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ABSTRACT

Architecture Analysis and Design Language (AADL) is often used to model safety-critical real-time sys-
tems. Model transformation is widely used to extract a formal specification so that AADL models can
be verified and analyzed by existing tools. Timed Abstract State Machine (TASM) is a formalism not only
able to specify behavior and communication but also timing and resource aspects of the system. To verify
functional and nonfunctional properties of AADL models, this paper presents a methodology for translat-
ing AADL to TASM. Our main contribution is to formally define the translation rules from an adequate
subset of AADL (including thread component, port communication, behavior annex and mode change)
into TASM. Based on these rules, a tool called AADL2TASM is implemented using Atlas Transformation
Language (ATL). Finally, a case study from an actual data processing unit of a satellite is provided to vali-
date the transformation and illustrate the practicality of the approach.

1. Introduction

Architecture Analysis and Design Language (AADL) [1] provides
a standard and precise way to describe the software/hardware
architecture, run-time environment, functional and non-functional
properties of embedded real-time systems. An AADL specification
defines various kinds of software and hardware components (such
as system, process, thread, subprogram, data, processor, and bus),
their real-time properties (such as period, deadline, WCET) and
how they interact with each other using ports, subprogram calls
and other interaction mechanisms. Furthermore, mode change,
partition, scheduling strategy and other features of real-time sys-
tems are also provided. Besides, AADL is an extensible language:
AADL standard defines Behavior Annex [2,3] to refine the behavior
of threads.

To ensure the safety and dependability of embedded real-time
systems, rigorous certification process is needed before putting
the system into actual use. Although IDE such as OSATE [4] and
TOPCASED [5] provide some tools to verify properties of AADL
models like flow latency, academics and industries tend to utilize
model transformation methodology to verify and analyze AADL
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model by using existing verification and analysis tools. A lot of
studies have been proposed: translation to Behavior Interaction
Priority (BIP) [6], to ACSR [7], to IF [8], to Fiacre [9], to TLA+ [10],
to RT-Maude [11], to Petri nets [12-14], to UPPAAL timed auto-
mata [15], to Lustre [16], to SIGNAL [17,18], to EDA (Event-Data
Automata) [19], to UML Marte [20], etc.

This paper presents a transformation from AADL into Timed
Abstract State Machine (TASM) [21,22]. TASM is a formal speci-
fication language used to specify and simulate the behavior of
real-time systems. By extending the abstract state machine
(ASM) formalism, the TASM language is able to express three key
aspects of all embedded real-time systems: function, timing, and
resource usage. Moreover, TASM toolset [21] is provided to analyze
timing and resource consumption of the model which also sup-
ports consistency and completeness of the model. Compared with
studies mentioned above, contributions of this paper are:

o A proper subset of AADL is chosen as the transformation target
including thread (dispatching, offline scheduling and execu-
tion), port connections, behavior annex and mode change. A
safety-critical system with certain scale can be modeled using
this subset.

e TASM is chosen as the transformation target such that timing
and resource information of AADL can be described. Not only
functional properties such as deadlock freeness and state
reachability, but also timing correctness and resource usage
can be verified and analyzed using TASM toolset.



e The translational rules are defined in a formal way so that the
verification of the transformation can be fulfilled.

Some work have been done in translational semantics from AADL to
TASM and the formal proof of semantics preservation for the model
transformation [23-26]. In this paper, we focus on the definition of
the formal and concrete translation rules. A transformation tool
AADL2TASM has been implemented based on the translational
rules.

After translated into TASM model, several properties can be
verified. In this paper, we concentrate on properties of functional
correctness such as deadlock freeness [27] and state reachability,
timing correctness and resource consumption correctness. Note
that we only consider offline scheduling in this paper such that
the analysis on preemptive scheduling protocols are not supported.

The rest of the paper is organized as follows. Section 2 gives the
introduction to AADL and TASM. Section 3 translates AADL (port
communication, thread, mode change and scheduling) into TASM.
Section 4 describes the implementation of AADL2TASM trans-
formation tool and gives a case study. Section 5 discusses the
related work. Conclusion and future work are presented in
Section 6.

2. Introduction to AADL and TASM
2.1. AADL

AADL is able to model a real-time system as a hierarchy of soft-
ware components bound to an execution platform, as shown in
Fig. 1. Predefined software component types such as thread, thread
group, process, data and subprogram are used to model the soft-
ware architecture of the system. Behavior annex is defined for
the refinement of thread behaviors. Processor, memory, device
and bus components are the execution platform components for
modeling the hardware part of the system. Ports and port connec-
tions are provided to model the exchange of data and event among
components. Functional and non-functional properties like
scheduling protocol and execution time of the thread can be speci-
fied in components and their interactions. AADL also provides a
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way to describe multi-mode systems, in which a mode is an explic-
itly defined configuration of contained components, connections,
and property values. System components are used to represent
composites sets of software and execution platform components.

2.2. TASM

The Timed Abstract State Machine (TASM) [21,22] is based on
the theory of Abstract State Machines (ASM) [28]. It extends ASM
with time and resource consumption declarations such as task
durations, CPU or memory consumption. The TASM language has
a formal semantics, which makes its semantics precise and enables
executable specifications.

A TASM specification is a three-tuple < E,AASM, MASM >. E is
the environment defined as a pair: E=< EV,TU > in which EV is
the set of Environment Variables and TU is the set of types for
environment variables, consisting of real numbers, integer,
Boolean, and user-defined types. There are three kinds of machi-
nes: main machine, sub machine and function machine. AASM is
the set of auxiliary machines including sub machines and function
machines. MASM is the set of main machines ASM executed in par-
allel. An ASM is a four-tuple: ASM =< MV,CV,IV,R >. The com-
munications are only between the main machines using channel
synchronization and shared variables. MV denotes the Monitored
Variables; CV denotes the Controlled Variables; IV denotes the
Internal Variables and R denotes a set of rules. Rule takes the form
if condition then action, where condition is an expression depend-
ing on the monitored variables, and action is a set of updates of the
controlled variables. We can also use the rule called “else then”
rule. It will be executed when all conditions of other rules cannot
be met. A restriction on the set of rules is that they are mutually
exclusive, that is only one rule can be executed at each step.
Informally, the semantics of a main machine can be given as fol-
lows: read the shared variables, select a rule of which condition
is satisfied, wait for the duration of the execution while consuming
the resources, and then apply the updates to the environment.
Note that all auxiliary machines in the TASM model can be repre-
sented by main machines so that this paper only considers the
transformation for main machines.
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Fig. 1. Correspondence between requirements of real-time system modeling and conception of AADL modeling.



An example of TASM machine is shown in Fig. 2. ThState and BA
are user-defined types (line 3-5). thstate_th1 and BAState_th1 are
corresponding variables (line 9). Cpu is the resource to be con-
sumed during the execution of rules (line 15 and 20), which has
been specified in rule s0_2_s1 (line 14-18) s1_2_s0 (line 19-22).
The TASM specification can be simulated and analyzed by TASM
toolset.

2.3. The subset of AADL

For translation, this paper proposes formal definitions of the
subset of AADL including port connection, thread component and
mode change. As behavior annex is an extension for the speci-
fication of AADL components, the definition is also given. For
detailed semantics of AADL, the reader is referred to [26].

(1) Port connection
Ports are the logical connection points between components.
AADL defines three types of component ports: data, event
and event data ports. Event and event data ports support
queueing buffers, but data ports only keep the latest data.
To transfer the data and event among components, port con-
nections are provided. The definition is shown as below.

