture
exposes to the application developers the FRSH API, which has
been designed so as to allow access to real-time scheduling ser-
vices of heterogeneous resources, such as CPU, disk and net-
work, in a way that is as uniform as possible. This way, users do
not need to deal with different APIs for reserving resourceson
the underlying OS, but they can declare the application require-
ments using natural attributes such as deadlines and required
computation times or throughput figures, instead of priorities.
This allows for an easier deployment of real-time applications
over a distributed system, especially in those cases in which the
system is dynamic, i.e., applications can be started dynamically
by users, depending on the environmental conditions.

Our framework is effective in the provisioning of temporal
isolation for distributed real-time applications that share mul-
tiple heterogeneous resources with real-time scheduling capa-
bilities, as shown by the presented experimental results, gath-
ered on a real implementation of the proposed framework on the
Linux OS. We reported results from synthetic application work-
loads stressing each resource individually, in order to show the
degree of achievable temporal isolation. More importantly, we
reported results from a real case-study application, developed
around the theme of video recording, showing the main bene-
fits of adopting the proposed architecture. Also, we reported
about our experience in how the proposed framework was used,
and specifically how the resource allocation was carried on,in
the context of the proposed case-study, constituting a valuable
experience that can be leveraged by future researchers/develop-
ers who may want to make use of it.

Finally, we collected results about the overheads associated
to our framework, comprising contract negotiation overheads.
The obtained figures are sustainable for complex soft real-time
embedded systems.

The framework and the case study have been released with
an open-source license and they can be downloaded from project
web sitehttp://frsh-forb.sourceforge.net.

8. Future Work

The FRSH/FORB framework provides a bidirectional com-
munication channel between applications and resource man-
agers/allocators. Applications specify their requirements (e.g.,
in terms of possible budgets that they are capable of using) and
the framework responds with precise information about what
has been allocated. However, the allocation of the spare system
capacity, if any, can change independently of application re-
quests, e.g., as a consequence of another application (re)negotiating
a contract or terminating. Therefore, every application that uses
spare capacity needs to be able, by definition, to adapt to the
changed (spare) allocation. The natural extension of this prop-
erty would be that the applications adapt similarly tochanges
of the resource capacity(e.g., Wi-Fi bit-rate). For example, a

16

video streaming application could be instructed to decrease its
frame rate if the framework detects a lower Wi-Fi link quality.

Another advanced feature which was left for future work
is the implementation ofmulti-resource transactionscombined
with spare capacity distribution. This will enable the optimal
allocation of resources to applications with respect to criterions
like perceived QoS or total power consumption. Continuing the
example from the previous paragraph, if the Wi-Fi capacity de-
creases and there is enough CPU capacity, instead of lowering
the frame rate, the streaming application could be instructed
to use the available CPU capacity to encode the stream with
a more powerful algorithm, which will also lead to the lower
network utilization but with a better video quality.

Finally, there are many things which, when implemented,
will make the framework more robust. One such thing is the
automatic release of resources after an application crash.

Acknowledgements

Research leading to these results has been supported by the
European Commission under grant agreement n.FP6/2005/IST/5-
034026, in the context of the FRESCOR Project, and n.214777,
in the context of the IRMOS Project. Also, it has been sup-
ported by the Ministry of Education of the Czech Republic un-
der project number 1M0567 (CAK).

References

[1] Abeni, L., Buttazzo, G., December 1998. Integrating multimedia applica-
tions in hard real-time systems. In: Proceedings of the IEEEReal-Time
Systems Symposium. Madrid, Spain.

[2] Ayers, Yodaiken, B. V., 1997. Introducing real-time linux. Linux J., 5.
[3] Bello, L. L., Kaczynski, G. A., Mirabella, O., 2005. Improving the real-

time behavior of Ethernet networks using traffic smoothing.IEEE Trans.
Industrial Informatics 1 (3), 151–161.

[4] Bennett, J. C. R., Zhang, H., 1997. Hierarchical packet fair queueing al-
gorithms. IEEE/ACM Transactions on Networking 5 (5), 675–689.

