
R

M

a

En
ap
co
in
se
en
alg
aim
rit
in
w
th
tio
se
ca
tio
ace-to-halt energy saving strategies

uhammad Ali Awan, Stefan M. Petters

b s t r a c t
ergy consumption is one of the major issues for modern embedded systems. Early, power saving
System level energy management
Race-to-halt

proaches mainly focused on dynamic power dissipation, while neglecting the static (leakage) energy

f simula
t high u
ms. We
respect
the num
thms re
general

earlies
nsumption. However, technology improvements resulted in a case where static power dissipation
creasingly dominates. Addressing this issue, hardware vendors have equipped modern processors with
veral sleep states. We propose a set of leakage-aware energy management approaches that reduce the
ergy consumption of embedded real-time systems while respecting the real-time constraints. Our
orithms are based on the race-to-halt strategy that tends to run the system at top speed with an

to create long idle intervals, which are used to deploy a sleep state. The effectiveness of our algo-
Keywords:
Real-time and embedded systems

hms is illustrated with an extensive set o
energy consumption over existing work a

hen compared to state-of-the-art algorith
at restrict the practical application of the
n between the use of sleep intervals and

t of simulation results, where our algori
ses. Our results show that sleep states in
ns when compared to the sleep-agnostic
tions that show an improvement of up to 8% reduction
tilization. The complexity of our algorithms is smaller
also eliminate assumptions made in the related work

ive algorithms. Moreover, a novel study about the rela-
ber of pre-emptions is also presented utilizing a large

duce the experienced number of pre-emptions in all
can save up to 30% of the overall number of pre-emp-
t-deadline-first algorithm.
1. Introduction

Embedded systems have become an integral part of our daily
life. These devices are designed to perform a set of functions and
interact with their environment. Some examples are air traffic
management systems, aircraft flight control system, car navigation
or common cell phones. Among the vast variety of these systems,
devices with timing constraints are categorized as Real-Time (RT)
embedded systems. These devices have additional timing con-
straints, which are required to be met on top of functional aspects
for the overall system to be considered correct. Apart from RT con-
straints, many embedded devices are nomadic and have limited
energy supply. These devices rely on the batteries or intermittent
power supply such as solar cells. In addition to limited power sup-
ply, some embedded systems also have thermal issues. Satellites
are the prominent example of such systems. Hardware vendors
have provided system designer some special features such as
dynamic voltage and frequency scaling (DVFS) and sleep states to
optimize the energy efficiency of the system. DVFS scales the
frequency while sleep states are based on race-to-halt mechanism
(RTH). RTH executes the workload at high frequency to finish it
earlier with the aim of shutting down certain parts of the
hardware.

CMOS technology miniaturization has increased the leakage
power tremendously. The increase is exponential as the process
moves to finer technologies [1]. The sub-threshold current that
flows through the transistors caused by leakage power consump-
tion, and its variability has been identified as a major concern in
the International Technology RoadMap For Semiconductors 2010
Update under special topics [2]. A need to reduce the leakage cur-
rent motivated the hardware vendors to put an extra effort to
equip the modern embedded processors with several sleep states
allowing a trade-off between transition overhead and power con-
sumption in a sleep state. On the other hand, DVFS is designed to
reduce dynamic power consumption by reducing the operating fre-
quency and thus allowing a lower voltage to be used leading to
higher than linear energy gains. Comparing the two approaches,
DVFS reduces dynamic energy consumption at the cost of leakage
energy consumption, while RTH does the opposite. The selection of
either power saving mechanism (DVFS or RTH) is not clear cut as it
depends on the available workload and the underlying hardware
[3–5]. For instance, DVFS is more suitable for memory intensive
workloads. On contrary, RTH favors CPU intensive workloads.
Nevertheless, in the scope of this paper, we assume that either

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2014.10.001&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2014.10.001
mailto:muaan@isep.ipp.pt
mailto:smp@isep.ipp.pt
http://dx.doi.org/10.1016/j.sysarc.2014.10.001
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

processor or the underlying hardware platform does not allow the
frequency/voltage scaling to reduce the energy consumption (e.g.,
no voltage regulator), but provides sleep states.

The increase in computing power also leads to a progressive
integration of functionality into a single device. For example, a cur-
rent mobile phone combines applications of soft real-time charac-
ter (e.g., base station communication) with such of best-effort
character (e.g., SMS). Additionally the different system compo-
nents and software modules are potentially provided by different
third party suppliers. Consequently such mixed criticality systems
require temporal and functional isolation not only to protect criti-
cal applications from less critical ones, but also as a means to iden-
tify the offending application in the case of a misbehaving
subsystem.

State-of-the-art research in the energy management domain
which exploits sleep states to save energy commonly assume addi-
tional hardware to run the energy management algorithm. This
research effect considers the non-negligible time/energy overhead
of sleep transitions and avoids additional hardware. The results
show that our proposed approach saves a similar amount of energy
and in some cases it saves extra energy up to 8% over the existing
energy saving approaches even when waiving the energy con-
sumption of the additional hardware proposed in the related work.
Moreover, we show the complexity of our algorithms is low when
compared to the existing approaches.

This article summarizes and extends the work presented in [6].
The main contributions of the combined work are the following.
(1) An energy efficient slack management approach to accumulate
the execution slack, which is used online by the energy manage-
ment algorithm. (2) We show that maximum feasible sleep interval
determined offline by our method is always greater than or equal
to minimum idle period identified by the state-of-the-art
approaches. (3) An enhanced race-to-halt (ERTH) algorithm to
minimize the leakage energy for the mixed-critically uniprocessor
systems, while avoiding the impractical assumptions made in the
state-of-the-art. (4) The pessimism introduced in the ERTH is
decreased with an improved race-to-halt algorithm (IRTH) at the
cost of extra complexity to predict the future release information.
(5) We also propose a complexity-wise light-weight race-to-halt
algorithm (LWRTH). (6) The relation of sleep states with the pre-
emption count is studied. Our results show that sleep states have
positive impact on the pre-emptions count in the average case.
(7) Finally, a comparative study is done for different algorithms
and their special features are identified that vary the sleep states
and pre-emption count relation. The contributions 4;5;6 & 7 are
over and beyond the work presented in [6].

The paper is organized as follows. Section 2 summarizes the
limitations of the state-of-the-art followed by a system model.
The break-even-time and schedulability analysis used to deter-
mine the sleep interval limit are discussed in Section 4. The next
section presents the online slack management algorithm. Section
6 presents ERTH, IRTH and LWRTH algorithms, and their offline
and online overheads are discussed in Section 7. The effect of sleep
states on the pre-emption count is discussed afterwards. The eval-
uation and conclusions are given in Sections 9 and 10 respectively.
2. Related work

To deal with an increase in leakage power consumption, Lee
et al. [7] addressed the leakage-aware scheduling for periodic hard
real-time systems. They proposed Leakage Control EDF (LC-EDF)
and Leakage Control Dual Priority (LC-DP) algorithms for dynamic
and static priority schemes respectively. The LC-EDF algorithm
maximizes the idle interval by delaying the busy period to increase
the duration of the sleep state. They assumed an external hardware
such as application specific integrated circuit (ASIC) or field pro-
grammable gate array (FPGA) to implement their algorithm. Bap-
tiste [8] did a theoretical study of a non-DVFS system with unit
sized real-time aperiodic tasks. He developed a polynomial time
algorithm to minimize the energy consumption of static power
and the sleep transition overhead of the system. Later on, this work
is extended to an arbitrary job processing times [9].

A combination of leakage-aware and dynamic voltage schedul-
ing appears to be a promising way to reduce overall energy con-
sumption. Irani et al. [10] proposed a 3-competitive offline and
constant competitive ratio online algorithms for power saving
while considering shutdown in combination with DVFS. Although
the combination of shutdown and DVFS has its merits fundamen-
tally, their approach requires further work to relax the assump-
tions in terms of DVFS power model. Besides requiring external
hardware to implement their shutdown algorithm, they assume a
continuous spectrum of available frequencies and an inverse linear
relation of frequency with execution time. Albers and Antoniadis
[11] investigated a problem of speed scaling with a sleep state in
an offline setting and came up with interesting results. They
showed speed scaling with a sleep state is a NP-hard problem
and determined the lower bounds on the approximation algo-
rithms. For a general convex power model, no algorithm construct-
ing a schedule at critical speed can achieve an approximation
factor smaller than 2. It means, Irani et al. [10] achieved the best
approximation ratio among algorithms that construct a schedule
at critical speed. Moreover, they also showed that no algorithms
minimizing the energy consumption can achieve approximation
factor smaller than 2. They proposed a generic polynomial time
algorithm which combines the work of Yao et al. [12] and Baptiste
et al. [9]. Jobs are allowed to execute at a speed lower than a crit-
ical speed to achieve an approximation factor lower than 2. Fur-
thermore, they also showed their algorithms achieves the same
approximation factor of 2 by constructing a schedule at a critical
speed. However, there are some limitations in their work that
includes a strict periodic task-model, jobs are not allowed to exe-
cute less than their worst-case execution time, continuous spec-
trum of available frequencies, inverse relation of execution with
frequency, single sleep state and no energy overhead in the transi-
tion in phase from active to sleep state.

Niu and Quan’s [13] scheduling technique also addressed the
dynamic and leakage power consumption simultaneously on a
DVFS enabled processor for hard-real time systems. They inte-
grated DVFS and shutdown to minimize the overall energy con-
sumption based on the latest arrival time of jobs, which is
estimated by expanding the schedule for the hyper-period. How-
ever, this algorithm cannot be used online when adapted to the
system model used in this work due to an extensive analysis over-
head. Previously, Jejurikar et al. [14] integrated DVFS with the pro-
crastination algorithm, to minimized the energy consumption.
They showed the procrastination interval determined by their
algorithm is always greater than or equal to the procrastination
interval estimated by LC-EDF. Nevertheless, they did not relax on
the requirement of additional hardware to support their shutdown
approach.

Soon after, Jejurikar et al. [15] showed under certain conditions
procrastination with LC-DP originally proposed by Lee et al. [7]
may cause some of the tasks to miss their deadlines. They proposed
improvements in the original algorithm and also integrated their
DVFS approach. However, they adopted the same assumptions of
[7,14]. Later on Chen and Kuo [16] showed that an approach given
in [15] still might lead to some tasks missing their deadlines. They
proposed a two phase algorithm that estimates the execution
speed and procrastination interval offline, and predicts turn off/
on instances online but also rely on extra hardware. Further work
of Jejurikar and Gupta [17] reclaims the execution slack generated

due to the difference between worst-case execution time (WCET)
and actual execution time. They used procrastination scheduling
and DVFS to minimize the overall energy consumption, and called
their approach slack reclamation algorithm (SRA). The dynamically
reclaimed slack is either used entirely for slowdown or distributed
between slowdown and procrastination using slack distribution
policy. This algorithm follows the same assumptions made by pre-
vious work [7,14,15]. However, it will also be used when evaluat-
ing our work.

Chen and Kuo [18] developed a novel algorithm distinct to
greedy procrastination algorithms [16,10,7,14,15,17,13] for pro-
crastination interval determination. They showed that their algo-
rithm can decrease the energy consumption by executing jobs
below lower bound on speeds, when the processor is decided not
to be turned off in the procrastination interval. Chen and Thiele
[19] proposed leakage-aware DVFS scheduling, where tasks exe-
cute initially with decelerating frequencies to accumulate the slack
to initiate sleep state and towards the end execute with accelerat-
ing frequencies to reduce the dynamic power consumption. How-
ever, the work of Chen et al. [18,19] still relies on continuous
spectrum of available frequencies and external hardware. Consid-
ering previous history of events, predicting the future events using
RT calculus [20] and doing the scheduling analysis with RT inter-
faces [21], Huang et al. [22,23] estimated the procrastination inter-
val for a device to activate the shutdown.

Hoffmann [24] considered a problem of allocating computing
resources to an application to meet its performance constraint
while minimizing energy consumption. This problem of satisfying
the deadlines with minimal energy consumption is formulated as a
linear program where a task is allowed to switch between different
configurations. The proposed solution is compared against several
existing heuristics on two different servers purchased with a dif-
ference of 3 years. The comparison demonstrated that existing
heuristics works well on the old machine and achieve energy sav-
ings comparable to the optimal solution, however, the optimal
solution performs much better in case of a new server. Though, this
work presents interesting results, it considers a very simplistic
model when compared to what we have proposed in this work.
The proposed formulation is suitable for a strictly periodic system
and does not provide temporal isolation, in case of a misbehaving
application demanding more than its allocated budget. It also lacks
slack reclamation and collating-idle-intervals mechanisms which
can be used to further reduce the energy consumption of a system
and minimize the transition overheads of sleep states. Apart from
this, Santinelli et al. [25] proposed energy-aware packet and task
co-scheduling algorithm EAS for the distributed RT embedded sys-
tem consisting of a set of wireless nodes. Similarly, Wang et al. [26]
determined the static schedule for the given set of dependent peri-
odic tasks for homogeneous multiprocessors. However, this
research effort [25,26] is proposed for different system models
and hardware platforms compared to what we have assumed in
this research.

One of the assumptions commonly made throughout the state-
of-the-art is a requirement of the external custom hardware to
implement the procrastination management. The aim of this work
is to relax this assumption and propose a low complexity RTH algo-
rithms for the sporadic task-model.

3. System model

We assume a sporadic task model, with l independent tasks
T ¼ s1; s2; � � � ; slf g. A task si is described by hCi;Di; Tii, where Ci is
the worst-case execution time (WCET), Di the relative deadline
and Ti the minimum inter-arrival time. The tasks release a
sequence of jobs ji;m. Each ji;m has a deadline di;m, a release time
ri;m and an actual execution time ĉi;m. The system utilization
U ¼
Pl

i¼1
Ci
Ti

. We use the Rate-Based Earliest Deadline first (RBED)
framework [27], which provides temporal isolation by associating
with each si via enforced budgets Ai. At runtime the default value
ai;m for a budget when releasing ji;m is Ai. However, ai;m value may
be subject to manipulations; e.g., spare capacity assignment or
budget consumption during execution.