Definition 1. PortConnection = < sourceport, targetport, EM >, where,

e sourceport is the source port of the connection.

e targetport is the target port of the connection.

e EM = {immediate, delayed} is the execution property of
data port connection. AADL provides two communication
paradigms, immediate communication and delayed com-
munication. In immediate communication paradigm, the
writing operation will be executed after the execution of

sender thread. The receiver will not begin to execute until
having received the data from the port. In delayed com-
munication paradigm, the writing operation is delayed to
the deadline of the sender. As a result, the receiver will
read the data from the previous execution of the sender
when it is dispatched.

(2) Thread

Thread, the abstract of a concurrent task or an active object,
is the main execution and scheduling unit in AADL. Input
and output ports can be specified in the thread for the data
or event exchange. Dispatch, scheduling protocols and mode
are the execution model properties. Behavior Annex is the
refinement of the thread execution. The definition is shown
as below.

Definition 2. Thread = <IPort, OPort, TProp, BA, Mode, Scheduling>,
where,

e [Port ={IDP, IEP, IEDP}. IDP is the set of input data ports;
IEP is the set of input event ports; IEDP is the set of input
event data ports.

e OPort={0ODP, OEP, OEDP}. ODP is the set of output data
ports; OEP is the set of output event ports; OEDP is the
set of output event data ports.

e TProp = {Dispatch_type, Period, Compute_execution_time,
Deadline}. Dispatch_type is the dispatch protocol of
thread, including Periodic and Aperiodic protocol. Period
is the time interval between two dispatches of the
periodic thread. Compute_execution_time specifies com-
putation time of thread. Deadline specifies the longest
time interval between the start and end of the execution.

e BA € Behavior Annex, is the precise description of the
thread behavior.

:ENVIRONMENT:
:USER-DEFINED TYPES:

,writing,waiting_model};
BA:={s0,s1};
:RESOURCES:

Cpu:=[0,100];
:VARIABLES:

© 00 N O O WN

10:MAIN MACHINE: thl_thread

17: BAState_thl := si;
18: 1}
19: s1_2_s0 {

23: }
24

ThState:={waiting_dispatch,waiting_execution,execution

ThState thstate_thl; BA BAState_thil;

11:MONITORED VARIABLES: thstate_thl,BAState_thil;
12:CONTROLLED VARIABLES: thstate_thl,BAState_thl;

13:RULES:
14: s0_2_s1 {
156: t := [30,30];Cpu:=[50,100];

16: if thstate_thl = execution and BAState_thl = sO then

20: t := [10,10];Cpu:=[20,50];
21: if thstate_thl = execution and BAState_thl = sl1 then
22: thstate_thl := writing; BAState_thl = s0;

Fig. 2. An example of TASM model.



e Mode specifies the mode property of the thread. A thread
can only be dispatched, scheduled and put into execution
if it belongs to the current mode. In system and process
component of AADL, mode change automata is defined
specifying threads that is able to be executed.

e Scheduling specifies how the thread will be scheduled on
CPU to which it is bound. Property Allowed_Processor_
Binding Class specifies the CPUs to which thread can be
bound when being executed.

(3) Behavior annex
Behavior Annex, taking the form of state machine, is defined
in the thread for the description of the behavior of the thread
such as port communication, computation and delay. The
definition is shown as below.

Definition 3. Behavior Annex = <S, Sy, V, Guard, Action, T>, where,

e S is the set of states. Types of the state include initial,
return, complete and composite.

e Sy €S is the initial state.

e Vis the set of local variables.

e Guard is the set of guards of state transitions, taking the
form < BExpr > | [on < BExpr > —— >] < event > [when
< BExpr >], in which BExpr is the predicate on state vari-
ables; event is the data or event reading operation
(P?,P?(x)); when is the predicate on the data received
from event port or event data port.

e Action is the set of actions executed during the transition.
Types of action allowed include assignment (P:=x), data
or event sending (P!(x),P!), computation (Computation
(min,max)) and delay (Delay(min,max)).

e T=Sx{G,A} xS is the set state transitions.

(4) Mode change
In AADL, a mode represents an operational state which can be
viewed itself as a configuration of contained sub components,
connections, and mode-specific property values. When mul-
tiple modes are declared for a component, a mode state
machine identifies events, data, and event data arrivals
cause a mode transition and the new mode. The definition
of mode change (denoted as ModeTransition) is shown as

below.
Definition 4. Mode Transition=<M, my, Event, Transition>,
where,
AADL Model
4 ~
Model
Change < mode2 e
VA \
/ \
[ \
| \
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e M is the set of System Operation Mode (SOM). SOM is a vector of
modes, where each element is associated to a component (for
example a thread component). If a component is active, the
associated element is valued with the current mode of the com-
ponent. If a component is inactive, the associated element is
tagged inactive.

e My € M is the initial mode.

e Event is the set of events which trigger the mode change.

e Transition = M x Event x M is the set of mode changes.

3. Transformation from AADL to TASM

Translating AADL to TASM is to describe the execution of AADL
by the execution of state machines in TASM. Fig. 3 shows the
sketch map of translation from AADL to TASM. Each thread in
AADL model is to be translated into two state machines in TASM,
one for the execution and another for the dispatch. Moreover, port
communication, mode change automata and processor component
with scheduling protocol defined are also to be respectively trans-
lated into machines of port communication, SOM and scheduler in
TASM. These generated state machines will synchronize with each
other using environment variables.

This paper presents the translation rules from three aspects,
monitored variables, controlled variables and the construction of
the main machine which is denoted as a set of rules. In the following
parts of the paper, term rulesof main machine in TASM will be
replaced by state transition, making a distinction with term trans-
lation rules of the AADL transformation. Several symbols are
defined for the convenience of formal description of translation
rules. T stands for time consumed during state transition.
Grepresents the guard condition of the state transition. A repre-
sents actions of the state transition. Actions are in fact the update
of controlled variables. From the perspective of semantics, actions
under the same guard condition can be executed in parallel. @ is
used to represent the composite of multiple actions.

The following section will present the translation of port com-
munication. Then translation methods of thread execution, thread
dispatch, Behavior Annex, mode change and scheduling will be
given.

3.1. Translation of port communication

In AADL, port is defined as the logic connection point between
two components for the transmission of data (by data port), con-
trol information (by event port) and both of them (by event data

&

TASM Model
~
Scheduler SOM
System Level
Thread 1 T Threadz
Machine for Port
Communication
N Execution
Execution

Fig. 3. Map from AADL to TASM.



port). There are two directions of port, input and output. Output
port is connected to input port to constitute the port connection.

This paper uses shared environment variables in TASM to
describe the port communication in AADL. There are three kinds
of ports in AADL, data port (denoted as dp), event port (denoted
as ep) and event data port (denoted as edp). The data port and event
data port are translated into two environment variables, denoted
as I (dpledp) = {data,event}. Variable data is used to store data in
the port while variable event, a Boolean variable, has different
meanings for these two kinds of ports respectively. For data port,
itis used to represent whether new data has arrived. For event data
port, it will be true when new event has arrived. Similarly, transla-
tion rule of event port is I" (ep) = {event]}.

For the convenience of simulation and model checking,
this paper abstracts the port communication into one state
machine, which indicates that there is no concurrent port
communication in the model. The state machine is a three-tuple
< PCMV,PCCV,PCMM >. Note that the set of Interval Variables are
not used in the transformation.

PCMVand PCCV are respectively monitored variables and con-
trolled variables needed for the state machine, shown as below.

PCMV = {UspceSPCF(SpC)}
PCCV = {UspceSPCF(Spc)v UdpceDPCr(dpc)}

SPC is the set of source ports of all port connections and DPC is
the set of corresponding target ports. Therefore, monitored vari-
ables needed are all environment variables translated from the
source ports and controlled variables are the environment vari-
ables translated from both the source and target ports.