[5] Blanquer, J., Bruno, J., Gabber, E., Mcshea, M., Ozden, B., Silberschatz,
A., Singh, A., 1999. Resource management for QoS in Eclipse/BSD. In:
In Proceedings of the FreeBSD’99 Conference.

[6] Bruno, J., Brustoloni, J., Gabber, E., Ozden, B., aham Silberschatz, A.,
1999. Disk scheduling with quality of service guarantees. In: ICMCS
’99: Proceedings of the IEEE International Conference on Mul timedia
Computing and Systems Volume II-Volume 2. IEEE Computer Society,
Washington, DC, USA, p. 400.

[7] Buttazzo, G., Lipari, G., Abeni, L., Caccamo, M., 2005. Soft Real-Time
Systems Predictability vs. Efficiency. No. 10.1007/0-387-28147-9-3 in
Series in Computer Science. Springer.

[8] Checconi, F., Cucinotta, T., Faggioli, D., Lipari, G., June 2009. Hierarchi-
cal multiprocessor CPU reservations for the linux kernel. In: Proceedings
of the 5th International Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT 2009). Dublin, Ireland.

[9] Chen, X., Zhai, H., Tian, X., Fang, Y., 2006. Supporting QoS in IEEE
802.11e wireless LANs. IEEE Transactions on Wireless Communications
5 (8), 2217–2227.

[10] Chou, C. T., Shin, K. G., Shankar N, S., Dec. 2006. Contention-based air-
time usage control in multirate IEEE 802.11 wireless LANs. Networking,
IEEE/ACM Transactions on 14 (6), 1179–1192.

[11] Cucinotta, T., Mancina, A., Anastasi, G. F., Lipari, G., Mangeruca, L.,
Checcozzo, R., Rusin‘a, F., 2009. A real-time service-oriented architec-
ture for industrial automation. (to appear on) IEEE Transactions on In-
dustrial Informatics.

[12] Decotignie, J.-D., 2001. A perspective on Ethernet as afieldbus. In:4th

Int. Conference on Fieldbus Systems and Their Applications(FeT’01).

[13] Dozio, L., Mantegazza, P., May 2003. Real time distributed control sys-
tems using rtai. In: Object-Oriented Real-Time Distributed Computing,
2003. Sixth IEEE International Symposium on. pp. 11–18.

[14] Eide, E., Stack, T., Regehr, J., Lepreau, J., May 2004. Dynamic CPU
management for real-time, middleware-based systems. In: Proc. of 10th
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium. Toronto, Canada.

[15] Engelstad, P., Østerbø, O., June 2006. Analysis of the total delay of IEEE
802.11e EDCA and 802.11 DCF. In: Communications, 2006 IEEE Inter-
national Conference on. Vol. 2. pp. 552–559.

[16] EPSG, October 2007. Ethernet Powerlink V2.0, Communication Profile
Specification. Ethernet Powerlink Standardization Group.

[17] Faggioli, D., Mancina, A., Checconi, F., Lipari, G., October 2008. Design
and implementation of a POSIX compliant sporadic server. In: Proceed-
ings of the10th Real-Time Linux Workshop (RTLW). Mexico.

[18] Felser, M., 2005. Real-time Ethernet – industry prospective. Proceedings
of the IEEE 93.

[19] Freitag, J., da Fonseca, N., de Rezende, J., Aug. 2006. Tuning of 802.11e
network parameters. Communications Letters, IEEE 10 (8), 611–613.

[20] Garcı́a-Valls, M., Alonso, A., Ruiz, J., Groba, A. M., 2002. An archi-
tecture of a quality of service resource manager middlewarefor flexible
embedded multimedia systems. In: Coen-Porisini, A., van der Hoek, A.
(Eds.), SEM. Vol. 2596 of Lecture Notes in Computer Science.Springer,
pp. 36–55.

[21] Gill, C. D., Gossett, J. M., Corman, D., Loyall, J. P., Schantz, R. E.,
Atighetchi, M., Schmidt, D. C., march 2005. Integrated adaptive QoS
management in middleware: A case study. Real-Time Systems 29 (2-3),
101–130.

[22] Gopalan, K., 2001. Real-time support in general purpose operating sys-
tems.

