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Abstract

High-level modeling languages and standards, such as Simulink, SysML, MARTE and AADL (Architecture Analysis
& Design Language), are increasingly adopted in the design of embedded systems so that system-level analysis,
verification and validation (V&V) and architecture exploration are carried out as early as possible. This paper presents
our main contribution in this aim by considering embedded systems architectural modeling in AADL and functional
modeling in Simulink; an original clock-based timing analysis and validation of the overall system is achieved via
a formal polychronous/multi-clock model of computation. In order to avoid semantics ambiguities of AADL and
Simulink, their features related to real-time and logical time properties are first studied. We then endue them with
a semantics in the polychronous model of computation. We use this model of computation to jointly analyze the
non-functional real-time and logical-time properties of the system (by means of logical and affine clock relations).
Our approach demonstrates, through several case-studies conducted with Airbus and C-S Toulouse in the European
projects CESAR and OPEES, how to cope with the system-level timing verification and validation of high-level
AADL and Simulink components in the framework of PoLycHrONY, a synchronous modeling framework dedicated to

the design of safety-critical embedded systems.
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1. Introduction

Due to the fast development of hardware and soft-
ware in recent years, embedded systems are featured by
their high-performance and their dramatically increased
complexity. At the same time, the overall cost and time
to market are required to be reduced as much as possi-
ble, while improving their reliability.

Raising level of abstraction and early-phase vali-
dation in system design allow for an effective devel-
opment in response to the previous issues, and they
have received great attention from the system-level de-
sign community. High-level standardized modeling lan-
guages, such as Simulink [1]], Systems Modeling Lan-
guage (SysML) [2], Architecture Analysis & Design
Language (AADL) [3], the UML Profile for Model-
ing and Analysis of Real-Time and Embedded Systems
(MARTE) [4]], AUTOSAR (AUTomotive Open System
ARchitecture) [5], and EAST-ADL [6] are gradually
adopted for system specification. In particular, AADL
permits the fast yet expressive modeling of a system, in-
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cluding software architecture, execution platform, and
their binding. Early-phase analysis and validation, e.g.,
schedulability, reliability, and allocation, can be rapidly
performed based on the AADL models [7], [8l], [9],
(O], (110, [12).

Although AADL provides a fast design entry, there
still exists critical challenges, such as unambiguous
semantics, timing analysis, formal verification, co-
modeling, distribution and simulation. In particu-
lar, timing analysis of high-level and possible het-
erogeneous models, system architecture/behavior co-
modeling, formal verification of the system correct-
ness, and simulating the mapping of concurrent soft-
ware components onto target parallel architecture, are
still difficult to be addressed. To address these issues,
both expressive formal models and complete tool chains
are required, based on which the previously mentioned
verification and validation are enabled.

In this paper, we propose, based on previous contri-
butions [12]], [13]], [14], the formal yet expressive timed
modeling of AADL to support early-phase analysis, val-
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idation, architecture exploration, semantic-preserving
transformation, and co-modeling with Simulink. In
our approach, the polychronous model of computation
(MoC) Porychrony [15] is adopted as the common and
back-end formal model. This model enables the follow-
ing formal techniques:

o static analysis, including determinism identifica-
tion and deadlock detection [16];

o profiling-based analysis of real-time characteris-
tics of a system [17];

o logical clock calculus to analyze the relations be-
tween multiple dependent or independent clocks.
Furthermore, the resulting clock relations, together
with data dependency, are used to check causality
problems [[16];

o affine clock calculus dedicated to analyzing affine
relations between clocks [[18]];

o real-time scheduling and allocation through the
Sy~NDEX tool [19];

o co-simulation of AADL specifications and demon-
stration using the VCD (Value Change Dump)
technique [20].

To implement these tasks, the high-level AADL and
Simulink models and their associated timing properties
and constraints are transformed into polychronous mod-
els [[15]], [21], via SSME models (SioNaL Syntax Model
under Eclipse) [22]. Porycarony [22] is an Eclipse
toolset, allowing AADL model transformation to the
SiGNAL language [21] through an SSME meta-model as
well as supporting the previously mentioned analysis.
Two case studies, developed in the framework of the
OPEES project [23] and the CESAR project [24], are
used in this paper to show the effectiveness of our con-
tribution to system-level modeling, transformation and
analysis.

Outline. Some related work are first summarized in
Section[2] Section [3]briefly introduces AADL via a tu-
torial case study. Section [4] gives a short description to
PorycHroONY and the SiGNAL language. Section[5|presents
our main contribution to AADL modeling, transforma-
tion and timing analysis, and case studies in Section [6]
are then used to illustrate our approach. Finally, conclu-
sion is drawn in Section[7l

2. Related work

AADL provides an efficient support to model and an-
alyze complex embedded systems. In order to perform
formal validation and analysis on AADL models, for-
mal models and frameworks are widely used in the pro-
cess [25} 10l 26, 27, [7, [8, 111 [28]]. We follow the simi-
lar approach, but in comparison, we concentrate on the

formal timing analysis of the system and co-modeling,
which include clock calculus, affine clock relations, pro-
filing, and architecture exploration. A more detailed
comparison is given in the next.

The AADL2Fiacre project [25] aims at transform-
ing models such as AADL into the Fiacre intermediate
model, which is compiled in order to be used in model
checkers, e.g., CADP [29] and TINA [30]]. In compar-
ison, both behavioral, architectural and timing aspects
of embedded system are considered in our framework,
and our verification and analysis tools are, either di-
rectly used on our polychronous model, or seamlessly
connected to the model semantically.

AADL2BIP [10] allows the simulation of AADL
models, as well as application of specific verification
techniques: state exploration or component-based dead-
lock detection. This work takes into account threads,
processes and processors as well as AADL behavior
annex (BA), but does not include the AADL temporal
properties and communication protocols.

The main objectives of AADL2Sync [26], [27] are
to perform simulation and validation that consider both
system architecture and functional aspects. Various
asynchronous aspects of AADL, e.g., task execution
time and clock drifts, are taken into account. In addi-
tion, task schedulers are generated for tasks and shared
resources scheduling. Compared to our work, the main
differences are: we use polychronous/multiple clocks to
handle non-determinism, not “oracles” with the master
clock in AADL2Sync, thus non-determinism is trans-
parent to users; we do not use the “activation condition”
in SCADE [31]] for component activation, as the poly-
chronous clock mechanism is necessary for our formal
clock analysis; the modeling of both input and output
frozen is implemented in our approach, while only out-
put delay is considered in AADL2Sync; the scheduling
of share resources, such as FIFO (First In First Out), is
addressed by the compiler in our approach, unlike by
the imported schedulers in AADL2Sync.

In the Compass Approach [§], the SLIM (System-
Level Integrated Modeling) language is used to describe
nominal hardware and software operations, as well as
fault-related modeling and handling. Bounded SAT-
based and symbolic model checking can be performed
on the SLIM language. In comparison, we work does
not consider fault and probabilistic models. However,
we take advantage of a logical clock model, which is
distinguishing. It is also possible to perform symbolic
model checking and formal timing analysis techniques
on our polychronous model.

The AADL2Maude tool[11] concentrates on the am-
biguity of certain AADL semantics and thus intro-



duces a real-time rewriting logic semantics, for a behav-
ioral sub-set of AADL. Simulation and model check-
ing based on LTL[32] are enabled in AADL2Maude. In
comparison, our work considers both behavioral and ar-
chitectural AADL specification.

