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Abstract

To find the cause of a functional or non-functional defect (bug) in software running on a multi-processor System-on-Chip (MPSoC),
developers need insight into the chip. Tracing systems provide this insight non-intrusively, at the cost of high off-chip bandwidth
requirements. This I/O bottleneck limits the observability, a problem becoming more severe as more functionality is integrated
on-chip. In this paper, we present DiaSys, an MPSoC diagnosis system with the potential to replace today’s tracing systems. Its
main idea is to partially execute the analysis of observation data on the chip; in consequence, more information and less data is sent
to the attached host PC. With DiaSys, the data analysis is performed by the diagnosis application. Its input are events, which are
generated by observation hardware at interesting points in the program execution (like a function call). Its outputs are events with
higher information density. The event transformation is modeled as dataflow application. For execution, it is mapped in part to
dedicated and distributed on-chip components, and in part to the host PC; the off-chip boundary is transparent to the developer of
the diagnosis application. We implement DiaSys as extension to an existing SoC with four tiles and a mesh network running on an
FPGA platform. Two usage examples confirm that DiaSys is flexible enough to replace a tracing system, while significantly lowering
the off-chip bandwidth requirements. In our examples, the debugging of a race-condition bug, and the creation of a lock contention
profile, we see a reduction of trace bandwidth of more than three orders of magnitude, compared to a full trace created by a common

tracing system.
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To write high-quality program code for a Multi-Processor
System-on-Chip (MPSoC), software developers must fully un-
derstand how their code will be executed on-chip. Debugging
and tracing tools can help developers to gain this understand-
ing. They are a keyhole through which developers can peek and
observe the software execution. Today, and even more in the
future, this keyhole narrows as MPSoCs integrate more function-
alities, while at the same time the amount of software increases
dramatically. Furthermore, concurrency and deep interaction
of software with hardware components beyond the instruction
set architecture (ISA) boundary are on the rise. Therefore more,
not less, insight into the system is needed to keep up or even
increase developer productivity.

Many of today’s MPSoCs are executing concurrent code on
multiple cores, interact with the physical environment (cyber-
physical systems), or must finish execution in a bounded amount
of time (hard real-time). In these scenarios, a non-intrusive ob-
servation of the software execution is required, like it is provided
by tracing. Instead of stopping the system for observation, as
done in run-control debugging, the observed data is transferred
off-chip for analysis. Unfortunately, observing a full system
execution would generate data streams in the range of petabits
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per second [1} p. 16]. This is the most significant drawback of
tracing: the system insight is limited by the off-chip bottleneck.

Today’s tracing systems, like ARM CoreSight [2]] or NEXUS
5001 [3]] are designed to efficiently capture the operation of a
functional unit (like a CPU) as compressed trace stream. With
filters and triggers it is possible to configure which and when a
functional unit is traced (observed). The trace streams (or short,
traces) are then transported across an off-chip interface (and pos-
sibly other intermediate devices) to a host PC. Upon arrival the
compressed trace streams are first decompressed (reconstructed)
using the program binary and other static information which was
removed before. The reconstructed trace streams are then fed
to a data analysis application, which extracts information out of
the data. This information can then be presented to a developer
or it can be used by other tools, e.g. for runtime verification.

The main idea in this work is to move the data analysis
(at least partially) from the host PC into the chip. Bringing
the computation closer to the data sources reduces the off-chip
bandwidth requirements, and ultimately increases insight into
software execution.

To realize this idea, we introduce DiaSys, a replacement for
the tracing system in an MPSoC. DiaSys does not stream full
execution traces off-chip for analysis. Instead, it first creates
events from observations on the chip. Events can signal any in-
teresting state change of the observed system, like the execution
of a function in the program code, a change in interconnect load
beyond a threshold, or the read of a data word from a certain
memory address. A diagnosis application then processes the
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observed events to give them “meaning.” Given an appropriate
diagnosis application, a software developer might not be pre-
sented with any more a sequence of events like “a read/write
request was issued”, but with the more meaningful output of
the diagnosis application “a race condition bug was observed.”
Analyzing the data on-chip is not only beneficial to reduce the
off-chip bandwidth requirements, but also enables new use cases
in the future, such as self-adapting or self-healing systems.

However, doing all this processing on-chip would, in some
cases (and markets), be too costly in terms of chip area. There-
fore, we describe the diagnosis applications so that they can
be transparently split into multiple parts: one part executing
on-chip in dedicated, distributed hardware components close to
the data source, and another part running on a host PC.

In summary, our key contributions are:

e an architecture and component library of on-chip infras-
tructure to collect and analyze diagnosis data created dur-
ing the software execution, and

e a model of computation which allows developers to de-
scribe data analysis tasks (the “diagnosis application’)
in a way which is independent of the specific hardware
implementation of the diagnosis system.

Combining these two contributions, we show that

e DiaSys is a viable alternative to tracing systems in the two
major fields where tracing is employed today: hypothesis
testing (debugging) and the collection of runtime statistics.
Two case studies explore these use cases (Section [5).

o the diagnosis applications introduced by DiaSys are a
beneficial representation of a data analysis task: they ab-
stract from the implementation through a clearly defined
model of computation to foster re-use and portability (Sec-
tion [3.4)).

e DiaSys is implementable in hardware with reasonable
system cost (Section ).

In the following, we explore our diagnosis system in depth.
We start with a thorough analysis of the state of the art in tracing
systems in Section 2} based on which we developed our concept
of the diagnosis system presented in Section [3] We include a
detailed model of a diagnosis application and a discussion of
its semantics in Section[3.4] The architecture of our diagnosis
system is presented next in Section [3.5] followed by a discussion
of its possible limitations. In Section[d we present our hardware
implementation. Combining all parts, we show two usage ex-
amples in Section 5] one to find a multi-core race condition bug,
and one to create an application profile.

A word on terminology. We use the terms “diagnosis” and “di-
agnosis system” to stress the fact that we integrate the on-chip
observation of the software execution with the data analysis. We
use “tracing” to refer to the method of obtaining insight into the
SoC by transferring a stream of observations from a functional
unit off-chip. “Debugging” is used as a synonym for “hypothesis
testing,” the process of (usually manually) checking (by various
means) if the software behaves as expected.
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Figure 1: A schematic view of a common tracing system like ARM CoreSight
or NEXUS 5001.

2. Background and Related Work

Our approach touches and integrates two usually separated
topics: obtaining a software execution trace from a SoC, and
processing the obtained information in order to generate useful
information. In this section we present background and related
work on both topics.

2.1. Gaining Insight into SoCs

Today’s tracing solutions for SoCs are designed to capture
and transfer as much as possible of the SoC’s internal state to
an external observer. They are generally structured as shown in
Figure[T]

First, trace data streams are obtained from the observation
of various functional units in the system, like CPUs, buses and
memories. Then, this data is spatially and temporally reduced
through the use of filters and triggers. Finally, the redundancy
in the data is removed by the use of compression algorithms.
The resulting trace data stream is then transferred off-chip (live
or delayed through an on-chip memory buffer). On a host PC,
the original trace streams are reconstructed using information
from the program binary and other static information, which was
discarded as part of the compression process.