The temporal isolation of the RBED framework allows to mix
hard, soft and best-effort type applications. In the original work,
hard real-time (HRT) tasks are allocated a budget equal to their
WCET (Ai ¼ Ci) to ensure the timely completion of all jobs. The
allocation of budget for soft real-time (SRT) and best-effort (BE)
tasks is less than or equal to WCET (Ai 6 Ci) depending upon the
availability of the resource and the quality of service requirements.
The RBED framework has the flexibility to define the periods of the
BE Tasks if not available. The scheduler pre-empts every job when
it has used up its allocated budget ai;m. Thus, a job exceeding its
budget cannot affect the overall schedulability. In our system, we
assume HRT and SRT tasks have a Ai ¼ Ci and treated as RT tasks
onwards, while a BE task may have Ai 6 Ci.

Our hardware model assumes N sleep states in the system,
where each sleep state n is characterized with a power Pn, a tran-
sition overhead in terms of time tn and energy En, as well as a
break-even time (BET) te

n. The time tn includes transition overhead
time to sleep ts

n, as well as the wake-up time tw
n to transition out of

sleep state i.e., tn ¼ ts
n þ tw

n . Similarly, energy overhead En includes
energy consumption during both transitions. Active and idle mode
power are represented as PA and PL respectively. Each sleep state
has a BET te

n (discussed in detail in the Section 4). We assume that
the hardware platform or processor used does not support DVFS.
Moreover, the use of external hardware is avoided to reduce its
additional energy.

4. Static sleep interval limits

Definition 1. The break-even time te
n is the maximum of the

complete transition delay of going into and out of a sleep state, and
the time interval during which energy consumption of a sleep state
n becomes equal to the energy consumption of a system running in
idle mode.

Each sleep state has a BET te
n associated to it as given in Defini-

tion 1. Depending on the hardware characteristics, different ways
to compute te

n are possible [28,29]. The definition of te
n implies that

energy is saved when a sleep state is initiated for longer than te
n.

Hence, te
n gives a lower bound for the desired sleep interval. The

system selects a value greater than te
n as a minimum sleep interval.

Intuitively it is preferable to choose fewer, but longer sleep inter-
vals, when compared to more frequent sleep transitions for small
intervals. While the overhead of the sleep transition has a major
impact on the lower bound of the sleep interval, the schedulability
enforces an upper bound of this interval. We define this upper
bound on the sleep interval as static limit tl for which the system
can, under certain conditions (explained later in Section 6) be
enforced to stay in a sleep state without causing deadline misses.

Definition 2. The static limit tl is the maximum time interval for
which the processor may be enforced in a sleep state without
causing any task to miss its deadline under worst-case
assumptions.

The schedulability analysis of the EDF on uniprocessor [30,31] is
given in Theorem 1. However. overall demand bound function for a
task-set T can be represented as DBFTðLÞ ¼def maxL0 df ðL0; L0 þ LÞ
following the definition of Rahni et al. [32].

Theorem 1. A synchronous periodic T is schedulable under EDF if and
only if, 8L 6 L�; df ð0; LÞ 6 L, where L is an absolute deadline and L� is
the first idle time in the schedule.

Formally the static limit is defined by exploiting the demand
bound function (DBF). Assuming Theorem 1, a static limit for sleep
interval tl is given in Eq. 1, where L is an absolute deadline and L� is
the first idle time in the schedule.

8L 6 L�; tl ¼minðL� DBFðLÞÞ ð1Þ

Theorem 2. Initiating a sleep state for the static limit tl does not
violate the EDF schedule if and only if, 8L 6 L�;DBFðLÞ þ tl 6 L,
where L is an absolute deadline and L� is the first idle time in the
schedule.
Fig. 1. Demand bound function.
Proof. The sleep interval tl can be interpreted as the highest prior-
ity task. In an EDF scheduled system it is equivalent to a task with
deadline equal to the shortest relative deadline of any task in the
system. As such the DBF�ðLÞ is increased over DBFðLÞ by tl, follow-
ing the definition in Eq. 1 it follows that DBF�ðLÞ 6 L.

The state-of-the-art algorithms also compute such static limit
on the sleep interval. The minimum sleep interval ‘min computed
by LC-EDF [7] is given by Theorem 3. Note; that we can only con-
sider the minimum limit to ensure the system schedulability and
avoid external hardware. Jejurikar et al. [14] also identified a limit
on such sleep interval Zmin given in Theorem 4. They proved in their
work that Zmin P ‘min.

Theorem 3. Any idle period in the LC-EDF algorithm [7] is greater
than or equal to ‘min ¼minl

k¼1 ‘k ¼ ð1�
Pl

i¼1
Ci
Ti
ÞTk

n o
.

Theorem 4. The minimum idle period (Zmin) identified by the
procrastination algorithm [14] is given as Zmin ¼min16i6l Zi ¼f

ð1�
Xi

k¼1

Ck

Tk
ÞTig.

In our previous work on optimal procrastination interval [33], it
is shown that the static limit tl determined through DBF is always
greater than or equal to Zmin and ‘min (see Theorem 5). The
superiority of tl over Zmin is demonstrated with the help of an
example. Assume a task-set of three tasks with parameters:
s1ð0:5;3;3Þ; s2ð3;5;5Þ and s3ð1;15;15Þ. The DBF for the given
task-set is illustrated in Fig. 1. For this example, tl ¼ 1:5 time units,
Zmin ¼ 1:167 and ‘min ¼ 0:5, consequently, tl P Zmin P ‘min. Further-
more, it is also proved in the work on optimal procrastination
interval [33] that a procrastination interval of each task computed
with DBF is always greater than or equal to a procrastination inter-
val computed through Jejurikar’s method [14].

Theorem 5. The static limit tl ¼min8si2T;816ni6bL
�

Ti
c niTi �

P
8sj2T

n
bniTi

Tj
cCjg estimated through the DBF is always greater than or equal

to the minimum procrastination interval Zmin computed by the
procrastination algorithm proposed by Jejurikar et al. [14].

One of the major limitation of procrastination scheduling is a
need of an external hardware to implement such algorithm. The
objective of this work to propose alternative energy saving algo-
rithms that not only relax the need of an external hardware but
also reduce the online complexity. We compare the proposed algo-
rithms with the procrastination scheduling and show the loss of
energy saving of relaxing such assumption (external hardware) is
within a range of �1%, while favoring the related work by ignoring
the energy overhead the external hardware would introduce.
Algorithm 1. Slack management
1: On Every Scheduling Event
2: if(St�d 6 di;m)then
3: ai;mþ ¼ St�s
4: St�d ¼ 0
5: St�s ¼ 0
6: end if
7: Slack Update On Job Completion
8: St�sþ ¼ ai;m

9: St�d ¼ maxðSt�d; di;mÞ
10: if(Ready Queue Empty) then
11: Consume slack St first (This slack consumption accounts

for a time spend without executing any workload
irrespective of CPU state, i.e., idle or sleep mode)

12: end if

5. Slack management algorithm

The processing time not used in a system is called slack. System
slack can be categorized in two types, dynamic and static slack. The
static slack exists due to spare capacity available in the schedule as
the system is loaded less than what can be guaranteed by the
schedulability tests.

The dynamic slack occurs due to difference between worst-case
assumptions made in the offline analysis and the actual online
behavior of the system. It is further divided into two components
based on two different worst-case assumptions. The first assump-
tion is that each job of a task will execute for its WCET. Due to the
inherent variability of execution times, most if not all of the jobs in
a real scenario finish their execution earlier than their Ci and by the
chosen budget Ai, and thus generate extra slack. It is termed as exe-
cution slack bSi;m, and quantified by Ci � ĉi.

Similarly, the system is analyzed with the second worst-case
assumption that each job of a sporadic task will be released as soon
as possible i.e., released periodically with Ti. However, for truly
sporadic tasks that rarely happens in hard real-time systems. Jobs
of a sporadic tasks are released with a variable delay bounded by
the minimum inter-arrival time. The slack generated due to spo-
radic delays is termed as sporadic slack and forms the second com-
ponent of the dynamic slack. Naturally, all of the dynamic slack is
generated online and can only be identified at run-time.

The static and execution slack are managed explicitly in our
approach. Nevertheless, the effect of the sporadic slack is consid-
ered implicitly. Our slack management approach is based on the
basic principles of [34]. The execution slack bSi;m available in the
system at time instant t is represented by the tuple St ¼ hSt�s; St�di,
where St�s corresponds to effective slack size and St�d corresponds
to the absolute deadline of the slack. The term St�d defines the
upper bound on the effectiveness of St . In idle mode, the system
consumes available slack [35].

To preserve the system schedulability, we assume jobs with
higher priority can only pass slack to jobs of same or lower priority.
Whenever a job completes its execution it donates its slack to a
slack container. A slack container stores and collates the slack
identified at runtime. To reduce the complexity a single container
is used for the slack management. Keeping several containers for
the slack at different priority levels would add an extra online com-
putational overhead in the slack management and is thus avoided.
Whenever execution slack is generated in the system by some job
it is added to the slack container, and the later deadline is consid-
ered to be the effective deadline of the slack. Suppose an execution
slack is received from a job ji;m of size SZ and deadline di;m. The
deadline of the slack in the container St�d is updated by maintaining
the later deadline (St�d ¼ max St�d; di;m

� �
), while its size SZ is added

to the slack size in the container St�s (St�sþ ¼ SZ).
As mentioned earlier only jobs with lower priority than slack

can acquire the slack to preserve the system schedulability, there-
fore, on every scheduling event, the slack priority is compared
against the current job priority. If the slack St has a higher or equal
priority than the current job to be executed, the actual budget ai;m

of the current job ji;m is incremented by St�s; i.e., ai;mþ ¼ St�s. When a
slack St is allocated to any job ji;m, the slack container is initialized
to zero. The complete slack management algorithm is given in
Algorithm 1.

The advantage of this approach is that slack generated at differ-
ent priority levels are eventually accumulated implicitly with a
very simplistic and transparent approach using just one container
to hold the slack. The disadvantage of such approach is the poor
distribution of the slack in the existence of long period tasks. The
slack generated from such tasks will also decrease the priority of
the already available slack. The proposed algorithms presented in
Section 6 are not dependent on the proposed slack management
algorithm. Any existing slack management algorithm can be inte-
grated with minimal effort to the proposed RTH algorithms. Our
slack management algorithm has low overhead (spatial/temporal)
which makes it an attractive alternative.
6. Energy management algorithms

We propose three different energy management algorithms to
increase the energy efficiency of embedded systems using RTH
strategy followed by a sleep state.
6.1. ERTH Algorithm (ERTH)

ERTH considers three different principles to initiate a sleep
transition. These principles are based on the system status (i.e.,
either the system is idle or executing a task) and the capacity
of the available slack in the system. This algorithm does not ini-
tiate a sleep state for less than static limit tl to minimize the
transitions overheads. The complete pseudo code of ERTH is
given in Algorithm 2. The commons subroutines (such as Man-
age Slack, Get Slack, Set Sleep Time and Get Next Release Time)
shared with other algorithms (extension of ERTH) are given in
Algorithm 3.
Algorithm 2. Enhanced Race-to-Halt Algorithm (ERTH)

1: Offline
2: Compute tl

3: Find most efficient sleep state n for tl:
8 Sleep States N : tl P te

n

Minimize ðtl � PnÞ þ ðtn � ðPA � PnÞÞf g
4: Let U be the sleep interval such that U ¼ tl � tw

n

5: Online
6: ifðSystem IdleÞ then
7: Manage Slack(tl)
8: Timer ¼ U
9: Mask-record interrupts and initiate sleep state
10: else if (GetSlackðji;mÞP tl) then
11: if(HRT=SRT Task) then
12: Manage Slack (tl)
13: Timer ¼ U
14: Mask-record interrupts and initiate sleep state
15: else if (BE Task) then
16: Compute u
17: Manage Slack(u)
18: Set Sleep Time(u);
19: end if
20: else
21: Race-to-Halt
22: end if
23: When Timer Expires
24: Unmask interrupts
25: if (interrupts) then
26: Service the interrupts (Schedule the tasks arrived during

sleep duration)
27: else
28: Timer ¼ U
29: Mask-record interrupts and initiate sleep state
30: end if

Principle 1: The principle one applies on RT (SRT or HRT) task
type. If any of the job of a RT task is at the head of the ready queue
and is eligible for the slack St P tl, a timer is initialized with static
limit minus the wake-up transition-overhead time (i.e., tl � tw

n)
and the system enters a sleep state until the timer expires. However,
if the available St to the job is less than tl, it is added to the job’s bud-
get. The system performs a race-to-halt with the aim of collecting
more slack in future.
Theorem 6. If the next job to execute in the ready queue ji;m is of type
HRT or SRT, while the execution slack has a size greater than or equal
to the static limit ðSt�s P tlÞ and the slack deadline is less than or equal
to the absolute deadline di;m of the HRT or SRT job ji;m ðSt�d 6 di;mÞ,
then system can initiate a sleep state for a static limit of tl without
violating EDF schedulability.

Proof. Suppose the available St is considered as a task ssleep with a
budget and deadline equal the tl and St�d respectively. We need to
prove ssleep is schedulable without an interruption in the presence
of T. For this we split the potentially affected jobs of T in two parts
which we address separately: (1)8si not released yet. (2)8si

released but in ready queue.
Case 1 (8si not released yet): This can be proven by contradic-

tion. Suppose, the system schedule a ssleep for tl and there is a
synchronous arrival of all the tasks not yet released, and some of
the si missed their deadline. However from Theorem 2, all si in the
system can be delayed for an interval of tl without any deadline
misses, which is a contradiction. Therefore all si not released yet
will meet their respective deadlines.

Case 2 (8si released and in ready queue): Due to the condition
expressed in Principle 1, task ssleep has a deadline earlier than any
si in the ready queue. This task can be scheduled before its
deadline and thus ssleep will not affect si in the ready queue.

We proved tasks in both cases do not violate the schedule, thus
theorem holds.
Algorithm 3. Common routines for ERTH, IRTH and LWRTH

1: Set Sleep Time (g)
2: 8 Sleep States N : g P te

n

3: Minimize ðg � PnÞ þ ðtn � ðPA � PnÞÞf g
4: Timer ¼ g� tw

n

5: Mask-record interrupts and initiate sleep state
6: Get Slack (ji;m)
7: if di;m P St�d then
8: return St�s
9: else
10: return 0
11: endif
12: Manage Slack(g)
13: if(g 6 St�s) then
14: St�s� ¼ g
15: else
16: St ¼ 0
17: end if
18: Get Next Release Time (rn)
19: 8i 2 T
20: return minðrn

i Þ

Principle 2: The principle 2 deals with BE task type. In case the job

to execute is of type BE, we use Eq. 2 to evaluate the possible sleep
interval. The sleep interval computed through Eq. 2 is the minimum
of the available slack and the minimum gap .. The latter (.) is
determined through Eq. 3, which computes the workload until
the deadline of the slack and finds the time interval called mini-
mum gap. This time interval ensures any deadline prior to the slack
deadline is not violated if the schedule is delayed for such interval.