The Ocarina tool [28] aims at providing a rapid pro-
totyping for distributed embedded systems specified in
AADL. It also provides scheduling analysis capabilities
via Cheddar [7]], connection with Petri Net based formal
verification tools, and code generation for Ada. Actu-
ally, our work considers both semantic aspects and ar-
chitectural aspects of AADL, as well as timing analysis,
performance analysis and distribution.

The Cheddar project [7]] mainly focuses on schedul-
ing issues of AADL specifications. Cheddar is there-
fore complementary to our framework in dealing with
AADL scheduling.

In addition, there are similar works in the auto-
motive domain, such as [33l [34], outcomes from the
TIMMO-2-USE project [35]. They mainly consider
AUTOSAR (AUTomotive Open System ARchitecture)
[S] and its complement EAST-ADL [6]. A language,
called TADL2 [35]], has been proposed to deal with tim-
ing characteristics and analysis. In comparison, we con-
centrate on a clock-based timing modeling and analy-
sis, rather than event chain constraints and probabilistic
models. Event chain constraints are mainly addressed
by controller synthesis in PoLycHroNY [36].

Previously presented related work mainly focuses on
pure AADL specification and its variants. Little re-
search work has been done to deal with both tempo-
ral analysis and system co-modeling and simulation, for
instance, consider architectural specification in AADL
and functional specification in other languages or for-
malisms, such as Simulink and FSMs (Finite State Ma-
chines). Our work mainly addresses these aspects,
which distinguishes from the previously mentioned re-
lated work.

3. Introduction to AADL

AADL is a Society of Automotive Engineers (SAE)
standard dedicated to modeling embedded real-time
system architectures. As an architecture description
language, based on a component modeling approach,
AADL describes the structure of systems as an assem-
bly of software components allocated on execution plat-
form components together with timing semantics.

3.1. Architecture

In AADL, three distinct component categories are
provided: 1) software application components which in-

clude process, thread, thread group, subprogram, and
data components, 2) execution platform components
that model the hardware part of a system including (vir-
tual) processor, memory, device, and (virtual) bus com-
ponents, and 3) composite component that is a system
which models a component containing execution plat-
form, application software or other composite compo-
nents.

System : ProducerConsumer / ProducerConsumer

rProdCons
sysEnv P sysOperatorDisplay
pStart pStart  pProdTimeOut > pProdTimeQut
pStop pStop  pConsTimeOut [=> pConsTimeOut

Processorl

Figure 1: The Producer-Consumer case study in AADL (system
level)

In the following, we use an OPEES tutorial case
study, called Producer-Consumer, to illustrate progres-
sively these AADL models. The system (in Figure [I)
is in charge of producing and consuming data which is
communicated through a shared data resource. It in-
cludes several functions allowing the producer and con-
sumer to communicate and to access data:

o sysEnv system models the environment raising

events to start/stop the process prProdCons.

o sysOperatorDisplay system signals when a time-

out occurred on data production or consumption.
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Figure 2: The Producer-Consumer case study in AADL (process
level: the prProdCons process in AADL)

pProdStop

o prProdCons process communicates with the pre-
vious two systems. It contains four threads: th-
Producer, thConsumer, thProdTimer and thCon-
sTimer (Figure 2). A data Queue is shared by
threads thProducer and thConsumer: thProducer
produces data in it, which in turn are consumed
by thConsumer. The timer thProdTimer (resp.



thConsTimer) manages timer services for thPro-
ducer (resp. thConsumer). It permits to start,
stop the timer and send a timeout event (pTimeOut)
when the timer has expired.

o Processor Processorl is responsible for the execut-

ing of the process prProdCons.

Each component has a type, which represents the
functional interface of the component and externally ob-
servable attributes. Each type may be associated with
zero, one or more implementation(s) that describe the
contents of the component, as well as the connections
between components.

3.2. Properties

AADL properties provide various information about
model elements of an AADL specification. For exam-
ple, a property Dispatch_Protocol is used to provide
the dispatch type of a thread. Property associations
in component declarations assign a particular property
value, e.g., Periodic, to a particular property, e.g., Dis-
patch_Protocol, for a particular component, e.g., thPro-
ducer thread. In this paper, we are mainly interested in
two types of properties:

o timing properties, such as Input_Time (resp. Out-
put_Time) of ports, that assure an input-compute-
output model of thread execution. We will analyze
the timing semantics and associated timing prop-
erties in Section For example, the following
timing properties are assigned to the thread thPro-
ducer:

thread thProducer
properties
Dispatch_Protocol => Periodic;
Period => 4 ms;
Deadline => 4 ms;
Compute_Execution_Time => 2 ms;
end thProducer;

o the binding properties assign hardware plat-
forms to the execution of application components.
For example, the following property Actual_Pro-
cessor_Binding specifies that process pProdCons is
bound to processor Processorl:

Actual_Processor_Binding =>
Processorl applies to pProdCons;

3.3. Behavior

The behavior annex provides an extension to AADL
so that complementary behavior specifications can be
attached to AADL components. The behavior is de-
scribed with a state transition system equipped with
guards and actions.
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Figure 3: The behavior of AADL Producer thread

We take the thProducer thread as an example. Three
states, stopped, running, and blocked, are specified to-
gether with the transitions between them (Figure [3).
From the initial state stopped, when a pProdStart event
is received, the shared data Queue is emptied, and the
transition enters into the running state. Priorities are as-
signed to determine the transition to be taken, if more
than one transition out of a state evaluates its condition
to true. The higher the priority number is, the higher the
priority of the transition is.

A brief introduction has been given in this section. In
the next section, the SiGNAL language and its associated
environment PoLycHRONY is presented. They provide the
formal model support to AADL in our approach.

4. Introduction to SigNaL and PoLycHRONY

Synchronous languages are dedicated to the design
of synchronous reactive systems [37]]. Their mathemat-
ical basis favors the trusted design of safety critical real-
time systems. Among these languages, the SiGNAL lan-
guage stands out for its capability to describe circuits
and systems with multi-clock [15]], and to support re-
finement [38]], i.e., the ability to assist and support sys-
tem design from the early stages of requirement specifi-
cation, to the later stages of synthesis and deployment.
These characteristics make the SiGNAL semantics much
closer to AADL semantics than other pure synchronous
or asynchronous models, and simplify the system vali-
dation.

4.1. The SiGNAL language

SigNAL is a declarative language expressed within
the polychronous MoC. It handles unbounded series of
typed values (x;).n, called signals, denoted as x, and
implicitly indexed by discrete time. At any instant, a
signal may be present, at which point it holds a value; or



absent and denoted by L in the semantic notation. The
set of instants where a signal x is present represents its
clock, noted X. Two signals are said to be synchronous
if they are both present (or absent) at each instant.

SigNAL is the interface language of a design environ-
ment, called Porycurony [15]], which provides a formal
framework for the trustworthy system design, as well as
simulation for deterministic specifications.

4.2. Basic constructs and Operators

SiGNAL relies on a handful of primitive constructs,
which can be combined using a composition operator.
These core constructs are of sufficient expressive power
to derive other constructs for structuring [39]. Since the
semantics of SIGNAL is not the main topic of this pa-
per, we will use a rudimentary increasing counter ex-
ample [15] to illustrate the primitive operators and con-
structs of SIGNAL.