All major commercial SoC vendors offer tracing solutions
based on this template. ARM provides its licensees the Core-
Sight intellectual property (IP) blocks [2]. They are used in
SoCs from Texas Instruments, Samsung and STMicroelectronics,
among others. Vendors such as Qualcomm (formerly Freescale)
include tracing solutions based on the IEEE-ISTO 5001 (Nexus)
standard [3]], while Infineon integrates the Multi-Core Debug
Solution (MCDS) into its automotive microcontrollers [4]. Since
2015 Intel also includes a tracing solution in their desktop, server
and embedded processors called Intel Processor Trace (PT) [3].
The main differentiator between the solutions is the configura-
bility of the filter and trigger blocks.

Driven by the off-chip bottleneck, a major research focus are
lossless trace compression schemes. Program trace compression
available in commercial solutions typically requires 1 to 4 bit per
executed instruction [6} 7], while solutions proposed in academia
claim compression ratios down to 0.036 bit per instruction [8].
Even though data traces contain in general no redundancy, in
practice compression rates of about 4:1 have been achieved [6].



2.2. Analyzing System Behavior

A human is easily overwhelmed when asked to analyze
multiple gigabits of trace data each second. Instead, automated
analysis tools are used to extract useful information out of the
vast amount of trace data. Such tools have one common goal:
to help a developer better understand the software execution on
the target system. The means to achieve this goal, however, vary
widely.

Diagnosis applications which analyze non-functional issues
such as performance bugs often generate results in the form of
ordered lists. They list for example applications which consume
most processing or memory resources, or which generate most
I/O traffic. This report can then be a starting point for a more
fine-grained analysis of the problem. Diagnosis applications
which target functional bugs are usually more specialized; in
many cases, a diagnosis application is created just to confirm or
negate one single hypothesis about the software execution on
the chip. For example, a developer might want to confirm that a
certain variable stays within defined bounds, e.g. to check if an
array overflow occurred.

Most analysis tools for SoCs are not stand-alone applica-
tions, but part of debugging and tracing software packages from
vendors like Lauterbach, Green Hills or ARM. They are usually
controlled through a graphical user interface.

Of course, analysis applications used to understand software
execution are not only developed for SoCs and other embedded
systems. Most tools in this domains are intrusive: they run
as part of the analyzed system and obtain the required system
state through instrumentation. However, the general concepts
are also relevant for the diagnosis of SoCs. This is especially
true for scriptable or programmable debugging, which applies
the concept of event-driven programming to debugging. When-
ever a defined probe point is hit, an event is triggered and an
event handler executes. Common probe points are the execu-
tion of a specific part of the program (like entering a certain
program function), or the access to a given memory location.
The best-known current implementations of this concept are
DTrace and SystemTap, which run on, or are part of, BSDs,
Linux, and macOS (where DTrace is integrated into the “Apple
Instruments” product) [9,[10]. The concept, however, is much
older. Dalek [[11] is built on top of the GNU Debugger (GDB)
and uses a dataflow approach to combine events and generate
higher-level events out of primitive events. Marceau et al. ex-
tend the dataflow approach and apply it to the debugging of
Java applications [12]. Coca [13], on the other hand, uses a
language based on Prolog to define conditional breakpoints as a
sequence of events described through predicates for debugging
C programs. In a work targeting early multi-processor systems,
but otherwise closely related to our approach, Lumpp et. al.
present a debugging system which is based on an event/action
model [14]]. A specification language is used to describe events
in the system trigger which an action, and hardware units can be
used to identify these events.

None of the presented works directly tackle the observability
problem in SoCs by moving the data analysis partially on-chip.
However, they form a strong foundation of ideas, which inspired

us in the design of the diagnosis system. It is presented in the
following sections.

3. DiaSys, Our Diagnosis System

We have designed our diagnosis system to address the short-
comings of today’s tracing systems. Based on a set of require-
ments, we discuss the design of the diagnosis system in depth,
followed by a hardware/software architecture implementing the
diagnosis system. First, however, we define some terms used in
the following discussion.

3.1. Definitions

Observed system. The part of the SoC which is observed or
monitored by the diagnosis system. In other works, the term
“target system” is used.

Functional unit. A subset of the observed system which forms
a logical unit to provide a certain functionality. Examples for
functional units are CPUs, memories, or interconnect resources
such as a bus or NoC routers.

State. The state of a system is the unity of all stored information
in that system at a given point in time which is necessary to
explain its future behavior. [15| p. 103] In a sequential circuit,
the state is equal to the memory contents of the system.

3.2. Design Requirements for the Diagnosis System

A set of requirements guides the design of the diagnosis
system.

Distributed. The diagnosis system must be able to reduce the
amount of observation data as close to the source, i.e. the func-
tional units, as possible. Since the data sources are distributed
across the chip, the diagnosis system must also be distributed
appropriately.

Non-Intrusive. The diagnosis system must be non-intrusive (pas-
sive). Non-intrusive observation preserves the event ordering
and temporal relationships in concurrent executions, a require-
ment for debugging multi-core, real-time, or cyber-physical
systems [16]. Non-intrusiveness also gives a developer the confi-
dence that he or she is observing a bug in the program code, not
chasing a problem caused by the observation (a phenomenon
often called “Heisenbug” [[17]).

Flexible On-Chip/Off-Chip Cost Split. The diagnosis system
must be flexible to implement. The implementation of the di-
agnosis system involves a trade-off between the provided level
of observability and the system cost. The two main cost con-
tributions are the off-chip interface and the chip area spent on
diagnosis extensions. The diagnosis system concept must be
flexible enough to give the chip designer the freedom to config-
ure the amount of chip resources, the oft-chip bandwidth and
the pin count in a way that fits the chip’s target market. At the
same time, to provide flexibility on the observation, the system
must be able to adapt to a wide range of bugs.
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Figure 2: A schematic view of the diagnosis system.

Relaxed Timing Constraints. The diagnosis system must not
assume a defined timing relationship between the individual
distributed components. Today’s larger SoCs are designed as
globally asynchronous, locally synchronous (GALS) systems
with different power and clock domains, where no fixed time
relationship between components can be given.

3.3. The Concept of the Diagnosis System

Based on the discussed requirements this section gives an
overview on the diagnosis system as shown in Figure 2]

The input to the diagnosis system is the state of the observed
system over time, the output are the diagnosis results, which can
be represented in various forms. With respect to the input and
output interfaces, the diagnosis system is identical to a traditional
tracing system. The difference lies in the components which
generate the output from the input. Three main components
are responsible for this processing: the event generators, the
diagnosis application together with its execution platform, and
the event sinks. Between these components, data is exchanged
as diagnosis events.

