
1

FLOPSYNC-QACS: Quantization-Aware Clock
Synchronization for Wireless Sensor Networks

Federico Terraneo, Alessandro Vittorio Papadopoulos, Alberto Leva, Maria Prandini

Abstract—Distributed real-time systems often relies on clock
synchronization. However, the achievement of precise synchro-
nization in Wireless Sensor Networks (WSNs) is hampered by
competing design challenges, which finally causes many WSN
hardware platforms to rely on low frequency clock crystal for
local timebase provision. Although this solution is inexpensive
and with a remarkably low energy consumption, it limits the
resolution at which time can be measured. The FLOPSYNC
synchronization scheme was then introduced to compensate
for possible quartz crystal imperfections. The main limitation
of FLOPSYNC is that it does not account for the effects of
quantization. In this paper we propose a switched control variant
of the base FLOPSYNC scheme to address quantization explicitly
in the compensator design, providing clock synchronization in
cost-sensitive WSN node platforms with a minimal additional
overhead. Experimental evidence is given that the approach
reaches a synchronization error of at most 1 clock tick in a
real WSN.

Keywords-Quantized control; Clock synchronization; Switched
control; Wireless Sensor Network.

I. I NTRODUCTION

The increasing pace of smart applications and devices to
handle complex issues is nowadays growing alongside with
the demand for connectivity. Recent studies estimate the
Internet of Things (IoT) to count 6.4 billion devices (excluding
smartphones, tablets and computers), with a forecast of up to
21 billion by 2020 [1]. Communications are crucial in this
arena, and in particular, Wireless Sensor Networks (WSNs)
proliferate. Tiny, inexpensive, low-power WSN nodes will thus
become ubiquitous, as an enabling technology for IoT [2], [3].

For the correct operation of WSNs, a major challenge is ac-
curate time synchronization [4], [5]. This is required to ensure
reliable communication links, but also for location/proximity
estimation [6], energy efficiency [7], [8], mobility [9], and
wherever WSN nodes coordination – possibly with real-
time tasks – is required. Moreover, since most WSN nodes
operate on battery and synchronization must be guaranteed
continuously, energy-efficient solutions are in order [10].

Requirements are not equally tight in any application,
however. To reduce costs, when high timing precision is not

F. Terraneo, A. Leva, and M. Prandini are with the Diparti-
mento di Elettronica, Informazione e Bioingegneria, Politecnico di Mi-
lano, Milano, Italy (e-mail:{federico.terraneo, alberto.leva,
maria.prandini}@polimi.it)

A.V. Papadopoulos is with School of Innovation, Design and
Engineering (IDT), Mälardalen University, Västerås, Sweden (e-mail:
alessandro.papadopoulos@mdh.se)

This work was partially supported by the European Commission under
the project UnCoVerCPS with grant number 643921, and by the Swedish
Foundation for Strategic Research under the project “Future factories in the
cloud (FiC)” with grant number GMT14-0032.

needed, low-resolution clocks can be a viable choice [11], [12].
In such cases, to reduce the synchronization quality detriment,
solutions able to push precision to the limits are needed.

We here present a synchronization mechanism that mini-
mizes the effect of quantization on the synchronization error,
with a minimal overhead. The work is cast in the framework
of multi-hop master-slave clock synchronization, i.e., when the
WSN is composed by a master that holds the reference clock,
and of a number of slaves that must synchronize their clocks
to the master.

A preliminary conference version of this paper has been
presented in [13]. The present manuscript extends [13] in
several directions. More precisely, a characterization ofthe
behavior of the proposed synchronization mechanism in terms
of invariant set is given together with an intuitive explanation
and some illustrative plots. Implementation of the scheme on
typical WSN hardware is detailed. Finally, a more extensive
simulation study is provided.

II. T HE SYNCHRONIZATION PROBLEM

In master-slave clock synchronization, timing information
is disseminated to the WSN by one master node. In a single-
hop WSN this happens by direct communication. In multi-
hop WSNs, flooding schemes [14], [15] allow for the said
dissemination irrespectively of the network topology, and
within a very small amount of time. The disseminated packets
may contain a timestamp of the master clock, or timing
information can be implicit if packets are flooded periodically
over a contention-delay-free MAC [16].