The Count process[l_-] accepts an input reset signal
and delivers an integer output signal val. It allows input
signal reset and output val to have independent clocks.

process Count=

(? event reset; ! integer val;)
(| counter := val $1 init O %hell
| val := (0O when reset) default (counter + 1)
|) where
integer counter;
end;

The local variable counter stores the previous value
of the signal val (equation el); its is initial value is 0.
When reset occurs, the signal val is reset to O (expres-
sion (0 when reset)). Otherwise, val is accumulated
by 1 (expression (counter+1)).

count event | | 3| 4| ts| te| t7| t3| to| tio t11| t12
reset T T T
val | 1] O 1] 2] 3[/4,0|1]2[3[0]0
counter | Of 1| O 1|2 3[4|0|1{2]|3]0

Figure 4: Execution trace of SIGNAL process count

Figure [] presents a trace of the Count process exe-
cution. The activity of Count is governed by the clock
of its output val, which differs from that of its input
reset. If the signal val is required by the environment,
then either reset is absent and Count increments val,
or reset is present and Count sets val to 0.

!Process in this font is used to indicate a SIGNAL process when it
is used standalone, compared to an AADL process.

4.3. Techniques for formal analysis and simulation

In this paper, techniques including clock calculus,
affine clock relations, profiling, verification, scheduling
and distribution are used to deal with AADL temporal
properties. Only a brief description of these techniques
is provided, but more details can be found in the corre-
sponding references.

o Clock calculus [40], in the compilation of Sic-
NAL programs, enables static analysis, code gen-
eration, formal verification, code distribution, etc.
The main objective of clock calculus is to explore
clock relations based on the clock domination re-
lation. According to this relation, clock trees are
built, which are used to identify the timing depen-
dency and determinism in the system.

o Affine clock relations [18] yield an expressive
calculus for the specification and analysis of time-
triggered systems. A particular case of affine re-
lations is the case of affine sampling relation ex-
pressedas = {d-t+ ¢ | t € X} (J is the clock
of y) of a reference discrete time x (d, ¢, ¢ are inte-
gers): ¥ is a subsampling of positive phase ¢ and
strictly positive period d on X. In PoLycHRONY, the
affine clock calculus implements synchronizability
rules based on properties of affine relations, against
which synchronization constraints can be assessed.

o Profiling is also adopted in PorycHrony for the
performance evaluation of SiGNAL programs [41}
42]]. In the framework of PorLycHRONY, profil-
ing refers to timing analysis through associating
date and duration information with SiGNAL pro-
grams. Transformation of SIGNAL processes, more
precisely temporal morphism, preserves semantic
properties. The resulting SIGNAL process can be
composed with the original process for the co-
simulation. The latter exhibits the timing behav-
ior with regard to previously mentioned temporal
properties.

o Formal verification, such as model checking, is
performed in the framework of PoLycHrony. We
use the Sigali tool [43]] as the model checker. Si-
gali relies on an implementation of polynomials by
Ternary Decision Diagram (TDD) (for three valued
logic) in the same spirit of Binary Decision Dia-
gram (BDD) [44]. However, the paths in the data
structures of TDD are labeled by values in {1, O, -
1}. Properties, such as invariance, reachability and
attractivity can be checked by Sigali. In addition,
algorithms for computing state predicates are also
available in the tool.

o VCD-based demonstration. In addition to profil-
ing, another simulation has also been carried out.



It aims at the visualization of value change dur-
ing the execution of programs via VCD. VCD files
are usually generated by EDA (Electronic Design
Automation) logic simulation tools, and the four-
value VCD format has been defined in IEEE Stan-
dard [20].

o Real-time scheduling and distribution have been
explored at the high level, i.e., at the AADL thread
level. Furthermore a more detailed yet low level
scheduling and distribution can be explored at the
generated SiGNAL level with the SYNDEx [[19] tool.
A low level scheduling and distribution consid-
ers more detailed execution information thus en-
ables a more precise simulation. In our frame-
work, a translation from SigNaL to SYNDEx has
been developed. The final SYNDEx code consid-
ers both functional and architectural specification
from Simulink and AADL respectively.

The AADL and SignaL languages have been briefly
presented in the last sections. In the next section, our
main contribution on AADL modeling and analysis will
be presented in detail.

5. AADL modeling and analysis framework

The AADL time model allows the specification of
both logical and chronometric clocks in the system, and
these clocks can be periodic, aperiodic, sporadic, etc. In
addition, each component can be associated with tim-
ing properties, which indicate their expected real-time
characteristics. All these timing information are to be
verified before implementation. In general, they can be
checked by schedulability analysis or simulation at run-
time, on an informal basis. We propose to perform for-
mal timing analysis via a different yet efficient approach
based on the polychronous MoC, allowing to identify
and analyze determinism, temporal causality and syn-
chronization problems.

Figure [5] presents our proposed approach. High-level
architectural and behavioral models, such as AADL and
Simulink, are transformed into the formal polychronous
model. Scheduler synthesis and system integration are
considered in this polychronous model. Timing analy-
sis, formal verification, simulation and architecture ex-
ploration are then performed based on the polychronous
model. In order to bridge between the high-level models
with the polychronous model, we first present the tim-
ing analysis of typical AADL execution models. Then
a brief comparison of AADL timing model with that of
PoLycHrONY is given, which aids the understanding of
our approach. Then, our proposed AADL time model in
PorycHroNY is presented, followed by the corresponding

Architecture Behavior
AADL AADL BA/Simulink

Scheduler | L System

thesi integration
LSS POLYCHRONY

SIGNAL
v
Timing Formal

analysis  verification

Simulation Architecture
exploration

Figure 5: our proposed approach

model transformation. Scheduler synthesis and system
integration are briefly described considering the result-
ing polychronous models. An implemented tool chain
is finally illustrated to support our work.

5.1. AADL timing execution model analysis

Input frozen time output available time Input frozen time

1 2l 2 3
Compute _\
Disp;tch Start Compllete Deadline Dis'patch -
Input_Time Output_Time Input_Time

l:l data received data frozen (available)

Figure 6: illustration of the execution time modeling for an AADL
thread. Input_Time and Output_Time events indicate the input frozen
time and output available time respectively.

Threads are the main components that have an exe-
cution timing semantics. Threads are dispatched, i.e.,
their execution is initiated either periodically or by the
arrival of data or events on ports, or by the arrival of
subprogram calls from other threads, depending on the
thread type.

Three event ports are predeclared: dispatch, complete
and error. A thread is activated to perform the computa-
tion at start time, and has to be finished before deadline
(Figure [). A complete event is sent at the end of the
execution.

Input-compute-output model. The inputs received
from other components are frozen at a specified point
(Input_Time), by default the dispatch of a thread. As
a result, the computation performed by a thread is not
affected by a new arrival input until an explicit request
for input, by default the next dispatch. Similarly, the
output is made available to other components at a speci-
fied point of time (Output_Time), by default at complete
(resp. deadline) time for out port if the associated port



connection is immediate (resp. delayed) communica-
tion.

From the designers’ perspective of an AADL spec-
ification, the ports of a thread have special timing se-
mantics: the content of incoming ports are frozen at
a specified Input_Time, which means that the content
of the port that is accessible to the recipient does not
change during the execution of a dispatch event though
the sender may send new values. For example, the
two data values 2 and 3 (in Figure [6)) arriving after the
first Input_Time will not be processed until the next In-
put_Time.