Diagnosis events are the container for data exchanged in
the diagnosis system. In the general case, an event consists of a
type identifier and a payload. Events are self-contained, i.e. they
can be decoded without the help from previous or subsequent
events.

Event generators produce primary events based on state
changes in the observed system. They continuously compare
the state of the observed system with a trigger condition. If this
condition holds, they trigger the generation of a primary event.

A primary event is a specialized diagnosis event in which
the type identifier is equal to a unique identifier describing the
event generator. The payload contains a partial snapshot of the
state of the observed system at the same instant in time as the
event was triggered. Which parts of the state are attached to the
event is specified by the event generator. For example, a CPU
event generator might produce primary events when it observes
a function call and attach the current value of a CPU register as
payload. A primary event answers two questions: why was the
event generated, and in which state was the observed system at
this moment in time.

The diagnosis application analyzes the software execution
on the observed system. It is modeled as transformational

dataflow application, which transforms primary events into out-
put events. The goal of this transformation is to interpret the
state changes represented in primary events in a way that yields
useful information for a developer or an automated tool. We
describe diagnosis applications in more detail in Section [3.4]

The diagnosis application execution platform executes diag-
nosis applications. The execution platform can span (transparent
to the diagnosis application developer) across the chip boundary.
On the chip, it consists of specialized hardware blocks which
are able to execute (parts of) the diagnosis application. On the
host PC, a software runtime environment enables execution of
the remaining parts of the diagnosis application. The on- and
off-chip part of the execution platform are connected through
the off-chip interface. This split design of the execution plat-
form allows hardware designers to trade off chip area with the
bandwidth provided for the off-chip interface, while retaining
the same level of processing power, and in consequence, system
observability.

Event sinks consume output events produced by the diagnosis
application. Their purpose is to present the data either to a
human user in a suitable form (e.g. as a simple log of events,
or as visualization), or to format the events in a way that makes
them suitable for consumption by an automated tool, or possibly
even for usage by an on-chip component. An example usage
scenario for an automated off-chip user is runtime validation, in
which data collected during the runtime of the program is used
to verify properties of the software.

Together, event generators, the diagnosis application and the
event sink build a processing chain which provides a powerful
way to distill information out of observations in the SoC.

3.4. Diagnosis Applications

Diagnosis applications are the heart of the diagnosis system,
as they perform the “actual work™ of interpreting what happens
on the observed system during the software execution. Diagno-
sis applications are transformational dataflow applications. We
chose this model to enable the transparent mapping of the diag-
nosis application to an execution platform spanning across the
chip boundary. Our goal is that the developer of the diagnosis
application does not need to explicitly partition the diagnosis
application into an on-chip and an off-chip part; instead, this
mapping could be performed in an automated way. (Currently,
however, we do not perform an automated mapping.) No matter
how the diagnosis application is mapped onto the execution plat-
form, the behavior of the application follows identical rules, i.e.
the semantics of the application stay the same.

The diagnosis application is a transformational application,
in contrast to reactive or interactive applications [18]]. This
means, starting from a given set of inputs, the application even-
tually produces an output. The application code only describes
the functional relationship between the input and the output, not
the timing when the output is generated. The application also
does not influence or interact in another way with the observed
system from which its inputs are derived.

The diagnosis application is structured as dataflow appli-
cation. Its computation is represented by a directed graph, in
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Figure 3: A transformation actor with n = 3 input channels and m = 2 output
channels.

which the nodes model the computation, and the edges model
communication links. In diagnosis applications we call the graph
nodes transformation actors, and the graph edges channels.

Each transformation actor reads events from n € Ny input
channels, and writes events to m € Ny output channels, as shown
in Figure[3]

A transformation actor starts its processing, it “fires,” if a
sufficient number of events are available at its inputs. The defi-
nition of “sufficient” depends on the individual transformation
actor. For example, one transformation actor might always read
one event from each input before starting the processing, while
another one might always read two events from input 1 and one
event from input 2.

When firing, the transformation actor applies an arbitrary
transformation function f to the input events. The generated
output depends on

o the read input events,
o the ordering of the input events, and
o the internal state of the transformation actor.

Transformation actors may communicate only through the input
and output channels, but not through additional side channels
(e.g. shared variables).

Diagnosis applications built out of such transformation ac-
tors are nondeterministic, as defined by Kahn [19, 20]. This
means, the output not only depends on the history of inputs
(i.e. the current input and the state of the actor), but also on the
relative timing (the ordering) of events.

Nondeterministic behavior of diagnosis applications is, in
most cases, the expected and wanted behavior; it gives its au-
thors much needed flexibility. An example of nondeterministic
diagnosis applications are applications which aggregate data
over time, like the lock contention profiling presented in Sec-
tion[5.2] These applications consume an unspecified amount
of input events and store an aggregate of these inputs. After a
certain amount of time, they send a summary of the observations
to an output channel.

But at the same time, nondeterministic diagnosis applica-
tions prevent the static analysis of event rates, bandwidth and
processing requirements. If wanted, application authors can
therefore create deterministic diagnosis applications, if they re-
strict themselves to

e always reading the input channels in the same order with-
out testing for data availability first (instead, block and
wait until the data arrives),

e connecting one channel to exactly one input and one out-
put of an actor, and
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Figure 4: The architecture of our diagnosis system implementation. Event gener-
ators (EG) observe the functional units (FU). They connect via an interconnect
to different processing nodes (PN) and an off-chip interface. On a host PC pro-
cessing nodes implemented in software further process the events. Finally, event
sinks prepare the data for developers or automation. A diagnosis application can
be mapped flexibly on the execution platform; a sample mapping is shown.

e using only transformation functions which are determinis-
tic themselves.

Note that we only describe the diagnosis application itself
as nondeterministic. Its execution, after being mapped to an
execution platform, can be deterministic, i.e. multiple identical
runs produce the same diagnosis result.

3.5. Diagnosis System Architecture

In the previous sections we presented the diagnosis system
from a functional perspective. We continue now by presenting an
implementation architecture of the diagnosis system. It consists
of extensions to the SoC, as well as software on a host PC; an
exemplary architecture is shown in Figure ]

In the SoC, different functional units (FU) can be observed,
like a CPU, a memory, or a bus. Each functional unit can be
attached to one or multiple event generators (EG). The resulting
events are transmitted over a diagnosis interconnect to on-chip
processing nodes. The processing nodes form the execution
platform for the diagnosis application; they will be discussed in
depth in Section[3.6] Invisible to the diagnosis application, the
execution platform spans across the chip boundary. Through an
I/O interface, a host PC is connected to the SoC. The PC contains
a software runtime environment to provide further processing
nodes as part of the diagnosis application execution platform. If
all processing has been accomplished, the output events are sent
to an event sink application on the host PC, which formats the
output events for developers or automation.

Depending on the features and computational power pro-
vided by the processing nodes, a diagnosis application can be
mapped to the execution platform in a flexible way.

3.6. Diagnosis Application Execution Platform

The heart of the diagnosis system are the diagnosis applica-
tions, which are executed on the diagnosis application execution
platform. As discussed before, this platform spans across the
SoC and the host PC.



