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This paper describes a technique for performing mapping and scheduling of tasks belonging to an execut-
able application into a NoC-based MPSoC, starting from its UML specification. A toolchain is used in order
to transform the high-level UML specification into a middle-level representation, which takes the form of
an annotated task graph. Such an input task graph is used by an optimization engine for the sake of car-
rying out the design space exploration. The optimization engine relies on a Population-based Incremental
Learning (PBIL) algorithm for performing mapping and scheduling of tasks into the NoC. The PBIL algo-
rithm is also proposed for dynamic mapping of tasks in order to deal with failure events at runtime. Sim-
ulation results are promising and exhibit a good performance of the proposed solution when problem size
is increased.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction the modeling of the platform and applications features in an inde-
Complexity of embedded systems and their applications has
grown continuously in later years. As a consequence of such a
trend, developers are now compelled to conceive optimal ways
in order to perform the design process. Nowadays, platforms are
composed of several heterogeneous processing elements (PEs)
which are capable of executing applications in a concurrent fash-
ion. Multiprocessor System-on-Chip (MPSoC) is a current paradigm
for dealing with the increasing demand for performance, as well as
constraints such as power consumption or real time. In order to
deal with the ever increasing amount of PEs in the system, inter-
connection among cores or processors becomes a key issue. An
ideal interconnection system must provide full connectivity among
the set of PEs which compose the system, minimize the communi-
cations delay between any pair of PEs, use the interconnection re-
sources efficiently, and scale easily as the number of PEs increases.
Network-on-Chip (NoC) is an interconnection paradigm widely
used which represents the best current tradeoff among these is-
sues. Apart from the constraints already mentioned, designer also
faces a non-trivial issue of distributing tasks efficiently among
the available resources in the system.

System Level Design (SLD) is a model-based approach aimed to
increase the throughput in the design process [1]. The key in SLD is
pendent way in the early stages of the design process. Models al-
low the early specification of the application, and the estimation
of the platform properties before the implementation of the sys-
tem. Then, the design space exploration may take place, allowing
the making of key implementation decisions very early in the de-
sign process.

In SLD, the design process involves the use of two kinds of mod-
els: the Platform Independent Model (PIM), and the Platform Spe-
cific Model (PSM). PIM models are used as an initial specification of
the system, without taking into account implementation details. A
PIM describes the behavior and constraints of the system at hand.
PSM is a link between the PIM and a specific implementation plat-
form. A PSM provides information about the behavior of the appli-
cation running on a given platform, as well as allows inferring
some figures of merit such as execution time, power consumption,
and resources usage.

In developing of the PSM, static mapping and scheduling are
two key stages, which consist in deciding the physical placement
in the NoC of each processing element, as well as its workload, in
terms of executable tasks. This paper proposes a methodology for
performing mapping and scheduling of executable tasks starting
from a PIM specification, which takes the form of a UML model [2].

The starting point of such a proposal is an UML specification of
the intended application, which consists of two diagrams, i.e., Class
and State Machine. A transformation tool chain is responsible for
taking the UML model and generating an intermediate representa-
tion, which highlights the data dependences, implementation
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figures of merit, and design constraints. This intermediate repre-
sentation takes the form of an Annotated Acyclic Directed Task
Graph (ADAG) and serves as input to the optimization engine,
which is founded on a Population-based Incremental Learning
(PBIL) algorithm. The optimization engine performs a design space
exploration and decides the workload and placement of each
resource of the system.

On the other hand, this paper also proposes taking advantage of
the optimization engine based on PBIL algorithms for performing
dynamic mapping. Dynamic mapping is performed in execution
time as a result of two potential situations: in the first place, it
could be desirable reallocating the executable tasks onto the avail-
able resources as a consequence of changing operating conditions,
such as network traffic or workload. Secondly, dynamic mapping is
a way to provide fault tolerance. In the event of a failure of a given
resource, the system may adapt itself by reallocating its associated
tasks to non-faulty resources.

The proposed dynamic strategy is aimed to implement fault tol-
erance in the system, as a way to providing some level of reliabil-
ity. If there is a failure in some of the PEs which compose the
system, a PBIL algorithm may find the best reallocation scheme
for the tasks which were running on the faulty resources, for the
sake of guaranteeing their correct execution.

Among the main contributions of this paper it may be men-
tioned the availability of a holistic solution, capable of performing
static mapping and scheduling of executable tasks, starting from an
UML specification. The heart of such mapping and scheduling stage
is an optimization engine based on a multiobjective adaptive PBIL
algorithm. On the other hand, the same multiobjective adaptive
PBIL algorithm is customized for the sake of performing dynamic
mapping of tasks aimed to provide fault tolerance by means of
the reallocation of tasks that were running in faulty processors in
fault-free resources.

The remainder of this paper is organized as follows: Section 2
surveys some of the more relevant reported works in the subject
of this paper. Section 3 shows and describes the proposed solution,
aimed to perform mapping and scheduling, starting from the UML
specification. The modifications made to the basic PBIL algorithm
are presented, as well as the fault-tolerance strategy based on
dynamic mapping. Section 4 shows the experimental results of
testing the proposed approach in the context of a 2D NoC architec-
ture, with a deterministic routing scheme. Final remarks and
conclusions are presented in Section 5.