PCMM is a set of rules generated, shown as below. Note that
rules are also called state transitions in the remainder of the paper.

PCMM = {waiting_execution, |J,..pcRule(pc)}

State transition waiting_execution is used to handle the situation
when guard conditions of all other transitions cannot be met.
Rule(pc) represents the translation from a port connection pc to
the corresponding state transition in PCMM. If pc is type of data
port connection or event data port connection, state transition
takes form as below.

0-T(I(pc))

I'(pc.sourceport).event = true ~>G(I'(pc))

I'(pc.sourceport).event := falsex I'(pc.targetport).event

:=true® I'(pc.targetport).data:=TI'(pc.sourceport).data-~A(I'(pc))

It means when new data or event have arrived, event variables
for the source ports are assigned to false, followed by the actions of
assigning event variables of target ports to true. Then the actions of
copy data from source ports to ports will be executed.

Fig. 4 is an example of port connection in AADL and Fig. 5 is the
corresponding transitions in the machine. We can see that for
event data port fib_gyrol_in and main_sta_order, corresponding

thread main_stabilization
features --interface of the thread
datacollect in event data port --ports

properties --properties related to the thread
Dispatch_Protocol => Periodic;
Period => 250 Ms;
Deadline => 250 Ms;

end main_stabilization;

Fig. 6. An example of the thread component.

environment variables event_fib_gyrol_in, data_fib_gyrol_in,
event_main_sta_order and data_main_sta_order are generated. The
transition describes the data transfer from fib_gyrol_in to
main_sta_order.

3.2. Translation of thread components

In AADL standard, thread is used to model a concurrent task or
an active object, i.e., a schedule unit that can execute concurrently
with other threads [1]. Fig. 6 shows an example of the declaration
of a thread component. Features specifies the interface of the
thread; properties specifies important properties related to the
execution of the thread such as the dispatch protocol, period of
the dispatch for periodic thread and execution deadline. Detailed
behaviors of the thread is specified in the implementation part
using Behavior Annex (BA). The thread component will be trans-
lated into two machines, execution machine and dispatcher. The
execution machine will be used to describe the procedure of the
execution and dispatcher is used to control the dispatch according
to the properties specified in the declaration. The specification of
the BA will be translated as the state transition in TASM and then
be integrated into the execution machine. The scheduling prob-
lems will be introduced in Section 3.3.

3.2.1. Translation of thread execution

SAE [1] defines hybrid automaton to illustrate the behavior of
thread execution, shown in Fig. 7. The six ellipses are the six states
of the machine: halted, waiting_mode, waiting_dispatch, wait-
ing_execution, execution and writing. The initial state is halted.
After the binary file is loaded to the process and it belongs to the
current mode, it can transition to the waiting dispatch state. If
the thread is not in the current mode, it will stay in the wait-
ing_mode state until the new mode contains it. The thread in the
waiting_dispatch state will be dispatched according to the period

‘portConnection: event data port fib_gyrol_in -> main_sta_order;

Fig. 4. Port connection in AADL.

fib_gyrol_in_2_main_sta_order

{
t = 0;

3

if event_fib_gyrol_in = true then
event_fib_gyrol_in := false; event_main_sta_order := true;
data_main_sta_order:=data_fib_gyrol_in;

Fig. 5. TASM rule corresponding to port connection in Fig. 4.
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Fig. 7. Hybrid automaton of the thread execution [1].

if it is periodic or an event if it is aperiodic. Then the thread is in the
waiting_execution state. If the thread gets CPU resource, it will tran-
sition into execution state. Note that if the thread can be pre-
empted, it may be blocked and transitioned back to
waiting_execution state. After the execution, the thread will transi-
tion into writing state. The data computed will be written into the
output ports. If the thread is still in the current mode, it will transi-
tion into waiting dispatch state waiting for the next dispatch.
Otherwise, it will be deactivated and transitioned into wait-
ing_mode state. If the process containing the thread is stopped,
the thread will transition into waiting_mode state.

The execution machine is a three-tuple < ThMV, ThCV, ThMM >
where ThMV = {thState, thActive, thDispatch, thGetcpu} is the set
of monitored variables and ThCV = {thState} is the set of controlled
variables. ThState is the variable representing the current state of
the machine. ThActive is a Boolean variable representing whether
the thread belongs to the current mode, controlled by the mode
change state machine. ThDispatch, controlled by dispatcher state
machine, is used to check if the thread has been dispatched.
ThGetcpu is a Boolean variable representing whether the thread
can be put into execution, controlled by the scheduler .

ThMM is the set of state transitions of the execution machine. In
this paper, we assume that the process will not be stopped and the
load procedure is emitted so ThMM has 6 state transitions includ-
ing Activation, Dispatch, Schedule, Writing, Deactivation and Waiting.
The translation rules are shown in Table 1. State transition is per-
formed by the value change of the control variable thState. Note
that since offline scheduling is used in the processor, no

unactivation

Exit(Mode) Enter(Mode)

4 N

activation

t > period or trigger?

undispatched dispatched

Fig. 8. State machine of the thread dispatcher.

Dispatch thread

preemption is allowed so that time consumed in the state transi-
tion execution is the Worst-Case Execution Time (WCET) of the
thread. State transition writing is used to represent the action to
be done when execution completes. For the immediate data port
connection, actions of port writing are to be done in this state tran-
sition. Pw(odp) is the port writing operation where odp € IODP and
IODP is the set of immediate output data ports of the thread. State
transition Deactivation is used to set the thread into state wait-
ing_mode. If the thread is synchronized, the execution will not be
interrupted by the mode change so Deactivation will not be per-
formed until the thread is in waiting_dispatch state (thActivate =
false A\ thState = waiting_dispatch). Otherwise, execution can be
interrupted at any time.

State transition Waiting is used to handle the situation when all
other transitions in the state machine cannot be executed. All main
machines defined in the following part will contain a waiting tran-
sition, the same as this one.

3.2.2. Translation of dispatcher

As mentioned above, property Dispatch_Protocol can be declared
in the thread component to describe how the thread will be dis-
patched by the CPU to which it is bound. Several dispatch protocols
are supported in AADL, in which two of them, periodic and aperio-
dic dispatch, will be introduced in this paper. In the periodic
thread, the time interval between two dispatches is specified while
in the aperiodic thread, dispatch is triggered by receiving event
from defined input event ports. Fig. 8 shows the state machine of
the thread dispatcher with three states unactivation, dispatched
and undispatched. If the thread does not belong to the current
mode, the dispatcher is in the unactivation state. If the dispatcher
is in undispatched state, it will wait for the trigger condition to dis-
patch the thread. For periodic thread, the condition is that the time
that the machine has spent on the state is longer than the period of
the thread. For the aperiodic thread, the condition is the arrivals of
events received from the input events ports defined in the thread.

Table 1
Translation rules of execution machine.
State transition Time (T) Guard (G) Action (A)
Activation 0 thActivate = true A thState = waiting_mode thState := waiting_dispatch
Dispatch 0 thDispatch = true A thState = waiting_dispatch thState := waiting_execution
Schedule 0 thDispatch = true A thState = waiting_dispatch thState := execution
Execution WCET thState = execution thState := writing
Writing 0 thState=writing thState := waiting_dispatch @ (@oapeiopppw(0dp))
Deactivation 0 (thActive = false)|(thActivate = false\ thState = waiting_dispatch) thState := waiting_mode




After the state transition from undispatched to dispatched, the dis-
patcher will dispatch the thread and the transition back to undis-
patched state.