On the SoC, it consists of processing nodes of different
types which are connected by a shared interconnect (such as a
NoC or a bus). Each processing node has an input and output
interface to receive and send out events on the interconnect.
Different types of processing nodes can offer different degrees of
flexibility regarding their computation. Some might be able to
perform only a single functionality specified at hardware design
time, like a counter or a statistical aggregator, while others
might be freely programmable. As an example, we present in
Section the Diagnosis Processor, a programmable general-
purpose processing node.

As the chip area (economically) available for on-chip diag-
nosis processing is limited, the diagnosis application execution
platform extends to the host PC. Connected through an arbitrary
off-chip interface, a runtime layer in software provides a virtu-
ally unlimited number of “soft” processing nodes. Such PNs
are implemented in software on the host PC and accept, like
their on-chip counterpart, events as input and produce events
as output. By being executed on a host PC, they provide more
compute and memory resources.

The transformation or computation in a diagnosis applica-
tion is represented by transformation actors. For execution, they
are mapped to the available processing nodes, as shown exem-
plary in Figure[d] An n:1 mapping of transformation actors to
processing nodes is possible, if the combined transformation
of all n transformation actors can be executed by the process-
ing node. To achieve the greatest possible reduction in off-chip
traffic, as much computation as possible should be mapped to
on-chip processing nodes. The remainder of processing is then
mapped to processing nodes on a host PC, where significantly
more processing power is available.

3.6.1. The Diagnosis Processor: A Multi-Purpose Processing
Node

The diagnosis processor is a freely programmable general-
purpose processing node. Like any processor design, it sacri-
fices computational density for flexibility. Its design is inspired
by existing scriptable debugging solutions, like SystemTap or
DTrace, which have shown to provide a very useful tool for
software developers in a growingly complex execution environ-
ment. The usage scenario for this processing node are custom or
one-off data analysis tasks. This scenario is very common when
searching for a bug in software. First, a hypothesis is formed
by the developer why a problem might have occurred. Then,
this hypothesis must be validated in the running system. For
this validation, a custom data analysis script must be written,
which is highly specific to the problem (or the system state is
manually inspected). This process is repeated multiple times,
until the root cause of the problem is found. As this process
is approached differently by every developer (and often also
influenced by experience and luck), a very flexible processing
node is required.

We present the hardware design of our diagnosis processor
implementation in Section4.2] We envision the programming of
the diagnosis processor being done through scripts similar to the
ones used by SystemTap or DTrace. They allow to write trace

analysis tasks on a similar level of abstraction as the analyzed
software itself, leading to good developer productivity.

3.7. Discussion

The presented diagnosis system is designed to fulfill the re-
quirements outlined in Section[3.2] In the following, we discuss
the consequences of the design decisions, which can limit the
applicability of the diagnosis system approach in some cases.

By transforming the observed system state close to the source
into denser information, the off-chip bottleneck can be circum-
vented. As a downside, this lossy transformation thwarts a usage
scenario of today’s tracing systems. In many of these systems,
it is possible to capture a trace once, store it, and run different
analysis tasks on it. If major parts of the captured data are dis-
missed early, this is not possible any more. Instead, the analysis
task must be defined (as diagnosis application) before the sys-
tem is run. If the problem hypothesis changes and a different
diagnosis application is required, the system must be run again.
The severity of this limitation strongly depends on how hard it
is to reproduce a bug or behavior across runs.

Another feature present in many of today’s tracing systems,
which is explicitly not supported by the diagnosis system, are
cross-triggers. Cross-triggers are a mechanism in the tracing
system to start or stop the observation, or to observe different
components, based on another observation in the system. For
example, memory accesses could be traced only after a CPU ex-
ecuted a certain program counter. Cross-triggers are most useful
if their timing behavior is predictable. For example, memory ac-
cesses are traced “in the next cycle” after the specified program
counter was executed. In GALS SoCs, such timing guarantees
cannot be given; for a diagnosis application spanning across a
SoC and a host PC, it is equally impossible to give (reasonably
low bounded) timing guarantees. We make this property explicit
by modeling the diagnosis system as a transformational sys-
tem, not a reactive system. The commercially available tracing
systems today are less specific about this. For example, ARM
CoreSight uses a handshaking protocol for cross-triggers deliv-
ered across clock boundaries, which guarantees save delivery of
the signal, but does not guarantee any latency.

Instead of relying on cross-triggers to collect data from dif-
ferent sources at the same instant in time, we capture this data
already when creating primary events through event generators.
The payload of primary events is the only way to pass multiple
state observations with a defined timing relation to the diagnosis
system. For example, an event generator attached to a CPU can
trigger an event based on a program counter value, and attach
current contents of certain CPU registers or stack contents to
it. Using this method, it is possible to generate for example an
event which informs about a function being called, and which
function arguments (stored in CPU registers or on the stack)
have been passed to it. We show an example of such an event
generator as part of our hardware implementation.

Finally, we discuss the system behavior in overload situ-
ations, i.e. if more input data is received than the diagnosis
system can process. Given the generally unknown input data,
and the generally nondeterministic behavior of the diagnosis
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Figure 5: Block diagram of the prototype implementation. The diagnosis
extensions added to the 2 X 2 multi-core system are drawn in blue.

application, it is not possible to statically dimension the diag-
nosis system to be able to handle all possible input sequences.
Therefore, overload situations are unavoidable in the general
(and most common) case. If an overload situation is detected,
the diagnosis system can react in multiple ways. First, it could
temporarily stall the observed system. This gives the diagnosis
system time to process outstanding events without new events
being produced. This approach is only feasible in a synchronous
non-realtime system. A more common approach is to discard
incoming data until further processing resources are available.
Depending on the diagnosis application, a recovery strategy
needs to be formulated. Some applications can deal easily with
incomplete input data, e.g. diagnosis applications creating statis-
tics. Others are not able to work with an incomplete input
sequence and in consequence fail to be executed properly.

This ends the discussion of DiaSys in general. In the follow-
ing, we present a hardware implementation of our approach, and
then continue then with two usage examples how DiaSys can be
put to work.

4. Implementing DiaSys in Hardware

DiaSys, as presented in the previous section, can be imple-
mented in various ways in hardware. Our implementation, which
we present in the following, is one such implementation. It was
created to answer two questions: first, to show that DiaSys can
be implemented in hardware, and second, to give resource usage
numbers for one specific implementation. As dimensioning and
optimization for speed or area usage strongly depends on how
DiaSys is used, a general answer to this question must remain
out of scope for this work.

The diagnosis system extends a 2 X 2 tiled multi-core system
as shown in Figure 5] Our implementation runs on an FPGA
and uses the OpTiMSoC framework [21]. The observed system
consists of four morlkx CPU cores (an implementation of the
ORIK or “OpenRISC” ISA), each connected to a distributed
memory and a mesh NoC interconnect (components with white
background). This system is representative of the multi- and
many-core architecture template currently in research and avail-
able early products, such as the Intel SCC or the Mellanox
(formerly Tilera and EZchip) Tile processors.
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Figure 6: Block diagram of the CPU event generator.