This approach has two main advantages. Firstly, the sleep inter-
val estimated u is always greater than or equal to tl ðu P tlÞ as we
assume that u is computed when St�s P tl. Secondly, it is useful,
when tl is very small (i.e., high system utilization). We do not
assume knowledge about the previous release times of tasks,
therefore a worst-case situation is assessed with Eq. 3. The
worst-case situation is when all higher priority tasks ðdi;m 6 St�dÞ
arrive just after system has initiated a sleep state. Jobs with dead-
lines after the deadline of the current job will not be affected, as
the slack has a shorter or equal deadline to the current job. Another
way to visualize the working of Eq. 3 is through a demand bound
function. Assume a synchronous arrival of all higher priority tasks
at time instant t and compute the demand bound function within
an interval of ½t; St�d�. The minimum gap . is the one that has the
smallest distance between budget demand and utilization bound.

The minimum gap identified by . using Eq. 3 does not relate to
the schedulability of the lower priority tasks, as it may also contain
the processing time reserved for those tasks. The amount of slack
available in the system gives us an exact upper bound on the sleep
duration. To avoid more complex schedulability checks, we assume
a sleep interval is always less than or equal to the available slack
even if the available gap . is greater than the slack . P St�s. Con-
versely, if the gap. is less than the system slack. < St�s, a sleep inter-
val would be obviously equal to the duration of . to ensure the
schedulability of the higher priority tasks. Therefore u finds the
minimum between the available slack and the smallest-gap identi-
fied by . ensuring overall system schedulability. Once a gap u in the
schedule is identified, the timer is set for an interval of u� tw

n .

Theorem 7. If the job to execute in the ready queue is of BE type and
the execution slack is greater than or equal to the static limit ðSt�s P tlÞ
with a deadline less than or equal to the absolute deadline of the BE job
ðSt�d 6 di;mÞ, the system can initiate a sleep state for u without
violating any deadlines under EDF.

u ¼minðSt�s;.Þ ð2Þ

Where . ¼ min
k;m2VðSt�dÞ

gk;m �
X

j2Vðdk;mÞ

gk;m

Tj

� �
� Cj

8<
:

9=
; ð3Þ

gk;m ¼ dk;m � t ð4Þ

VðxÞ ¼ i : ri;m P t ^ di;m 6 x
� �

ð5Þ

Proof. In this case the sleep interval is not defined offline, rather
computed online. To prove a sleep state for an interval of u can
be initialized, we segregated jobs into four parts and their schedu-
lability is proven individually. (1) 8ji;m has not yet been released
and di;m 6 St�d. (2) 8ji;m has not been released and di;m > St�d. (3)
8ji;m is in the ready queue. (4) 8ji;m has already completed.

Let . define the maximum available interval by which the higher
priority jobs can be delayed at the current instant t. . is computed
by Eq. 3 considering each deadline within an interval of ½t; St�d�. In
principle it performs a limited demand-bound analysis for the
defined interval to calculate the delay interval. Since there is a
possibility to obtain a delay larger than the available St�s, Eq. 2
guarantees that system is not delayed more than available slack
capacity. Assume a sleep interval as a task ssleep with a deadline
equal to St�d. Eq. 3 implies scheduling a ssleep for not more than . does
not affect the schedule of any ji;m that is not yet released and has a
di;m 6 St�d. Moreover, we restrict that ssleep will not execute for more
than St�s with Eq. 2. This ensures that any ji;m not released yet with
di;m > St�d will not be affected. Eq. 5 exclude all ji;m such that di;m 6 t.
Similar to Theorem 6, the schedulability of 8ji;m in the ready queue
is not affected as well, as they have a deadline later than that of ssleep.
Any jobs already completed, are obviously unaffected. As none of
the task in T miss their deadline, hence the theorem holds.

Principle 3: When the system becomes idle, principle 3 is used.
As we know, tl is computed offline considering the worst-case sce-
nario in the schedule. Thus initiating a sleep state for tl � tw

n when
the system becomes idle will not affect the schedulability of the
system in any circumstance. Moreover, it is not allowed to prolong
the sleep state beyond the static limit to preserve the schedulabil-
ity. However, u could be used to increase the sleep interval, it
would also substantially increase the complexity of the algorithm.

Theorem 8. In the idle state, the system can initiate a sleep state for tl

without violating the EDF schedulability and moreover, the available
slack St that may be less than tl is consumed first with this sleep
transition.
Proof. The proof of the Theorem 8 follows the same reasoning of
Theorem 2.

The timer value is set equal to sleep interval� tw
n , where

sleep interval is determined according to the principle which has
initiated the sleep state. The sleep transition due to any of these
principles restricts the system to wake up until the timer expires.
This restriction applies to all higher priority tasks as well. We
assume that all interrupts bar the timer interrupt are disabled on
initiating a sleep state and re-enabled on completion of the sleep.

In many CPUs separate interrupt sources can be used for this. As
usual with such disabled interrupts, events occurring during the
sleep interval are to be flagged in the interrupt controller for pro-
cessing after the interrupts are re-enabled.

The ERTH algorithm is agnostic to future release pattern of the
system and assumes a critical instant on each sleep transition. As
such, each sleep state interval is estimated assuming a synchronous
release of all higher priority tasks. For instant, in calculation of u, the
system assumes a synchronous release of all those tasks having
deadlines earlier than the current job’s deadline. Similarly, in princi-
ple 3 (idle mode), a synchronous release of all tasks is assumed at the
instant of sleep transition. The critical instant occurs rarely, if ever,
in reality. However, ERTH uses this pessimistic condition to guaran-
tee the schedulability with minimal complexity in the algorithm.

6.2. Improved Race-to-Halt Algorithm (IRTH)

The pessimism of ERTH can be eliminated by keeping track of
future release information of the task-set. As we assume sporadic
task model, it is not possible to predict exact future releases. How-
ever, one can approximately predict the future based on minimum
inter-arrival time Ti. In the sporadic system model, a new job of a
task can only arrive after Ti. Therefore, by storing the past release
information, we can approximate the future release time. This
method can reduce the pessimism introduce in ERTH but cannot
eliminate it entirely due to the sporadic task model employed.

Algorithm 4. Improved Race-to-Halt Algorithm (IRTH)

1: Offline
2: Compute tl

3: Find most efficient sleep state n for tl:
8 Sleep States N : tl P te

n

Minimize ðtl � PnÞ þ ðtn � ðPA � PnÞÞf g
4: Let U be the sleep interval such that U ¼ tl � tw

n

5: Online
6: if ðSystem IdleÞthen
7: Manage Slack (tl)
8: rnext ¼ Get next release time (rn)
9: Set Sleep Time (rnext � t þ tl)
10: else if (GetSlackðji;mÞP tl) then
11: if(HRT=SRT Task) then
12: Manage Slack (tl)
13: Timer ¼ U
14: Mask-record interrupts and initiate sleep state
15: else if (BE Task) then
16: Compute X
17: Manage Slack (X)
18: Set Sleep Time (X)
19: end if
20: else
21: Race-to-Halt
22: end if
23: On release of si

24: Update rn
i ¼ ri;m þ Ti

25: When Timer Expires
26: Unmask interrupts
27: if (interrupts) then
28: Service the interrupts (Schedule the tasks arrived during

sleep duration)
29: else
30: Timer ¼ U
31: Mask-record interrupts and initiate Sleep
32: end if
This can easily be implemented by maintaining an array of
n
future release information r with a size equal to the number of

tasks n in the system. When any job of a task arrives, it updates
it future release time rn

i by adding the Ti in its current job release
time ri;m (i.e., rn

i ¼ ri;m þ Ti).

Algorithm 4 presents IRTH. The three basic principles stay same
when compared to ERTH. However, the sleep interval estimation
varies in principle 2 (BE type task executing) and principle 3 (idle
mode). In idle mode, system finds the next earliest release rnext in
the future from its future release information array rn. This
information assures there is no release in an interval ½t; rnextÞ, hence
a sleep interval can be extended from tl to tl þ rnext � t without
violating any deadline.

Theorem 9. In idle mode, the system can initiate a sleep state for a
duration of rnext þ tl � t, without violating any deadline under EDF,
given the earliest future releases of all tasks rn is known at the time of
initiating a sleep state.
Proof. Assume t is the current instant where the system became
idle. Consider rnext is the next release of any task in T. rnext is
assumed to be the critical instant, that leads to the longest busy
interval (assuming synchronous releases) in the system (though
that may or may not occur at this point). As there are no releases
between rnext and t interval, system schedulability is not affected,
however, we need to check for the schedulability of the task-set
T in the duration of rnext and rnext þ tl. The schedulability of this
interval follows directly from Definition 2. Hence the schedulabil-
ity of the overall system will be preserved under this sleep
condition.

Similarly, in principle 2 future release information can improve
on the sleep interval. As we know, principle 2 deals with BE task
type and computes its sleep interval with Eq. 3 which in turn is
equivalent to limited DBF. It assumes critical instant at time t
and considers all job releases having deadline less than or equal
to St�d. However, having predicted information about the future
releases of the tasks, we can add an offset of rn

i � t to the first job
of all those tasks having future releases in an interval ½t; St�d� and
not currently awaiting in the ready queue. We do not include jobs
of the tasks awaiting in the ready queue, because by the definition
of principle 2, they have deadlines later than St�d. The offset is only
added if the rn

i of the si is greater than t. Otherwise, it is assumed to
be 0. The offsets greater than 0 shifts the jobs deadlines accord-
ingly – which may or may not shift the last job deadline of some
tasks outside the interval ½t; St�d�. If some of the jobs deadlines move
outside the interval, the demand requested by the system in the
interval ½t; St�d� is decreased. Which in turn increases the possibility
to get larger sleep interval compared to pessimistic approach used
in ERTH. The schedulability in principle 2 with this new
amendment is proved in Theorem 10.

Theorem 10. If the task to execute in the ready queue is of BE type
and the available slack is greater than or equal to the static limit
St�s P tl with a deadline less than or equal to the static limit St�d 6 di;m,
then sleep state could be initiated for a time interval X without
violating any deadline under EDF, given the earliest estimated future
releases of all tasks rn is known at the time of initiating a sleep state.
X ¼ minðSt�s; #Þ ð6Þ

Where # ¼ min
k2VðSt�dÞ

gk;m �
X

j2Vðdk;mÞ

gk;m � rn
j

Tj

� �
� Cj

8<
:

9=
; ð7Þ

gk;m ¼ dk;m � t ð8Þ

VðxÞ ¼ i : ri;m P t ^ di;m 6 x ð9Þ
Proof. The scheduler estimates the sleep interval online consid-
ering the available dynamic parameters in the system. In order
to prove the schedulability, we segregate T into six parts and
their schedulability is proved individually. (1) 8ji;m already com-
pleted. (2) 8ji;m released earlier than t and has St�d > di;m > t. (3)
8ji;m released earlier than t and has di;m > St�d. (4) 8ji;m that will
be released after t with an initial offset of rn

j and has
di;m 6 St�d. (5) 8ji;m that will be released after t with an initial off-
set of rn

j and has di;m > St�d. (6) 8ji;m that will be released after
St�d.

The term # given by Eq. 7 estimates the worst-case response-
time of all jobs in an interval of ½t; St�d� having release times in an
interval of ½t; St�dÞ and deadlines in an interval of ðt; St�d�. Moreover,
it returns the feasible interval for the sleep state at time instant t.
Consider a sleep state as a task ssleep with a deadline St�d and budget
St�s. The sleep state cannot be initiated for more than St�s, as it might
jeopardize the schedulability of the low priority tasks. With this
restriction, scheduling the ssleep will not affect the jobs of category
1;3;5 and 6 considering the EDF algorithm. Eq. 9 eliminate all
these jobs from the analysis. The principle 2 is only invoked when
the task to execute in the ready queue has di;m P St�d. This
restriction is imposed by our slack management algorithm. Hence
jobs with a category of 2do not exist and are thus removed with
this restriction from the analysis. The schedulability of the jobs in
the category 4 is individually ensured with the Eq. 7. Eq. 7 can get a
sleep interval larger than St�s, but we are assuming a sleep task that
is equal to St�s. Therefore, its size is restricted to St�s with the use of
Eq. 6. As none of the tasks in T misses its deadline, the theorem
holds.

Similar to principle 2, a sleep interval of the system in prin-
ciple 1 can be achieved larger than tl � tw

n with Eq. 2 or Eq. 6
(respectively in ERTH or IRTH), however, this comes at the cost
of extra complexity which is avoided in the proposed algo-
rithms. Hence, principle 2 is only used when the BE type task
is under consideration.

6.3. Light-Weight Race-to-Halt Algorithm (LWRTH)

Though IRTH is promising, it also has an extra online over-
head when compared to ERTH. (Online/Offline overheads are
discussed in Section 7.) We also propose another algorithm that
does not require any slack management scheme but performs
slightly better than ERTH and marginally worse than IRTH. In
this algorithm, system races-to-halt when there is a task in the
ready queue and waits for the idle mode. In idle mode we initi-
ate a sleep state using principle 3 of the IRTH algorithm. LWRTH
has lower online complexity when compared to IRTH but is infe-
rior (performance-wise) against it at high utilizations. However,
LWRTH needs to maintain a list for the predicted future release
information of tasks that adds extra online overhead and does
not give us a full control over the sleep transition. For example,
best effort tasks will prevent the system to initiate a sleep state
(may be forever) as they can borrow from their future release
instances. Furthermore, LWRTH performs worse compare to
ERTH when it comes to the number of pre-emptions for small
task-set sizes (discussed in Section 9.3). The pseudo code of
LWRTH is given in Algorithm 5.
Algorithm 5. Light-Weight Race-to-Halt Algorithm (LWRTH)

1: Online
2: if (System Idle) then
3: rnext ¼ Get next release time (rn)
4: Set Sleep Time(rnext � t þ tl)
5: else
6: Race-to-Halt
7: end if
8: On release of si

9: Update rn
i ¼ ri;m þ Ti

10: When Timer Expires
11: Unmask interrupts
12: if (interrupts) then
13: Service the interrupts (Schedule the tasks arrived during

sleep duration)
14: else
15: Set Sleep Time (tl)
16: Initiate sleep state
17: end if
7. Offline vs online overhead

The complexity of our algorithms is compared with LC-EDF and
SRA, as they are with their use of dynamic priorities closest to our
work. As has been discussed in Section 2, in LC-EDF, the system
enters a sleep mode whenever it is idle. LC-EDF has a smaller num-
ber of sleep states when compared to EDF as it combines several
small idle intervals to initiate sleep state for long interval. While
in the sleep state, on each higher priority (shorter deadline) task
arrival, the algorithm recomputes the new procrastination interval
for that task, unless the system does not allow further procrastina-
tion. The online overhead of the LC-EDF algorithm depends on two
main factors, (1) number of times a sleep state is initiated in the
system, (2) the overhead of each sleep transition. The first factor
depends on the total number of idle intervals in the schedule
because LC-EDF initiates a sleep in idle mode. However, the over-
head of each sleep transition depends on the task-set size. The
complexity of each sleep transition in LC-EDF is Oðl2Þ, where l
denotes the task-set size.