2. Related work

Currently, embedded systems designers face a set of conflicting
elements, such as performance constraints, applications variability,
reasonable prototyping times, and physical world constraints such
as power consumption or real-time. SLD is an attempt to overcome
these issues, and relies in the idea of using high levels of abstraction
at the early stages of the design process [3,4]. Such a high level spec-
ification demands the use of a given language. There has been two
main trends in this subject: Unified Modeling Language (UML)
[5,6], and Architecture Analysis and Design Language (AADL) [7].
These languages are suitable for developing the PIM of the system,
which may be customized and constrained by means of profiles
and annotations.

Regarding the platforms, the most conspicuous trend on
embedded systems design, is the integration of the whole system
in a single chip (System-on-Chip, SoC). Such integration implies
also the availability of several processing units (multicore and
manycore systems) which are often connected by means of a Net-
work-on-Chip (NoC).

As developing the PSM implies the modeling of the target archi-
tecture, the high level specification model must be transformed
into a common domain semantic, which combines details of both
the specification and the platform. Among the several options
available for such a purpose, a tool called Task Graphs for Free
(TGFF) offers a widely used format to generate and represent
PSM models in a standard fashion by means of ADAGs [8].

The design process of an embedded system which is based on
the NoC paradigm implies two critical stages: mapping and sched-
uling. Such stages affect a set of figures of merit which are often in
conflict. For the sake of dealing with the complexity involved with
mapping and scheduling, some approaches treat each problem
independently [9–11]. Some other solutions [12–14] are able to
perform these two stages in a joint way, but are restricted to
homogeneous architectures, i.e., those multicore architectures
which have a set of identical processing elements. Finally, some
other reported works disregard the communication assessments
in performing mapping and scheduling [15,16].

Singh et al. [17] propose a hybrid strategy for mapping and
scheduling of applications into heterogeneous architectures (i.e.,
multicore architectures with several kinds of processing elements).
The hybrid nature of such approach implies that mapping and
scheduling solutions are calculated in two steps: the computation
of tradeoff points and resource throughput analysis is performed in
design time, because these computations are the most computing-
intensive. Then, a run-time optimizer chooses the best tradeoff
point for a given application which is going to run in the system.
The main problem with this approach is related with its inability
for finding new tradeoff points, if new applications need to be
mapped onto the NoC.

The work reported in [18], is aimed to perform mapping in de-
sign time for heterogeneous architectures. Both computation and
communication assessments are taken into account in the optimi-
zation process, which is performed via a simulated annealing algo-
rithm. Such a kind of algorithm may exhibit local-optimum issues
[19]. On the other hand, population-based approaches are more ro-
bust for dealing with complex optimization problems and multiob-
jective scenarios [20].

In the work described in [21], a solution based on genetic algo-
rithms for performing mapping and scheduling of applications on
heterogeneous architectures is described. Genetic algorithms are
the most known instance of population-based techniques. The
algorithm optimizes the power consumption of the final imple-
mentation, while deals with timing constraints. The target archi-
tecture is a 2-D mesh, and a wormhole routing schema has been
considered for simulating the system.

Table 1 summarizes some of the reported solutions for mapping
of tasks on NoC-based architectures. Several classification criteria
have been taken into account. Second column of Table 1 reports
whether the target architecture of the referred approach is homoge-
neous or heterogeneous. Third column is devoted to the taxonomy
of the approaches according with the moment in which such strat-
egies take place: static for design time, Dynamic for runtime, and
hybrid. Fourth column shows the nature of the optimization engine.

Some of the reported algorithms in Table 1 are Genetic Algo-
rithms (GA), Simulated Annealing (SA), and Integer Linear Pro-
gramming (ILP). The common domain semantic or intermediate
representation is depicted in fifth column of Table 1. As can be
seen, task graphs are the most common solution regarding this is-
sue. Finally, last column of Table 1 shows the objectives that are ta-
ken into account in the optimization process.

As depicted in Table 1, the current proposal targets heteroge-
neous architectures. In the same way, the mapping may be static
or hybrid, depending on whether a recovery fault strategy is going
to be implemented. The optimization engine is based on a PBIL
algorithm, which is multiobjective. The intermediate representa-
tion or common domain semantic for the proposed solution corre-
sponds to a task graph.



Table 1
Summary of the reported mapping solutions.

Reference Target
architecture

Optimization
nature

Optimization algorithm Common domain semantic Optimization objective

Jang et al. [22] Heterogeneous Static Successive relaxation or GA Metric space NoC traffic
Singh et al. [17] Homogeneous Hybrid Custom SDFG Throughput
Antunes et al. [23,24] Homogeneous Hybrid SA (static) and custom

(Dynamic)
TCG Energy

He et al. [25] Heterogeneous Static Mixed ILP Annotated task graph Energy and execution time
Hosseinabady et al.