The diagnosis system, depicted in blue, consists of the fol-
lowing components.

o Four event generators attached to the CPUs (marked “EG”).
o A single diagnosis processor.

e A 16 bit wide, unidirectional ring NoC, the “diagnosis
NoC,” to connect the components of the diagnosis system.
It carries both the event packets as well as the configura-
tion and control information for the event generators and
processing nodes.

o A USB 2.0 off-chip interface.

e Software support on the host PC to control the diagnosis
system, and to display the results.

All components connected to the diagnosis NoC follow a
common template to increase reusability. Common parts are
the NoC interface and a configuration module, which exposes
readable and writable configuration registers over the NoC. In
the following, we explain the implementation of the main com-
ponents in detail.

4.1. CPU Event Generator

The CPU event generator is attached to a single CPU core.
Its main functionality is implemented in the trigger and the state
capture modules. The trigger unit of the CPU event generator
triggers on two types of conditions: either the value of the pro-
gram counter (PC), or the return from a function call (the jump
back to the caller). At each point in time, 12 independent trigger
conditions can be monitored. The number of monitored trigger
conditions is proportional to the used hardware resources. Our
dimensioning was determined by statistical analysis of large
collections of SystemTap and DTrace scripts: < 9 concurrent
probes are used in 95 % of SystemTap scripts, and < 12 concur-
rent probes cover 92 % of the DTrace scripts. The partial system
state snapshot can be configured to contain the CPU register
contents and the function arguments passed to the function. A
block diagram of the CPU event generator is shown in Figure|[6]

The PC trigger is implemented as simple comparator. The
“function return” trigger requires a special implementation, be-
cause no unique point in the program flow, i.e. no single PC



value, describes the return from a function (a function can have
multiple call sites and can return to the caller from different
points in the function body). Instead, we use the following
method:

1. A PC trigger is set to the first instruction of the called
function.

2. If the trigger fires, the link (a.k.a. return) address is pushed
to a memory structure inside the return monitor, the “re-
turn address stack.” The link address is the program
counter to jump to if the function has finished its exe-
cution and the execution returns to the caller. On OR1K
(as common on RISC architectures, including ARM and
MIPS) the link address is stored in a CPU register. On
other architectures and calling conventions (such as x86
and x86_64), the link address is pushed to the stack.

3. Now the system monitors the program flow for the top-
most PC value in the return address stack. If this PC is
executed, a function returned to its caller and the function
return monitor triggers the generation of a primary event.

To capture the values inside CPU registers, the register write-
back signal of the morlkx CPU is observed, and a copy of the
register file is created. This copy can then be included in the
event packet if a trigger fires.

The passing of function arguments to functions depends
on the calling convention. On ORI1K, the first six data words
passed to a function are available in CPU registers, all other
arguments are pushed to the stack before calling the function.
This is common for RISC architectures; other architectures and
calling conventions might pass almost all arguments on the stack
(such as x86). To record the function arguments as part of the
primary event we therefore need to create a copy of the stack
memory that can be accessed non-intrusively. We do this by
observing CPU writes to the stack memory location.

In our implementation for the morlkx CPU we create a copy
of the stack memory by monitoring the instruction stream for
a store word (1 .sw) instruction with a target address rA equal
to the stack pointer R1. The data in the source register (rB),
together with a write offset I (with I > 0, i.e. targeting the
previous stack frame) can be then used to recreate the stack
frame/[T]

4.2. Diagnosis Processor

The diagnosis processor design is extended from a standard
processor template like it is used in the observed system. The
main components, shown in Figure[/| are a single morlkx CPU
core and an SRAM block as program and data memory. This sys-
tem is extended with components to reduce the runtime overhead
of processing event packets.

First, the network adapter, which connects the CPU to the
diagnosis NoC, directly stores the incoming event packets in
the memory through a DMA engine. All event packets are

'In theory, data can be written to the stack in a different way. However,
the described way is common across compilers and used by the default GCC
compiler for OR1K.
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Figure 7: Block diagram of the diagnosis processor, a freely programmable
processing node.

Module LUTS REGS RAMS

observed system 40625 29638 80
1 compute tile (system contains 4) ~ 7232 ~4763 20
2 % 2 mesh NoC 10791 9964 0
support infrastructure (DRAM if, 904 623 0
clock/reset mgr)

diagnosis extensions 19556 19140 147
1 CPU Event Generator (fully 3603 6521 2
featured)
1 CPU Event Generator (reduced 1365 1594 0
CoreSight-like functionality)
1 Diagnosis Processor 8614 4549 145
diagnosis NoC 2520 2926 0

Table 1: The resource usage of a CPU diagnosis unit. Either the fully-featured
or the reduced-functionality CPU Event Generator can be used.

processed in a run-to-completion fashion. We can therefore
avoid interrupting the CPU and instead store the address of the
event to be processed next in a hardware “run queue.” A “discard
queue” signals the hardware scheduler which events have been
processed and can be purged from memory.

4.3. Resource Usage

The prototype of the tiled MPSoC with the diagnosis exten-
sions was synthesized for a ZTEX 1.15d board with a Xilinx
Spartan-6 XC6SLX150 FPGA. The relevant hardware utilization
numbers as obtained from a Synplify Premier FPGA synthesis
are given in Table[T]

The functional system, even though it consists of four CPU
cores, is relatively small, as the used morlkx CPU cores are
lightweight (comparable to small ARM Cortex M cores). The
functional system contains no memory, but uses an external
DDR memory.

In this scenario, the full diagnosis system is rather large. We
have implemented two types of CPU event generators. A “lite”
variant of the event generator can trigger only on a program
counter value, and not on the return from a function call. This
reduced functionality makes the event generator comparable to
the feature set of the ARM CoreSight ETM trace unit, which
is said to use ~ 7,000 NAND gate equivalents [7], making it
similarly sized as our event generator. The possibility to trigger
also on the return from a function call significantly increases the
size of the event generator, mostly due to additional memory.
The diagnosis processor is about 20 percent larger than a regular
compute tile, as it contains an additional DMA engine and the



packet queues. It also contains 30 kByte of SRAM as program
and data memory, which is not present in a regular compute tile.

In summary, the resource usage of the diagnosis system is
acceptable, especially if used in larger functional systems with
more powerful CPU cores. At the same time, the implementation
still contains many opportunities for optimization, which we
plan to explore in the future. Also, a full system optimization to
determine a suitable number of diagnosis processors and other
processing nodes for a given number of CPU cores is future
work.

5. Usage Examples

We designed DiaSys as general-purpose approach to gain
insight into SoCs, similar to today’s tracing systems. Unfor-
tunately, no benchmarks exist to evaluate such systems in a
standardized way. We therefore rely on two spotlight usage
examples to highlight important aspects of our approach.