The dispatch of the thread is translated into a TASM state
machine in this paper. It is a three-tuple < DisMV,DisCV,
DisMM > where disMV = {thDispatch, nextDispatch, thActive} is
the set of monitored variables and disCV = {nextDispatch,
thActive} is the set of controlled variables. thDispatch and
thActive have been introduced in the definition of execution
machine while nextDispatch is a Boolean variable representing
the state of the dispatcher: if it is true, the machine is in undis-
patched state; otherwise the machine is in the dispatched state.

DisMM 1is the set of transitions of dispatcher: Nextdispatch,
Dispatch and Waiting. State transition Nextdispatch represents the
state transition from undispatched to dispatched and Dispatch is
the reverse transition. Since the condition of thread is different
between periodic and aperiodic thread, the execution time and
guard condition of the transition need to be defined respectively,
as shown in Table 2 and Table 3. For periodic thread, the dispatch
is triggered by the period of the time so the execution time of the
state transition is the period of the thread denoted as th.period. For
aperiodic thread, however, the execution time of the state transi-
tion is 0 and the check on the input event ports is added on the
condition of the transition, where TIEP is the set of the trigger ports
and pr(iep) is the reading operation of the event port iep to judge
whether the event has arrived.

Actions of the rules of period_nextdispatch and aperiodic_nextdis-
patch are the same. Pw(odp) is the writing operation of the data
port odp and th.DODP is the set of delay output data ports.

When Dispatch is enabled, thDispatch is set to true, informing
the execution machine that the thread has been dispatched. Then

the state machine transition back to undispatched state
(nextDispatch:=true), waiting for the next dispatch.

3.2.3. Translation of behavior annex

Behavior Annex (BA) can be defined as a five-tuple <S, Sy, V,
Guard, Action, T> where S is the set of states; Sy is the initial state;
Vis the set of local variables; Guard is the set of guard conditions of
the state transition; Action is the set of actions to be executed on
the transitions; T is the set of state transition S x {G,A} x S. Fig. 9
shows an example of BA specification with five states (s0-s4, line
4-6)and 4 state transitions (t1-t4, line 8-12).

First, states in BA will be translated into a user-defined typed
environment variable called thBAstate, as shown in Table 4. We
can see that each state in BA is translated as a value of thBAstate.
Similarly, for each local variable in V, a corresponding environment
variable is generated in TASM model.

Each state transition t € T of BA is translated into a correspond-
ing state transition in thread execution state machine of TASM,
denoted as execution_tr. According to the definitions of state tran-
sitions in BA, execution time (T), guard condition (G) and actions
(A) of the state transition in TASM will take the different forms.

(1) Execution time (T)
Execution time of the transition is decided by the actions of
the transition, shown as below.
(Computation(min, max)|Delay(min, max)|0)-»
T(execution_tr)
If actions contain operation Computation (min, max), execu-
tion time is between value of min and max of Computation.
Similarly, if action Delay (min, max) is defined, execution
time is between value of min and max of Delay. Otherwise,
execution time is 0.

Table 2
Translation rules of dispatcher for periodic thread.
State transition Time (T) Guard(G) Action(A)
Nextdispatch th.period nextDispatch = true A thActive = true nextDispatch:=false &(®ogpeeh.poppPW(0dp))
Dispatch 0 nextDispatch = false thDispatch:=true@nextDispatch:=true
Table 3
Translation rules of dispatcher for aperiodic thread.
State transition Time (T) Guard(G) Action(A)
Nextdispatch 0 (nextDispatch=true A theActive=true A(Viepcmiep(Pr(i€p)))) nextDispatch:=false &(®ogpeeh.poppPW(0dp))
Dispatch 0 nextDispatch = false thDispatch:=true@nextDispatch:=true
1:thread implementation main_stabilization.impl
2 annex behavior_specification{*x*
3 states:
4 sO:initial state;
5: sl,s2,s3:state;
6 s4:complete state;
7 transitions:
8 tl: sO-[]->si1{t_fibl_sync!;t_fib2_sync!;t_fib3_sync!;
9: t_mech_sync!;}
10: t2: s1-[]->s2{delay(50ms);}
11: t3: s2-[from_handler?]->s3{t_mech_seriall;}
12: t4: s3-[1->s4{}
13: *%}
14:end main_stabilization.impl;

Fig. 9. An example of BA.



Table 4
BA states and corresponding TASM environment variable.

BA states
S={s0,51,52,...sn}

TASM environment variable

thBAstate={s0,s1,...,sn}

(2) Guard condition (G)
According to whether Delay is defined in the action of state
transition, there are two translation rules, shown as below.
Note that tr.Guard is the guard condition of the BA state tran-
sition and ss is the source state of the transition.
(thState = waiting_execution )\
thBAstate = ss \ tr.Guard)|(thState = execution \
thBAstate = ss)~»G(execution_tr)
If Delay is defined, the thread Initiatively blocks itself so
there is no need to get CPU resource and the condition is
(thState = waiting_execution )\ thBAstate = ss A\ tr.Guard).
Otherwise, the condition is (thState = execution \
thBAstate = ss). Whether the thread can get CPU and be tran-
sitioned into the state execution is judged in the scheduler
so the guard condition tr.Guard will be used in the scheduler
which will be introduced in Section 3.3.
As defined in Section 2, tr.Guard takes the form:
< BExpr > | [on <BExpr> —-—>] <event>
< BExpr >]
It can be a simple boolean expression (< BExpr >), the arri-
val of an event port (< event >) or a complicated composi-
tion of them containing the check on the input data or
event ([when < BExpr >]).
BExpr can be translated directly to the logic expression of
TASM. Event is used to represent that the transition is
enabled by the arrival of event. Therefore, the translation
rule is defined as pr(I"(event.p)) in which pr is the port read-
ing operation. When is used to represent the judgment on
the data newly arrived on the port, translation rule taking
the form when.BExpr(event.p) in which BExpr(event.p)
means the logic judgment on the data.

(3) Action (A)

There are three actions need to be performed in the state

transition: (a) execute actions defined in AADL state transi-

tion; (b) perform the state transition; (c) release the CPU
resource. As introduced above, for each execution machine,
an environment variable thGetcpu is defined. To release the

CPU resource, thGetcpu is set to false. Here are the translation

rules for (a) and (b).

(a) Actions in BA include assignments and port writing.
Assignment operations defined in BA are directly trans-
lated into corresponding assignment statements in
TASM. Port writing operations like p! or p!(x) is trans-
lated by the rule defined in Section 3.1.

(b) If destination state ds is typed complete in AADL, it means
the thread execution is completed so that the state of the
thread is transitioned to state writing and the state of BA
needs to be transitioned to the initial state. Otherwise,
the thread needs to be transitioned to state wait-
ing_execution and the target state is assigned as the
destination state ds. Translation rules are shown in
Table 5.

[when

Table 5
Transition actions.

State type Transition actions
Complete thBAstate := Sy ® thState = writing
Otherwise thBAstate:=ds® thState = waiting_execution

Translation of BA is the decomposition and refinement of the
state transition execution of the execution machine. The environ-
ment variables and state transitions generated from BA will be
integrated into the corresponding execution machine.

3.3. Translation of scheduler

To schedule the execution of threads bound to the same CPU,
we generate a TASM machine called scheduler in which the idea
of token ring is used. The process of token passing is shown in
Fig. 10. When a thread gets the token, it will check whether CPU
is free. As soon as CPU becomes free, CPU resource is distributed
to the thread with the highest priority. If the thread cannot be exe-
cuted and there is a thread with lower priority can be executed, the
token is passed to it. Otherwise, the passing of the token is stopped
till one of the threads becomes ready to execute.