Upon receiving master time information, the slaves can
correct their local time, and in the WSN literature this action
is calledclock synchronization. However, the slaves also need
to maintain accordance with the master time in between two
subsequent arrivals of master information; this is calledskew
compensation [17]–[19], as NTP defines the skew as the
derivative of the synchronization error with time. The skew
can however vary with time as well, for example owing to
temperature variations, and its derivative with time is named
drift. It is possible to compensate for drift, see e.g. [16],[20],
and also for the packets’ radio propagation delay [21], [22]
if ultra-high precision synchronization is needed (the delay is
about 1µs each 300m traveled by the signal).

Master-slave schemes may have many different features,
but invariantly need to timestamp incoming packets with
the local clock. Timekeeping in WSN nodes is done by a
dedicated hardware timer/counter aboard the node processor,
that is read to know the time, and allows to set interrupts for

2

−400

−200

0

200

400
S

y
n
c.

er
ro

r
[n

s]

0 200 400 600 800 1000 1200 1400
−40

−20

0

20

40

Time [s]

S
y
n
c.

er
ro

r
[µ

s]

Figure 1: Experimental result showing the synchronization
error using the high frequency timer (top graph) and low
frequency timer (bottom graph) on the WandStem node. Note
the different time units on the vertical axis.

generating events. Incoming packet timestamping can thus be
done by reading the hardware counter in the packet reception
interrupt handler [14], or by using a hardware input capture
module [15], [16] that takes a counter snapshot upon reception.
In any cases, the finite frequency of the local hardware counter
inevitably introduces quantization in packet timestamping,
and the entity of this quantization increases as the counter
frequency is decreased.

To limit energy consumption by the counter, its frequency
has to be limited with respect to typical CPU clocks—consider
that the CPU can be set to “deep sleep” to save power, but the
timekeeping timer cannot be stopped to not lose the notion of
time. Briefly, in WSN nodes it is common to have the CPU
clocked at several megahertz, while the timekeeping timer runs
at just 32768Hz [11], a frequency for which inexpensive and
ultra low-power quartz crystals are available.

To tackle the tradeoff between timing resolution and con-
sumption, the Virtual High-resolution Time (VHT) algo-
rithm [7] was introduced. This synchronizes a high-frequency
timer, turned off in deep sleep, with a low frequency timer
always active. This solution has been used to achieve high
synchronization precision and ultra-low consumption [16], but
requires a hardware support that is not common in WSN
nodes.

The main requirements for VHT are a high-frequency
timer clocked with a stable oscillator, and hardware support
for timestamping an edge of the low-frequency clock with
that high-frequency timer. In [7] this problem is solved in
hardware, and a VHDL realization is also proposed. Recently,
nodes appeared with this support [23], but widely employed
nodes [24], such as the TelosB [11], are not VHT-capable.

This is far more than a legacy issue. Cost-sensitive IoT
applications may not justify the additional cost of VHT
support. Thus, obtaining accurate synchronization using low-
frequency clock timers is a relevant research topic, with the
potential to enable low-cost, real-time capable WSN platforms.

To evidence that synchronization with a high- and a low-
frequency clock are two differentscenarii, we present a test
in which two nodes are synchronized with the FLOPSYNC-

2 [16] scheme on the WandStem [23] WSN node platform.
This platform has VHT support, which made it possible to
compare the synchronization quality, in the two cases with and
without VHT, on the same hardware. The tests were done with
a 10s synchronization period, and the reported error samples
are taken at the end of each period.

The top plot in Figure 1 shows the results with a high-
frequency timer, while the bottom one shows the low-
frequency timer case. The high-frequency timer has a reso-
lution of 20.8ns (gray area), but the standard deviation of the
synchronization error is 164ns (dashed lines), a significantly
higher value. The reason is that at high frequencies, the oscil-
lator phase noise jitter and the packet transmission jitterfrom
the radio transceiver, are greater than the quantization-induced
error [16]. On the contrary, with the low-frequency timer, the
error standard deviation is 24.6µs (dashed lines), i.e., lower
than the 30.5µs timer resolution (gray area). Interestingly, the
error shows a regular pattern with only three values – 0 and
±1 timer tick – evidencing that the quantization-induced error
magnitude is greater than the noise sources.

The clock synchronization algorithm we propose herein,
includes a switching control scheme that minimizes the effect
of quantization on the synchronization error. The proposed
solution is therefore applicable and useful in all the cases
where quantization is the major source of error.

III. T HE FLOPSYNCSYNCHRONIZATION SCHEME

In this section we formalize the problem, point out the
sources of quantization, and review the original FLOPSYNC
synchronization scheme as proposed in [18].