[26]
Heterogeneous Dynamic Distributed stochastic Task graph Communication energy

Hamedani et al. [27] Homogeneous Static ILP Communication task graph Peak temperature
Wang et al. [28] Homogeneous Dynamic Custom TCG Average hop count
Kaushik et al. [29,30] Heterogeneous Dynamic Custom Task directed graph Multiobjective
Derin et al. [31] Heterogeneous Dynamic ILP Task and architecture graphs Multiobjective
Zhe et al. [32] Heterogeneous Static Artificial bee colony Application task graph Power consumption
Mandelli et al. [33,34] Homogeneous Dynamic Custom Application graph Energy
Habibi et al. [35] Heterogeneous Static Fuzzy and custom Application characteristic graph Message latency and

energy
Huang et al. [18] Heterogeneous Static ILP and SA Task graph Energy
Liu et al. [36] Heterogeneous Static Ant colony Task and core graphs Energy and temperature
Zhong et al. [37] Homogeneous Static Simulated annealing Task graph Energy
Rajaei et al. [21] Heterogeneous Static Custom Task graph Energy
Sepulveda et al. [38] Homogeneous Hybrid Multiobjective evolutionary Application characterization

graph
Latency and power

Sheng et al. [39] Homogeneous Static Quadratic programming Task graph Energy

This work Heterogeneous Static or hybrid PBIL Task graph Multiobjective
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3. The proposed approach

As mentioned before, the proposed approach starts from an
UML specification of the application. A tool chain is used in order
to transform the high-level specification into an intermediate rep-
resentation, which takes the form of a task graph. Such a task graph
is used as the input of an optimization engine based on a PBIL algo-
rithm, which is the responsible for the design space exploration. Fi-
nally, for the sake of providing some level of reliability to the
system, a modified version of the PBIL algorithm is used to imple-
ment a dynamic mapping approach, which reacts as a consequence
of a runtime failure. The three main elements just mentioned, i. e.,
the transformation tool chain, the optimization engine, and the dy-
namic mapping approach, are about to be described in this section.
Fig. 1. Generation of the common domain representation, starting from an UML
specification.
3.1. The transformation tool chain

A high-level UML specification is used to describe the applica-
tion in the early stages of the design process. Such specification
contains only behavioral information and constraints of the design,
as well as indications regarding data dependences among the exe-
cutable objects of the system. On the other hand, the optimization
engine starts from a common domain specification. Such specifica-
tion combines the PIM information, which is present in the UML
model, with specific platform annotations, which represent figures
of merit derived from profiling and modeling. Fig. 1 depicts the
process of converting the UML specification into a task graph,
which represents the common domain specification, in the form
of a TGFF file.

As can be seen in Fig. 1, the initial UML specification is con-
verted in an Ecore metamodel, which is one of the two metamodels
which support the EMF engine [40]. Such conversion is available in
frameworks such as Eclipse [41] and Papyrus [42]. The metamodel
is then converted in a task graph by means of the Ecore2Groove
routine, which is part of the Groove tool set [43]. Finally, the result-
ing task graph is parsed in order to generate a TGFF file, which rep-
resents the input to the optimization engine. The specific-platform
annotations are added at this stage.

In a formal way, the TGFF file represents an Annotated Directed
Acyclic Graph (ADAG), which provides information regarding the
data dependences among the system tasks, as well as implementa-
tion details related with the target architecture. Fig. 2 shows an in-
stance of a given ADAG, where vertices represent executable tasks
of the system, edges show the data dependences among such tasks,
and annotations (which may be provided both for vertices as
edges) provide some useful implementation details.

3.2. Mapping and scheduling of tasks

The PBIL optimization algorithm uses the information provided
by the input ADAG, as the one depicted in Fig. 2, in order to per-



Fig. 2. A given ADAG generated by the code transformation engine.
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form the design space exploration. Such exploration is aimed to
find the best mapping and scheduling solution, according with
some figures of merit. Although mapping and scheduling of tasks
are two highly coupled processes they are going to be explained
independently, for the sake of clarity.
3.2.1. Scheduling of tasks into a NoC
In a heterogeneous architecture, scheduling stage is responsible

for finding an implementation resource (PE) for each task in the in-
put ADAG. The placement of each of such resources is not resolved
yet. The hardware platform offers a set of processing elements
(PEs) with diverse features, so it is necessary to make choices
regarding the implementation for each task of the application.
Fig. 3 depicts a simple instance of a given scheduling performed
starting from an input task graph with five tasks, which are going
to be distributed over a set of four PEs. Since the target architecture
is heterogeneous, there are several kind of PEs that may be poten-
tially used in the tasks implementation. Fig. 3 shows generic
microprocessors, digital signal processors, and IP modules. No pre-
vious decision has been made regarding the nature of the four PEs
which are going to compose the NoC, neither regarding which
tasks are going to be executed on each core. These choices are pre-
cisely the responsibility of the scheduling stage.

It has been supposed that tasks are served in a sequential fash-
ion inside each PE. However, concurrency is allowed among tasks
running in different cores. Although current timing schemas are
much more complex, the former assumption allows predicting
Fig. 3. Scheduling instance in a
the starting and ending times for each task, which is the reason
why this process is referred as the scheduling stage.

As can be seen in Fig. 3, the five tasks of the original ADAG are
distributed among the four PEs of the architecture. Tasks T_01 and
T_02 are scheduled to run in Core A, which is a generic micropro-
cessor. Task T_03 is matched with Core B (a DSP), and so forth.
Some tasks are executed concurrently, since each core is indepen-
dent from each other in the system (as an example, tasks T_02 and
T_03, which are running on different cores, are executed simulta-
neously). Scheduling of tasks affects directly those features of the
system related with computation, such as execution time and
power consumption. Nevertheless, some other features related
with the communication among tasks are influenced also by this
process.