[23] Gopalan, K., Kang, K.-D., June 2007. Coordinated allocation and
scheduling of multiple resources in real-time operating systems. In: Proc.
of Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT), Pisa, Italy.

[24] Harbour, M. G., de Esteban, M. T., 2008. Architecture and con-
tract model for integrated resources II. Deliverable of theFRES-
COR project (D-AC2v2), http://www.frescor.org/index.
php?page=publications .

[25] IEEE 802.11 — WG Reference number ISO/IEC 8802-11:1999(E), 2005.
IEEE Std 802.11e.

[26] IEEE 802.11 — WG Reference number ISO/IEC 8802-11:1999(E) IEEE
Std 802.11, 1999. International standard [for] information technology
– telecommunications and information exchange between systems-local
and metropolitan area networks-specific requirements – Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) specifi-
cations.

[27] Inan, I., Keceli, F., Ayanoglu, E., Nov. 2009. A capacity analysis frame-
work for the IEEE 802.11e contention-based infrastructurebasic service
set. Communications, IEEE Transactions on 57 (11), 3433–3445.

[28] Kopetz, H., Ademaj, A., Grillinger, P., Steinhammer, K., 2005. The time-
triggered Ethernet (TTE) design.8th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC’05) 00, 22–
33.

[29] Krishnamurthy, Y., Kachroo, V., Karr, D. A., Rodrigues, C., Loyall, J. P.,
Schantz, R. E., Schmidt, D. C., 2001. Integration of QoS-enabled dis-
tributed object computing middleware for developing next-generation dis-
tributed application. In: LCTES/OM. pp. 230–237.

[30] Kweon, S.-K., Shin, K. G., Workman, G., 2000. Achievingreal-time com-
munication over Ethernet with adaptive traffic smoothing.6th IEEE Real
Time Technology and Applications Symposium (RTAS’00) 00, 90.

[31] Lakshmanan, K., Rajkumar, R., 2008. Distributed resource kernels: OS
support for end-to-end resource isolation. In: RTAS ’08: Proceedings of
the 2008 IEEE Real-Time and Embedded Technology and Applications
Symposium. IEEE Computer Society, Washington, DC, USA, pp.195–
204.

[32] Liu, C. L., Layland, J., 1973. Scheduling alghorithms for multiprogram-
ming in a hard real-time environment. Journal of the ACM 20 (1).

[33] Molano, A., Juvva, K., Rajkumar, R., 2-5 Dec 1997. Real-time filesys-
tems. guaranteeing timing constraints for disk accesses inrt-mach. Real-
Time Systems Symposium, 1997. Proceedings., The 18th IEEE,155–165.

[34] Nahrstedt, K., Chu, H.-h., Narayan, S., 1998. QoS-aware resource man-

17

agement for distributed multimedia applications. J. High Speed Netw.
7 (3-4), 229–257.

[35] Oikawa, S., Rajkumar, R., 1999. Portable RK: A portableresource kernel
for guaranteed and enforced timing behavior. In: RTAS ’99: Proceedings
of the Fifth IEEE Real-Time Technology and Applications Symposium.
IEEE Computer Society, Washington, DC, USA, p. 111.

[36] OMG Data Distribution SIG (DDSIG), 2009. Data-distribution service
for real-time systems (DDS). [on-line]http://portals.omg.org/
dds .

[37] Palopoli, L., Cucinotta, T., Marzario, L., Lipari, G.,2009. AQuoSA —
adaptive quality of service architecture. Software – Practice and Experi-
ence 39 (1), 1–31.

[38] Pedreiras, P., Almeida, L., 2002. The FTT-Ethernet protocol: Merging
flexibility, timeliness and efficiency. In: Proceedings of the14th Euromi-
cro Conference on Real-Time Systems (ECRTS’02).

[39] Peiro, S., Masmano, M., Ripoll, I., , Crespo, A., 20/11/2007 2007.
PaRTiKle OS, a replacement for the core of RTLinux-GPL. Real-Time
Systems Group, Polytechnic University of Valencia, Linz, Austria, p. 6.
URL http://www.e-rtl.org/partikle/fileshare/
files/5/PaRTiKle-OS.pdf

[40] Profibus International, October 2007. Application Layer protocol for
decentralized periphery and distributed automation, Specification for
PROFINET, IEC 61158-6-10/FDIS. Profibus International.