A. Problem formalization

Time synchronization in a distributed system is a well
known and studied problem in computer science [25]–[28],
and has recently gained attention in the control community
as well [8], [29]. We here limit the scope to the master-slave
case in which the master floods the WSN with synchronization
packets at a fixed periodT , constant and known network-
wide. Furthermore, we assume the presence of a fast flooding
scheme like Glossy [15], so that medium access contention
introduces no uncertainty in the transmission time. Finally,
synchronization is achieved by individual controllers aboard
each slave node, that only receive packets from the master.

The synchronization error at thek-th synchronization time
kT , k ∈ N, is

e(k) := t(k)− t̂(k),

wheret(k) denotes the master clock at thek-th synchroniza-
tion, and t̂(k) the slave estimate of the master clock. As
the error accumulates over time, during each time interval
[kT,(k+1)T] the synchronization error dynamics is ruled by

e(k+1) = e(k)+ d(k), (1)

whered(k) is a disturbance that accounts for different phe-
nomena, briefly discussed later on, and characterized as

d(k) =−
∫ (k+1)T

kT

δ f (τ)
fo

dτ, (2)

3

where fo is the nominal frequency of the slave clock, and
δ f (t) the (continuous-time) variation of that frequency caused
by manufacturing tolerances, aging, thermal stress, and short-
term jitter. The minus sign in (2) is becauseδ f > 0 makes the
local clock advance, while (1) containsd(k) with the plus sign
for convenience.

Notice that all the uncertainty is confined in the way the
disturbanced(k) is generated. Based on (1), a controller can
be designed to rejectd(k) with a very little computational
overhead, see e.g., [18].

The phenomena ind are briefly listed below, and can be
counteracted by considering their different time scales.

• Tolerances due to imperfections in the quartz crystals
manufacturing result in aconstant frequency error δ f .

• Aging is a phenomenon that acts on a time scale of days,
while reasonable values for the synchronization periodT
are seconds or minutes, hence this can be safely thought
of as a constant disturbance contribution as well, and
eliminated at steady state – like the effect of imperfections
– by integral control.

• The temperature dependence of crystals is a major source
of variable disturbance [7]. However, in virtually any
operating condition, a WSN undergoes either abrupt but
sporadic thermal stress episodes like shade-sunlight tran-
sitions, or environmental variations that are slow when
compared to the thermal dynamics of typical nodes.
The controller of [18] can be extended to compensate
for abrupt thermal variations [16], but in between such
events, this disturbance contribution can be assumed
constant as well.

• Short-term jitter acts on the time scale of electronic noise,
hence it is too fast to compensate, and provides the
ultimate bound for the achievable synchronization quality.
However, as anticipated, in this work we are addressing
the case where quantization is a greater source of error
than jitter.

The above disturbance characterization allows to focus on
optimizing the controller for the constantd case, although the
proposed controller will obviously still be able to cope with
(reasonably) variable disturbances.

B. The FLOPSYNC synchronization scheme with quantizers

In [18], the FLOPSYNC scheme was proposed. FLOP-
SYNC introduces a corrective actionu to compensate for the
sources of the synchronization errore:

e(k+1) = e(k)+ u(k)+ d(k), (3)

with u is computed with a Proportional Integral (PI) controller.
The control scheme performance is limited by the presence

of a quantization on both the synchronization errore (con-
trolled variable that should be driven to zero) and the output of
the clock correction algorithmu (corrective action that should
drive the synchronization error to zero).
As for the former quantization, the hardware counter is incre-
mented on the active edge of its clock, while asynchronous
events – such as packet arrivals – can occur at any time
between two edges. The reported timestamp will thus be the

R ρ (·) P ⌊·⌋
u ρ (u)+ e

⌊e⌋

d

+

Figure 2: The FLOPSYNC synchronization scheme with quan-
tizers.

value of the counter as last incremented by the edge preceding
the event. Thus, hardware timestamping works like thef loor
operator on the synchronization errore.
As for the latter quantization, it occurs when the outputu of
the clock correction algorithm, computed using floating point
or fixed point numbers, is converted back to the tick resolution.
This is done in software, however, hence one can choose the
quantization function—for example, theround operator.

Summarizing, we have two sources of quantization. One
is physically constrained to act as thef loor operator, acts
on the synchronization errore, and depends on the clock
resolution. The other is software-configurable, acts on the
corrective actionu, and depends on the arithmetic precision
of the used architecture.

Without loss of generality, we conduct the following treatise
as if the resolution of the clock were the unity. Re-scaling for a
different quantum is just the same as changing the time unit.
As for the control resolution, it is configurable and here is
set equal to the clock resolution. This design choice will be
motivated in Section IV (see Remark 1).