Each processor component in AADL model is translated into a
scheduler state machine which is a three tuple < SchMV,
SchCV, SchMM > respectively represents the monitored variables,
controlled variables and the main machine. SchMV and SchCV are
defined as below.

SchMV = {cpustate, current_token, |y, sy
thGetcpu(th), I'(port), Upesmth-ba.V}
SchCV = {cpustate, current_token,J,.srythGetcpu(th), I'(port),

Uthesmth-ba.V}

STH is the set of threads to be scheduled. User-defined typed
variable cpustate={free,busy} is used to represent the current state
of CPU. Variable current_token is used to represent the thread
which has the token currently. I'(port) is the set variables of data
ports used to judge if the data dependencies are met.
Ugnesru (th.ba.V) is the set of local variables of specification of BA
used in the guard condition of BA.

thState(th), Uestu

Get the token

Pass the token to the
lower-priority thread

Can be scheduled?

Y
v

Be scheduled and deliver the
token to the highest-priority
thread

Fig. 10. Process of token passing.



Table 6
Translation rules of scheduler.

State Time
transition (T)

Schedule(th) 0

Guard (G) Action (A)

cpustate=free/\
current_token=th A
sa(th)

cpustate=free/\
current_schedule=th A

(Venerrsa(th))

cpustate:=busy®
current_token:=next(th)®
thGetcpu(th):=true

Pass(th) 0 current_token:=next(th)

SchMM is the set of state transitions. For each thread th, there
are two corresponding state transitions Schedule(th) and Pass(th).
The translation rules are shown in Table 6.

State transition Schedule(th) is used to describe the behavior
when th is able to execute. Apart from the condition that CPU
resource is free(cpustate = free) and the token belongs to th(cur-
rent_token = th), there are two conditions need to be met: (a) th
is in waiting_execution state; (b) data dependencies are met.
Moreover, if there are BA defined in th, at least one of the guard
conditions of the state transitions in BA needs to be met. The
composition of these three conditions, Sa(th), is shown below.

(thState(th) = waiting_execution \(AgpeippPT(idp)) N\
(\/th.ba.treth.ba.Tth'ba‘tr'G))Msa(th)

IDP is the set of input data port. A,.pppr(idp) means all data
dependencies need to be met. th.ba.tr.G is the guard condition of
specification of BA. \/;; pq tretn bar MeaNSs at least one guard condition
needs to be met.

Actions of the transition is to set current state of CPU to busy,
set thGetcpu(th) to true and pass the token to the thread with the
highest priority next to th(next(th)).

If th has the token but it can not be executed, state transition
pass will be performed to pass the token to the thread with the
highest priority next to th. Note that LTH is the set of threads which
has the lower priority than the current thread and \/,,_ q;sa(th)
means at least one of the threads in the set is able to be scheduled.

3.4. Translation of mode change

Safety-critical systems need to perform different functions in
different time or running environments so there are distinguished
configurations in such systems. In AADL, mode is used to describe
the process of the dynamic configurations. It is an explicitly
defined configuration of contained components, connections, and
property values. Fig. 11 shows an example defined in an AADL pro-
cess component called dpu_process. There are two modes, stabiliza-
tion and maneuver in the specification. Two threads in dpu_process,

sta_main and man_main, respectively belong to mode stabilization
and maneuver. Since multiple modes can be declared in a compo-
nent, a mode change state machine is needed for the available
mode transitions triggered by the arrival of event. In this example,
we can see that the mode change state machine has two state tran-
sitions: the one from stabilization to maneuver and the reverse
one. The trigger event for the former transition is from event port
t_mech_return of thread sta_main and the one for the later transi-
tion is from event port t_mech_return of thread man_main.

Mode change is triggered by the event port in AADL, translating
the system from an old mode into a new mode. Tasks in the old
modes need to be deleted and deactivated and ones in the new
mode need to be activated and dispatched. Mode change protocols
are used to deal with the condition i when a mode change comes
with old tasks still in execution. In synchronous protocols, tasks
in the new mode will not be dispatched until all tasks in the old
mode have completed, which is not efficient. In asynchronous pro-
tocols, there will be a time interval with tasks in both old mode and
new mode in execution. This paper will discuss the condition of
asynchronous protocols.

There are some tasks called critical tasks in the system. Mode
change should not influence on the execution of these tasks. In
AADL, threads corresponding to critical tasks are marked with
key words synchronized. When mode change request comes during
the execution of critical tasks in the old mode, tasks need to be
completed before the mode change begins. The process for the
completion of critical tasks is called preparation process. After the
preparation period, common tasks(tasks except critical ones) in
the old mode will be deleted and deactivated and tasks in the
new mode will be activated and dispatched. The process is called
execution process. When all tasks in the old mode have been deac-
tivated and all tasks in the new mode has been dispatched and exe-
cuted for the first time, the system is in the new steady state. The
system is taken over by the new mode and waits for the next mode
change request.

Fig. 12 shows the state machine of mode change. Three ellipses
are the three processes or state given above. When mode change
request comes (Current MCR = Event), the system transitions into
the preparation process. The interval on the preparation process is
denoted as syncout (C,old,new). It is the hyper period of all critical
tasks (hyper period is the LCM of periods of these tasks). After
the preparation, system clock is set to zero (C:=0) and the system
transitions into the execution process. The interval on the execution
process is denoted as syncin (Cold,new). It is the hyper period of
tasks in the old mode. After this process, the system is in the
new mode (currentmode = new) and transitions into the steady
state.

A mode change state machine is translated into a state machine
which is a three tuple {SomMV, SomCV,SomMM}. SomMV and

subcomponents:

(stabilization);

modes:

maneuver: mode;

end dpu_process;

process implementation dpu_process.impl

sta_main: thread main_stabilization.impl in modes

man_main: thread main_maneuver in modes (maneuver);

stabilization: initial mode;

stabilization -[sta_main.t_mech_return]-> maneuver;
maneuver -[man_man.t_mech_return]-> stabilization;

Fig. 11. An example of mode in the process definition.
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Fig. 12. Mode change state machine.

SomCV are respectively the monitored and controlled variables and
SomMM is the set of state transitions. The definition of SomMV and
SomCV are shown below.

somMV = {currentMState, nextHyperperiod, event}

somCV = {currentMState, nextHyperperiod, event ,\J;,.ry

hyperperiod Jy,.iyth Active, Uy, cqynumPeriod, |y, .y SyncDis}

Variable currentMState, typed as user-defined type, is used to
represent the current state of mode. Variable nextHyperperiod,
typed Boolean, is used to control if the mode change automata
can accept the request of mode change. Variable event is used to
trigger mode change. For every thread th € TH (TH is the set of
thread defined in the process component), there are corresponding
variables hyperPeriod, numPeriod, thActive and syncDis to be gener-
ated. Variable hyperPeriod is the value of hyper period of current
mode (product of period value of all threads in this mode) divided
by the period of thread th. Variable numPeriod is the value
representing the number that thread th has been dispatched in
the current mode. Every time the thread enters a new hyper per-
iod, numPeriod is assigned to 0 and every time the thread is dis-
patched, numPeriod increases by one. Variable syncDis is used to
synchronize between the main machine of mode change and the
main machine of dispatcher of th. When a hyper period completes,
main machine of mode change needs to notice the dispatcher
whether the thread can enter into next hyper period. Variable
thActive is used to represent whether th is activated in the current
mode.

SomMV is the set of state transitions generated. For every mode
change transition mtr =< sms, event,dms >, four state transitions
in TASM is generated, shown as below.