The first example is a hypothesis testing or “debugging”
scenario which could also be performed using a trace-based
debugger. We included this example as a demonstration of the
flexibility of our approach: the process of debugging is usually
a one-time effort, and the debugger is used as a tool to observe
the program execution at various places in order to validate an
hypothesis in a developer’s head.

In the second example we show how to create a lock con-
tention profile with DiaSys. This example is taken from the area
of runtime analysis, the other major area in which tracing is
employed today. While the analysis tasks in this area are more
standardized (thus need a less flexible diagnosis system), they
usually require the long-time observation of the whole program
execution, therefore producing large data rates in todays imple-
mentations. The creation of a lock contention profile therefore
serves as a good example for the data reduction capabilities of
DiaSys.

5.1. Hypothesis Testing: Finding a Race Condition

Hypothesis testing, or simply “debugging,” is the most com-
mon scenario in which software developers need to get insight
into the software execution. While in many cases an intrusive
debugging tool is sufficient, the more tricky bugs are related
to timing, and thus require non-intrusive system insight. To-
day, developers use trace-based debugging for this task. In this
example we show that DiaSys is equally suitable for such a
scenario. In the following we discuss the debugging of a race
condition which occurs in an application distributed over three
compute tiles. We implement this example on our hardware
implementation of DiaSys, as discussed in Section 4]

5.1.1. Problem Description

The application in this usage example consists of three tasks,
running on three different processors concurrently. Core O runs
the task bank, which is holds a variable balance. The other
two cores 1 and 2 run the tasks atmO and atmi, respectively.
All communication is handled through message passing. A mes-
sage get_balance reads the value of balance from core 0,

:atm0 (core 1) :bank (core 0) :atml (core 2)

get_balance_req

get_balance_resp

get_balance _req

get_balance_resp

set_balance

i

set_balance

[T

Figure 8: Sequence diagram showing the race condition in the first case study.

and set_balance writes it back. The tasks atmO and atm1 pe-
riodically wait for a random amount of time, then get balance,
decrement it by 1, and write it back.

When running the application, we notice that sometimes n
calls to set_balance do not, as expected, decrement balance
by n, but by m < n.

5.1.2. Debugging Approach I: Observe exchanged messages
Initially, we don’t know where the problem is located. How-
ever, we assume that something in the exchange of messages
goes wrong. We therefore use DiaSys to print out all incoming
and outgoing messages at task bank for manual analysis.
We start by configuring the CPU event generator at core 0
(running the task bank) to generate types of primary events:

1. One event if the message passing send function is called.
As payload we capture the identifier of the destination core
and the type of the message (e.g. get_balance_resp)

2. Another event if the message passing receive function is
called. As payload we capture the identifier of the source
core and the type of the message.

To create an event log, all events are sent directly to the
host PC, where they are displayed to the developer in the form
of a text log. For the purpose of easier understanding in this
paper, Figure [§|presents the interesting section of this text log
in the form of a sequence diagram. Looking at this diagram,
experienced developers will notice the bug: two read-modify-
write sequences are interleaved, causing the value written by
atmO to be overwritten by atm1. Such behavior is a textbook
example of a race condition.

5.1.3. Debugging Approach II: Transaction checking

The first debugging approach used DiaSys only to gather
data, not to analyze it. The less often the race condition occurs,
the more trace data is generated in the first approach, which must
be transferred and manually checked. In our second approach,
we also automate this checking. As result, the developer is only
informed if an actual race condition occurred.



TA_CHECK_BALANCE_TRANS {
bool in_transaction
bool transaction_owner

false;
NULL;

wait (EV_GET_BALANCE_CALL
or EV_SET_BALANCE_RETURN);

event

// get_balance(src) and set_balance(src)

// are both passed the source of the request
// message as first function argument
msg_src event.data.args[’src’];

if (in_transacation
&&% transaction_owner
// race condition found
event_type EV_RACE_DETECTED;

'= msg_src) {

event_data = {};
return new Event(event_type, event_data);
}
if (event.type == EV_GET_BALANCE_CALL) {
// start of mew transaction
in_transacation = true;
transaction_owner = msg_src;
return;
}
if (event.type == EV_SET_BALANCE_RETURN
&% in_transacation
&% transaction_owner != msg_src) {
// race condition found
event_type = EV_RACE_DETECTED;
event_data = {};
return new Event(event_type, event_data);
}

5}

Listing 1: Pseudo code of the transformation actor checking the balance updating
transaction.

In the correct scenario, the sequence of getting the balance,
modifying it, and writing it back is an atomic transaction. We
therefore form the hypothesis “the read-modify-write sequence
is atomic,” and use DiaSys to check it. If the hypothesis does
not hold, we have found a race condition.

We first configure the event generator at core O (running the
task bank) to create two primary events:

e An event EV_GET _BALANCE_CALL when entering the func-
tion get_balance () on core 0. This function is called if
a get_balance_req message is received.

e Another event EV_SET_BALANCE_RETURN when returning
from the function set_balance (). This function returns
when the set_balance message has been fully processed.

For both events, the source of the message (i.e. atmO or atml)
is included as payload.

Furthermore, we program the diagnosis processor to execute
a transformation actor shown in pseudo code in Listing[I] (In
our hardware implementation, we programmed the diagnosis
processor in C with an equivalent program.)

The two primary events are now routed from core O to the
diagnosis processor, which checks the hypothesis that all trans-
actions are atomic. If a violation, i.e. a race condition, is found,

10

anew event EV_RACE _DETECTED is generated. This event is sent
to the host PC and displayed as an event log to the developer.

5.1.4. Event and Data Rates

The most significant benefit from automating the hypothesis
checking, as shown in the previous section, is the increase in
productivity for the developer: even in long-running programs,
testing the hypothesis becomes straightforward. At the same
time, the automation also reduces the required trace bandwidth.

The first approach of creating events for all received and
transmitted messages for manual inspection required a trace
bandwidth of 57.09 KBit/s. When automating the checking in
the second approach, the bandwidth was reduced to 5.66 KBit/s,
a reduction by 10.1x.

The bandwidth requirements are heavily dependent on the
program characteristics. In the program executions on our hard-
ware platform running at 50 MHz, we observed 44 % of transac-
tions were interleaved, i.e. a race condition.

Doing the same analysis in a tracing system would require
an instruction and a data trace to be captured. Even though our
evaluation platform is not able to produce such traces, we can es-
timate the required trace bandwidth by measuring the number of
executed instructions and data memory accesses. Assuming an
instruction trace compressed to 2 bit/instruction and a data trace
compressed to 16 bit/access (for data and address, following
[6]), we get a total trace stream of 246.31 MBit/s.

It must be noted, however, that this number is an upper bound
on the required bandwidth for a tracing system. Depending on
the used tracing system implementation (such as CoreSight), not
a full instruction or data trace is captured, but filters and triggers
can be used to reduce this stream to just relevant parts, similar
to what our event generators do.