At this point, we need to define the required operators.
Given a real numberz, we denote by sign(z) the sign function,
by ⌊z⌋ the f loor operator, and byρ (z) theround operator, with
ρ (0.5) = 1, andρ (−0.5) =−1. We also define therounding
error for the real numberz as∆z := z−ρ (z). Notice that the
rounding error is always bounded as|∆z| ≤ 1

2.
Coming back to FLOPSYNC, since the control action is

quantized, (3) becomes

e(k+1) = e(k)+ρ (u(k))+ d(k), (4)

whereu is determined from the quantized measurements of the
synchronization error⌊e⌋, by the discrete-time PI controller

u(k+1) = u(k)+ ⌊e(k)⌋−α ⌊e(k+1)⌋ (5)

whereα is the only design parameter.
Figure 2 shows the FLOPSYNC control scheme, whereP

is the process (4), andR the controller (5). Substituting (5)
into (4) we get

e(k+1) = e(k)+ d(k)

+ρ (u(k−1)+ ⌊e(k−1)⌋−α ⌊e(k)⌋)

In the original formulation of FLOPSYNC in [18] both
quantizers were just neglected in the controller design, and
relegated to implementation-related accidents. With no quan-
tization in place, by replacing the expression foru(k) in (4)
with that given by (5) withk in place ofk+1 and then using

4

e(k−1)+u(k−1) =−e(k)−d(k−1) (derived from (4)), we
get:

e(k+1) = (1−α)e(k)+ e(k−1)+ u(k−1)+d(k)
= (2−α)e(k)+ d(k)− d(k−1)

which corresponds to an asymptotically stable system if 1<
α < 3. For a constant disturbanced(k) = d(k − 1) = d, the
scheme makes the synchronization error converge to zero, with
a rate that depends onα.

When quantizers come into play, the synchronization error
still (ideally) converges to zero, but quite intuitively, it is not
possible to discriminate from zero errors that are below the
clock resolution. Moreover,d is integrated over time according
to (4). The integrated residual disturbance is not detectable on
the quantized output⌊e⌋ until it exceeds the clock resolution.
This makes the controller react whenever the quantization of
the integrated residual disturbance switches to 1 or−1. As a
result, the controlled system enters a limit cycle of amplitude
2. An example of this effect is illustrated in Figure 3, with
α = 1.4, d(k) = d =

√
3, and the control system initialized

with e(0) = 2, u(0) = 0.

0 5 10 15 20 25 30

−1

0

1

2

3

k

e(k) ⌊e(k)⌋

Figure 3: The impact of quantization on the synchronization
error in the FLOPSYNC scheme.

This paper proposes a switched control scheme that reduces
the just evidenced effect of quantization, steering the system
to a limit cycle of an amplitude that is half of that obtained
with the bare FLOPSYNC control scheme as proposed in [18].
The solution presented herein has the additional advantage
of sticking to simple controllers, easy to implement in an
embedded device, with very low computational and memory
overhead.

IV. T HE PROPOSEDFLOPSYNC-QACS
SYNCHRONIZATION SCHEME

In this section we describe FLOPSYNC-QACS, the variant
to FLOPSYNC that we propose to improve its performance in
the presence of quantization.

The FLOPSYNC-QACS controller is composed of a linear
and a switched component. The linear part is described by

ũ(k+1) = ⌊e(k)⌋−α ⌊e(k+1)⌋ (6)

and generates signal ˜u, which is fed into the switched part that
computes the control inputu as

u(k+1) =

{

u(k)+ ũ(k+1), if ⌊e(k+1)⌋ 6= 0

ρ (u(k))+ ũ(k+1), if ⌊e(k+1)⌋= 0,
(7)

depending on the quantized synchronization error measure-
ment⌊e⌋. The resulting switched control scheme is represented

in Figure 4, whereR̃ is the linear component (6),P the
synchronization error dynamics (4), andz−1 the unitary delay
operator.

R̃ ρ (·) P ⌊·⌋

z−1

ũ + u ρ (u)+ e

⌊e⌋

+

d

+

Figure 4: The FLOPSYNC-QACS synchronization scheme.