5.2. Comparison of AADL and POLYCHRONY time mod-
els

Due to the different timing semantics, modeling em-
bedded systems specified in AADL in PorLycHRONY
raises some difficulties. Thanks to SigNnaL’s derived op-
erations and associated tools, we can bridge their se-
mantic gaps.

o AADL takes into account execution latency and
communication delay, which are defined on
chronometric clocks. Conversely, the synchronous
semantics of PoLycHrRONY only considers atomic in-
stantaneous actions: instantaneous execution on
logical clock. Possible solutions to bridge between
these different time models have been presented
in [12]], where additional discrete events are added
to model latency and delay. In this way, the AADL
time domain is mapped onto SiGNAL logical clocks
and formal logical clock analysis becomes possi-
ble.

o The multi-clock feature of SigNaL allows to model
systems with several clocks, where each com-
ponent holds its own activation clock, as well
as single-clocked systems, in a uniform way.
This feature suits well for component-based ar-
chitecture design in AADL, because different
components, in general, have different execu-
tion/activation rates. PoLyCHRONY provides power-
ful tools, such as logical clock calculus and affine
clock calculus, to analyze the relations of multi-
clocked systems.

o Periodic dispatch of threads is supported in AADL,
where a dispatch request is issued in time intervals
specified by the Period property. Periodic clocks
can be modeled in SiGNaL using affine clock rela-
tions. Thus, synchronizability analysis can be car-
ried out between multi-period threads.

o AADL supports communications associated with
queues (for event and event data ports), in FIFO or-
der by default. SigNaL’s bounded FIFO is used for

message exchanges between several entities. Two
types of FIFO are defined in our SiGNAL library:
fifo_reset and fifo, with or without configuration re-
setting.

o Data can be shared between the components in
AADL, so that it can be read or written by dif-
ferent components at different time instants. It is
possible in SIGNAL to have several expressions as-
sociated with one signal by partial definitions [39].
The clock calculus can compute sufficient condi-
tions to guarantee that the overall definition is con-
sistent and total.

o Both AADL and PorvchHroNy support Globally
Asynchronous Locally Synchronous (GALS) de-
sign [45]], which provides a compromise between
synchronous/asynchronous design in face to the in-
creasing system complexity. In addition, the mod-
ularity feature of PorLycHroONY directly supports the
component-based design approach of AADL, al-
lowing modular development of complex systems.
This feature, together with the relational feature
of the polychronous MoC, makes it possible to
build a system incrementally, in the same way as
an AADL system.

o PoLycHRONY supports behavior modeling through
SIGNAL automata extension, similar to the behavior
annex, an extension of AADL via transition sys-
tems. Clocks are considered in SIGNAL automata,
in consequence, temporal properties of the AADL
component behavior can also be addressed.

5.3. AADL time model in POLYCHRONY

The key idea for modeling the AADL computing la-
tency and communication delay in SiGNAL is to keep the
ideal view of instantaneous computations and commu-
nications moving computing latency and communica-
tion delays to specific “memory” processes, that in-
troduce delay and well suited synchronizations [[12]. As
a consequence, various properties result in explicit syn-
chronization signals.

We introduce a “memory” processes o = f,(i,b)
that repeats the input signal i on the instants of boolean
signal b. The result o contains values of i when i is
present and b is true, and the last value of i when i is
absent and b is true:



L def
0= fuli,h) 2Vt>0:

i if i, #1, and b, = true
ipred(l) if i; =1, and b; = true,

pred(t) = max{k < t| o #1}
L otherwise

Input freezing. Let f(x) represent the result of the
behavior f of a given in port to its input signal x, e.g.,
f can be a FIFO to represent queued event or event data
port. A port y = f(x) gives the available output y from
the current received input x. It defines an elementary
process such that:

y=f(x) dsef\v’t >0:
(xy #L= f(x) #L) A (e = fx)) A (f(L) =1)

X is frozen at t is a function that takes an input x, a
frozen time event ¢, and produces a new signal z at time
t. It is noted as x » ¢:

def
z=x» 1= 2= fu(f(x),0)

Thread activation. We use th(zy,2p,...) to rep-
resent the original computation of thread i with the
frozen inputs zj,zp,... The thread th is activated
to perform computation at “start”, which is denoted
as th'(z1,22,- .., Start), where its inputs zj,zp,... are
memorized at start. It is defined as follows:

’ dﬁf ’ ’
th'(z1,22, - . ., start) =th(z},2;,--.)

where Yz, = f,(z;, start)

Output sending. Similar to the in port, g(y) repre-
sents the behavior of an out port. The send function de-
fines a process such that the generated output of g(y)
is hold and sent out at time ¢. This is noted as y > t:

def
w=y>1=w= fu(gy),0

5.4. Transformation principles

In this section, we describe the detailed transforma-
tion process from a high level description in AADL to a
SigNaL description. The timing semantics and properties
are processed during the transformation.

5.4.1. Thread

Threads are the main executable and schedulable
AADL components. A thread models a concurrent task
or an active object, i.e., a schedulable unit that can ex-
ecute concurrently with other threads. An AADL peri-
odic thread is implemented as a SIGNAL process com-
posed of its behavior which represents the transition
system that is specified in AADL behavior annex, prop-
erties, ports, subcomponents (if data subcomponents
or subprogram subcomponents exist) and connections

(Figure[7).

thread

to|
ST p Alarm
:__Deadline
:_Resume : thread_property start

bundle
ctl1
bundle | y1 1 y1
Jdmel........ . OutDataPort p—p
+ x1 Frozen_:| L[] [ |
i1 5 InDataPort Xt
—x 5 15 thread_behavior lyn
n
OutDataPort P—by
1 I_xm —P | e
»>——> InDataPort p— \Complete:
S :
Error,

Figure 7: a SioNaL model of AADL thread

Some additional timing signals are added to the Sig-
NAL processes:

o An input bundle signal ctl] (a bundle represents a
polychronous tuple of signals) contains event sig-
nals provided by the scheduler, Dispatch, Resume
and Deadline, which are implicit predeclared ports
in AADL or signals added for simulation.

o An input bundle signal timel that provides
the clock of the frozen time (resp. Output
time) for the input (resp. output) ports, e.g.,
xi_Frozen_time_event and yI_Output_time_event.

o An output signal ctl2 for the events Error and
Complete (predeclared ports in AADL).

o An output signal Alarm that triggers an event when
the properties are not satisfied.

Computing latency and communication delay, allow-
ing to produce data of the same logical instants at differ-
ent implementation instants, is taken into account in the
thread. Those instants are precisely defined in the port
and thread properties. Therefore, the ports of a thread
are implemented as SIGNAL processes instead of simply
input/output signals.

The AADL port is a logical connection point for the
directional exchange of data, event or both, between
components. As mentioned in the execution semantics
in Section the thread ports have special timing se-
mantics: the in (resp. out) port is frozen (resp. sent out)



at Input_Time (resp. Output_Time).

In this section, we present the modeling of event data
ports (the event ports can be implemented by counters,
and the data ports modeling can be found in [12]). In-
coming data events, which may be buffered in event
data ports with queues, may trigger thread dispatches
or mode transitions, or they may simply be queued for
processing by the recipient. The default port queue
size of a data event port is 1 and can be changed by
explicitly declaring a Queue_Size property association
for the port. Queues will be serviced according to the
Queue_Processing_Protocol, by default in a FIFO order.

xx_InEventDataPort
xx_InEventDataPort_Property{}()

Reference_timg_event| (] Input_Time_Property{Time_Units#ns,
P— Time_Units#ns, 0.0, 0.0}(...)
Frozen_time| event| | Queue_Size_Property{1}()

)]

xx_InEventDataPort_Behavior{}()

InEventDataPort_Behavior{}()

P—1 —
write_flow L N re
_>_>_>_|> in_fifo H frozen_fifo l)_

Y&
I

Figure 8: a SioNaL model of AADL in event data port

In event data port. Two FIFOs are provided: in_fifo for
storing the received data, and frozen_fifo for storing the
frozen data (Figure[) . The actual items of the in_fifo
are frozen at Input_Time.

xx_OutEventDataPort

i xx_OutEventDataPort_Property{}()

Reference_time levent | (JOutput_Time_Property{Time_Units#ns,
— Time_Units#ns, 0.0, 0.0X...)