5.1.5. Outlook: Programming DiaSys

In our first case study, we have shown how to use DiaSys
to obtain data for manual analysis from the SoC, and how to
automate the manual checking as hypothesis test running on-chip
on the diagnosis processor.

In this example, we wrote the transformation actor manually
as C program, which is called upon receiving events. In the
future, we envision also other means to describe the diagnosis
application executed by DiaSys. In this example, a description
of the desired system behavior as linear temporal logic (LTL)
expression could be applied, as it commonly done in runtime
validation systems. Using such LTL expressions for the valida-
tion of the correct hardware configuration by the software has
been presented in [22].

5.2. Runtime Analysis: Creating a Lock Contention Profile

In our second usage example, we present a diagnosis applica-
tion which generates a “profile,” a statistic about some software
behavior. Examples for such commonly used profiles are the
various *top Linux commands which present an ordered list of
processes or threads with the highest usage of CPU, I/O, mem-
ory, or other resources. We include this usage example as it
represents, next to debugging, the second large motivation to use
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Figure 9: The software prototype of the diagnosis system. All calls in the
observed application are recorded in an event log file by an preloaded library.
The event log file is read by the diagnosis system implemented as Python
application. The figure shows the monitoring of all pthread mutex_lock()
calls and returns as used by the usage example in Section[5.2]

a tracing tool today: runtime analysis. Other examples from this
category of applications are code coverage and runtime profiling.
Most runtime analysis tasks today require a full (instruction)
trace to be recorded, which requires a high off-chip bandwidth.
Using DiaSys, we can show how this trace bandwidth can be
reduced by on-chip processing.

To give meaningful insight into data rates generated when
analyzing large real-life applications, we use in this example not
a self-created example application, but an application from the
PARSEC benchmark suite.

5.2.1. Evaluation Prototype

The hardware implementation prototype of DiaSys presented
in Section[]is only able to run a very limited set of applications,
as it only provides bare-metal programming support (compara-
ble to a microcontroller without operating system), and no full
POSIX environment as it can be found on Linux for example.
To run larger applications, such as standard benchmarks, we
therefore created a software prototype of the diagnosis system.
It runs purely in software on a Linux PC and is best suited for
an evaluation of event rates inside the diagnosis system, as well
as the design of new diagnosis applications. Since no hardware
extensions are used, its operation is intrusive, i.e. the timing of
the observed application is slightly changed. The prototypical
event generators can only trigger on the call of and return from
a C library function, and the function arguments can be included
in the event as data items.

The software prototype consists of two parts, which are
shown in Figure[9] The first part is a “preload library.” It is a
small software library written in C which is able to monitor all
calls to C library functions and write them into an event log file.
This event log file is then used by a prototype of the diagnosis
system implemented in Python. It consists of event generators,
which read the event log file. A set of Python functions con-
nected by channel objects represent the transformation actors.
(We assume a one-to-one mapping of transformation actors to
processing nodes in this prototype.) The output of the diagnosis
application is directly printed to a console, as specialized event
sinks are not necessary for our evaluations.

We now use this software prototype to create the lock con-
tention profile.

5.2.2. Problem Description

A lock contention occurs in concurrent programs if multiple
threads try to acquire a mutex lock at the same time [23| p. 147].
In this case, all but one threads have to wait for the lock to be
released before they can continue processing. Therefore, the
lock acquisition time is a good metric for program efficiency:
the less time it takes, the earlier the thread is done with its work.

In order for a developer to get insight into the lock contention
behavior of the program, a contention profile can be created. It
lists all acquired locks, together with the summarized and aver-
aged times the acquisition took. Such a profile can be generated
in an intrusive way with tools like Intel VTune Amplifier or
mutraceﬂ and is traditionally formatted as shown in Listing

5.2.3. Measurement Approach

The lock acquisition time can be measured by obtaining the
time the mutex lock function took to execute. In applications us-
ing pthreads, as it is the case for almost all applications running
on Linux, macOS or BSD, the mutex lock function is named
pthread_mutex_lock().

int pthread_mutex_lock(pthread_mutex_t *mutex) {
blocking_wait_until_mutex_is_free (mutex);
lock_mutex (mutex);
return 0 /* success */;

5}

Listing 2: A sketch of the pthread mutex_lock() function. This function
must be executed atomically, i.e. without interruption.

As shown in the simplified code sketch in Listing [2] the
function blocks for an indefinite amount of time until a lock is
available. If it is available, it acquires the lock and returns.

To create a lock contention profile, we need to measure the
execution times of all pthread_mutex_lock() function calls
in all threads. We then group this measurement by lock, given by
the argument mutex of the lock function, to obtain the number
of times a lock was acquired, how long all lock acquisitions took
in summary, and on average.

5.2.4. Diagnosis Application

To perform the analysis outlined in the previous section, we
configure the diagnosis system as shown in Figure[T0] First, we
attach two event generators to each CPU in the observed sys-
tem. We configure them to generate two primary events which
together measure the execution time of the lock acquisition func-
tion pthread mutex_lock().

e One primary event EV_LOCK_CALL is triggered if the CPU
enters (calls) the pthread mutex_lock() function. The

first function argument to pthread mutex_lock, the mutex,

is attached to the event as data item, together with a times-
tamp containing the current time.

e Another primary event EV_.LOCK_RETURN is triggered if
the CPU returns from the pthread mutex_lock() func-
tion. For this event, only a timestamp is attached as event
data.

Znttp://Opointer.de/blog/projects/mutrace.html
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Figure 10: A diagnosis application to create a lock contention profile.

| TA_DIFF {
2 lock_call =
lock_return =

wait (EV_LOCK_CALL);
wait (EV_LOCK_RETURN);

uint16_t time = lock_return.data.timestamp
6 - lock_call.data.timestamp;
7 uint16_t mutex_hash
8 = hash(lock_call.data.args[’mutex’]);
9 event_type = lock_acq_time;
10 event_data = {
1 time: time,
12 lock: mutex_hash
ER.
14 return new Event (event_type,

15}

event_data);

Listing 3: Pseudo code of the transformation actor calculating the lock acquisi-
tion time.

To calculate the execution time of the function pthread mutex_-

lock(), we create a transformation actor TA_DIFF, the pseudo
code of which is shown in Listing 3]

It waits for both primary events EV_LOCK_CALL and EV_-
LOCK_RETURN, calculates the difference between the timestamps,
and creates a new event EV_LOCK_ACQ_TIME with two data items,
the lock acquisition time and a hash of the mutex argument to
reduce the data size.

As last step in the processing, all EV_LOCK_ACQ_TIME events
are aggregated by another transformation actor called TA_STAT.
Again, a pseudo code implementation is given in Listing 4]

If an event of type EV_LOCK_ACQ_TIME is received, the times-
tamp is added to a hash data structure which records, grouped by
the mutex, the number of calls to the lock function and the total
time these calls took. After the program run, on request of the
developer running the diagnosis, or in regular time intervals, a
EV_SEND_LOCK_PROFILE is generated. If this event is received,
the aggregated statistics are sent to the event sink, which then
presents the aggregated results to the developer.