The switched control system dynamics is characterized in
terms of the evolution in time of the variablese andu as

if ⌊e(k+1)⌋= ⌊e(k)+ρ (u(k))+ d(k)⌋= 0
{

e(k+1) = e(k)+ρ (u(k))+ d(k)

u(k+1) = ρ (u(k))+ ⌊e(k)⌋
else (8)

{

e(k+1) = e(k)+ρ (u(k))+ d(k)

u(k+1) = u(k)+ ⌊e(k)⌋−α ⌊e(k)+ρ (u(k))+ d(k)⌋ ,
which are obtained from (4) and (7) with ˜u replaced by
its expression in (6). Apparently, the computational com-
plexity of the proposed solution is limited to measuring
⌊e(k)+ρ (u(k))+ d(k)⌋ = ⌊e(k+1)⌋ and to computing the
control actionu as per the applicable alternative in (8), based
on the measured quantized value of⌊e(k+1)⌋.

Let the disturbance be constant and equal tod(k) = d, k ≥ 0.
We define the disturbance rounding error

∆d = d −ρ
(

d
)

, (9)

and the residual control input signal

u(k) = u(k)+ρ
(

d
)

, (10)

which is zero when the control input perfectly counteracts the
quantized value of the disturbance.

The proposed FLOPSYNC-QACS control scheme is able to
reduce the amplitude of the limit cycle for the quantized output
⌊e⌋ from 2 to 1. This is actually evident in Figure 5, where
an example of possible evolution of the system is shown, for
α = 11/8, when∆d =−0.2 and the switched control system is
initialized ate(0) = 0, andu(0) = 2. The left column present
the results obtained with FLOPSYNC, while the right column
presents the results obtained with FLOPSYNC-QACS. The top
graphs in Figure 5 show the phase plot of the system, with
the green square indicating the initial condition. The central
and bottom graphs represent the time evolution of the state
variablese andu and their quantized version.

In the case of FLOPSYNC-QACS, after the state enters
the red area in the top plot, it ends up in one time step (and
keeps evolving forever) in an invariant set where the quantized
variables⌊e(k)⌋ andρ (u(k)) have an excursion of amplitude
equal to 1. This same behavior can be observed for other
values ofα, which are given in Theorem 4.1 together with
the characterization of the red area (equation (11)).

5

Figure 5: Comparison between FLOPSYNC (left column) and
FLOPSYNC-QACS (right column). The top graph shows the
phase plot in the state variablese andu. The lower plots show
the time evolution of the state variables and their quantized
versions.

Theorem 4.1: Let the design parameterα be chosen within
(1, 3

2). Suppose that at some timeh the state variablese and
u of system (8) satisfy:











0< e(h)< 1

1≤ α − u(h)sign(∆d)<
3
2

− 1
2 < u(h)< 1

2,

(11)

whereu(h) = u(h)+ρ
(

d
)

. Then,

(⌊e(k)⌋ ,ρ (u(k))) ∈ I = {(0,0),(sign(∆d) ,−sign(∆d))} ,

for all k > h. Moreover,I is the smallest invariant set for
(⌊e⌋ ,ρ (u)), when system (8) evolves starting from (11).

The proof of Theorem 4.1 (here omitted) can be obtained by
adapting the proof in [30] to the case whenρ (e) is replaced
with ⌊e⌋.

In [30], we performed a numerical reachability analysis
study and showed that if 5/4< α < 3/2 and|∆d |< 0.5, then,
the invariant set in Theorem 4.1 is globally attractive, i.e.,
it will be eventually reached from any initial condition. For
|∆d | = 0.5, global attractiveness does not hold true and the
system may end up in an invariant set where the amplitude of
the excursion for the quantized state is 2, while for|∆d | 6= 0.5
and 1< α ≤ 5/4 only invariant sets where the excursion
amplitude is 1 appear.

We can then conclude that the proposed switched scheme
performs better than the bare FLOPSYNC control scheme
proposed in [18] for almost all∆d values.

Remark 1 (control resolution): Note that in both modes of
operation in (8), the synchronization errore is obtained by
integrating the signalρ (u)+ d. Ideally, the control actionu
should be set so as to compensate exactly for the disturbance

but this is hampered by the presence of the round quantizer.
The process then integrates the residual disturbanceρ (u)+d
and the controller realizes that the disturbance is not com-
pensated exactly only when the process outpute reaches the
quantization threshold, since only at that point the measured
synchronization error⌊e⌋ will jump to either 1 or -1.⌊e⌋ is
then brought back to zero, and the same kind of behavior is
observed over and over, thus resulting in a cycle for⌊e⌋ with a
unitary amplitude. Improving the control resolution wouldnot
have any impact on the control scheme performance in terms
of amplitude of this cycle: The time needed for the process
outpute to reach the quantization threshold will be larger, but
still a cycle of amplitude 1 for⌊e⌋ will be observed.