The result of the scheduling stage may be represented by an-
other graph, referred as core graph, in which each vertex repre-
sents a given core (or PE) of the system (which may have been
intended to run several tasks). Edges in a core graph represent data
dependences among cores. Left side of Fig. 4 shows the core graph
resulting from the scheduling process depicted in Fig. 3.

3.2.2. Core mapping
Once the scheduling stage has defined a matching between

tasks and resources, it is necessary to define the physical place-
ment of each core in the NoC. This process is called core mapping
or simply mapping. Fig. 4 shows an instance of the mapping pro-
cess, which depicts the continuation of the scheduling stage of
Fig. 3. As already mentioned, left side of Fig. 4 represents the input
of the mapping stage, often referred as core graph. Right side of
Fig. 4 represents the network architecture (a 2D mesh in this in-
stance) in which the cores are going to be placed.

The core mapping stage has a direct impact in figures of merit
related to communications among tasks, such as link delays, re-
quired bandwidth, traffic patterns, and so on. Features like power
consumption and performance are also affected by the mapping
stage, just because a given mapping solution may lead to high en-
ergy dissipation, related to the communication among tasks or
unacceptable communication delays. After scheduling and core
mapping, each task of the system is assigned to a given core, which
in turns has a physical location in the network. Next subsection de-
scribes the proposed algorithm, which performs scheduling and
core mapping by treating these processes as a whole optimization
problem.

3.2.3. The PBIL algorithm
PBIL algorithms are stochastic search methods which use their

best solutions, in order to achieve some directional information.
Such approach has been used in embedded systems design auto-
mation with promising results [44,45]. The main feature of PBIL
algorithms is the use of a population of potential solutions which
heterogeneous architecture.



Fig. 4. Core mapping instance in a heterogeneous architecture.
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converges toward an optimal. There are some other approaches
based on population, such as genetic or evolutionary algorithms.
The prominent difference of PBIL with respect to other popula-
tion-based techniques is the way in which population is
represented.

Fig. 5 shows an example of such representation, which is often
referred as probability array. Let us suppose that an optimization
problem may be defined by a set of N attributes or optimization
queries. Each attribute may have up to M solution choices, so a gi-
ven solution to the problem is completely defined as a set of N val-
ues in the range from 1 to M. Each column of Fig. 5 represents a
single attribute of the optimization problem, and each entry of
such a column corresponds to the probability of a choice to be used
in the optimal solution. Since each attribute represents a conjoint
probability variable, the sum of values along a single column in
the probability array must be equal to one.

At the beginning of the PBIL algorithm, probability values in the
array must be initialized to ensure maximum population diversity,
i.e., if the amount of choices for a given attribute is equal to M, the
values of the column associated with such an attribute must be ini-
tialized to 1/M. The key after the initialization stage is to generate
populations of potential solutions iteratively. The solutions at each
iteration (generation) of the algorithm are generated from the cur-
rent probability values in the PBIL array, i.e., if some entry in a gi-
ven column has an increased value with respect to the remaining
ones, its associated value shall appear more frequently in the indi-
viduals of the generated population. At each algorithm’s iteration,
the best solutions are chosen and used to increase the associated
probabilities in the array.
Fig. 5. A PBIL probability array.
Increasing some single value in a given column implies that the
remaining values must be decreased in consequence. The way to
perform such a probabilities update is a modified version of the
Hebbian rule [46], as shown in Eq. (1). In Eq. (1), it is supposed that
for a given attribute j, the best solution obtained is choice k. Suf-
fixes Old and New in Eq. (1) are meant to denote the old and new
versions of each probability, respectively.

Pði;jÞNew
¼

Pði;jÞOld
þ ð1� Pði;jÞOld

Þ � LR if i ¼ k

ð1� Pðk;jÞNew
Þ � Pði;jÞOld

1�Pðk;jÞOld
if i – k

8<
: ð1Þ

First part of Eq. (1) shows that if the current entry of the array (Pij)
resulted to be the associated with the optimized found solution,
such probability in the PBIL array must be increased, by an amount
that is proportional to the LR parameter. In the same sense, the
remaining values of the actual column must be decreased by pre-
serving of their relative weights. This is performed in the second
part of Eq. (1).

The learning rate parameter, which is represented in Eq. (1) as
LR, is the responsible of controlling the convergence speed of the
PBIL algorithm. High values of LR may lead to quick convergence
at expense of a low quality of the found optimal. Alternatively,
low values of LR are related to a better solution-space exploration,
which often implies higher convergence times. An adaptive version
of the PBIL algorithm has been used in the proposed mapping and
scheduling approach. The latter implies the change of the LR
parameter of the Eq. (1), in order to speed up the convergence pro-
cess. LR parameter allows to control the speed in which the prob-
ability array approaches a given optimal. To favoring space
exploration (i.e., the process of searching over the overall solutions
space), LR parameter must be kept at low values at the early itera-
tions of the PBIL algorithm. When the algorithm approaches to a gi-
ven optimal, the LR parameter may be increased for the sake of
reaching a solution more quickly (this is often referred as space
exploitation).