The SRA algorithm [17] is developed on the same idea of LC-
EDF. Instead of computing the procrastination interval online, it
determines this interval for each task offline. This approach also
reclaims the execution slack from the system and use it to further
procrastinate the sleep interval. In a nutshell, on every release of a
task during the sleep interval, the scheduler computes the avail-
able execution slack and compares it with the procrastination
interval of that task computed offline. The maximum of these
two values is considered while deciding on the reinitialization of
the timer. The complexity of the system to determine the available
execution slack for the task is OðlÞ. In worst case l tasks can arrive
during each sleep interval. Therefore, the complexity of the SRA
algorithm is same as LC-EDF i.e., Oðl2Þ.

The major drawback of LC-EDF and SRA lies in their dependency
on external hardware to compute the procrastination interval
online. The authors assume that their algorithm is implemented
on the external hardware in an ASIC or FPGA. The external hard-
ware is required as the procrastination interval is readjusted on
every new task release while the processor is in a sleep mode.
The logic needed to implement such algorithms is not simple as
well, as it needs to time stamp and store all interrupts arriving

during the sleep interval. Such external hardware obviously has its
own energy cost and partly negates what LC-EDF or SRA is aiming
to achieve.

While on the other side, the ERTH approach provides the more
effective power saving algorithm with lower complexity. Initially,
we discuss the complexity of ERTH. It is divided into three different
categories based on its three different principles. Firstly, if the
sleep transition is initiated through Principle 1, it requires just
one comparison against the offline computed static limit tl, i.e.,
Oð1Þ. Secondly, sleep states initiated with Principle 2 requires the
computation of u in order to obtain the maximum feasible sleep
interval. The major overhead lies in the computation of . that
could be obtained either offline or online. Offline Method: The
interval for computing . offline is no more than the longest Ti in
the task-set. Therefore, the maximum available gap can be com-
puted offline for each deadline and sorted in an increasing order
by time. The runtime overhead is to search the sorted array of max-
imum available gaps for each given interval, which can be done in
OðlnðpÞÞ, where p is the number of intervals. Online Method: The
online complexity to compute . depends on the number of jobs
in an interval. We have used the former method to compute ..
The overhead of u computation is justified when compared to its
energy saving and benefits of using it. The major advantage is that
it is computed only once before initiating the sleep state. Thirdly,
in idle mode (Principle 3), sleep state is initiated for tl without
any check and it do not have any online overhead.

Apart from its low complexity, the second advantage of ERTH is
the existence of the fixed sleep-interval at the sleep-state initiali-
zation instant. Once the system initiated the sleep transition, no
matter how many tasks arrive during the sleep mode, the system
will wake up after a defined limit (when timer expires). Our sched-
ulability tests ensure all the jobs will meet their deadlines. This
mechanism simplifies the system implementation and eliminates
a need for external hardware to compute the algorithm. Which
in turn further reduce the complexity of the design, as external
hardware require extra communication overhead and increases
integration issues.

The online overhead of IRTH is similarly divided into three cat-
egories. If the sleep state is initiated by a RT task (Principle 1), its
overhead is same as in ERTH Principle 1, i.e., Oð1Þ. However, in idle
mode (Principle 3), its complexity increases, as the system has to
search for the earliest possible future release in an array of rn.
There are two ways to manage it. Firstly, we can keep a sorted
array of rn and use the first value when system initiates a sleep
transition. Thus the complexity of maintaining the array on each
job arrival is OðlnðlÞÞ. However, when a sleep state is initiated the
overhead is low i.e., Oð1Þ. Secondly, rn can be stored with respect
to the task-ID and on each sleep invocation system traverse rn to
find the minimum value. In this case complexity to update an array
of rn on each job invocation is Oð1Þ, however, each sleep transition
has a complexity of OðlÞ. In our observation, the number of sleep
transitions are fewer when compared to the number of jobs invo-
cations. Therefore, we used the second approach. Thus the com-
plexity of each sleep transition in IRTH through Principle 3 is
OðlÞ. In Principle 2 of IRTH, we wanted to exploit the online infor-
mation of future releases (rn). Therefore, it is difficult to find the
sleep interval offline, and we have to estimate it online on each
sleep invocation. To compute the complexity of a sleep transition
in principle 2, we assume H ¼ Tmax

Tmin
, where Tmax is the maximum

and Tmin is the minimum inter-arrival time in the task-set. Then
the complexity of each sleep transition in Principle 2 is OðHlÞ, as
in worst-case system has to check the all possible job releases
within Tmax.

To cope with additional online complexity of IRTH, we have
devised LWRTH. LWRTH only initiates sleep states in idle mode.
It relies on the future release information array to maximize the
energy efficiency. Therefore, each sleep transition happening in
LWRTH has a complexity of OðlÞ. This algorithm does not need
any slack management algorithm, and moreover its online com-
plexity to initiate a sleep transition is also low when compared
to ERTH and IRTH. A system designer needs to perform a careful
evaluation, while selecting among the available algorithms. IRTH
clearly has the highest complexity when compared to ERTH and
LWRTH but the energy saving is also greatest among them. The
complexity comparison of ERTH and LWRTH is difficult. On one
side, ERTH does not require to maintain a list of the future release
information, while IRTH needs such information which needs to be
updated on every task’s release. On the other hand, LWRTH has
lower sleep transition overhead when compared to ERTH and does
not use slack management.

Suppose a; b and c are the number of sleep transitions in
Principle 1;2 and 3 respectively and n is the total number of sleep
transitions in the system. Then overall online complexity of ERTH,
IRTH and LWRTH to initiate a sleep transition is summarized in
Eqs. 10–12 respectively.

a Oð1Þ þ b OðlnðpÞÞ þ c Oð0Þ ¼ b OðlnðpÞÞ ð10Þ
a Oð1Þ þ b OðHlÞ þ c OðlÞ ¼ b OðHlÞ þ c OðlÞ ð11Þ
n OðlÞ ð12Þ
8. Effect of sleep-states on the number of pre-emptions

A side effect of the use of the sleep states is that the release
behavior of the system and subsequently the pre-emption rela-
tions between tasks are affected. In this section how the behavior
in terms of number of pre-emptions of tasks in the system is chan-
ged at runtime is investigated.

The tasks released during sleep interval give rise to two conflict-
ing scenarios. On one side, execution of the tasks released during
the sleep-state interval are postponed and constrained to a smaller
window for execution. One could easily perceive that the number
of pre-emptions will rise, as delaying the tasks execution increase
the likelihood of higher priority tasks interference which implies
higher priority tasks might cause more pre-emptions. On the other
side, the interrupts that occur throughout the sleep state interval
are served on completion of the sleep interval. A task release trig-
gers an interrupt. Therefore, tasks releases during sleep interval are
collated and scheduled after wake-up in order. Thus delaying new
tasks arrival and waiting for the higher priority task releases
decreases the number of pre-emptions. Thus these two consider-
ations indicate positive or negative changes in the number of
pre-emptions.

The number of pre-emptions poses a substantial overhead (time/
energy) on the running system. For instance, on resumption of a task
the system has to pay the penalty to reload the cache content
displaced by pre-emption. Access to off-chip memory is generally
very expensive when compared to on-chip caches or scratch-pad
memory. Therefore, the system has to reserve time for pre-emption
related delays, which in turn also decreases the system utilization. A
decrease in pre-emption count not only increases the system
utilization but also reduces the energy consumption.

We assume the pre-emption count represents the number of
pre-emptions taking place when a actively executing task is being
replaced before it has completed execution by a higher priority
task to execute. A synchronous releases of high and low priority
task allows the high priority task to execute first and the pre-emp-
tion is not counted as the low priority task has not yet started its
execution and hence does not need to e.g., reload cache content.

Considering the overhead of pre-emptions on the energy and
utilization, it is indeed an important issue to resolve which
approach performs better. If pre-emptions decreases, the overall
energy decreases more than just saved with sleep transition, as
we reduced the overhead of pre-emptions as well. Through exten-
sive simulations it is shown in our results that, in the average-case,
sleep states have a positive effective on pre-emption count. The
number of pre-emptions of all algorithms (SRA, LC-EDF, ERTH, IRTH
and LWRTH) are analyzed and compared in our results section.
9. Evaluation

9.1. Experimental setup

In order to evaluate the effectiveness of the proposed algo-
rithms, we have implemented all algorithms (ERTH, IRTH, LWRTH,
SRA and LC-EDF) in SPARTS (Simulator for Power Aware and Real-
Time System) [36]. SPARTS is an open source simulator of a real-
time device and its source code is available at [37]. To cover a wide
range of different systems, different task-sets are evaluated from a
large number of fine grained small tasks (200) to a small number of
coarse grained tasks (10). The two different share distributions n1

and n2 are applied to the number of tasks in a given class, as well
as the overall utilization of the respective task classes. Moreover,
utilization allocated to a specific task class is distributed randomly
among the tasks of this class. The actual individual utilization per
task is generated such that the target share for each scheduling
class is achieved. Starting from the utilization Ui and Ti for each
task according to the limits in Table 1, the WCET of each task is
deemed to be Ci ¼ Ui � Ti. It has to be noted that due to numerical
rounding in the parameters used in our simulator to generate the
task-set with a target utilization of x has a resulting utilization of
x� �, where � is a very small number. For the set of experiments
we have performed, � varies within a range of ½0:0025%;0:70%�.

Beyond those initial settings a two level approach is used for
generating a wide variety of different tasks and subsequently vary-
ing jobs. Tasks are further annotated with a limit on the sporadic
delay Ds

i in the interval ½0;Cx � Ti� and on the best-case execution
time Cb

i in the interval ½Cb � Ci;Ci�. However, not only tasks vary
in their requirements, different jobs of the same task have also
varying behavior dependent on system state and input parameters.
This is modeled by assigning each ji;m an actual sporadic delay in
½0;Ds

i � interval and an actual execution time in ½Cb
i ;Ci� interval.

Though not a fundamental requirement of our proposed algo-
rithms, we assume implicit deadlines Di ¼ Ti for evaluation pur-
poses. It is obvious that Di > Ti leads to greater saving
opportunities, but does not provide greater insights. All random
numbers are taken from a uniform distribution and unless explicit
values are given, random numbers are used for all assignments.

A vast variety of CPUs are available in the market. They have
diverse hardware architectures and consequently different power
characteristics. In order to observe the effect of different types of
hardware platforms on the proposed algorithms, we have generated
different power parameters of the processor. In our system model
Table 1
Overview of simulator parameters.

Parameters Values

Task-set sizes jTj 10;50;200f g
Share of RT/BE tasks n ¼ n1; n2f g h40%;60%i; h60%;40%if g
Inter-arrival time Ti for RT tasks ½30 ms; 50 ms�
Inter-arrival time Ti for BE tasks ½50 ms;1 sec�
Sporadic delay limit Cx 2 0:1;0:2f g
Best-case execution-time limit Cb 0:2

Sleep threshold Wx in 1;2;5;10;20f g
active and idle time of the CPU remain constant for a specific task-
set. The factor among the power model parameters that affects
the energy gain of an algorithm is the overhead of the sleep transi-
tions as we have normed the total energy. However, the overhead of
the sleep transition is modeled by BET. Therefore, we have altered
the power model parameters to generate the distinct BET such that
it is a multiple of the original BET by a factor of x. The different BETs
are represented with Wx called sleep threshold. The sleep threshold
with x ¼ 1 denotes the BET of the original power model. The above
mentioned parameters are summarized in Table 1.

Overall system utilization is varied from 0:2 to 1 with an incre-
ment of 0:05. We have generated 1020 different task-sets configu-
rations (Cb;Cx;Ui; � � � etc). For each task-set of a particular
configuration the seed value of the random number generator is
varied from 1 to 100. Therefore, in total we simulated 102 thou-
sand task-sets of the above mentioned different parameters and
each task-set is simulated for 100 seconds. The overhead of all
the algorithms including procrastination algorithms (LC-EDF and
SRA) is considered negligible. This is obviously a favorable treat-
ment for LC-EDF and SRA, as the time/energy overhead of the
external hardware is substantial. SPARTS simulator takes into
account the effect of the sleep state transition delays and its
energy/time overhead is included in our power model.

The power model used for our simulations is based on the Free-
scale PowerQUICC III Integrated Communications Processor
MPC8536 [38]. The power consumption values are taken from its
data sheet for different modes (Maximum, Typical, Doze, Nap,
Sleep, Deep Sleep). We assume a core frequency of 1500 MHz
and core voltage of 1.1 V. As the transition overheads are not men-
tioned in their data sheet, we assumed the transition overhead for
four different sleep states. The transition overhead of the typical
mode is considered negligible. The overhead te

n for the four differ-
ent sleep states are computed using Definition 1 and shown in the
Table 2. The power values given in Table 2 sum up core power and
platform power consumption. The interested reader is directed to
the reference manual [38] for details.

9.2. Energy consumption results

Any change in the parameters from those described above in
Section 9.1 is explicitly mentioned in the individual experiment
description. Each point in the figure present results averaged over
100 runs with different respective seed values as well as all differ-
ent parameters. As baseline, we have simulated ERTH without the
use of sleep states (NS), i.e., system uses typical power when it is
not executing any task otherwise consume PA during normal exe-
cution of tasks. Energy consumption of LC-EDF or SRA without
sleep state is identical to NS as the overall idle and active execution
time remains same in both cases. All the results are normalized to
the corresponding results of NS.

As the deployed RBED framework allows an overrunning job to
borrow from its future invocations [34], we have simulated two
different scenarios. In scenario 1, we assume that Ai ¼ Ci for both
task classes (RT and BE task). Additionally, we only show the
results for C0:1 in scenario 1, as the difference to C0:2 is marginal.
Table 2
Different sleep states parameters.