V. I MPLEMENTATION OF FLOPSYNC-QACS

In this section we describe how FLOPSYNC-QACS can be
efficiently implemented on typical WSN hardware. To do so,
we first have to briefly review the FLOPSYNC synchronization
scheme, which is composed of two main parts.

The first part is implemented at the MAC (Medium Access
Control) level. Its task is to periodically take over the ordinary
MAC used for the applications, and switch the radio control
to the flooding scheme used to receive and rebroadcast the
synchronization packet. The flooding scheme we adopt is
Glossy [15], which was extensively proven capable of making
synchronization packets reach all the nodes of a realistically-
sized, multi-hop WSN in a practically negligible time. From
the timestamped arrival time of the synchronization packet, the
clock synchronization error is measured, and the controller is
run to compute the correctionu. This quantity is used both to
decide the expected arrival time for the next synchronization
packet, and as the input to the second part of FLOPSYNC.

This second part is implemented at the operating system
level. Its role is to employ the correction provided by the
controller to offer timestamping and clock services to the
running applications. FLOPSYNC-QACS does not introduce
changes to this part compared to FLOPSYNC, hence the
matter will not be explained further.

A simplified version of the aforementioned first part is
shown in Listing 1. The code paths to handle packet losses
have been omitted, to better focus on the control law. The
implementation of the said law is a task that a short time
(called thereceiver window) before the expected arrival time
for a synchronization packet, disables the ordinary MAC, sets
the radio to receive mode, and timestamps the packet et its
arrival. The packet is then rebroadcast, as required by Glossy,
and after that the synchronization error is computed as the
difference between the expected and the actual arrival time.
Due to the limited hardware timer resolution the actual arrival
time has a finite resolution as well, hence computing the error
introduces the first quantization in the control loop.

The control law is easy to implement using fixed point arith-
metic, which is a notable advantage, as most WSN nodes lack
hardware floating point support. The computed correctionu,
still in fixed point form, is then converted to an integer number
using therounded division function, which is necessary as the
C/C++ division operator does not perform arithmetic rounding.

6

1 int uo = 0; // past control value
2 int eo = 0; // past error
3 int w = wMax; // receiver window
4 long long eat = period; // expected arrival time
5

6 while (1) { // each synchronisation k
7 disableMacLayer();
8 int timeout = (2*w) + packetTime;
9 waitForSyncPacket(timeout);

10 // get actual arrival time, first quantization (floor)
11 long long at = rtc.getValue();
12 rebroadcastWithGlossy();
13 // compute error
14 int e = eat - at;
15 // u(k)=u(k-1)+11/8*e(k)-e(k-1)
16 // fixed point implementation with 3 bit fractional part
17 int u = uo + 11*e - 8*eo;
18 // from fixed point to int, second quantization (round)
19 int uquant = rounded_division(u,8);
20 // switched part, the core of FLOPSYNC-QACS
21 if(e==0) {
22 uo = 8 * uquant;
23 } else {
24 uo = u;
25 }
26 eo = e;
27 w = update_receiver_window(e);
28 // updating expected arrival time
29 eat += period + uquant;
30 enableMacLayer();
31 rtc.sleepUntil(eat - w);
32 }

Listing 1: FLOPSYNC-QACS controller.

Computing the actually applied control therefore introduces
the second quantization.

The switched part of the controller is implemented as a
singleif statement, selecting either the quantized or fixed point
correction, depending on the error value.

The last part of the task computes the receiver window
based on the error value – the interested reader can find
information about this step in [16], suffice here to say that
this is motivated by minimizing the radio ON-time for energy
efficiency – and then re-enables the ordinary MAC layer. This
done, the FLOPSYNC-QACS task is suspended till the next
synchronization.

VI. EXPERIMENTAL AND SIMULATION RESULTS

The performance gains provided by FLOPSYNC-QACS
have been tested both in a real WSN node and in simulation.
In Section VI-A we show a representative example of the
performed experimental tests, to testify the correct operation of
the technique in practice. In Section VI-B we then summarize
the results of a simulation campaign, in which the operationof
FLOPSYNC with and without the proposed switched control
scheme is compared. The use of simulation is necessary
for this purpose, as it is the only way to compare the two
algorithms in the exact same conditions.