The PBIL array entropy is used in order to assess the status of
the algorithm i.e., whether the algorithm is close or not to finding
a given optimum. Entropy’s calculation is performed in the same
way as is done in information theory, as shown in Eq. (2). The value
of E in Eq. (2) is maximal when all the values in the probability ar-
ray are equal. As some entries of each column in the array become
higher than the remaining ones, entropy value decreases. In the
case in which a unique entry of each column of the array is equal
to one (the remaining ones should be equal to zero), the associated
entropy value will be zero.

E ¼ � 1
N
�
XM

i¼1

XN

j¼1

Pði;jÞ � LogMðPði;jÞÞ ð2Þ
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A learning rule is the way in which the LR and E parameters are re-
lated. A sigmoidal learning rule was used to improve the speed of
convergence of the proposed PBIL algorithm [47]. Formalization of
such a sigmoidal relationship is shown in Eq. (3).

LR ¼ LRMIN þ
LRMAX � LRMIN

1þ eð2DE�DÞ ð3Þ

Algorithm 1 summarizes the basic PBIL optimization process. The
meanings of the routines depicted in the algorithm, such as Upda-
te_Array, Learning_Rule, or Entropy, are straightforward, as described
so far. The termination condition for the algorithm is given in terms
of a tolerance, since waiting until de value of E becomes equal to
zero is very prohibitive.

Algorithm 1: Basic PBIL algorithm

Input: An M � N probability matrix, called P
Output: An optimized solution for the problem at hand
begin

Pði; jÞ ¼ 1
M ;81 6 i 6 M and 1 6 j 6 N;

repeat Pop = Create_Population(P);
Fitness = Evaluate_Population(Pop);
Best = Choose_Best(Pop,Fitness);
E = Entropy(P);
LR = Learning_Rule(E);
P = Update_Array(P,Best,LR);

until (E > Tolerance);
return Best;

end
3.2.4. Mapping and scheduling by means of a PBIL algorithm
The first stage in using a PBIL algorithm for solving a given opti-

mization problem, is the definition of a suitable PBIL array repre-
sentation. Fig. 6 shows the proposed representation for the
mapping and scheduling problem. As can be seen, such representa-
tion is composed by two matrices. The first matrix, which is placed
in the left-anterior side of the figure, is used to determine the type
of resource that must be placed on each tile of the NoC. The right-
Fig. 6. Proposed PBIL array for
front side matrix determines the physical placement of each task of
the system. Although the arrays depicted in Fig. 6 are not a direct
representation of mapping and scheduling, yet provide a com-
pletely defined solution to both processes. As explained before, at
the end of the optimization algorithm, each column of the matrices
in Fig. 6 will have an entry which stands out from the others,
meaning that a given choice is more probable to provide an opti-
mal solution.

Arrays P and Q in Fig. 6, may be updated accordingly with the
adaptive process depicted in Algorithm 1, with very slight modifi-
cations. Initialization of such arrays must take into account each
array’s dimensions, as explained before. Finally, the total entropy
may be calculated as the mean of the entropies of both matrices.

There may be several objectives or figures of merit to optimize
while conducting the design space exploration. A weighting vector
and an aggregation approach have been used for the sake of com-
bining the assessments related to such objectives. By changing the
relative values present in the weighting vector, a designer may give
more importance to some objectives with respect to the remaining
ones. Several solutions with different tradeoffs among the optimi-
zation objectives may be generated in such a way. For the sake of
avoiding that some algorithm executions aimed to generate differ-
ent tradeoffs among the objectives, converge to the same optimal,
a kernel approach based on distance [48] was used in this
approach.
3.3. Reliability through hybrid mapping

The introduction of reliability features at the design stage is
gaining relevance, as a consequence of three main facts [49]: now-
adays systems are more prone to dissipate higher quantities of en-
ergy, current manufacturing process into the submicron scale are
threatened by higher variability, and complexity in embedded sys-
tems is experiencing exponential rises. One of the most common
approaches aimed to improving system reliability is fault toler-
ance, which is nothing but the ability of the system to provide cor-
rect service operation, even though some failures have taken place
in the system. In turn, fault tolerance may be accomplished by
means of redundancy.
mapping and scheduling.
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There exist two kinds of redundancy: spatial and temporal. In
spatial redundancy, several hardware independent resources are
aimed to the execution of each task of the system, so if there is a
failure event in some given resource, the remaining ones are able
to provide a correct result. In contrast with spatial redundancy,
temporal redundancy does not use several resources for the execu-
tion of a single task. Each task is mapped to a single hardware re-
source for its execution. If a failure event is detected, the execution
stops and the tasks associated with the faulty PE are issued for
their execution on a different resource. This means that in tempo-
ral redundancy, a task will be executed only on a single resource at
a given time.