(1) State transition Hyperperiod is used to represent the hyper
period of source mode sms, execution time is h;,(sms, dms),
the hyper period of the synchronized threads.
hin(sms, dms)-»T(Hyperperiod)

(currentMState = sms A\
nextHyperperiod = true-»G(Hyperperiod)
nextHyperperiod := false-»A(Hyperperiod)

(2) State transition Has_mcr is executed if the mode change
event arrives at the synchronization point of hyper period,
shown as below. Variables thActive of threads which are
not in the new mode are set to false while ones in the new
mode are set to true. Variables HyperPeroid are also needed
to be recalculated and variable currentMState is set to
sms_improgress to represent the progress of mode change.
OTH is the set of threads in old mode and NTH is the set of
threads in new mode.
0-»T(Has_mcr)
currentMState =
sms A\ nextHyperiod = false )\ event = true-»G(Has_mcr)

(event := false @ nextHyperperiod := true®
currentMState := sms_inprogress ® (Qeorn
thActive(th) := false)®
(®emennthActive(th) := true)

(@ meom \ menruhtyperperiod(th) :=

houe (sms, dms) /th.period)-»A(Has_-mcr)

(3) Transition Hasnot_mcr is executed if no mode change event
arrives at the synchronization point of hyper period, shown
as below. Variables nextHyperperiod are set to true to notice
the dispatcher to enter the next cycle of hyper period.
0-»T(Hasnot_mcr)
currentMState = sms )\
nextHyperperiod = false )\ event = false-»

G(Hasnot_mcr)
nextHyperperiod := true®
(R¢neornsyncDis := true)~»A(Hasnot_mcr)

(4) State transition Inprogress is used to represent the progress
of mode change. Execution time of the transition is the hyper
period of threads in new mode. Action of the transition are
the assignment of curretMState to new mode dms and notice
the dispatcher of threads in new mode to enter the next
cycle of the hyper period.

houe(sms, dms)-»T (Inprogress)
currentMState = sms_inprogress-»G(Inprogress)
currentMState := dms®

(®ementuSyncDis(th) = true))~»A(Inprogress)

3.5. Generation of observer state machine

Observer state machine is usually used to monitor the state of
other machines. To verify the timing properties of AADL model,
for each thread, an observer state machine is generated to monitor
if the thread execution exceeds its deadline, shown in Fig. 13. After

Observer_th

4 N

th.state = waiting_dispatch ||
th.state = waiting_mode

th.state = waiting_execution

Fig. 13. Structure of AADL2TASM model transformation tool.

Table 7
Translation rules of observer.
State transition ~ Time (T)  Guard (G) Action (A)
Initialization deadline  thState=waiting_execution obState=s1
/\ obState=s0
End 0 (thState=waiting_dispatch\/  obState=sO
thState=waiting_mode)
/\obState=s1
Timeout 0 (thState=execution\/thState ~ obState=error

=writing)/\obState=s0




the thread has been dispatched and entered into waiting_execution
state, observer will transit from sO to s1. If the execution time
exceeds the deadline, observer will transit to error state.
Otherwise, it will transit back to s0, beginning the next
observation.

The observer state machine is a three tuple < dIMV, dICV,
dIMM > where dIMV and dICV are respectively monitored and con-
trolled variables and dIMM is the set of state transitions. The def-
inition of dIMV and dICV are shown below. ThState represents the
state of thread and obState represents the state of the observer
state machine.

dIMV = {thState, obState}
dICV = {thState, obState}

DIMM contains four state transitions: Initialization, End, Timeout
and Waiting. The translation rules are shown in Table 7.
Initialization is the transition from s0 to s1; End is the transition
from s1 to sO and Timeout is the transition from sO to error. It is
obvious that if the execution time exceeds the deadline, transition
Timeout will be performed to alarm that the thread does not meet
the timing properties.

4. Implementation of transformation tool and case study
4.1. Implementation of AADL2TASM transformation tool

Based on the translation rules defined in Section 3, we imple-
mented AADL2TASM transformation tool which can be integrated
into OSATE environment. The translational rules are defined using
ATL. ATL is a model transformation language used in MDD (Model
Driven Development). For more detailed information of ATL, the
reader is referred to [29-31].

The tool architecture is shown in Fig. 14. The input of the tool is
the standard AADL model and the output is the standard TASM
model. After the pre-processing, AADL model will be modified to
fit in the ATL transformation. The metamodels of AADL (denoted
as M in Fig. 14) and TASM (denoted as M’ in Fig. 14) and ATL trans-
formation (denoted as A — A’ in Fig. 14) are needed for the trans-
formation. Metamodel describes the abstract syntax of language
while the ATL transformation defines the mapping rules between
the source model and the target model. The concrete model “con-
forms to” the meta model. The metamodels are implemented using
KM3 (Kernel MetaMetaModel) language [32], which are then
translated into ecore format. The ATL transformation rule is used
to implement the mapping between two models. ATL Engine will
do the transformation and output the corresponding TASM model.
After the post-processing, the standard TASM model will be
obtained for further verification and analysis.

AADL metamodel Bl t‘“‘:jimaﬁm TASM metamodel
(M) (A>A) MY
T ] T
Lo Providin, 3
Con‘forms to rules & Conforms to
| |
AADLmodel | input silipit TASM model
for ATL ATL Engine For ATL
(A) £ Al’ )
Pre-processing Post-processing
Standard AADL Standard TASM
model model
(A) (A’ D)

Fig. 14. Structure of AADL2TASM model transformation tool.

4.2. DPU: a case study

This paper uses a subsystem called DPU (Data Processing Unit)
from a satellite to illustrate the transformation and verification of
AADL model. Functional properties such as state reachability and
non-functional properties such as timing correctness and resource
correctness will be verified by model transformation. Fig. 15 shows
the AADL model of DPU.

The function of DPU is to collect the data from one Gyro and five
FOGs and then send it to the main computer. There are two modes,
stabilization and maneuver, in this system. In stabilization mode,
DPU will execute the following actions for every 150 ms:

e Send synchronous interruption signals to three FOGs (FOG 1 to
FOG 3) to notice them preparing for the data; then send the
same signal to the Gyro and the data from Gyro will be collected
to DPU, denoted as N3.

e 50 ms after, send asynchronous interruption to the Gyro and get
the data, denoted as N4; then replace N1 (N3 collected from the
previous cycle) with N3, N2 (N4 collected from the previous
cycle) with N4.

e Collect data from three FOGs and Gyro and then send them to
the main computer (not included in the model).

In maneuver mode, the only difference is that DPU will collect
data from FOG 4 and FOG 5 instead of FOG 1 to FOG 3. Data from
Gyro will be collected in both modes. Each time execution in one
mode has completed, the model will switch to another model. In
AADL model, DPU is represented by system component. There
are 6 device components representing one Gyro (mech_gyroscope)
and five FOGs (fib_gyroscopel to fib_gryoscope5). Component Intel
and mem respectively represent the CPU and memory of the sys-
tem. Two bus components (bus and lan) are used to connect
devices, CPU and memory. The core part of the model is the process
component containing 11 threads (represented by dotted quads),
three data components N1, N2 and buf and mode change between
stabilization and maneuver. Behavior annex specifications are
defined in threads to describe detailed actions to be taken during
the execution. Table 8 lists properties of threads.

Fig. 16 shows the behavior annex specification defined in the
thread main_stabilization, of which the detailed specification has
been defined in Fig. 9. The period and deadline of the thread is both
150 ms. 5 output event ports (t_fib1_sync - t_fib3_sync, t_mech_sync
and t_mech_serial) are used to send the command of the data col-
lection; input event data port from_handler receives the packed
data and output event data port write_mc is used to send the
packed data to the main computer.