[41] Rajkumar, R., Juvva, K., Molano, A., Oikawa, S., 1998. Resource ker-
nels: A resource-centric approach to real-time and multimedia systems.
In: In Proceedings of the SPIE/ACM Conference on MultimediaCom-
puting and Networking. pp. 150–164.

[42] Reddy, A. L. N., Wyllie, J., 1993. Disk scheduling in a multimedia I/O
system. In: MULTIMEDIA ’93: Proceedings of the first ACM interna-
tional confere nce on Multimedia. ACM, New York, NY, USA, pp.225–
233.

[43] Rivas, M. A., Harbour, M. G., 2000. Early experience with an implemen-
tation of the POSIX.13 minimal real-time operating system for embedded
applications. In: 25th IFAC Workshop on Real-Time Programming.

[44] Rivas, M. A., Harbour, M. G., May 2001. Marte os: An ada kernel for
real-time embedded applications. In: Ada-Europe. Leuven,Belgium.

[45] Schantz, R. E., Loyall, J. P., Rodrigues, C., Schmidt, D. C., Krishna-
murthy, Y., Pyarali, I., 2003. Flexible and adaptive QoS control for dis-
tributed real-time and embedded middleware. In: Middleware ’03: Pro-
ceedings of the ACM/IFIP/USENIX 2003 International Conference on
Middleware. Springer-Verlag New York, Inc., New York, NY, USA, pp.
374–393.

[46] Schmidt, D. C., Levine, D. L., Mungee, S., 1997. The design of the TAO
real-time object request broker. Computer Communications21, 294–324.

[47] Seno, L., Vitturi, S., Zunino, C., May 2009. Analysis ofEthernet power-
link wireless extensions based on the IEEE 802.11 WLAN. IEEETrans.
on Industrial Informatics 5 (2), 86–98.

[48] Shankaran, N., Koutsoukos, X. D., Schmidt, D. C., Xue, Y., Lu, C., 2006.
Hierarchical control of multiple resources in distributedreal-time and
embedded systems. In: ECRTS’06: Proceedings of the 18th Euromicro
Conference on Real-Time Systems. IEEE Computer Society, Washing-
ton, DC, USA, pp. 151–160.

[49] Silberschatz, A., Galvin, P. B., Gagne, G., 2008. Operating System Con-
cepts. Wiley Publishing.

[50] Sojka, M., Molnár, M., Hanzálek, Z., 2008. Experiments for real-time
communication contracts in IEEE 802.11e EDCA networks. In:Factory
Communication Systems. IEEE International Workshop on. pp. 89 – 92.

[51] Sojka, M., Molnár, M., Trdlička, J., Jurčı́k, P., Smoĺık, P., Hanzálek, Z.,
2008. Wireless networks – documented protocols, demonstration. FRES-
COR Deliverable D-ND3v2, Czech Technical University in Prague.

[52] Valente, P., Checconi, F., 2010. High throughput disk scheduling with fair
bandwidth distribution. IEEE Transactions on Computers 99(PrePrints).

[53] Wolfe, V. F., DiPippo, L. C., Ginis, R., Squadrito, M., Wohlever, S., Zykh,
I., Johnston, R., 1997. Real-time CORBA. In: IEEE Real Time Technol-
ogy and Applications Symposium. IEEE Computer Society, pp.148–.

[54] Xiao, Y., Li, H., Nov. 2004. Voice and video transmissions with global
data parameter control for the IEEE 802.11e enhance distributed channel
access. Parallel and Distributed Systems, IEEE Transactions on 15 (11),
1041–1053.

[55] Yuan, W., Nahrstedt, K., 2003. Energy-efficient soft real-time cpu
scheduling for mobile multimedia systems. In: SOSP ’03: Proceedings of

the nineteenth ACM symposium on Operating systems principles. ACM,
New York, NY, USA, pp. 149–163.

18