A. An experimental test

Experimental testing aims at assessing the performance
improvement yielded by the proposed FLOPSYNC extension
in a real-world setting. The main point is that in the theoretical
analysis the disturbance has been considered constant, whereas
real disturbances are actually varying. However, if their time-
variability occurs at a timescale that is much longer than the

Figure 6: One of the WandStem WSN nodes used for testing.

control sampling time, then, results of our analysis shouldstill
be valid. The test presented in this section shows that this is
indeed the case.

We implemented the base FLOPSYNC and FLOPSYNC-
QACS schemes on a WSN composed of WandStem [23]
nodes, that employ ARM Cortex-M3 microcontrollers running
at 48MHz, and CC2520 radio transceivers operating in the
2.4GHz band. One of these nodes is shown in Figure 6. The
control algorithms are implemented in C++ in the Miosix [31]
microcontroller operating system. The synchronization period
T is 60 seconds. The hardware timers of the nodes have
a measurement and actuation resolution (also calledtick)
of 30.5µs, which is the source of quantization, and it is
normalized to 1. For our implementation, we setα = 11/8 as
in Listing 1, since this value preserves stability of the closed-
loop linear dynamics and satisfies the condition onα required
for Theorem 4.1 to hold.

In the test, three nodes are used. One plays the role of the
master, broadcasting synchronization packets. Out of the other
two, one runs the bare FLOPSYNC scheme, and the other
the FLOPSYNC-QACS switched variant of the scheme. The
nodes are placed in an office environment, and, hence, they are
exposed to radio interference from local wireless networksand
to temperature variations like those encountered in a typical
indoor setting with standard climatization. In order to show
the long-term behavior of the system in the face of slowly
varying disturbances, the experiment was set to last 20 hours.
Results are not specific to the experiment duration. We chose
it so as to cover a time window large enough for the WSN
to experience a (slow) variation in the disturbance that makes
it switch between the two invariance sets in Theorem 4.1 that
are associated to the two signs of the disturbance rounding
error.

Figure 7 shows both the quantized synchronization error in
ticks (top plots), and the quantized control variable (bottom
plots) for FLOPSYNC (left column) and its switched version
(right column). The horizontal axes report the experiment time
in hours. The[−1,1] synchronization error range is highlighted
in both top plots with a gray area. The transient leading the
error to approach the gray area can be estimated from the
data to last approximately 6 periods (i.e., minutes) in both
the bare and the FLOPSYNC-QACS case. Notice that in the
case of FLOPSYNC, the gray area is practically covered by
the quantized synchronization error trajectory. This is because
the quantized synchronization error oscillates within theset
{−1,0,1} with an excursion of amplitude 2.

7

0

5

10

⌊ e
(k
)⌋

FLOPSYNC FLOPSYNC-QACS

0 5 10 15 20

−15

−10

−5

0

time (hours)

ρ
(u
(k
))

0 5 10 15 20

time (hours)

Figure 7: Experimental results comparing bare FLOPSYNC
with FLOPSYNC-QACS. Quantized synchronization error⌊e⌋
(top plots), and quantized control actionρ (u) (bottom plots).

In the case of FLOPSYNC-QACS, the quantized synchro-
nization error first switches within the set{−1,0}, then, after
a brief transient, it switches within{0,1}. For practically the
whole experiment, the quantized synchronization error hasan
excursion of amplitude 1. More in details, the error lies in
either{−1,0} or {0,1} for 97% of the time.

We compare the two results by computing the Root Mean
Square (RMS) performance index of the quantized synchro-
nization error, that is defined as:

RMS(⌊e⌋) =
√

1
H

H−1

∑
i=0

⌊e(i)⌋2

whereH is the number of samples collected in the experiment.
The RMS computed in the case of bare FLOPSYNC is 0.946,
while the RMS computed for FLOPSYNC-QACS is 0.740,
i.e., about 22% less than with bare FLOPSYNC. This means
that in FLOPSYNC-QACS the quantized synchronization error
⌊e⌋ is equal to zero more times than in FLOPSYNC.

Note that the values taken byρ (u) in the two nodes are
different, possibly owing to the manufacturing tolerance of
each clock crystal that results each in an unique offset (i.e., a
different disturbance value) to compensate. This is, however,
not relevant for the purpose of the test.

In summary, we can conclude that the proposed control
scheme results in a lower RMS error magnitude in a practical
setting, where the disturbance is not rigorously constant.