4.3. Verification by model transformation

4.3.1. Simulation and analysis by TASM Toolset

Using the AADL2TASM tool, the AADL model is translated into
the corresponding TASM model. For each thread, there are 2
machines: dispatcher and execution machines. To analyze the tim-
ing properties, an observer state machine is also generated for each
thread. Furthermore, there are 3 main machines respectively for
mode change, scheduling and port communication. The behaviors
and resource usage will be simulated in the TASM toolset.

There are five perspectives in TASM toolset: Environment,
Machines, Time, Resource and Update Set. Environment perspective
shows the value change of environment variables during each step
of the execution; Machines perspective illustrates the information
respect to the machines such as time elapsed in the execution,
the rule executed in the last step and how many steps the machine
has been executed; Time perspective shows the timing among
machines; Resource perspective shows the usage of the resource
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Fig. 15. An example of AADL model.

Table 8

Properties of threads.
Thread Dispatching Period Deadline Execution time Mode
Main_stabilization Periodic 150 150 Behavior annex Stabilization
Datacomp_stabilization Periodic 150 150 Behavior annex Stabilization
Main_maneuver Periodic 150 150 Behavior annex Maneuver
Datacomp_maneuver Periodic 150 150 Behavior annex Maneuver
Mech_gyro_sampling Periodic 20 20 5 Both
Mech_gyro_hand Speriodic X 80 Behavior annex Both
Fib_gyro_hand (1-3) Periodic 150 150 Behavior annex Stabilization
Fib_gyro_hand (4-5) Periodic 150 150 Behavior annex Maneuver

defined in the model; Update Set perspective shows the state tran-
sitions of the model. In this paper, we define that when the thread
is being executed, CPU usage is 100%. By observing the Resource
perspective, CPU usage can be counted. Note that although we con-
sider only CPU usage, all resource declarations in AADL can be
transformed into TASM resources in a similar way.

4.3.2. Model Checking By UPPAAL

Apart from simulation, model checking is a major method for
the verification and validation of the AADL model. Ouimet [22]
proposes a methodology translating TASM into UPPAAL timed
automata [33], based on which a model transformation tool
TASM2UPPAAL has been implemented [34].
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Fig. 16. Behavior annex of thread main_stabilization.

UPPAAL uses a subset of CTL (Computation Tree Logic) to
describe properties to be verified. Here we take following proper-
ties as examples to show the verification of AADL model by model
checking.

4.3.2.1. Deadlock freeness. Deadlock freeness is fundamental prop-
erty related to the function of a reactive system. If a system is
deadlocked, it will not be able to interact with the environment,
which can probably bring about serious system failures. In
UPPAAL, deadlock freeness is described as the following CTL
formula.

A]] 'deadlock

For instance, if we delete the port connection between threads
mech_gyro _hand and data_comp_stabilization, data_comp_stabiliza-
tion can not pack data from three FOGs and Gyro such that thread
main_stabilization will not be able to continue the execution. As a
result, the system will turn into deadlock status.

4.3.2.2. State reachability. State reachability is a kind of functional
property checking if there is dead state in the model. several prop-
erties can be described as state reachability. For instance, for the
behavior annex shown in Fig. 16, the formula to check if state s3
is reachable is shown below.

thState_main_sta == 4 — — > thBAState_main_sta == 3

ThState_main_sta represents the execution state whereas
thBAState_main_sta depicts the state of behavior annex speci-
fication. The formula means that if the thread has begun
executing, state machine of behavior annex will finally arrive at
state s3. If from_handler cannot received the signal, the transition
from s2 to s3 cannot be performed and the property will not be
satisfied.

Schedulability can also be represented in a similar way. The for-
mula shown below means that once main_stabilization has been
dispatched (thState_main_sta == 2), it will finally come into execu-
tion (thState_main_sta == 4).

thState_main_sta == 2 — — > thState_main_sta ==

Another property able to be represented as state reachability is the
mode reachability. For instance, to verify if mode maneuver can be
reached, the following formula will be checked in UPPAAL.

A <> currentmode == 1

4.3.2.3. Timing correctness. This paper uses observer state machine
to monitor whether the thread execution time exceeds the dead-
line. For instance, if the process time of asynchronous interruption
of mech_gyro_hand increases from 15 ms to 16 ms, since dispatch
period and deadline of mech_gyro_sampling is 20 ms and the execu-
tion time is 5 ms, it will exceed the deadline at certain periods
(16 ms + 5 ms > 20 ms) and the property formulated as the follow-
ing formula will not be satisfied.

A]] !(obState_mech_gyro_sampling == 2)

4.3.3. Performance Evaluations and Discussion on the practicality

The implemented verification toolchain “AADL-TASM-UPPAAL”
has been successfully put into practical use to verify the DPU sys-
tem. DPU system is a typical real-time system with 11 threads and
2 modes. Behavior annex specifications are also defined to describe
the detailed behaviors and port communications are used for the
interactions among threads. After translating into TASM models,
there are 38 state machines (with observer state machines). The
verification was performed on a basic development PC with 2 cores
and 4GB RAM memory. Properties mentioned above have been
verified. When the model has been injected with errors, it takes
less than 1 minute to get the result. If the model is correct, how-
ever, much more time is needed. In addition, to verify the model
is not dead-locked, state machines such as observers have must
be deleted to reduce the state space. It has to be admitted that state
explosion [35] is an obstacle for the verification of larger system.
According to the verification test, if AADL model has more than 5
threads, the model with observer state machines will be hard to
verify by model checking. If observer state machines are deleted
from the model, system with 11 threads can be verified.
Therefore, it is necessary to model a system in a modular way:
components are modeled and verified first and then the whole sys-
tem can be verified with fewer details.

5. Related work

A considerable number of works have been proposed respect to
AADL transformation and formal analysis of AADL models. This
section provides a brief introduction to these works.

In order to analyze timing properties of safety-critical systems,
[36] chooses AADL as the modeling language and proposes an
extension of behavior annex with time annotation to specify the
time properties. Then a transformation from extended behavior
annex to TASM is presented to facilitate the timing analysis with
timed simulation or timed model checking. However, one can
observe from the case study that the system is modeled at a high
level: each behavior annex specification describes a subsystem
and how to deal with the communication among subsystems is
not described clearly.

Verimag research lab in France presents model transformation
methodology from AADL to BIP (Behavior Interaction Priority)
[6,37]. BIP is a modeling language for real-time system that uses
automata to describe behavior and supports combination between
heterogeneous components. The basic modeling element of BIP is
Atomic Component and Compound Component. In the trans-

formation, each component in AADL corresponds to a BIP compo-
nent. The input and output ports of AADL components
correspond to ports of BIP components and behaviors of AADL
component are described as state transitions in the BIP component.
Moreover, all transformation rules are depicted in natural language
and shown as graphs in the paper. Compared with work presented
in this paper, mode change, communication among threads are not
supported.



Table 9
Summary of AADL transformations.