Output_time_levent | |Queue_Size Property{1}()

D

xx_Ot ort ior{}0

ort_| ior(}0

-
~ send flow
—r—+t " | -

Figure 9: a SioNaL model of AADL out event data port

write_flow

Out event data port. For an out event data port (e.g.,
pProdStartTimer), the values are stored in a fifo, and
sent out (presented as Send) at Output_Time (Figure E[)

The processes InEventDataPort_Behavior() and
OutEventDataPort_Behavior() that model the queu-
ing of in/out data events are predefined in the
AADL2SIGNAL library. The actual Input_Time (Out-
put_Time) signals are generated by scheduler according
to the values of timing properties.

5.4.2. Shared data

Components can share access to data subcomponents,
where the data act as a critical region; mutual exclusion
access clocks are thus required to assure only one access
at a time. Therefore, in contrast with other categories of
components, e.g., thread, which are translated into dif-
ferent instances of SiGNAL processes, the shared data are
represented as a single SiGNaL FIFO instance that can be
read/written by different components at different time
instants. Depending on the type of access that is associ-
ated with data (i.e., read_only, write_only or read_write),
a clock at which a thread reads (x_r), writes (x_w) or re-
sets (x_reset) the data x is provided if the thread requires
access to the data x. These clocks are declared as shared
variables, so that they can be accessed by different SiG-
NAL processes in different time instances.

o To write a value vx into the fifo, a partial definition

of x_w is provided (in the behavior part): x.w ::=
vx when ewl. (ewl is the clock when a component
writes value vx into data x.)

o To read a data, one can use: z := x_r when erl.
(erl is the clock when a component reads data
from x_r.)

o The read clock of data x is the union of all such
events er; (equation (1) blow), similarly for the
write and reset clocks; the clock of count cnt is at
least the union of read, write and reset clock (equa-
tion (4)).

X_r "= erl "+ er2 "+ ... (1)
X_w "= ewl "+ ew2 "+ ... (2)
x_reset "= eresetl “+ ereset2 "+ ... (3)
x_cnt "= x_r "+ X_w "+ x_reset (4)

~=and "+ are two SIGNAL operators to specify clock
relations (not values) [16]: synchronized with and
clock union respectively.

5.4.3. Process and processor

For their execution, AADL Processes, that supports
the dispatch protocol required by the containing threads.
This protocol is provided by Actual_Processor_Binding

property:

Actual _Processor_Binding =>
Processor applies to Process;

The AADL processes bound to this processor are im-
plemented as SiGNAL subprocesses of the SIGNAL process
that represents the processor (Figure [10).

The interface contains the original inputs/outputs of
these AADL processes. Internal inputs/outputs between
these processes are defined as internal local signals.
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Figure 10: a SioNaL model of AADL processsor

The body is composed of the (SiGNaL) processes,
xx_Processor_property(), and xx_Processor_behavior()
subprocess. The latter connects to an external sched-
uler, which generates all the scheduling signals for each
thread, e.g., pl_tl ctll, p2_12_timel, ....

Different processors which are responsible for ex-
ecuting threads may have different execution speeds.
Therefore, an event input signal zopl is added to allow
the simulation of the application.

5.5. Scheduler synthesis

An AADL model is not complete and executable if
the thread-level scheduling is not resolved. Thus a
scheduler is expected to be integrated so that a com-
plete model is used for the following validation, distri-
bution and simulation. Traditional AADL scheduling
tools, such as Cheddar [7]], do not completely satisfy our
demands because: 1) logical and chronometric clocks
are easily transformed into each other according to the
different context for formal and/or real-time analysis;
2) input/output frozen events and other more events are
also considered in the scheduling; 3) static and periodic
scheduling is expected for the purpose of predictabil-
ity and formal verification. For instance, the schedul-
ing, based on affine clock systems [18]], is easily and
seamlessly connected to PorLycHrony for formal analy-
sis. Affine clock relations yield an expressive calculus
for the specification and the analysis of time-triggered
systems. More details are found in Section [d.3]

Following the previous ideas, a static scheduler syn-
thesis process is proposed as a complementary of our
AADL modeling. It has the following subprocesses:
1) calculate hyper-period from the periods of all the
threads according to the least common multiple prin-
ciple; 2) perform the scheduling based on the hyper-
period. More precisely, discrete events of each thread,
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such as dispatch, input/output frozen time, start and
complete, are allocated in the hyper-period on condition
that all their timing properties are satisfied. Affine clock
relations of these events are ensured during the cal-
culation. This process yields single-processor-oriented
schedulers that are static and non-preemptive.

5.6. Behavior modeling in Simulink/Gene-Auto

The behavior of the AADL components can be spec-
ified using AADL behavior annex or other languages,
such as Simulink/Stateflow [1] in the Matlab fam-
ily. The latter is based on dataflow models and state
machines, which are common models of computation
adopted in the system design of avionics, automotive
applications, etc. A typical Simulink model is defined
by a set of interconnected blocks, which model enti-
ties in a system, such as sensors, actuators, and logical
operations. The library of Simulink includes function
blocks that can be linked and edited in order to model
the dynamics of the system. Gene-Auto is a frame-
work for code generation from a safe subset of Simulink
and Stateflow models for safety critical embedded sys-
tems [46]. This safe subset is also adopted in our work.
In this paper, Simulink is used for short to indicate the
subset of Simulink and/or Stateflow languages that is
adopted by Gene-Auto. In addition, only discrete time
of Simulink is taken into account in the behavior mod-
eling.

5.7. A complete tool chain

From the high-integrity systems point of view, the use
of automatic code generation in the development pro-
cess is highly profitable. We propose a tool chain (Fig-
ure[TT) for modeling, timing analysis and verification of
the AADL models in the polychronous MoC.

OSATE

Polychrony

AADL
metamodel

conforms to

AADL2SIGNAL|
library

ASME2SSME

Thread
scheduling

Sigali SYNDEXx C
Distributi
Model checking Distribution Simulatior

Figure 11: A global view of AADL to SiGNAL tool chain

The AADL model, which conforms to the AADL
metamodel, is captured as AADL textual code in the
OSATE toolkit [47]. The timing properties provide de-
tailed timing specifications related to the AADL model.



A model transformation tool chain ASME2SSME per-
forms analyses on the ASME models (AADL Syntax
Model under Eclipse) and generate SiGNAL models (in
SSME). This tool is implemented in Java, as an Eclipse
plugilﬂ and takes as input an AADL model (.aadl) and
generates an SSME model (.ssme). The SSME model
can be transformed to SiGNAL textual code within Pory-
CHRONY.

An AADL2SIGNAL library provides common SiG-
NAL processes reducing significantly the transformation
cost. The timing properties represented as SIGNAL clocks
are calculated and analyzed in the compilation of SiGNAL
programs. After that, the executable code is generated
for simulation. Associated tools, such as Sigali [43] and
SynNDEXx [[19]], can be used for further verification and
validation.