No. Power mode tn (ls) te
n (ls) Power En

1. Doze 10 225 3.7 42
2. Nap 200 450 2.6 950
3. Sleep 400 800 2.2 1980
4. Deep sleep 1000 1400 0.6 5750
5. Typical 0 0 4.7 0
6. Maximum – – 12.1 –

Nevertheless, the effect of variation in C is explained later in sce-
nario 2. In scenario 2, we assume BE tasks often overrun beyond
their allocated periodic budget Ai. The mean of the BE tasks
actual-execution-time distribution is set to 85% of Ai in this sce-
nario, while RT tasks retain Ai ¼ Ci. The borrowing mechanism
[34] is also integrated in scenario 2 so that BE tasks can use their
future budgets, if required.

9.2.1. Scenario 1 (Ai ¼ Ci, 8 task types)
The minimum sleep threshold value W is set to 1 for the follow-

ing six experiments. The total energy consumption of ERTH is com-
pared against LC-EDF and SRA for a task-set size of 200 and a task
distribution of n1 in Fig. 2. All the values are normalized to the cor-
responding values of NS. As it is evident, SRA performs comparable
to ERTH except at hight utilizations. Moreover, ERTH outperforms
LC-EDF for all, but particularly for higher utilizations. With an
increase in system utilization, the maximum feasible idle interval
(procrastination interval) computed by the LC-EDF algorithm
shrinks. Our system model assumes multiple sleep states, while
LC-EDF cannot use more energy efficient sleep states with corre-
sponding higher overhead te

n since it will risk system schedulabili-
ty. The SRA algorithm saves more energy when compare to LC-EDF.
Firstly, the procrastination interval computed for each task in SRA
is greater than or equal to the procrastination interval determined
by the LC-EDF algorithm. This increase in procrastination interval
over LC-EDF enables SRA to select a more efficient sleep state off-
line while ensuring system schedulability. Secondly, it also benefits
from the execution slack reclaimed online. On the other hand, the
efficient slack management algorithm described in Section 5 also
enables ERTH to accumulate the slack St and still use more efficient
sleep states at high utilization. However, at high utilizations (espe-
cially at U ¼ 1), the savings of ERTH are still larger when compared
to SRA. This is motivated by the following observations. As already
mentioned in the experimental setup, the resulting utilization is
less than the target utilization by a very small factor of � due to
numerical rounding of the parameters used to generate a task-
set. The secondary effect is the diversity in periods of task-set that
rarely aligns and hyper-period of the given task-set is very long.
The lack of an alignment of deadlines causes a usable tl in a short
time horizon. Moreover, with high utilisation, summation of sim-
ple rounding errors over the larger time horizon (i.e., hyper-period)
yields a usable tl. Therefore, at high utilizations, the use of the
demand bound function yields an actually usable tl due to the dis-
parity of periods and deadlines. If one uses the utilization based
approach SRA, analytically this leads invariably to small intervals,
due to the loss of accuracy when abstracting the workload through
its worst-case utilization. An example of this is reflected in the
proof to Theorem 5 given in a technical report [39]. At U ¼ 1, ERTH
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.4

0.5

0.6

0.7

0.8

0.9

1

System Utilization

To
ta

l E
ne

rg
y

ERTH
LC−EDF
SRA

Fig. 2. Total energy (n1; jTj ¼ 200).
creates idle intervals to save energy due to execution slack in the
system. For a distribution of n2, the system consumes approxi-
mately 1% more energy when compared to n1. In ERTH it is due
to the fewer usage of principle 2, as the system has fewer BE tasks
in n2. The LC-EDF and the SRA algorithms depend on the period of
the tasks. Extra tasks with long periods result in greater opportuni-
ties to save energy, therefore, n2 consumes slightly more energy
when compare to n1.

An interesting observation is noticed in the total energy con-
sumption of LC-EDF that the fine-grained large task-sets consume
more energy when compared to the coarse-grained small task-sets
at the same utilization. Hence, LC-EDF is susceptible to the changes
in the task-set size. The figure is not shown here but its main fea-
tures are described in details. The variation in the total energy con-
sumption is up to 4% at higher utilizations. The major reason of
this variation in the total energy consumption lies in the algorithm,
which computes the procrastination interval. The procrastination
interval is recomputed on every arrival of a job with deadline
shorter than any of the currently delayed jobs. An increase in the
task-set size means a higher probability of recomputing the pro-
crastination interval. Each re-computation includes a nominal
shortening of the procrastination interval and increasing the vir-
tual utilization in the process. Therefore, the energy consumption
marginally increases with an increase in task-set size. The effect
of task-set variation is also analyzed for ERTH, IRTH and LWRTH.
Oppose to LC-EDF, task-set variation does not affect the total
energy consumption of the system with either of them. Conse-
quently, ERTH and its variants are more robust, when it comes to
task-set size variations. The task-set size variation has negligible
effect on the energy of SRA, as it pre-computes the procrastination
interval offline and exploits execution slack.

The overall-gain of ERTH and SRA over LC-EDF for three differ-
ent task-set sizes is gauged in Fig. 3 with a distribution of n1. The
formula used to compute the overall-gain is ELCEDF�Ex

ELCEDF
, where ELCEDF

is the total energy consumption of LC-EDF and Ex corresponds to
the total energy consumption of SRA or ERTH. It is evident ERTH
saves more energy compared to LC-EDF for larger task-set sizes.
This happens due to dependency of LC-EDF on the task-set size
as described above. However, SRA saves approximately 1% more
energy when compared to ERTH at low utilizations. Its perfor-
mance degrades towards high utilizations and the difference
between SRA and ERTH slowly vanishes. ERTH saves this energy
without the support of extra hardware. If the energy consumption
of the external hardware is more than 1% of the saving, then ERTH
is still the better approach in terms of energy saving due to less
complexity comparing to SRA. The difference between n1 and n2

is small. Nevertheless, for all three different task-set sizes, the gain
of n2 dominates n1 due to an increase in RT and decrease in BE
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

System Utilization

G
ai

n
ov

er
 L

C
−E

D
F

|τ|=10, ERTH
|τ|=50, ERTH
|τ|=200, ERTH
|τ|=10, SRA
|τ|=50, SRA
|τ|=200, SRA

Fig. 3. Gain over LC-EDF for Diff jTj.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

System Utilization

G
ai

n
ov

er
 L

C
−E

D
F

|τ|=10, ERTH
|τ|=50, ERTH
|τ|=200, ERTH
|τ|=10, SRA
|τ|=50, SRA
|τ|=200, SRA

Fig. 5. Gain over LC-EDF (idle mode, n2).

0.2 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.90.168

0.1685

0.169

System Utilization

Sl
ee

p
En

er
gy

 o
f E

R
TH

0.2 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9−0.2

0

0.2

0.4

0.6

0.8

1

Sl
ee

p
En

er
gy

 o
f L

C
ED

F

ERTH
LCEDF

Fig. 6. Sleep energy (n1; jTj ¼ 200).
tasks. One oddity exits at U � 0:2 for jTj ¼ 10 as the online LC-EDF
algorithm slightly performs better when compared to ERTH, but
difference is small. At such a low utilization, schedule has large idle
intervals and LC-EDF mechanism to initiate a timer on first task
arrival helps to save slightly extra energy.

The amount of execution performed by ERTH, SRA and LC-EDF is
the same. Hence, the only difference arises from the difference of
power consumption in the idle intervals of the schedule. Apart from
the overall-gain that is shown in Fig. 3, we have also analyzed the
gain of ERTH and SRA over LC-EDF only in the idle intervals. Simula-
tion results are presented in Figs. 4 and 5 for two different distribu-
tions of n1 and n2 respectively. At high utilizations, the gain shown in
Fig. 4 is about a factor of 10 higher than can be seen in Fig. 3. Another
important observation is that the gain of the SRA algorithm is smal-
ler with n2 when compared to n1. As mentioned previously, SRA and
LC-EDF depends on task’s period, therefore, n1 with larger share of
BE tasks allows to save more energy when compared to n2. At high
utilization, even the energy consumption of ERTH is reduced when
compared to SRA. Hence, ERTH is favorable at high utilizations for a
task-set containing small number of BE tasks.

The system consumes typical power (idle power) only in one sce-
nario, i.e., when the available interval is not feasible to initiate a
sleep state due to either break-even-time limitation or when the
scheduler cannot guarantee the real-time constraint. Otherwise
the used energy depends on the selected sleep state. Fig. 6 compares
ERTH with LC-EDF in terms of the normalized energy consumption
in the idle interval. The idle energy consumption of ERTH and LC-
EDF is normalized to the corresponding idle energy consumption
of NS algorithm. The result indicates that LC-EDF performance
degrades with an increase in system utilization. LC-EDF selects the
single most efficient sleep state among the set of available sleep
states based on its maximum-feasible-idle interval. As the system
utilization increases, the maximum-feasible-idle interval length
shrinks. Consequently, LC-EDF cannot select the more efficient sleep
states due to their higher transition delay te

n which in turn leads to
increased energy consumption. At U ¼ 1, LC-EDF behaves similar
to a system that is not using sleep states. Opposed to this ERTH
can collate the available slack in the system, shows a smooth behav-
ior for all utilizations. The SRA algorithm behaves similar to ERTH
from U ¼ 0:2 to U ¼ 0:9 and afterwards it follows LC-EDF.

The disadvantage of the slack management algorithm proposed
in this paper is the poor slack distribution. The improved slack
management approach used in the SRA algorithm is also integrated
with the ERTH algorithm for the fair comparison. The gain of the
ERTH algorithm with improved slack management over ERTH with
simplistic slack management approach proposed in this work in
our current experimental set-up is negligible. The reason behind
such a behavior is the fact that better slack distribution plays an
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

System Utilization

G
ai

n
ov

er
 L

C
−E

D
F

|τ|=10, ERTH
|τ|=50, ERTH
|τ|=200, ERTH
|τ|=10, SRA
|τ|=50, SRA
|τ|=200, SRA

Fig. 4. Gain over LC-EDF (idle mode, n1).
important role for DVFS based algorithms, where the slack distri-
bution among different tasks is important. However, when it
comes to race-to-halt algorithms, slack accumulation is more
important than better slack distribution.

IRTH and LWRTH target the pessimism introduced in the ERTH
at the cost of extra overhead. In order to quantify their effective-
ness, we have analyzed the overall-gain of IRTH and LWRTH over
ERTH. The corresponding results are illustrated in Fig. 7 with a n1

and C0:1. Four important observations are evident from the results.
Firstly, the gain decreases with an increase in task-set size. IRTH
and LWRTH reduce the pessimism by utilizing their past informa-
tion to predict the future. The goal of these algorithms is to extend
the sleep duration. Intuitively, one can argue with an increase in
task-set size, future release information predicted is less helpful
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

System Utilization

G
ai

n
ov

er
 E

R
TH

|τ|=10,IRTH
|τ|=10,LWRTH
|τ|=50,IRTH
|τ|=50,LWRTH
|τ|=200,IRTH
|τ|=200,LWRTH

Fig. 7. Gain over ERTH for jTj (n1).

0.2

0.4

0.6

0.8

1

Av
er

ag
e

Sl
ee

p
In

te
rv

al

ERTH
LC−EDF
SRA

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

System Utilization

Av
er

ag
e

Sl
ee

p
In

te
rv

al

ERTH
LC−EDF
SRA
IRTH
LWRTH

Fig. 10. Normalized average sleep interval (jTj ¼ 10, n2).
to extend the sleep interval. For a task-set size of 200, both IRTH
and LWRTH behave virtually the same as ERTH. Secondly, with
an increase in system utilization, especially for a task-set sizes of
10 and 50, the overall gain decreases. The increase of system utili-
zation decreases the idle interval in the schedule and pushed the
releases closer to each other. Hence, future release information
becomes less important. Third observation is the difference
between IRTH and LWRTH. IRTH exploits the execution slack
explicitly in the system thus behaves superior to LWRTH at higher
utilization. Finally, the gains are moderate over ERTH but worth-
while in mobile systems.

We have also analyzed the average sleep-interval for all the
algorithms. To determine such value we have divided the total
sleep duration over the number of sleep transitions. Figs. 8 and 9
present the average sleep-interval against utilization with a distri-
bution of n1 for task-set sizes of 10 and 50 respectively. Similarly,
Figs. 10 and 11 demonstrate the results with n2 for task-set sizes
of 10 and 50 respectively. All the values in these results are nor-
malized to the maximum average sleep-interval of the SRA algo-
rithm in the corresponding task-set size. The results presented in
these graphs are consistent with the previously explained results
in Figs. 3–5 and 7. The reasons described for different behaviors
of all algorithms in terms of energy consumption also applies on
the average sleep-intervals. The SRA algorithm has the highest
average sleep-interval compared to other algorithms for a distribu-
tion of n1 except at U ¼ 1. With the same setting SRA has the max-
imum gain in energy consumption over LC-EDF as shown in Fig. 3.
LWRTH and IRTH behave the same at low utilizations but get
diverted at high utilizations for both distributions (n1 and n2) (also
see Fig. 7). The average sleep interval of ERTH is around 10% lower
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

System Utilization

Av
er

ag
e

Sl
ee

p
In

te
rv

al

ERTH
LC−EDF
SRA
IRTH
LWRTH

Fig. 8. Normalized average sleep interval (jTj ¼ 10; n1).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

System Utilization

Av
er

ag
e

Sl
ee

p
In

te
rv

al

ERTH
LC−EDF
SRA
IRTH
LWRTH

Fig. 9. Normalized average sleep interval (jTj ¼ 50; n1).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

System Utilization

IRTH
LWRTH

Fig. 11. Normalized average sleep interval (jTj ¼ 50; n2).
when compared to IRTH and LWRTH for small task-set sizes for
both distributions. However, for a large task-set size (jTj ¼ 50)
ERTH, LWRTH and IRTH behaves same for n1 and n2 except at very
high utilization, where IRTH has larger average sleep-interval due
to less pessimism in analysis. The SRA algorithm has lower average
sleep interval when compared to IRTH and LWRTH with a distribu-
tion of n2 for both task-set sizes (jTj ¼ 10 and jTj ¼ 50) after
U P 0:7. ERTH behaves better against SRA for large task-set size
after U P 0:7 for n2 (with same setting gain in energy consumption
of ERTH is also higher when compare to SRA in n2, see Fig. 5). These
results demonstrate that SRA does not behaves better than our
algorithms with large number of RT tasks (i.e., for a distribution
of n2) at high utilizations. This is the same conclusion derived from
the energy consumption of these algorithms.