Target formalism Supported subset

Transformation objectives

TASM Behavior annex, port communications
BIP Process, thread, processor,
Behavior annex, sub program, port connections
ACSR Thread execution, communication
IF Thread execution,
Communication
Fiacre Thread, communication
TLA+ Port communications

Preemptive scheduling, mode

RT-Maude Thread, port communication, mode change, behavior annex
VTS Not specified

GSPN Error model annex

Petri net Thread

UPPAAL Thread dispatching, scheduling, port communication

Lustre Processor, thread, port communication, resource sharing
SIGNAL Thread, scheduling, behavior annex

EDA (COMPASS) SLIM (AADL dialect enriched by error model annex)

UML Marte Dispatch protocols, port communication, end to end flow

specification

Timing properties

Timing properties

Deadlock

Schedulability

Deadlock

Buffer overflow

Deadlock, livness, time-bounded verification
Not specified

Reachability,time-bounded verification

Behavior properties

Dependability-related properties

Deadlock, livelock

Control-flow, data-flow reachability

Safety

Safety verification, architecture exploring
Requirement validation, functional properties, safety,
dependability and performance analysis, FDIR analysis,
diagnosability

Timing properties, flow analysis

University of Pennsylvania presents model transformation
methodology from AADL to ACSR [7] that supports the trans-
formation of static structure, execution and communication of
threads. ACSR can describe competition for resources to support
the schedulability analysis. However, the transformation metho-
dology presented does not support the complete transformation
of mode change and behavior annex.

Thomas Abdoul et al. present model transformation methodol-
ogy from AADL to IF [8] to fulfill the formal verification like safety
properties. IF is a description language for real-time system pre-
sented by Verimag research laboratory. Translation rules from sta-
tic structure, thread execution, behavior annex (not standard
version), communication, scheduling and other elements of AADL
to IF are defined but transformation of mode change is not
supported.

Project TOPCASED of Airbus presents the transformation from
AADL to Fiacre [9], an intermediate language for model verification.
The transformation omits the hierarchical information of AADL
syntax and concentrates on the thread execution and communica-
tion. Every thread in AADL is mapped to a corresponding process in
Fiacre and a process called Glue is defined in Fiacre to manage the
dispatch and scheduling of threads and communications among
threads. The translated Fiacre model will be then compiled into a
format for Tina [38] tool to verify the system using LTL.

IRIT in France chooses TLA+ [10] as the target language of AADL
model transformation. Transformation of port communication,
component communication based on shared variables, preemptive
scheduling strategy and mode change are studied while trans-
formation of behavior annex is not supported.

Olveczky et al. [11] presents a methodology transforming AADL
to RT-Maude. RT-Maude is a modeling language for embedded
real-time system based on Rewriting Logic. The paper proposes
the translation rules for thread component, port connection, mode
change, dispatch protocol and behavior annex. Generated model
can be simulated or verified using the tool AADL2Maude.
However, the scheduling and resource sharing are not supported.

Several studies use Petri nets to verify the AADL model.
Monteverde et al. [12] uses VTS (Visual Timed Scenarios) to specify
the behavioral properties of AADL models. The transformation
from VTS to Timed Petri Nets (TPNs) is defined to verify the mode
change behaviors and flow specifications of AADL models.

However, how to combine VTS with AADL is not clearly stated in
the paper. Rugina et al. [13] translates AADL Error Model Annex into
GSPNs (Generalized Stochastic Petri Nets) to verify dependability-
related properties such as reliability and availability by ADAPT tool
[39]. To support the qualitative analysis of distributed systems
specified by AADL, [14] proposes a methodology translating
AADL thread automata to symmetric net of Petri net. Properties
such as deadlock-freeness and livelock-freeness can be then
verified.

Johnsen et al. [15] proposes methodology translating AADL to
UPPAAL timed automata. By using semantic anchoring, semantics
of a subset of AADL is anchored to semantics of UPPAAL timed
automata. Thread dispatching, fixed-priority preemptive schedul-
ing, port communication are supported. By using the verification
technique proposed in [40], control-flow reachability, data-flow
reachability and other properties can be verified by the UPPAAL
tool.

Jahier et al. [16] studies the transformation from AADL to syn-
chronous language Lustre. In synchronous model, all internal com-
ponents steps forward in a "simultaneous” way. Consequently, the
model is deterministic. In contrast, AADL is a modeling language
for realistic platform so that the AADL model is asynchronous.
The paper first presents methods to describe asynchronous model
in Lustre. Then the translation of processor, scheduling, thread dis-
patch and execution, port connection and resource sharing are
given. The generated Lustre model will be verified using Lesar.
However, the methodology do not support the transformation of
mode change and behavior annex.

Yu et al. [17] and Ma et al. [41] propose a concept of co-design
for safety critical system in which AADL is used to model the archi-
tecture and Simulink is used to model the behavior of threads. Both
models of AADL and Simulink are then translated into a so called
SME [42] model based on synchronous language SIGNAL [43].
Thread, port communication, scheduling and binding of AADL are
translated into SIGNAL specification. In [18], translation from
AADL behavior annex to synchronous equations via an inter-
mediate formalism SSA (Static Single Assignment). In addition,
[44] uses SynDEx [45] to explore the architecture of AADL model.

Bozzano et al. [19,46] propose an integrated toolset COMPASS
to verify functional correctness, safety, dependability, perfor-
mance, diagnosability and other properties of AADL specification.



An extension of AADL called SLIM (System Level Integrated
Modeling) and the transformation to EDAs (Event-Data
Automatons) are presented. Then networks of EDAs will be verified
using mature tools by which formal analyses such as model check-
ing, safety and dependability analysis can be performed .

André et al. [20] and Lee et al. [47] proposes transformation
from AADL to UML Marte, a profile extension for real-time and
embedded system. The transformation concentrates on port com-
munication and end-to-end flow specification.

Table 9 illustrates a summary on current studies of AADL
transformations.

Apart from verification based on model transformation, several
studies also concentrate on the simulation of AADL models.
Varona-Gomez and Villar [48] proposes a tool AADS to simulate
and analyze AADL model. Software and hardware components
are translated into model of SystemC, a C++ based modeling plat-
form. HW/SW partition and behavior of hardware components will
be analyzed by SCoPE [49], a simulation and analysis tool.
However, AADS tool do not support the verification of behavior
annex and AADL v2.0. LISYC Team from Brest University developed
Cheddar [50] for scheduling analysis of AADL model. Number of
classical scheduling protocols are supported by Cheddar such as
RM, EDF, DM and LLF. In addition, resource consumption [51]
and performance [52] can also be analyzed by Cheddar.
Scheduling with mode change and behavior annex, however, have
not been supported yet. Other simulation tools include Furness’
and ADeS? and so on. Senn et al. [53] proposes a method estimating
the power consumption of AADL model.

Compared with current studies, the methodology proposed in
this paper have the following features:

(1) A proper subset of AADL has been chosen as the trans-
formation target including thread components (dispatching,
offline scheduling and execution), port communication,
behavior annex and mode change, which is usually used in
safety-critical systems.

(2) TASM is chosen as the transformation target. TASM can
describe the multi-capacity resources and the TASM toolset
can support the quantitative analysis of resource usage.

(3) Translational rules were defined in a good form and then it is
easier to verify the correctness of the transformation (pre-
sented in [26]).

6. Conclusions and future work

This paper describes the AADL model transformation based on
TASM. We first present formal description of key modeling ele-
ments of AADL including thread component, port communication,
behavior annex, mode change. Then translation rules from these
AADL modeling elements to TASM are formally defined. Finally,
we implement model transformation tool, AADL2TASM, using
ATL, through which the properties of AADL can be analyzed by
the toolset developed for TASM.

In our future work, we will study the translation rules for more
elements of AADL, such as data access, subprogram and so on. At
the same time, we will improve the implementation of modeling
transformation tool to support analysis and formal verification of
AADL model. In addition, the use of Multi-core architecture in
safety critical systems will become a trend. Based on the study
we are conducting in multi-threaded code generation of SIGNAL
[54], we will study the extension of AADL with multi-core and

T http://www.furnesstoolset.com.
2 http://www.axlog.fr/aadl/ades_en.html.

how to verify multi-core AADL model with transformation
methodology.
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