Gul Gene-Auto Polychrony framework
: framework
:|Simulink :
: \:“> SSME |:"> S I
:|Stateflow 'gna

|:| model |:| Ecore model

Figure 12: A global view of the functional model transformation chain

transformation

In addition to ASME2SSME, there is another
model transformation chain from functional models in
Simulink to SionaL. It is divided into several steps. The
first step involves the transformation of Simulink mod-
els to Ecore based Gene-Auto models [46]. These mod-
els are then translated into SigNaL via the SSME meta-
model. The whole chain from high-level models to exe-
cutable code is illustrated in Figure[12]

Scalability of this tool chain is considered in the fol-
lowing aspects: 1) in the framework of Eclipse EMF,
the tool chain defines a CoL (Concept high Level) API
to access the MoL. (Model low Level) APL. In this way,
model transformations are independent of different low-
level metamodels and heterogeneous models are eas-
ily integrated into the tool chain; 2) most AADL com-
ponents are considered in order to handle large-sized
systems, such as thread, process, subprogram, (shared)
data, processor, bus, system, port, parameter, data ac-
cess, subprogram access, and subcomponent; 3) in the
framework of PoLycHRONY, analysis, verification, simu-
lation, profiling techniques are considered as indepen-
dent functions connected to the PorLycHrONY core, i.e.,

%It defines a CoL (Concept high Level) API to access the MoL
(Model low Level) API, which is provided by OSATE (resp. Pory-
CHRONY) as a set of classes providing access to attributes, for making
the transformation independent of low level metamodel.
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other functionality can be also integrated if necessary;
4) several thousand clocks can be handled by the clock
calculus; 5) more than ten case studies have been tested,
and there is no special size limitation on transforma-
tion. Limitation exists only in some formal validation
techniques, such as model checking with the state space
explosion issue. The clock calculus aids to reduce vari-
able number and optimize clock relations, by removing
unused variables and combining equivalent variables,
in the clock synthesis step. In addition, static analy-
sis, such as dependency analysis is performed in Pory-
cHrRONY before model checking. Therefore, the system
to be model-checked in our approach is optimized while
preserving semantics equivalence. In addition, a simple
but efficient mechanism of traceability has been imple-
mented in the tool chain, i.e., the names of high level
models are either preserved as names or preserved in
annotations in the model transformation and code gen-
eration.

In the next section, two case studies will be presented
to illustrate our approach and the transformation.

6. Case studies

Two case studies, Producer-Consumer [[14] and SD-
SCS (Simplified Doors and Slides Control System) [28]]
have been developed in two European projects OPEES
[23] and CESAR [24] respectively. Our industrial
parteners from the avionic domain, Airbus[48] and C-
S Toulouse[49], provided the specification of these two
applications. The high-level modeling, transformation,
analysis, verification and simulation have been carried
out in our team, i.e., INRIA Espresso team[50]. With
the first case study, translations of AADL thread and
shared data are demonstrated. The second example
illustrates how we address system-level co-design of
avionic applications.

6.1. Case study: Producer-Consumer

In this section, we illustrate the translation process
from a high level description in AADL to a synchronous
description using the Producer-Consumer case study in-
troduced previously in Section[3] The timing semantics
and properties are processed during the transformation.

The SiGNAL process resulting from the system im-
plementation in Figure (1| is given here in Figure
an instance of a SiGNAL process model of the proces-
sor Processor]l communicates with two SIGNAL process
instances that represent the systems sysEnv and sysOp-
eratorDisplay. The links between these processes rep-
resent the component connections. Behavior (Produc-
erConsumer_others_System_behavior()) and property



ProducerConsumer_others_System_behavior

ProducerConsumer_others_System_property(t

L3% L2
i | (L40, L_41) := Processorl_Processor o
(L0, L_1) := sysEnv(0 1 _
L38 prProdCons_others_P sysOperatorDisplayd
rocess}( 2,13
Processorl_top, L3
0 1L_38, L_39) J
(!
Frocessorl ton

Figure 13: the SioNaL model of the AADL system: ProducerCon-
sumer(presented in Figure m)

(ProducerConsumer_others_System_property()) subpro-
cesses are added. In Figure [I3] L_X is input/output
of corresponding component, e.g., L_38 and L_39 are
pStart and pStop of the prProdCons process (AADL) in
Figure[I] Processorl_top is the default activation clock
of the processor.

6.1.1. Architecture modeling

AADL processes (e.g., pProdCons) will be bound
to a processor (e.g., Processorl) for their execution,
that supports the dispatch protocol required by the con-
taining threads. This protocol is provided by Ac-
tual_Processor_Binding property:

Actual_Processor_Binding =>
Processorl applies to pProdCons;

The processes bound to this processor are imple-
mented as SIGNAL subprocesses of the process that
represents the processor. The translation of AADL pro-
cess and processor has been presented in Section [5.4.3]
Besides the behavior and property processes (ex-
plained in Section [5.4.1), the corresponding SIGNAL
process of AADL process prProdCons is also com-
posed of the SIGNAL processes of subcomponents:
the processes that represent the interpretation of cor-
responding threads, e.g., thProducer_others_Thread(),
and a process fifo_reset() (and associated clock syn-
chronizations) that models the shared data Queue (Fig-
ure [T4).

The data Queue in the prProdCons process (pre-
sented in Figure [2) which is shared by threads thPro-
ducer and thConsumer is represented as a FIFO pro-
cess instance fifo_reset() (equation eql in Figure [T4).
Translation of AADL shared data has been presented
in Section The values to be read or written in the
FIFO (Queue_r, Queue_w, Queue_reset) are declared as
shared variables, so that they can be accessed by differ-
ent threads. To write (or reset) the data into the FIFO, a
partial definition (such as equation eg4 in Figure [T4) is
provided (el is a time instant at which the thread writes
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thProducer_..._Thread{}

‘ PrProdCons._..._Process_property{} ‘

—>—p| thProducer_..._Thread_property{}
e ‘ PrProdCons_..._Process_behavior{} ‘
thProducer ... Thread_behavior{}
ie Queue{}
BN Queue_w i:= 3 when el  %eq4% ueue
[Queue_reset ::= when e2 B d (Queue_r, Queue_cnt) := fifo_rest
,_‘ T,
thConsumer_..._Thread{} J !
Queue_cnt ~= Qurur_r ~+ Queue_w
~+Queue_rest
thConsumer_..._Thread_property{}
VL [tnConsumer_.._Thread_behavior(}
- - - amm|-
ueue r whene3  %eq5% ‘ thProdTimer_..._Thread{}
— ‘ ‘ thConsTimer_..._Thread{}
] I

Figure 14: a SioNaL model of AADL shared data: Queue in the
Producer-Consumer case study. The Queue is connected with other
threads in the AADL specification. This figure also illustrates the
translation result of the prProdCons process in AADL (presented in

Figure[2).

data). The write (or read, reset) clock of data Queue
is the union of all such events (equation eg3), and the
clock of counter Queue_cnt that returns the current num-
ber of values is at least the union of read, write and reset
clocks (equation eq2). The FIFO type (integer), size
(3) and initial value (0) are provided by associated data
properties.

The data access connection is not modeled explicitly,
since the read/write access to the FIFO already implic-
itly indicates their connections.