To analyze the effect of different types of hardware platforms,
the effect of a high sleep threshold W that indicates the scaled
value of te

n obtained by altering the power model parameters is
studied for ERTH, IRTH, LWRTH, SRA and LC-EDF for two different
distributions of n1 and n2. We analyzed the different scaling factors
of the sleep threshold given in Table 1. The scaling of W corre-
sponds to a scaling of all te

n. This is achieved by modifying the
power model parameters such as sleep transitions overheads etc.
Fig. 12 presents the energy consumption of ERTH for different val-
ues of W with jTj ¼ 50 and n1. Naturally, an increase in te

n is also
reflected in higher overall energy as depicted in Fig. 12. IRTH and
LWRTH have the similar results for the different values of W.

LC-EDF suffers from a high dependence on different available
sleep states. The effect of different sleep threshold values on
LC-EDF is shown in Fig. 13 with jTj ¼ 50 and n1. LC-EDF uses a sin-
gle sleep state for each utilization and W pair. Similar to ERTH the

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

0.6

0.7

0.8

0.9

System Utilization

To
ta

l E
ne

rg
y

Ψ1
Ψ2
Ψ5
Ψ10
Ψ20

Fig. 12. W Effect on ERTH(jTj ¼ 50; n1).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

0.6

0.7

0.8

0.9

1

System Utilization

To
ta

l E
ne

rg
y

Ψ1
Ψ2
Ψ5
Ψ10
Ψ20

Fig. 13. W Effect on LC-EDF(jTj ¼ 50; n1).

Fig. 14. Drop on same C (LC-EDF).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

0.6

0.7

0.8

0.9

1

System Utilization

To
ta

l E
ne

rg
y

Ψ1
Ψ2
Ψ5
Ψ10
Ψ20
Ψ20(Improved)

Fig. 15. W Effect on SRA (jTj ¼ 50; n1).
energy consumption of the system in LC-EDF also increase with an
increase in the value of te

n. Abrupt variations on the same line of
any sleep threshold refer to a switch to a different sleep state. An
interesting observation in this graph is the drop of energy
consumption for W20 at U ¼ 0:5 when compared to the energy
consumption at U ¼ 0:45, which is explained with the help of
Fig. 14. LC-EDF can compute a bound on the maximum-feasible-
idle interval in the schedule and states all the idle-intervals will
be longer than this bound. An opportunistic approach of LC-EDF
selects the most efficient sleep state considering a bound on the
maximum-feasible-idle interval. Usually the actual-idle-intervals
are longer than this bound. However, with an increase in system
utilization, the difference between actual-idle-intervals and te

n (as
shown in Fig. 14) becomes smaller. Other sleep states with low
transition overhead have greater margin to save more energy when
compared to the more efficient sleep state with higher transition
delay. Therefore, at U ¼ 0:5 when system switches to another less
efficient sleep state it saves more compared to the sleep state
selected at U ¼ 0:45 for W20.

The effect of different sleep threshold on SRA is presented in
Fig. 15 for a distribution of n1 and a task-set size of 50. It behaves
similar to ERTH for all thresholds except W20. The energy consump-
tion of the SRA algorithm scales up for W20 when compared to
ERTH. To ensure the schedulability, the SRA algorithm selects its
most efficient sleep state offline considering the minimum idle
interval Zmin. However, the offline selected sleep state might not
be a good choice as explained earlier for LC-EDF algorithm with
the help of Fig. 14. We provide one extension to the SRA algorithm
to enhance its performance by selecting the appropriate sleep state
online based on the predicted idle interval. When the system is in
an idle mode, the next sleep duration is determined to greater than
or equal to an interval zsleep ¼ maxðZ1;R

F
1Þ, where Z1 is the maxi-

mum procrastination interval allowed on the arrival of highest pri-
ority task and RF

1 is the execution slack available to the highest
priority task. The sleep state is selected for the sleep interval
Zsleep online. The simulations results for W20 are shown in Fig. 15
under a legend W20ðImprovedÞ. It clearly shows an effectiveness
of the proposed modification. All the experiments presented in this
paper are repeated for the all settings with this modification. The
results remains same for all cases except for the very high thresh-
old of W20. Therefore, this modification is useful for the hardware
platforms having sleep states with high sleep transition overheads.
Though it increases the online overhead of sleep state selection but
cannot perform worst in terms of energy saving when compared to
the original SRA algorithm.

The effect of W is also analyzed for different task-set sizes. The
energy consumption of ERTH is presented in Fig. 16 for different
task-set sizes with W10 and n1. The high sleep threshold managed
to created a minute difference between the energy consumption
of jTj ¼ 10 when compared to other task-set sizes at low utiliza-
tions. At such a low utilization tasks in a small task-set size are
widely spread out and provide an extra opportunity to use most
efficient sleep states in conjugation with Principle 2. This experi-
ment with the same values is repeated for LC-EDF as shown in
Fig. 17. The spread along the vertical axis among the different
task-set sizes is higher when compared to ERTH, which affirms
the strong dependency of LC-EDF on the task-set size as explained
in the beginning of Section 9.2.1. The reason for the bumpy effect
on the line of jTj ¼ 200 is the same as already been explained ear-

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

System Utilization

To
ta

l E
ne

rg
y

|τ|=10
|τ|=50
|τ|=200

Fig. 16. W10 Effect on ERTH (n1).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

System Utilization

To
ta

l E
ne

rg
y

|τ|=10
|τ|=50
|τ|=200

Fig. 17. W10 Effect on LC-EDF (n1).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

System Utilization

To
ta

l E
ne

rg
y

ERTH
IRTH
LWRTH

Fig. 18. W10 Effect (jTj ¼ 10; n1).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85

0.9

0.95

1

System Utilization

To
ta

l E
ne

rg
y

|τ|=10, ξ1
|τ|=50, ξ1
|τ|=200, ξ1
|τ|=10, ξ2
|τ|=50, ξ2
|τ|=200, ξ2

Fig. 19. n1; n2 Effect on SRA (W20).
lier with Fig. 13. The same experiment is done for IRTH and
LWRTH. The graphs has the same shape as ERTH with a slight lar-
ger gap between jTj ¼ 10 and other task-set sizes. It shows that
high sleep threshold slightly favors small task-set size at low
utilization.

The comparison of the energy consumption of ERTH, IRTH and
LWRTH is illustrated in Fig. 18 with jTj ¼ 10;W10 and n1. The
increase in te

n enhance the potential of IRTH and LWRTH to save
more energy when compared to ERTH. The future release informa-
tion is useful at high sleep threshold values and helps to pick the
more efficient sleep states. The curve of LWRTH tends to rise at
U ¼ 1 when compared to IRTH but the difference is very small
and negligible.

Fig. 19 shows the effect of high threshold W20 on different task-
set sizes and two different distributions with SRA. First observation
is the difference of energy consumption between different task-set
sizes. Secondly, the drop in the energy consumption for a distribu-
tion of n2 is due to the change of sleep states. The reason for such
behavior is already explained in conjunction with LC-EDF’s similar
behavior with the help of Fig. 14. The performance of SRA suffers
with a decrease in the number of BE tasks as the long period tasks
allows longer procrastination interval.

Similarly, the effect of W is also analyzed for a distribution n2

with all task-set sizes on all algorithms (ERTH, IRTH, LWRTH, SRA
and LC-EDF). The only difference it makes is the increase in the
total energy consumption. This is motivated in the reduced share
of BE tasks. It reduces the opportunity in ERTH, IRTH and LWRTH
to use the Principle 2, and thus results in a extra energy consump-
tion. SRA and LC-EDF algorithms (as mentioned earlier) depend on
the periods of the tasks. Therefore, fewer tasks with longer periods
decrease the opportunity to save energy consumption, hence n2

results in more energy consumed when compared to the n1.

9.2.2. Scenario 2 ðRT) ðAi ¼ CiÞ;BE) ðAi 6 CiÞÞ
In scenario 2, BE tasks are allowed to occasionally require more

than their allocated budget Ai. All algorithms (ERTH, IRTH, LWRTH,
SRA and LC-EDF) have been extended and allowed to borrow from
the budget of future job releases of the same task. While it was of
little consequence in scenario 1, it has to be noted that in scenario
2, ERTH and IRTH do not allocate execution slack to BE tasks. BE
jobs usually overrun their budget and borrow from their future
jobs, and hence, they are likely to consume the slack. However,
the execution slack is only retained for energy management pur-
poses. Thus, if the next job to execute is of BE type, the execution
slack is maintained in the slack container and its deadline is
updated as follows: St�d ¼ maxðSt�d; di;mÞ, where di;m is the absolute
deadline of the BE job under consideration.

We have analyzed the total energy consumption of ERTH, SRA
and LC-EDF in this scenario for two different sporadic delay limits
(C0:1;C0:2) and two different distributions (n1; n2) with jTj ¼ 200.
Fig. 20 demonstrates the effect of a variation in the sporadic delay
limit. The distribution for this experiment is fixed to n1. For the
sake of clear representation we chose to normalize all values of
Fig. 20 to the corresponding results of NS with a distribution of
C0:1. C0:1 and C0:2 define an interval of 10% and 20% of Ti respec-
tively for the sporadic delay to maneuver for a task Ti. The expan-
sion of this interval means we are injecting more sporadic slack in
the system when compared to the nominal utilization. The spo-
radic slack is dealt implicitly in our algorithms. Therefore, energy

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.44

0.5

0.6

0.7

0.8

0.9

1

System Utilization

To
ta

l E
ne

rg
y

ERTH, Γ0.1
LC−EDF,Γ0.1
SRA, Γ0.1
ERTH, Γ0.2
LC−EDF,Γ0.2
SRA, Γ0.2

Fig. 20. Total energy (jTj ¼ 200; n1).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.01

0

0.01

0.02

0.03

0.04

0.05

System Utilization

G
ai

n
ov

er
 L

C
−E

D
F

|τ|=10, ERTH
|τ|=50, ERTH
|τ|=200, ERTH
|τ|=10, SRA
|τ|=50, SRA
|τ|=200, SRA

Fig. 21. Gain over LC-EDF (n2;C0:1).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

System Utilization

G
ai

n
ov

er
 L

C
−E

D
F

|τ|=10, ERTH
|τ|=50, ERTH
|τ|=200, ERTH
|τ|=10, SRA
|τ|=50, SRA
|τ|=200, SRA

Fig. 22. Gain over LC-EDF (n2;C0:2).
consumption is less in C0:2 when compared to C0:1 as shown in
Fig. 20. Similarly, SRA and LC-EDF also have more room to initiate
a sleep state as well. However, at higher utilization; extra sporadic
slack does not help to save energy in LC-EDF or SRA. These algo-
rithms (LC-EDF and SRA) calculate their maximum-feasible-idle
interval based on the worst-case scenario i.e., each job of a task will
be released as soon as possible with a difference of minimum inter-
arrival. Therefore, at high utilization, the feasible-sleep interval is
usually short and they cannot utilize the more efficient sleep states
effectively. As a general rule ERTH performs superior to LC-EDF,
especially at higher utilizations the difference is prominent. How-
ever, it performs comparable to SRA but consumes less energy at
higher utilizations. The same experiment is repeated with n2. The
energy consumption of all algorithms decreases with n2 which is
explained with the following experiment.

The energy consumption of two distributions (n1; n2) is studied
with a fixed task-set size of jTj ¼ 200 and C0:1. The resulting figure
(not shown here) has a similar shape when compared to Fig. 20 but
the difference between n1 and n2 is slightly more pronounced. The
energy consumption of SRA, LC-EDF and ERTH is reduced for n2

when compared to n1. The percentage of the BE tasks in n2 is
reduced to 40% and results in less borrowing. Therefore, the energy
consumption is less with n2 when compared to n1. Nevertheless,
ERTH outperforms LC-EDF and is comparable to SRA in both distri-
butions (n1; n2), even with the borrowing mechanism integrated.
The energy consumption of all algorithms decreases, when the
same experiment is done with C0:2 due to extra sporadic slack in
the system. Moreover, we also observed that the energy consump-
tion of IRTH and LWRTH is very similar to ERTH for the above men-
tioned two experiments. The borrowing effect dominates the total
energy consumption and provides less room to maneuver for
energy saving.

The overall gain of ERTH and SRA over LC-EDF is analyzed for
scenario 2 for three task-set sizes (jTj 2 10;50;200f g) with n2 in
Figs. 21 and 22 considering C0:1 and C0:2 respectively. Although
sporadic slack is managed implicitly in all algorithms, ERTH out-
performs LC-EDF, especially at higher utilization for large task-set
sizes. SRA performs better over LC-EDF in all cases. For large
task-set sizes, ERTH is superior to SRA at high utilizations and
SRA performs better at low utilizations. The slight increase in gain
of ERTH with C0:2 over C0:1 indicates an efficient implicit use of
sporadic slack in ERTH. LC-EDF performs slightly better when com-
pared to ERTH only at U ¼ 0:2 for jTj ¼ 10 but the difference is neg-
ligible. LC-EDF can create large gaps for small task-set sizes at very
low utilization and hence gains over ERTH at U ¼ 0:2 with negligi-
ble margin. Similarly, if we change the distribution to n1 (not
shown here), the results indicate a slight decrease in overall gain.
Major difference lies at U ¼ 1, where it varies approximately about
1% of overall gain. However, for smaller utilizations the difference
is less pronounced. This is a function of the reduced number of BE
tasks in n2 and the consequently smaller amount of borrowing.

Fig. 21 demonstrates the overall-gain of ERTH and SRA over LC-
EDF for the distribution n2 and C0:1 and comparing that to Fig. 3 one
can notice the reduced gains returned when borrowing. Generally,
the gain of scenario 2 compared to scenario 1 is less at higher uti-
lizations, but approximately the same at lower utilizations. The
gain rises exponentially in Figs. 3, 21 after U ¼ 0:8 for large task-
set sizes. Fig. 23 shows the overall-gain of IRTH and LWRTH over
ERTH for n1 and C0:1. Compared to Fig. 7, the overall gain is reduced
in scenario 2. Moreover, IRTH and LWRTH behave identical when
borrowing is enabled. It is due to the extra execution requested
by the BE task through borrowing i.e., an increase in effective
utilization.