The mapping and scheduling of tasks as described so far are sta-
tic in nature, since they are computed in design time. Dynamic
mapping occurs at runtime and it refers to the process of reallocat-
ing tasks in the nodes of the NoC, as a consequence of two possible
scenarios: in the first place, tasks may be reallocated to deal with
changes in the operating conditions, such as the traffic, or the
workloads in some nodes. Secondly, dynamic mapping may be
used to deal with faulty nodes, in order to remap tasks to nodes
which are operating correctly. In this work, we propose a temporal
redundancy strategy, in order to provide some degree of fault tol-
erance. In terms of the nature of the mapping calculations, our ap-
proach may classified as hybrid, since part of the mapping
calculations is performed in design time and the remaining map-
ping actions take place in runtime.

Some previous works suggest that Dynamic mapping calcula-
tions may last up the same amount of time used for static calcula-
tions [44]. In fact, in order to test the proposed dynamic solution,
static mapping formulations are used as worst-case problems.
The latter makes sense when considering that in a static mapping
scenario the amount of resources and tasks to be mapped corre-
sponds to the upper boundary of the same amounts in the dynamic
problem (i.e., whereas dynamic mapping deals with a subset of
tasks and resources, static mapping faces the whole set).

High time delays must be avoided in the dynamic mapping cal-
culations, since such calculations take place in runtime. For such a
reason, our mapping proposal relies on mapping solutions previ-
ously calculated in design time. The customized version of the PBIL
algorithm, as the one described in Algorithm 1, is used for calculat-
ing mapping solutions to some defined failure scenarios, which
shall be available for its use in runtime. Fig. 7 depicts such an
approach.
Fig. 7. Proposed fault tolerance approach.
Strictly, the mapping approach depicted in Fig. 7 must be clas-
sified as hybrid, since part of the mapping calculations are per-
formed in design time and some other portion of the work takes
place at runtime. Annotations provided in the input ADAG must in-
clude failure probabilities for each resource in the implementation
platform, which is often the case in applications aimed to provide
some level of reliability. By means of such failure probabilities, it is
possible inferring some selected failure scenarios (i.e., those sce-
narios which are more prone to appear at runtime). The generator
of potential failures feeds the PBIL optimization engine which is
the responsible of finding remapping schemas in response to such
given failures.

The PBIL algorithm may use a simple matrix representation for
the finding of mapping schemas as a response to failure events, just
because at runtime placing of resources in the NoC must have been
already decided. This is the reason why the PBIL array for dynamic
mapping takes the form of the matrix depicted in Fig. 5, instead of
the two-matrix representation, which is shown in Fig. 6. In Fig. 5,
the PBIL matrix has dimensions M by N, where N shall be equal
to the amount of tasks that must be remapped and M shall be
the amount of non-faulty resources, available for tasks execution.
As already explained, each entry on the PBIL matrix, represents
the probability of some task to be mapped on a given resource.
The PBIL algorithm for dynamic mapping may then take the form
described in Algorithm 1.

At the end of the optimization process, the mapping solution is
represented by an integer-valued vector with N entries, where each
of them represents an optimal mapping decision with respect to a
given associated task. As a consequence, it can be said that the pro-
posed mapping solution does not impose a meaningful storing
overhead to the system, since the mapping solution to each failure
scenario may be represented as a single vector. The amount of fail-
ure scenarios that should be taken into account in design time shall
depend on the time that the designer wants to expend in the per-
forming of pre-calculations, and, in lesser degree, on the storage
constraints for saving the mapping solutions at runtime.

Both single-node and multiple-node failure scenarios may be
considered in our remapping approach. Although next section
shows only simulation results for single-node failure scenarios,
the proposal described so far imposes no restriction to the nature
of the failure scenario. Next section discusses some further consid-
erations regarding this issue.
4. Experimental results

4.1. Static mapping and scheduling of tasks

Several tests regarding synthetic and real-world mapping and
scheduling problems were performed to the proposed approach,
which was described in Section 3.2.4. For simulation purposes,
the target architecture was set as a 2D mesh NoC with changeable
size. A deterministic XY algorithm was used for simulating the
routing of information across the network. The simulations were
conducted by means of Matlab, which was running on a PC with
a Core i7 processor and 8 Gbytes of RAM memory. A sigmoidal
learning rule was used for implementing the adaptive behavior
of the PBIL algorithm [47].

Regarding tests performed with synthetic problems, several
convergence times were obtained with respect to changing values
of both target NoC size and problem size (in terms of the amount of
tasks in the input ADAG). Fig. 8 depicts the behavior of the conver-
gence time as a function of the mentioned changing parameters.

Four optimization objectives were taken into account in the
mapping and scheduling stage, namely, completion time, power
consumption, mean number of hops for each message traveling



Fig. 8. Behavior of the convergence time as a function of changing sizes of synthetic
problems. (a) Changing problem size. (b) Changing network size.

Table 2
Implementation results for the E3S benchmark.

Application Amount of tasks NoC size Mean convergence time [s]

Auto-Indust 24 4 � 4 300.04
5 � 5 421.28
6 � 6 744.51
7 � 7 1169.50

Consumer 12 4 � 4 265.64
5 � 5 450.86
6 � 6 750.72
7 � 7 1305.97

Networking 13 4 � 4 196.85
5 � 5 291.05
6 � 6 441.29
7 � 7 640.3

Telecom. 30 4 � 4 105.31
5 � 5 243.51
6 � 6 378.92
7 � 7 615.52
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across the network, and peak bandwidth on the set of communica-
tion links. Regarding synthetic problem simulations, there may be
up to fifty resource types, which corresponds to the value of M in
Fig. 6.