& Alarm

op b
P Ctuﬁ (Start,Alarm):=thProducer _others_Thread _Property{}(ctl1 top) start
_fetl1
timel ctll|

pQueueNbltem
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timell,  pProdStop_.. pProdStopTimer
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ctl1]

. imel
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pProdStart ... 2 pProdStartTimer ... AProdStartT

mer

pProdSthrt InEventPort{1,1} cti2l " OutEventPort{1}

| | pProdStartTimer

ctl2

Queue_thProducer

Figure 15: the SioNaL model of the AADL thread: thProducer (in
Figure[2)

In Figure [I3] we give only the translation of one
thread (thProducer) of the Producer-Consumer ap-
plication, since all the threads of the application
have the same structure and are built on the same
AADL components. Translation of AADL thread has
been presented in Section 5.4.1] and Figure [71 An



AADL periodic thread thProducer is implemented as
a SIGNAL process composed of its behavior (thPro-
ducer_Thread_behavior()) which represents the transi-
tion system that is specified in AADL behavior annex,
properties (thProducer_Thread_property()), ports (e.g.,
pProdStart_InEventPort()), subcomponents (if data sub-
components or subprogram subcomponents exist) and
connections.

The timing properties are not specified explicitly in
this example, hence the default values are used.

6.1.2. Formal analysis and simulation

Once the AADL specification is modeled with the
polychronous MoC and then translated into the SiGNAL
language, PoLycHrONY can be used to formally analyze
and verify the AADL model, which includes: static
analysis, simulation, model-checking, etc. For instance,
clock calculus can be used, in the compiling stage, to
verify the determinism of the AADL model. An exam-
ple is given here, if the priority properties are not com-
pletely specified on the transitions in the automata of
the producer thread, the SiGNAL compiler, via the clock
calculus, detects a clock constraint: the specification is
not deterministic. This constraint is found before any
execution/simulation of the program.

In the case study, all the threads are periodically dis-
patched, periodic SiGNaL clocks are required for the sim-
ulation. Periodic clocks can be specified in SIGNAL using
affine clock relations. In the application, the periods of
the four threads (Producer, Consumer, ProducerTimer,
ConsumerTimer) are respectively 4ms, 6ms, 8ms and
8ms. We use the af fine_sampling() SIGNAL library pro-
cess [39] to calculate the scheduling: first 24 ms, which
is the least common multiple of the periods, is calcu-
lated. And the following scheduling is a repetition of
the scheduling of the first 24 ms).

In addition to the previous formal clock analysis, we
can also use simulation-oriented analysis, internal tool
such as profiling, and external tools such as Cheddar and
SYNDEXx. Profiling can be used for performance evalua-
tion, once a specific hardware architecture is chosen and
the corresponding temporal specification of the SiGNAL
program is defined on this architecture. Cheddar and
SYNDEXx can also be connected to obtain static sched-
ulers, which are used in the simulation considering real-
time characteristics.

6.2. The SDSCS case study

SDSCS is a generic simplified version of the sys-
tem that allows managing doors on Airbus 350 se-
ries aircrafts. It is a safety-critical system as incorrect
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door closing or opening during flight may lead to fatal
crashes. In addition to the reliable system design and
validation, high-level modeling and component-based
development are also expected for fast and efficient de-
sign. SDSCS has been chosen for the demonstration
of capabilities developed in the CESAR project. Com-
pared to the first case study, SDSCS demonstrates how
we handle heterogeneous high-level co-modeling, i.e.,
AADL and Simulink, of avionic applications.

Core Processing
Input/Output Modules
(CPIOM) (RDC)

I I

( Aircraft Full Duplex (AFDX) )

I 3 L 1 1

Landing gear door door Differential Overflow

pressure Valve Control
system (LGS) sensors actuators system (DPS) Unit (OCU)

Remote Data
Concentrators

Figure 16: a simple illustration of the SDSCS system architecture.

In this case study, only the management of passenger
doors is considered. Each passenger door has a soft-
ware handler to achieve the following tasks: monitor
door status via door sensors; control flight lock actua-
tors; manage the residual pressure of the cabin by con-
trolling the outflow valves, visual status indication and
an aural warning, etc.

SDSCS is equipped with other hardware components,
such as processing units, communication link, and con-
centrators as well as sensors and actuators. The SDSCS
is implemented on the IMA (Integrated Modular Avion-
ics) platform, in which CPIOMs (Core Processing In-
put/Output Modules) and RDCs (Remote Data Concen-
trators) are connected via the AFDX (Aircraft Full Du-
pleX) network (Figure [I6). Sensors and actuators are
also connected to RDCs via AFDX. CPIOMs receive
sensor readings via RDCs and communicate with other
systems via AFDX.

6.2.1. Architecture modeling in AADL
Figure[I7]shows an overview of the SDSCS modeled
specified in AADL. The whole system is presented as
an AADL system. The two doors, doorl and door2,
are modeled as subsystems. They are controlled by two
AADL processes doors_processl and doors_process2
respectively. These processes are bound to two pro-
cessors: CPIOMI1 and CPIOM?2, to perform the com-
putation independently. Sensors and Actuators, such as
LGS, DPS, OCU, etc., are modeled as AADL devices
that interface with external environment of the system.
All the communication between the devices and pro-
cessors is through the bus: AFDXI. SDSCS has three
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Figure 17: an overview of the SDSCS system architecture modeling
in AADL

threads to manage doors: door_handlerl, door_han-
dler2, and doors_mix. These threads are implemented
by Simulink models. In addition, each processor runs
one doors_process. These two components are placed
into one ARINC partition. Each processor is associated
with an ARINC partition_level_OS, which is responsi-
ble for scheduling all the processes in the same parti-
tion. In this example, all the threads and devices are
periodic, and share the same periodicity.

6.2.2. Behavior modeling in Simulink/Gene-Auto

The behavioral aspects of SDSCS have been modeled
in Simulink and Stateflow (shown in Figure [I8). Sec-
tion [5.6] has briefly presented the Simulink and State-
flow modeling in SigNaL. Sensors, such as flight_status,
dps, and door_io_in, are connected to four Simulink
blocks, each of which implements a SDSCS task as
mentioned previously. Three blocks, slide_warn_ctrl,
pres_warn_ctrl, and closed_locked _and_latched are as-
sociated with simple logic to determine actuator status
from sensor readings. The fourth block, flight_lock_ctrl
is associated with a state machine (specified in State-
flow), which decides the status of flight lock actuators.

6.2.3. Composing models: system integration
In addition to the high-level Simulink and AADL
models, additional models are also needed in the SD-
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Figure 18: the door handler component of the SDSCS modeled in
Simulink

SCS for the complete simulation. They include a sched-
uler model, an allocation model and an environment
model.

o Scheduler models are generated for each AADL
process in the case study, which has been presented
in Section

o In this case study, the allocation of functionality
onto architecture is specified in the AADL model.
In the AADL to SioNAL transformation, all the
threads that are mapped on to the same proces-
sor (CPIOM in this example) are placed in the
same partition. The generated SiGNAL programs
(from AADL threads) are annotated with alloca-
tion information. All the SiGNAL processes trans-
lated from the same partition have the same SiGNAL
pragmﬂ RunOn i [16] (i is the ID of a processor),
which enables the distribution of these processes
onto the same processor i.

o Sensors and actuators are the media between SD-
SCS and its environment. The environment model
is responsible to provide sensor readings to SDSCS
according to the estimated aircraft status in flight or
on ground. The model includes functions to han-
dle how the environment reacts to planes. The en-
vironment modeling is carried out directly in Pory-
CHRONY.