The normalized sleep state energy of scenario 2 is similar to sce-
nario 1. Moreover, the higher sleep threshold effect in scenario 2 is
also identical to scenario 1 for IRTH, LWRTH, LC-EDF, SRA and ERTH
with just one difference, i.e., energy consumption increases in sce-
nario 2. It happens due to an increased in execution-time require-
ment of the BE tasks that occasionally overrun and borrow from its
future releases. To summarize, for different combinations of n and
C, an increase in gain occurs in the following ascending order
ðn2;C0:2Þ; ðn2;C0:1Þ; ðn1;C0:2Þ and ðn1;C0:1Þ. This is caused by an
increase in sporadic delay limit, sporadic slack also increases,
therefore more energy is saved. Similarly, borrowing consumes
extra energy. Thus with the highest sporadic delay limit and
minimum borrowing ðn2;C0:2Þ the energy consumption is least in
scenario 2, whilst with least sporadic delay limit and most borrow-
ing ðn1;C0:1Þ energy consumption is maximized.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

System Utilization

G
ai

n
ov

er
 E

R
TH

|τ|=10,IRTH
|τ|=10,LWRTH
|τ|=50,IRTH
|τ|=50,LWRTH
|τ|=200,IRTH
|τ|=200,LWRTH

Fig. 23. Gain over ERTH (n1;C0:1).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.8

0.9

1

1.1

1.2

1.3

System Utilization

N
um

be
r o

f P
re

em
pt

io
ns

ERTH, Cb=0.25
ERTH, Cb=1
IRTH, Cb=0.25
IRTH, Cb=1
LC−EDF, Cb=0.25
LC−EDF, Cb=1
SRA, Cb=0.25
SRA, Cb=1

Fig. 24. Cb Effect (jTj ¼ 10;C0:2; n1).
9.3. Pre-emptions related results

A side effect of the use of the sleep states is a change in the
number of pre-emptions. In order to find the sleep state relation
with pre-emption count, the pre-emptions for all algorithms
(ERTH, IRTH, LWRTH, SRA and LC-EDF) are counted for different
parameters. The experimental setup mentioned in Section 9.1
and the parameters defined in Table 1 remain the same except

some alterations in Cb and C. Cb is varied from 0:25 to 1 with an

increment of 0:25 (i.e., Cb 2 0:25;0:5;0:75;1f g). Similarly, C is var-
ied from 0 to 0:6 with an increment of 0:2 (i.e.,
C 2 0;0:2;0:4;0:6f g). For the representation purposes we have
plotted only the two extreme values for C ¼ ð0;0:6Þ and

Cb ¼ ð0:25;1Þ as the results for the other two values lie in between
these two curves and scales linearly. All the values in the following
experiments are normalized to the number of pre-emptions with
earliest deadline first algorithm (EDF). We have observed that
the pre-emption count for LWRTH is virtually identical to IRTH,
therefore, only results of IRTH are shown hereafter.

9.3.1. Scenario 1
In this scenario, we assume all the tasks have Ai ¼ Ci. The effect of

best-case execution-time limit variation is shown in Fig. 24 with
jTj ¼ 10;C0:2 and n1. The results are plotted only for Cb 2 0:25;1f g,
while the other two values of Cb 2 0:5;0:75f g lie in between these
two curves of the corresponding algorithm and scale linearly. First
observation for small task-set size is the positive impact of
Cb ¼ 0:25 over Cb ¼ 1 that holds for all utilizations with LC-EDF
and ERTH, and only at high utilizations with SRA and IRTH (at low
utilizations the opposite behavior of Cb for SRA and IRTH will be
explained later in the discussion). The reason is quite clear, an
increase in the value of Cb potentially decreases the range of execu-
tion slack that a task can provide online. Thus Cb ¼ 1 means no exe-
cution slack in the system. Overall all scheduling algorithms showed
a positive impact of sleep states on the number of pre-emptions,
except for one case in LC-EDF at U ¼ 0:2 and for SRA at U 6 0:45.
If we inject more execution slack, the system initiates more often
a sleep state and hence lowers the number of pre-emptions.

A sleep state that delays the execution can increase the pre-
emptions by pushing it closer to higher priority tasks. While at
the same time, the delayed execution caused by a sleep state can
combine the job releases to reduce the pre-emption count. With
a small task-set size, jobs releases are anyway dispersed at low uti-
lization. However, as the utilization increases execution increases
and jobs execution run into each other and cause a rise in the num-
ber of pre-emptions. SRA and LC-EDF initiate a sleep state in idle
mode and start estimating the delay interval on the next job
release and extend it as much as possible. This behavior causes
widely spread low priority jobs at low utilization to come closer
to high priority jobs and hence increase the pre-emptions. More-
over, at low utilization, in EDF the number of pre-emptions are
smaller and the use of sleep states cannot help much to reduce
them. However, as the utilization increases pre-emption count
drops quickly for LC-EDF up to approximately a utilization of 0:5
and for SRA up to U ¼ 0:65. These algorithms (SRA and LC-EDF)
can collate enough tasks releases to compensate the effect of extra
pre-emption due to the delay of execution. Nevertheless, at a fur-
ther increase in utilization (beyond U > 0:5 for LC-EDF and
U > 0:65 for SRA), the possibility to use sleep intervals also reduces
for both LC-EDF and SRA, and consequently their ability to reduce
the pre-emptions. Therefore, at U ¼ 1, both algorithms cannot ini-
tiate a sleep state and hence, the pre-emptions are same as EDF.

ERTH distributes the sleep states uniformly in the schedule and
rarely pushes the sleep interval beyond tl, even if there is a possibil-
ity to prolong it. Not extending the sleep state to its limit pays off at
low utilization, as it rarely delays execution to increase the pre-
emption count. However, ERTH ability to introduce sleep in the
busy interval helps to save pre-emptions for even higher utiliza-
tions. Therefore, we have linear curve from low to high utilization
for both Cb. The difference decreases towards high utilization due
to a decrease in the execution slack and hence fewer sleep states.

IRTH and SRA show an oddity at low utilisations, as Cb ¼ 1 has
fewer pre-emptions compared to Cb ¼ 0:25. In IRTH algorithm,
sleep states are increased by utilizing predicted future release
information. Future release information is very useful especially
to prolong the sleep interval for small task-set size at low utiliza-
tions. It can be easily motivated by the curve of Fig. 7 that IRTH
save more energy at low utilizations for a task-set size of 10 due
to extensively long sleep intervals. Similarly, SRA sleep intervals
are even greater than or equal to all the algorithms. As a side effect
of long sleep intervals, they assemble a large amount of work for
later execution. This delayed execution later on encounters high
priority tasks and causes additional pre-emptions. However, if
the encountered high priority tasks execute for their Ci, chances
are higher that it might accumulate other tasks having higher pri-
ority than the backlog and lower than the encountered high prior-
ity tasks. These intermediate priority tasks will not cause pre-
emptions to a backlog. This effect causes the flip of Cb ¼ 0:25 over
Cb ¼ 1 for low utilizations. Large task-set sizes give a more
smoother curve, as shown in Fig. 25 for a task-set size of jTj ¼ 50
with a distribution of n1 and sporadic delay limit of C0:2. All the
algorithms have fewer number of pre-emptions when compared
to EDF and also savings are larger compared to a task-set size of
10. An odd behavior of SRA and LC-EDF is eliminated for small uti-
lizations, as the probability of jobs being widely spread out is lower
with the large task-set size. IRTH also behaves identical to ERTH, as

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.75

0.8

0.85

0.9

0.95

1

System Utilization

N
um

be
r o

f P
re

em
pt

io
ns

ERTH, Cb=0.25
ERTH, Cb=1
IRTH, Cb=0.25
IRTH, Cb=1
LC−EDF, Cb=0.25
LC−EDF, Cb=1
SRA, Cb=0.25
SRA, Cb=1

Fig. 25. Cb Effect (jTj ¼ 50;C0:2; n1).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.75

0.8

0.85

0.9

0.95

1

System Utilization

N
um

be
r o

f P
re

em
pt

io
ns

ERTH, Γ0
ERTH, Γ0.6
IRTH, Γ0
IRTH, Γ0.6
LC−EDF,Γ0
LC−EDF,Γ0.6
SRA, Γ0
SRA, Γ0.6

Fig. 27. C Effect (jTj ¼ 50; n1).
future release information is less effective for large task-sets.
Moreover, similar to previous case, curve for Cb 2 0:5;0:75f g lies
in between Cb ¼ 1 and Cb ¼ 0:25 with no exception for correspond-
ing algorithms.

The effect of variation in sporadic delay limit C is illustrated in
Fig. 26 for a task-set jTj ¼ 10 and a distribution of n1. All algorithms
consume sporadic slack implicitly. An increase in the sporadic delay
limit causes an increase in sporadic slack and that can prolong and/
or increase the number of sleep transitions. Similar to the execution
slack, sporadic slack also helps to decrease the number of pre-emp-
tions for all algorithms except SRA. ERTH and LC-EDF behave simi-
lar to the Fig. 24, with a slight variation in the beginning and
towards the end of utilizations. In IRTH, both sporadic delay limits
(C0;C0:6) have access to same amount of future release information.
Therefore, they also follow the same trend of saving on the number
of pre-emptions with extra sporadic slack. However, the SRA algo-
rithm which has the longest sleep intervals of all algorithms
increases the number of pre-emptions when extra sporadic slack
is available. This is motivated by the fact that widely spread out jobs
in the EDF schedule are unlikely to preempt each other but SRA
brings these jobs close together to the high priority jobs to such a
degree that they result in an increased number of pre-emptions
at low utilization. The other two sporadic delay limit (C0:2;C0:4)
are bounded by C0;C0:6. A large task-set jTj ¼ 50, brings IRTH curves
close to ERTH (Fig. 27) because future release information becomes
less important. Moreover, the pre-emption avoiding effect of LC-
EDF at low and medium utilisations is reduced for larger task set
sizes, when comparing to smaller task-sets, due to the higher prob-
ability of tasks cutting idle intervals short, as illustrated in Fig. 27.
Moreover, the SRA algorithm cause more pre-emptions with an
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.8

0.9

1

1.1

1.2

1.3

System Utilization

N
um

be
r o

f P
re

em
pt

io
ns

ERTH, Γ0
ERTH, Γ0.6
IRTH, Γ0
IRTH, Γ0.6
LC−EDF,Γ0
LC−EDF,Γ0.6
SRA, Γ0
SRA, Γ0.6

Fig. 26. C Effect (jTj ¼ 10; n1).
increase in sporadic slack for low utilizations. However, for large
utilizations it saves more pre-emptions with additional sporadic
slack similar to other algorithms. In general, with an increase in
sleep state length (either through execution slack or sporadic slack)
at low utilizations, SRA increase the pre-emption count.

The effect of variation in the distribution n is demonstrated in
Fig. 28 for jTj ¼ 10;C0:2 and Cb ¼ 0:5. In general for all the algo-
rithms, distribution n2 saves more pre-emptions compared to n1.
BE tasks are more vulnerable to pre-emptions as they have longer
periods along with their execution. Therefore, n1 having more BE
tasks results in more pre-emptions, when compared to n2. The same
observation holds for the large task-set size as shown in Fig. 29.
9.3.2. Scenario 2
In this scenario, BE jobs occasionally require more than their

respective budget and borrow from their future job releases.
Fig. 30 depicts the effect of variation in Cb for a jTj ¼ 10;C0:2 and
n1. One of the interesting observation that holds for all algorithms
in general is that now Cb ¼ 1 offers fewer pre-emptions when com-
pared to Cb ¼ 0:25. Because of the borrowing, BE tasks add a great
deal of backlog in addition to a backlog assembled due to sleep
transitions. Therefore, it increases the probability to encounter
higher priority tasks. Similar to the case explained for IRTH
(U 6 0:5) in Fig. 24, if the encountered higher priority tasks execute
for their Ci, chances are higher that they will collect some of the
tasks having priority in between backlog and the higher priority
executing jobs. Thus Cb ¼ 1 offers fewer pre-emptions compared
to Cb ¼ 0:25. Similar behavior is observed for a large task-set size
of 50 as shown in Fig. 31. Only exception is at U P 0:9 for
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.7

0.8

0.9

1

1.1

1.2

System Utilization

N
um

be
r o

f P
re

em
pt

io
ns

ERTH, ξ1
ERTH, ξ2
IRTH, ξ1
IRTH, ξ2
LC−EDF,ξ1
LC−EDF,ξ2
SRA, ξ1
SRA, ξ2

Fig. 28. n Effect (jTj ¼ 10;C0:2; C
b ¼ 0:5).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

System Utilization

N
um

be
r o

f P
re

em
pt

io
ns

ERTH, ξ1
ERTH, ξ2
IRTH, ξ1
IRTH, ξ2
LC−EDF,ξ1
LC−EDF,ξ2
SRA, ξ1
SRA, ξ2

Fig. 29. n Effect (jTj ¼ 50;C0:2;C
b ¼ 0:5).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

System Utilization

N
um

be
r o

f P
re

em
pt

io
ns

ERTH, Cb=0.25
ERTH, Cb=1
IRTH, Cb=0.25
IRTH, Cb=1
LC−EDF, Cb=0.25
LC−EDF, Cb=1
SRA, Cb=0.25
SRA, Cb=1

Fig. 30. Cb Effect (jTj ¼ 10;C0:2; n1).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85

0.9

0.95

1

System Utilization

N
um

be
r o

f P
re

em
pt

io
ns

ERTH, Cb=0.25
ERTH, Cb=1
IRTH, Cb=0.25
IRTH, Cb=1

b=0.25LC−EDF, C
LC−EDF, Cb=1
SRA, Cb=0.25
SRA, Cb=1

Fig. 31. Cb Effect (jTj ¼ 50;C0:2; n1).
particularly ERTH and IRTH. At such a high utilization, sleep states
save more pre-emptions when compared to an increment in
pre-emptions due to its backlog.

The variation in sporadic delay limit C is also observed for all
task-set sizes. The results show an increase for low utilizations
when compared to a system without borrowing. Moreover, SRA
with borrowing in the system saves more pre-emptions with an
increase in the amount of sporadic slack. Thus, the number of
pre-emptions is higher for C0:6 when compared to C0. The variation
in the distribution of task-set n also increase the number of pre-
emption when we allow the borrowing in the system. BE tasks that
overrun demand extra execution and hence more pre-emptions
compared to the normal system without borrowing. Thus we have
observed, when it comes to number of pre-emptions, ERTH per-
forms superior to IRTH, LWRTH and SRA for small task-set sizes.
Nevertheless, it equally performs comparable to IRTH, SRA and
LWRTH if not better for large task-set sizes. SRA that performs
better in terms of energy consumption has the highest number of
pre-emptions for at low utilizations and sometimes it is even more
than using a plain EDF scheduler.