5.2.5. Evaluation of the Diagnosis Application

In the evaluation of this usage example we focus on the event
and data rates between the event generators and transformation
nodes. In order to provide realistic inputs, we profiled the dedup
application from the PARSEC 3.0 Benchmark Suite with the

I TA_STAT {
>  event = wait(EV_LOCK_ACQ_TIME

or EV_SEND_LOCK_PROFILE);

s // aggregate

¢ if (event.type == EV_LOCK_ACQ_TIME) {
7 m = event.data.mutex;

8 stat [m][’cnt’]++;
9 stat [m][’t_sum’]
10 return;

1 }

+= event.data.time;

3 // send statistics output to host PC

4 if (event.type == EV_SEND_LOCK_PROFILE) {
15 event_type = EV_LOCK_PROFILE;
16 event_data = {stat: stat};

1 return new Event (event_type,
18 }

9}

event_data);

Listing 4: Pseudo code showing the functionality of the transformation actor
creating a lock profile.

large input data sets [24]]. As PARSEC does not run on our
custom-built prototype MPSoC platform, we used the software
prototype described in Section[5.2.1] All transformation actors
were implemented in Python code equivalent to the pseudo code
listings presented in Listings [3|and

Output of the Diagnosis Application. Before we analyze the
diagnosis application itself, we discuss the output it generates,
i.e. the lock contention profile shown in Listing [5] PARSEC
was instructed to use at least 4 threads; ultimately 16 threads
were spawned by the dedup application. (There is no option
in PARSEC to specify the exact number of threads used.) The
execution of the observed application took 2.68 s.

1 mutex # acq. sum [ns] avg [ns]
> (01) 0x7£d9ac018988 47785 8835387 184.90
: (02) 0x7£d9d1ed2978 47784 226012031 4729.87
4 (03) 0x1c36500 9426 53724035 5699.56
5 (04) 0x1c36660 9423 21904608 2324.59
6 (05) 0x1c36710 4638 12528702 2701.32

(06) 0x1c365b0 105 46999 447.61
s (07) 0x7£d9d2091430 8 1974 246.75
9 (08) 0x7fd9b41948f8 8 2277 284.62
10 (09) 0x7fd9b42b9ad8 8 2560 320.00
11 (10) 0x7£fd9d20£8928 8 2215 276.88

Listing 5: Output of the lock contention profile diagnosis application observing
the PARSEC dedup application.

The output shows the top ten most acquired mutexes, to-
gether with the total and averaged lock acquisition time. Notable
in this profile are mutexes 2 to 5, which take on average signifi-
cantly longer to acquire: these locks are called to be “contended.”

A profile helps to understand the program behavior and
serves as a starting point to fix possible bugs or inefficiencies.
If lock contention is observed (and performance goals of the
application are not met), it is common to replace coarse-grained
locks with more fine-grained locks, i.e. locks which protect
a shorter critical section. However, fixing a bug is not in the
scope of this work. Instead, we now turn our discussion to the
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event and data rates generated when executing the diagnosis
application that generated the profile as shown.

Event and Data Rates. We designed the diagnosis system to
reduce the off-chip traffic by moving the data analysis partially
into the SoC. To evaluate if the data rates are in fact reduced, we
analyze event rates within the diagnosis application.

We use the following event sizes:

e An EV_LOCK_CALL event requires 14 bytes: two bytes for
the event type identifier, four bytes for the timestamp, and
eight bytes for the mutex argument.

e An EV_LOCK_RETURN event requires six bytes: two bytes
for the event type identifier and four bytes for the times-
tamp.

e AnEV_LOCK_ACQ_TIME event requires six bytes: two bytes
for the event type identifier, two bytes for the lock acquisi-
tion time, and two bytes for the hashed mutex argument.

Over the whole program run, the event generators attached
to the 16 CPUs generate a total of 516,254 events, which equals
4.9 MByte of transmitted data or, over the program runtime,
an average data rate of 14.7 MBit/s. The TA_DIFF transforma-
tion actors half the number of events, resulting in a data rate of
4.4 MBit/s, or a reduction to 30 %. Finally, after being aggre-
gated by TA_STAT, the full result can be transferred off-chip with
roughly 204 bytes.

A direct comparison of our results to existing tracing sys-
tems is challenging. For our analysis we need access to the
mutex function argument through a data trace, which is not sup-
ported by higher-speed tracing implementations such as Core-
Sight PTM and Intel PT. However, as a first lower-bound esti-
mation of the data rate generated by a state-of-the-art tracing
system, we created a full instruction trace using Intel PT. The
same PARSEC dedup application created a trace file of 1.82 GB,
which corresponds to 5.4 GBit/s over the program runtime.

In summary, DiaSys was able to reduce the required trace
bandwidth compared to an Intel PT instruction trace significantly
due to on-chip analysis. When transferring data off-chip after
processing in the TA_DIFF processing nodes, the bandwidth is
reduced from more than 5.4 GBit/s to 4.4 MBit/s, a reduction by
1233x.

Discussion. Depending on the feature set and timestamp gran-
ularity of the various tracing implementations, the bandwidth
reduction that DiaSys is able to achieve can vary. However, a
general observation holds: the most significant bandwidth sav-
ings result from the fact that we very precisely capture only
data in the event generators which is relevant to our problem.
The subsequent processing step TA_DIFF of calculating the time
difference between two events is further able to discard roughly
2/3 of the data. Both operations are simple enough to be imple-
mented even in resource-constraint on-chip environments. The
final step TA_STAT is again able to give large percentage-wise
reductions in data rate, however the absolute savings might not
justify an on-chip processing any more. This last step could
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therefore be executed on the host PC — without changing the
diagnosis application.

6. Conclusions

In this paper we introduced DiaSys, a diagnosis system
which aims to replace tracing systems in MPSoCs, where soft-
ware observability is limited by the off-chip bottleneck. To avoid
this bottleneck, we move parts of the data analysis into the chip
and closer to the data source. The diagnosis system consists
of event generators, which observe the functional units execut-
ing software on the SoC, the diagnosis application and event
sinks. Diagnosis applications describe the data analysis task
in a way that is understandable for the developer and portable
across different SoCs. In detail we discussed their properties
and semantics. Diagnosis applications are portable by design,
because components of the application can be freely mapped
to distributed diagnosis extensions inside the SoC, or to a run-
time environment on the host PC. The implementation of such a
mapping tool is future work.

In our evaluation we showed on two prototypes that the
implementation of the required diagnosis extensions is feasi-
ble with reasonable hardware overhead. We also showed in
two usage examples from different domains that the envisioned
reduction in off-chip bandwidth requirements can be achieved.

In the future, we plan to extend this system with more spe-
cialized processing nodes, which are suited for common analysis
tasks. We also investigate how machine-learning approaches can
be used to dynamically adjust the analysis tasks during runtime.
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