Figure [T9] illustrates all the required models for a
closed SDSCS system simulation. Once all these mod-
els are obtained, the composition of these models is
possible at the SiGNaL process level, thanks to the syn-
chronous composition operator [[15]. All the models,
such as system behavior, hardware architecture, envi-

3A pragma in SIGNAL is an annotation that is associated with a
SIGNAL process for specific purpose. Pragmas are sorted by name
related to an action (for instance code generation), a tool (for instance
a model checker), etc. The set of pragma classes is open.
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Figure 19: an implementation of SDSCS system integration, via SiG-
NAL processes representing functional, archecture, scheduler, and en-
vironment models, in the framework of PoLycHRONY.

ronment, and schedulers, are expressed by SIGNAL pro-
cesses, thus a composition of these processes achieves
system integration. The integrated system is then used
for C or Java code generation via the SiGNAL compiler
for closed system simulation purpose.

6.2.4. Simulation

In addition to heterogeneous system specification, an-
other advantage of our approach, compared to other
similar projects, is to benefit from simulation and vali-
dation techniques and tools associated with PoLyCHRONY
(presented in Section[4.3)) in the same framework. Three
different techniques are chosen for this case study, in-
cluding profiling as an example of formal timing anal-
ysis; VCD demonstration as an example of simulation;
and scheduling and distribution as an example of archi-
tecture exploration.

Profiling. Figure [20] illustrates a schema of the co-
simulation that has been carried out successfully. SD-
SCS is the original SiGNAL program, whose inputs are
provided by Inputs. T(SDSCS) is the temporal homo-
morphism of SDSCS with regard to specified Tempo-
ral properties and a parameterization of Library of cost
functions. Date provides date signals to T(SDSCS) ac-
cording to /. The input signals are synchronized to their
corresponding date signals. Control values of SDSCS,
which decide specific traces of execution, are sent to
T(SDSCS) so that they have the same execution traces.
Date signals of inputs and outputs of T(SDSCS) are fi-
nally sent to Observer in order to obtain the simulation
result V.

VCD demonstration. In our simulation, simulation
traces of SDSCS are recorded in VCD format. The
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Figure 20: the co-simulation of SiGNAL programs with regard to its
temporal behavior

VCD files are then used for the visualization of simu-
lation results through graphical VCD viewers, such as
GTKWave [51]. Figure @] shows a visualization result
of the simulation. In this figure, the change of signal
values with regard to the fastest clock is shown.
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Figure 21: the simulation is illustrated by a VCD viewer: GTKWave

Real-time scheduling and distribution. Figure 27] il-
lustrates the partial adequation results (i.e., a schedul-
ing table) in SYNDEx: algorithm (translated from the
Simulink model) is mapped onto the architecture (trans-
lated from the AADL model) considering scheduling
and distribution. There are five columns in the figures,
which represents the five architectural components. The
lines in the columns represents the computation or com-
munication allocated on the corresponding architectural
components. In this case study, the algorithm has more
than 150 nodes and the architecture has 5 nodes in Syn-
DEx. The adaquation takes about 15 minutes 35 sec-
onds in average. With this tool chain, we can easily
change the configuration of the execution platform. For
example, the number of the processing units can be
changed, the type of processing units and communi-
cation media can be easily changed. The influence of
these changes are finally shown in SyNDEx. Hence, our
approach provides a fast yet efficient architecture explo-
ration for the design of distributed real-time and embed-
ded systems.

6.3. Discussions

The case studies have been presented in order to ex-
hibit the modeling, formal analysis, simulation, archi-
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Figure 22: the result of the adaquation of algorithm and architecture in
SYNDEX: a partial view of a resulting scheduling table. The algorithm
is distributed and scheduled onto the architecture. The first column
represents the bus AFDX1. The second and fourth column represent
RDCI and RDC2. The third and fifth column represent CPIOM1 and
CPIOM2. The black lines in these columns indicate the processing
time on corresponding devices.

tecture exploration capabilities, provided by our Pory-
CHRONY framework, for timed architectures in AADL.
The first case study is mainly used to demonstrate the
AADL-SiGNAL translation, for instance, translations of
thread and shared data. The second case study mainly
presents the co-modeling, system integration and archi-
tecture exploration aspects. These case studies demon-
strate the feasibility of a system-level codesign with
different formal methods and techniques in the same
framework, which is not always easy and obvious.

The two case studies show that all the analysis, sim-
ulation, verification and architecture exploration tech-
niques are performed in the same PorLycHrONY frame-
work, based on the common polychronous model of
computation. This ensures the semantic equivalence
of the verified models while changing from one tech-
nique to another, which distinguishes from other work.
The advantage of our approach is validation or simula-
tion results are compatible and reusable from one tech-
nique to another. For example, the schedulers generated
from one technique (affine-clock systems) can be di-
rectly used for VCD simulation and Sigali-based model-
checking or controller synthesis [43l [36]], without se-
mantics domain change. However, only brief results
have been presented for the formal techniques as how
to use these techniques are not in the scope of this pa-
per. Short descriptions and references have been given
in Section [4.3]if readers are interested and expect to
have more information.

Currently, the SDSCS case study, a simplified version
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of a real system, has not been certified with standards,
such as DO178B and DO254 in our development. But
it is interesting to consider them in the future. The re-
dundant components in SDSCS, such as doors_processl
and doors_process2 can be isolated and allocated onto
separate processing units, for example CPIOMI and
CPIOM?2, i.e., this isolation is considered at the allo-
cation stage. Furthermore, each AADL process has its
own scheduler running on the corresponding processing
unit to enhance the isolation.

7. Conclusion

In this paper, we have presented the modeling and
formal timing analysis of AADL components and their
Simulink-based functional behaviors in a polychronous
model of computation. The goal of our approach is to
benefit both from: the high-level, domain-specific lan-
guage AADL and Simulink for the system-level design,
and the PoLycHRONY toolset, based on the synchronous
language S1GNAL, for timing modeling, analysis and val-
idation.

To bridge the gap between AADL and PoLycHRONY,
we have proposed a polychronous modeling of AADL,
supporting different component types and timing prop-
erties, as well as behavior modeling in Simulink. We
then used existing formal methods of PorLycHrRONY, in-
cluding clock calculus, affine clocks and profiling to
perform timing analysis. Scheduling, formal validation,
simulation and distribution are also carried out, at high
level and early phase, with reduced design cost and sys-
tem complexity. Two case studies have been presented
to demonstrate our approach.

Our approach shows advantages compared to Lus-
tre/SCADE and Maude in the modeling of multi-clock
systems, particularly multi-processor/distributed archi-
tectures. Users are not required to find/build the fastest
clock in the system in our approach, which is not always
obvious in a complex system. However, for simulation
purpose, a fastest clock can be synthesized in an auto-
matic way in PoLycHrRoNY if necessary.

Despite the apparent complexity of the process and
notations, but thanks to model engineering techniques
and availability of integrated tool and technology plat-
forms through initiatives like CESAR and OPEES, this
approach is contributing towards the dissemination and
use of formal verification techniques in industry.

The first perspective of our work is to work on a
proposal towards the standardization of a synchronous
timing annex for AADL, as a result of our successful
AADL modeling and analysis framework. Another per-
spective is involved in the modeling of modes and be-



havior annex in AADL. SiGNAL automata have been pro-
posed to easily handle modes as well as AADL behavior
annex. The third perspective is bidirectional translation
between SiGNAL and SYNDEX, i.e., a particular distribu-
tion and scheduling determined by SynDEx is automat-
ically synthesized in the SiGNAL programs for the pur-
pose of formal verification, performance evaluation, and
other analyses.
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