The overhead associated to the pre-emptions count saved
through the use of sleep states can help to reduce WCET of the
tasks. This effect further extends the slack in the system and
consequently provide an extra opportunity to save more energy
in the system or increase the system utilization.
10. Conclusions and future directions

This research effort presents the energy efficient algorithms
based on the race-to-halt mechanism for dynamic priority schedul-
ing while avoiding external specialized hardware commonly used to
implement state-of-the-art strategies. The online complexity of the
algorithms is reduced when compared to the related work. Our algo-
rithms make explicit use of the execution slack as well as covering
static and sporadic slack implicitly through an efficient slack man-
agement scheme at the cost of negligibly small overhead. Further-
more, our analysis shows that as a side effect of using sleep states,
we can also reduce in average the number of pre-emption. There-
fore, the positive impact of race-to-halt on the pre-emption count
helps to achieve the goal of minimal energy consumption and
improves on required reservations. The detailed simulation results
elaborate the pros and cons of the proposed algorithms over each
other. We conclude that the best state-of-the-art algorithm saves
marginally on the energy consumption when compared to our pro-
posed algorithms. However, the most state-of-the-art algorithms
use external hardware to implement their power management algo-
rithms which comes with overhead in energy not included in our
evaluation, so when considered the energy consumption of the
state-of-the-art approaches may even be worse than our algorithms.
Moreover, our algorithms avoid more pre-emptions in general when
compared to the most efficient energy management algorithm in
the state-of-the-art (SRA). Apart from this, temporal isolation in
combination with increase flexibility is currently small, but gaining
traction in industrial use. Our approach complements the aforemen-
tioned benefits with energy management which is another impor-
tant factor. Consequently, there is substantial scope for industrial
applicability. In the future, we intent to extend this approach for
multicores and target the multi-dimensional issues such as energy
and thermal constraints simultaneously. Furthermore, the implica-
tion of this algorithm on static priority algorithms, self suspending
tasks and shared resources is deemed for future work. A task-set
containing both CPU and memory intensive workloads also provide
an additional opportunity to integrate DVFS with this approach to
minimize the overall energy consumption. Device power manage-
ment in combination with CPU power management helps to glob-
ally optimize the energy efficiency of the system.
Acknowledgments

This work was partially supported by National Funds through
FCT (Portuguese Foundation for Science and Technology) and by
ERDF (European Regional Development Fund) through COMPETE
(Operational Programme ‘Thematic Factors of Competitiveness’),
within projects ref. FCOMP-01-0124-FEDER-037281 (CISTER),
FCOMP-01-0124-FEDER-015050 (REPOMUC) and FCOMP-01-
0124-FEDER-020536 (SMARTS); by FCT and the EU ARTEMIS JU

funding, within project ref. ARTEMIS/0003/2012, JU grant nr.
333053 (CONCERTO).

References

[1] ITRS, International Technology Roadmap for Semiconductors, 2011 edition,
Design, 2011. <http://www.itrs.net/Links/2011ITRS/2011Chapters/2011
Design.pdf>

[2] ITRS, International Technology Roadmap for Semiconductors, 2010 Update,
Overview (2010). <http://www.itrs.net/Links/2010ITRS/2010Update/ToPost/
2010UpdateOverview.pdf>

[3] J. Donald, M. Martonosi, Techniques for multicore thermal management:
classification and new exploration, in: Proceedings of the 33rd Annual
International Symposium on Computer Architecture, ISCA ’06, 2006, pp. 78–88.

[4] E. Le Sueur, G. Heiser, Dynamic voltage and frequency scaling: the laws of
diminishing returns, in: Proceedings of the 2010 Workshop on Power Aware
Computing and Systems, 2010, pp. 1–8.

[5] E. Le Sueur, G. Heiser, Slow down or sleep, that is the question, in: Proceedings
of the 2011 USENIX Annual Technical Conference, Portland, OR, USA, 2011, pp.
16–16.

[6] M.A. Awan, S.M. Petters, Enhanced race-to-halt: a leakage-aware energy
management approach for dynamic priority systems, in: Proceedings of the
23rd Euromicro Conference on Real-Time Systems, IEEE Computer Society,
2011, pp. 92–101.

[7] Y.-H. Lee, K. Reddy, C. Krishna, Scheduling techniques for reducing leakage
power in hard real-time systems, in: Proceedings of the 15th Euromicro
Conference on Real-Time Systems, 2003, pp. 105–112.

[8] P. Baptiste, Scheduling unit tasks to minimize the number of idle periods: a
polynomial time algorithm for offline dynamic power management, in:
Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms,
ACM, Miami, Florida, 2006, pp. 364–367.

[9] P. Baptiste, M. Chrobak, C. Dürr, Polynomial time algorithms for minimum
energy scheduling, in: Proceedings of the 15th European Annual Symposium
on Algorithms, Vol. 4698 of Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, 2007, pp. 136–150.

[10] S. Irani, S. Shukla, R. Gupta, Algorithms for power savings, ACM Transact.
Algorithms 3 (4) (2007) 41.

[11] S. Albers, A. Antoniadis, Race to idle: new algorithms for speed scaling with a
sleep state, in: Proceedings of the 23rd ACM-SIAM Symposium on Discrete
Algorithms, SIAM, 2012, pp. 1266–1285.

[12] F. Yao, A. Demers, S. Shenker, A scheduling model for reduced cpu energy, in:
Proceedings of the 36th Annual Symposium on Foundations of Computer
Science, 1995, pp. 374–382.

[13] L. Niu, G. Quan, Reducing both dynamic and leakage energy consumption for
hard real-time systems, in: Proceedings of the International Conference on
Compilers, Architecture and Synthesis for Embedded Systems, ACM,
Washington DC, USA, 2004, pp. 140–148.

[14] R. Jejurikar, C. Pereira, R. Gupta, Leakage aware dynamic voltage scaling for
real-time embedded systems, in: Proceedings of the 41st Design Automation
Conference, San Diego, 2004, pp. 275–280.

[15] R. Jejurikar, R. Gupta, Procrastination scheduling in fixed priority real-time
systems, in: Proceedings of the Conference on Language, Compiler and Tool
Support for Embedded Systems’04, Washington DC, 2004, pp. 57–66.

[16] J.-J. Chen, T.-W. Kuo, Procrastination for leakage-aware rate-monotonic
scheduling on a dynamic voltage scaling processor, SIGPLAN Notices 41
(2006) 153–162.

[17] R. Jejurikar, R. Gupta, Dynamic slack reclamation with procrastination
scheduling in real-time embedded systems, in: Proceedings of the 42nd
Design Automation Conference, Anaheim, 2005, pp. 111–116.

[18] J.-J. Chen, T.-W. Kuo, Procrastination determination for periodic real-time
tasks in leakage-aware dynamic voltage scaling systems., in: Proceedings of
the International Conference on Computer Aided Design, 2007, pp. 289–294.

[19] J.-J. Chen, L. Thiele, Expected system energy consumption minimization in
leakage-aware dvs systems, in: Proceedings of the International Symposium on
Low Power Electronics and Design, ACM, Bangalore, India, 2008, pp. 315–320.

[20] L. Thiele, S. Chakraborty, M. Naedele, Real-time calculus for scheduling hard
real-time systems, in: Proceedings of the 27th International Symposium on
Computer Architecture, vol. 4, 2000, pp. 101–104.

[21] L. Thiele, E. Wandeler, N. Stoimenov, Real-time interfaces for composing real-
time systems, in: Proceedings of the 6th International Conference on
Embedded Software, EMSOFT ’06, ACM, New York, NY, USA, 2006, pp. 34–43.

[22] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, G.C. Buttazzo, Adaptive dynamic
power management for hard real-time systems, in: Proceedings of the 30th
IEEE Real-Time Systems Symposium, IEEE Computer Society, Washington, DC,
USA, 2009, pp. 23–32.

[23] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, G.C. Buttazzo, Applying real-time
interface and calculus for dynamic power management in hard real-time
systems, J. Real-Time Syst. 47 (2) (2011) 163–193.

[24] H. Hoffmann, Racing and pacing to idle: an evaluation of heuristics for energy-
aware resource allocation, in: Proceedings of the 2013 Workshop on Power
Aware Computing and Systems, ACM, 2013, pp. 13:1–13:5.

[25] L. Santinelli, M. Marinoni, F. Prosperi, F. Esposito, G. Franchino, G. Buttazzo,
Energy-aware packet and task co-scheduling for embedded systems, in:
Proceedings of the 10th International Conference on Embedded Software,
ACM, 2010, pp. 279–288.
[26] Y. Wang, H. Liu, D. Liu, Z. Qin, Z. Shao, E.H.-M. Sha, Overhead-aware energy
optimization for real-time streaming applications on multiprocessor
system-on-chip, ACM Trans. Des. Autom. Electron. Syst. 16 (2) (2011) 14:1–
14:32.

[27] S. A. Brandt, S. Banachowski, C. Lin, T. Bisson, Dynamic integrated scheduling
of hard real-time, soft real-time and non-real-time processes, in: Proceedings
of the 24th IEEE Real-Time Systems Symposium, Cancun, Mexico, 2003, p. 396.

[28] V. Devadas, H. Aydin, On the interplay of dynamic voltage scaling and dynamic
power management in real-time embedded applications, in: Proceedings of
the 8th International Conference on Embedded Software, ACM, Atlanta, GA,
USA, 2008, pp. 99–108.

[29] H. Cheng, S. Goddard, Integrated device scheduling and processor voltage
scaling for system-wide energy conservation, in: Proceedings of the 2005
Workshop on Power Aware Real-time Computing, 2005, pp. 24–29.

[30] S.K. Baruah, L.E. Rosier, R.R. Howell, Algorithms and complexity concerning the
preemptive scheduling of periodic, real-time tasks on one processor, J. Real-
Time Syst.

[31] R. Pellizzoni, G. Lipari, Feasibility analysis of real-time periodic tasks with
offsets, J. Real-Time Syst. 30 (2005) 105–128.

[32] A. Rahni, E. Grolleau, M. Richard, Feasibility analysis of non-concrete real-time
transactions with EDF assignment priority, in: Proceedings of the 16th
Conference Real-Time and Networked Systems, 2008, p. NA.

[33] M.A. Awan, P.M. Yomsi, S.M. Petters, Optimal procrastination interval for
constrained deadline sporadic tasks upon uniprocessors, in: Proceedings of the
21st Conference Real-Time and Networked Systems, ACM, New York, NY, USA,
2013, pp. 129–138.

[34] C. Lin, S.A. Brandt, Improving soft real-time performance through better slack
management, in: Proceedings of the 26th IEEE Real-Time Systems Symposium,
Miami, FL, USA, 2005, pp. 410–421.

[35] S.M. Petters, M. Lawitzky, R. Heffernan, K. Elphinstone, Towards real multi-
criticality scheduling, in: Proceedings of the 15th IEEE Conference on
Embedded and Real-Time Computing and Applications, Beijing, China, 2009,
pp. 155–164.

[36] B. Nikolic, M.A. Awan, S.M. Petters, SPARTS: simulator for power aware and
real-time systems, in: Proceedings of the 8th IEEE International Conference on
Embedded Software and Systems, IEEE, Changsha, China, 2011, pp. 999–1004.

[37] B. Nikolic, M.A. Awan, S.M. Petters, SPARTS: simulator for power aware and
real-time systems, <http://www.cister.isep.ipp.pt/projects/sparts/> (2011)

[38] F. Semiconductor, MPC8536E PowerQUICC III Integrated Processor Hardware
Specifications, number: MPC8536EEC, Rev. 5, 09/2011. <http://
www.freescale.com/files/32bit/doc/datasheet/MPC8536EEC.pdf>

[39] M.A. Awan, P.M. Yomsi, S.M. Petters, Optimal Procrastination Interval Upon
Uniprocessors, <https://www.cister.isep.ipp.pt/people/Muhammad%2BAli%
2BAwan/publications/> (CISTER-TR-130608, 2013).

http://www.itrs.net/Links/2011ITRS/2011Chapters/2011Design.pdf
http://www.itrs.net/Links/2011ITRS/2011Chapters/2011Design.pdf
http://www.itrs.net/Links/2010ITRS/2010Update/ToPost/2010UpdateOverview.pdf
http://www.itrs.net/Links/2010ITRS/2010Update/ToPost/2010UpdateOverview.pdf
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0030
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0030
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0030
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0030
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0030
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0040
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0040
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0040
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0040
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0040
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0045
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0045
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0045
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0045
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0045
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0050
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0050
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0055
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0055
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0055
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0055
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0065
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0065
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0065
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0065
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0065
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0080
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0080
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0080
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0095
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0095
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0095
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0095
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0105
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0105
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0105
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0105
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0110
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0110
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0110
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0110
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0110
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0115
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0115
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0115
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0120
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0120
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0120
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0120
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0125
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0125
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0125
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0125
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0125
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0130
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0130
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0130
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0130
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0140
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0140
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0140
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0140
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0140
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0155
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0155
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0165
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0165
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0165
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0165
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0165
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0180
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0180
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0180
http://refhub.elsevier.com/S1383-7621(14)00129-5/h0180
http://www.cister.isep.ipp.pt/projects/sparts/
http://www.freescale.com/files/32bit/doc/datasheet/MPC8536EEC.pdf
http://www.freescale.com/files/32bit/doc/datasheet/MPC8536EEC.pdf
http://https://www.cister.isep.ipp.pt/people/Muhammad%2BAli%2BAwan/publications/
http://https://www.cister.isep.ipp.pt/people/Muhammad%2BAli%2BAwan/publications/

	Race-to-halt energy saving strategies
	1 Introduction
	2 Related work
	3 System model
	4 Static sleep interval limits
	5 Slack management algorithm
	6 Energy management algorithms
	6.1 ERTH Algorithm (ERTH)
	6.2 Improved Race-to-Halt Algorithm (IRTH)
	6.3 Light-Weight Race-to-Halt Algorithm (LWRTH)

	7 Offline vs online overhead
	8 Effect of sleep-states on the number of pre-emptions
	9 Evaluation
	9.1 Experimental setup
	9.2 Energy consumption results
	9.2.1 Scenario 1 (? , ? task types)
	9.2.2 Scenario 2 ?

	9.3 Pre-emptions related results
	9.3.1 Scenario 1
	9.3.2 Scenario 2

	10 Conclusions and future directions
	Acknowledgments
	References