In Fig. 8.a, the abscissa represents the size of the problem, in
terms of the number of tasks of the input ADAG, for a network of
5 by 5 tiles. Fig. 8.a shows a nearly quadratic behavior of the con-
vergence time with respect to the size of the optimization problem,
which makes sense when considering that the internal representa-
tion of the PBIL algorithm is based on two bidimensional matrixes,
and the size of the input ADAG has a direct relationship to the
dimensions of such matrixes. On the other hand, Fig. 8.b shows
the dependence between the convergence time and the size of
the tile network. Several instances of the algorithm were executed
with the amount of tasks fixed and equal to thirty. The tile network
size was changed from 9 (3 � 3 mesh) to 49 (7 � 7 mesh), leaving
the rest of parameters unaltered. Again, there is a quadratic rela-
tionship between these two values, since the tile network size is
one of the dimensions of the PBIL matrix representation. Similar
tests were conducted regarding the dependence of convergence
time with respect to the number of resource types. The quadratic
behavior appeared again.

For the sake of performing further tests to the proposed map-
ping and scheduling algorithm, the Embedded System Synthesis
Benchmarks Suite (E3S) was used. E3S is a widely used benchmark
for testing of embedded systems [50–53]. The benchmark contains
profiling information regarding real applications such as automo-
tive industry, consumer, networking, telecom, and office automa-
tion. The implementation resources are composed by a set of up
to seventeen PEs. Such set includes AMD, IBM Power PC and NEC
processors, among others. Only the ‘‘cords’’ profiles were used,
since they are the only ones which take into account traffic infor-
mation. The remaining test conditions for the mapping and sched-
uling algorithm are the same described so far.

Table 2 depicts the behavior of the convergence time for several
applications of the E3S suite. As shown in such a table, there is
again a quadratic behavior regarding the relationship between
convergence time and size of the network.

Although some of the convergence times depicted in Table 2
seem restrictive, two important facts must be taken into account,
for the sake of using the proposed PBIL algorithm in real design
scenarios:

� The mapping and scheduling stage is performed in design time,
so a time surplus related to the optimization process is afford-
able. Due to the complexity related to the mapping stage in
the NoC design process, it is necessary to establish an appropri-
ate time budget for such a stage.
� The PBIL optimization algorithm was implemented in Matlab,

by using a completely sequential coding. The convergence times
are susceptible of improvement by using different development
tools for the algorithm implementation or by parallelizing the
algorithm itself. Regarding PBIL algorithm parallelization, a
quick inspection performed to Algorithm 1 and Fig. 6 allows
inferring that each column of the PBIL matrices may be pro-
cessed independently. Then, the creation of new individuals,
the entropy calculation, and the updating of the column proba-
bilities, may be performed in a concurrent fashion, for the sake
of speeding up of the convergence process.

Fig. 9 shows the evolution of the objective values, for the Auto-
motive application in the E3S suite. The mapping and scheduling
stage was performed on a 4 � 4 NoC, taking into account the same
four objectives used in the previous section: completion time,
power, number of hops, and peak bandwidth. As with previous in-
stances of the mapping and scheduling optimization, the band-
width values have been normalized with respect to a value of
100 MHz. Fig. 9 also shows how the objectives are decreased to
their minimum values whilst the algorithm converges. Step-like
behavior of some of the graphs is related to the drastic changes
performed to the optimization objectives, as a consequence of a
change in the optimal solution.
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Fig. 9. Evolution of the optimization objectives for the E3S Benchmark.

Fig. 10. A MPEG2 decoder representation.
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Traffic among tasks, which is represented by the number of
hops and required bandwidth in Fig. 9, depends on the application
itself and also on the mapping schema chosen by the optimization
algorithm. Different input task graphs will lead to different traffic
patterns across the network. The mapping schema may change
such patterns by grouping the communicating tasks in the applica-
tion and then reducing the required bandwidth between nodes. In
any case, by taking into account figures of merit related to commu-
nication features in the optimization stage, it is possible to deal
with such features. As already mentioned, in our tests such figures
of merit were the number of hops and the required peak
bandwidth.

4.2. Remapping based on PBIL

Fig. 10 shows a parallelized representation of a MPEG video de-
coder [54], which was used for testing the proposed remapping ap-
proach. The figure shows how some of the processes related to
MPEG decoding must be performed in a sequential way. Such is
the case of the block which performs the dispatching of Groups
of Pictures (GoPs) and the block which performs variable length
decoding (VLD), Inverse Scan (IS), and Inverse Quantization (IQ).
On the other hand, the Inverse Discrete Cosine Transform (IDCT)
may be performed concurrently over different blocks of informa-
tion, so four independent blocks have been devoted for such
calculations.

Each processing block of Fig. 10 has been associated with a task
of the input ADAG for the mapping algorithm based on PBIL. Labels
have been added above each block for representing the corre-
sponding task in the input ADAG. Several simulations were also
performed for MPEG decoders represented by input ADAGs with
sizes of 24 and 36 tasks.

For the sake of comparing the remapping results of the pro-
posed solution with a previously reported work, the NoC target
architecture used to evaluate the proposed dynamic mapping ap-
proach was a 3 � 3 2D mesh, composed by RISC and DSP proces-
sors, as shown in Fig. 11. In such a figure, there are nine nodes or
tile spaces (labeled from n1 to n9) representing the processing ele-
ments and twelve communication links among the different nodes
(labeled from L1 to L12). Placement of the PEs in the network has
been previously decided by means of a static mapping as the one
explained in Section 3. A deterministic XY routing algorithm was



Fig. 11. Target NoC for the MPEG2 decoder.

Table 3
Mean degradation for several executions of hybrid mapping algorithm.

Problem size (number of
tasks)

Completion time
degradation [%]

Bandwidth
degradation [%]

12 0 6
24 0.17 20.02
36 2.83 0.90
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used for simulating the routing of information into the network.
The PBIL optimization was performed over two conflicting objec-
tives: first, the completion time of the application, which may be
calculated as the maximum time stamp associated with the execu-
tion of tasks in the whole system. The second optimization objec-
tive was the peak bandwidth of the target NoC. This figure of merit
may be calculated as the maximum value of bandwidth require-
ments for links in the network, once the mapping has been
performed.

According with previous discussion, the worst case scenario for
the remapping of tasks agrees exactly with the static mapping
problem, in which the whole set of resources and tasks must be ta-
ken into account. This approach was the adopted for the mapping
tests performed with the MPEG2 decoder.

Fig. 12 shows the convergence times for the PBIL algorithm. As a
reference, results of PBIL optimization are compared with those re-
ported in [31]. In such a case, the optimization of the remapping
schema was performed by means of an Integer Linear Program-
ming (ILP) algorithm. As shown in Fig. 12, ILP approach exhibits
a better performance than PBIL for small problems. However, if
the number of tasks increases, optimization through ILP algorithm
becomes prohibitive. Mean ILP convergence time for a 36-tasks in-
put ADAG is around 1700 s. PBIL mean convergence time is around
one order of magnitude below this value.

Quality of the remapping solutions may be measured in terms
of the degradation caused to the optimization objectives, once
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Fig. 12. Comparison between PBIL and ILP remapping optimization.
the tasks have been reallocated to the non-faulty resources. Best
dynamic mapping solutions can deal with node failures, without
demoting the original values of the objectives (which were already
optimized in the static mapping stage). Table 3 shows the mean
relative degradation obtained from the remapping of the tasks
with respect to the original static mapping solution, as a result of
a single node failure. As can be seen, there is a mean degradation
of 5% of the optimization objectives as a consequence of the
remapping of the tasks.

After several executions of the PBIL algorithm for dynamic map-
ping, it could be observed that failures on node 5 (n5 in Fig. 11) are
much more severe than for the remaining nodes. When there is a
failure in node 5, dynamic mapping may lead to degradations up
to 90%. Node 5 is also present in all the optimal solutions obtained
from the static mapping process. By excluding this critical node of
the set of potentially faulty resources, as is done in [31], degrada-
tion caused as a consequence of remapping, may be drastically im-
proved. This behavior may be explained by realizing that the n5
node has an important position in the network, and it represents
the only RISC node which is connected directly to the four available
DSPs. It is logical that in the static mapping stage, a significant
number of tasks were allocated to such a critical node. In other
words, given its position and the nature of its connections in the
network, node n5 is unsuitable for temporal redundancy in a fail-
ure event. Therefore, different fault tolerance strategies, such as
the use of static redundancy should be considered for this node.

In the same sense, some failure scenarios may be impractical or
may lead to paradoxical situations. For instance, let us consider a
scenario in which nodes 2 and 4 (n2 and n4) of Fig. 11 have failures,
whilst node 1 (n1) is working correctly. The generator of potential
failures of Fig. 7 must include a correction mechanism, in such a
way that the PBIL algorithm discards the node n1 as a potential
mapping target, and treat it as an additional faulty resource.

Finally, by changing the relative values of the weighting vector,
already described, it was possible to construct a near-Pareto curve,
which relates the two optimization objectives considered in the
MPEG2 remapping problem. Fig. 13 depicts the curve derived from
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several simulations for different problem sizes. The weighting
strategy allows obtaining several tradeoff solutions among the
optimization objectives, which may be an appealing feature for
the designer.

5. Conclusions

A mapping and scheduling solution has been described and
tested, using as target architecture a NoC, and starting from a
UML specification. The mapping and scheduling problems have
been treated as a conjoint optimization problem, and solved by
means of a PBIL algorithm. A fault tolerance approach, based on
the PBIL optimization algorithm was also presented.

With respect to the adaptive PBIL optimization algorithm, the
promising results suggest that it is a better tradeoff in terms of per-
formance, when compared with other reported solutions, such as
ILP. Adaptive PBIL algorithm seems to be very suitable for dealing
with complex multiobjective problems.

Regarding the mapping of tasks in runtime, the performance of
the PBIL approach was assessed in terms of both convergence time
and mean degradation of the optimization objectives, as a conse-
quence of the remapping strategy for dealing with node failures.
Convergence times resulted to be better for problems of higher
size, when compared with reported results with ILP optimization.
With respect to the mean degradation of the objectives, it was
up to 20% with respect to the original optimized values.
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