Relying on the theoretical analysis presented in this paper,
it is possible to analyze a bit more in detail the experimental
results. In particular, focusing on the FLOPSYNC-QACS case,
we see that, after the initial settling, the quantized synchro-
nization error enters the invariant set of Theorem 4.1 and is
kept in the set{−1,0} for about 17 hours. During this time
span, we can guess that the rounding error of the disturbance
∆d is negative and that it does not change sign—even though
it might have varied. In fact, the evolution ofρ (e) is com-
patible with the invariant set associated with∆d < 0, yielding
ρ (u) ∈ {0,1}. Within the same time span, it is possible to
observe thatρ (u) switches in the set{−12,−11}, and since

0 5 10 15 20

0

5

10

k

e
(k
)

0 5 10 15 20

0

5

10

k

⌊ e
(k
)⌋

0 5 10 15 20

−15

−10

−5

0

k

u
(k
)

0 5 10 15 20

−15

−10

−5

0

k

ρ
(u
(k
))

0 5 10 15 20

11

11.5

12

12.5

k

d
(k
)

0 5 10 15 20

11

11.5

12

12.5

k

ρ
(d
(k
))

Figure 8: Replication of the experimental results with simu-
lated dynamics.

ρ (u) =−ρ (d)+ρ (u) by equation (10), we can conclude that
the quantized value of the disturbance isρ (d) = 12.

After about 17 hours from the beginning of the experiment,
the evolution of the quantized synchronization error changes,
and it settles to the invariant set of Theorem 4.1 associated
with ∆d > 0, yielding ρ (u) ∈ {−1,0}. We can therefore
conclude that∆d changed its sign. Since the value ofρ (u)
still switches in the set{−12,−11}, but nowρ (u) ∈ {−1,0},
we can conclude that the quantized value of the disturbance
is now ρ (d) = 11. This entails that the disturbance decreased
crossing 11.5.

In order to better investigate what caused the transition
between the two invariant sets in the experimental results,
we performed a simulation study trying to replicate the same
behavior with a slowly changing disturbance. The results of
the simulation are shown in Figure 8, where on the left column
we reported the synchronization errore, the control signalu
and the disturbanced, while on the right column we reported
their quantized versions. We initialized the system ate(0) = 0,
u(0) = 0, and we setα = 11/8, as in the experimental setting.

We selected a disturbance that starts as a constantd =
d1 = 11.6, i.e., ∆d = −0.4< 0. Then from timek = 960 (16
hours) the disturbance slowly decreases linearly up to the value
d = d2 = 11.4, i.e., ∆d = 0.4 > 0. Finally, the disturbance
keeps constant and equal tod2, from time k = 1080 (18
hours). Apparently, the abrupt change of sign of∆d when the
disturbance crosses the threshold of 11.5 at time k = 1020
(17 hours) causes a transient, that is reflected in the quantized
version only at timek = 1038, where the quantized synchro-
nization error oscillates between[−1,1] and correspondingly
the quantized control input oscillates between[−13,−10]. This
is exactly the same behavior that can be observed in the
experimental data of Figure 7.

We can thus conclude that the behavior that appeared in the
experimental results may have been caused by a disturbance
similar to the one presented in the left bottom graph of

8

−1

0

1

2

3
(a) e(k)

−1

0

1

2

3
(b) e(k)

⌊e(k)⌋

−1

0

1

2

3
(c) e(k)

⌊e(k)⌋

0 5 10 15 20 25 30

−1

0

1

2

3

k

(d) e(k)

⌊e(k)⌋

Figure 9: Quantized (red line with squares) and non quantized
(blue line with circles) synchronization error in a simulated
experiment obtained by adopting (a) FLOPSYNC without
quantizers, (b) bare FLOPSYNC, (c) FLOPSYNC-QACS, and
(d) FLOPSYNC-QACS with a higher control resolution.

Figure 8.

B. A comparative simulation campaign

We first present some simulation results comparing the cases
when no quantization is present in the control scheme, when
quantization is present and either FLOPSYNC or its switched
extension FLOPSYNC-QACS is implemented. Notice that in
the absence of quantization FLOPSYNC and FLOPSYNC-
QACS coincide. The three plots on the top of Figure 9 repre-
sent the simulation runs for the three cases for a finite horizon
of 30 synchronization periods. The bottom plot shows the
performance of FLOPSYNC-QACS when a control resolution
of 0.5 is adopted instead of 1 (see Remark 1), e.g., 0.6 is
approximated as 0.5 instead of 1. In all plots the error is
normalized, i.e., a unit clock resolution is assumed. The value
used forα is 1.2, and ∆d = 1.6, while the system state is
initialized ate(0) = 0, andu(0) = 0.

While in the absence of quantization the synchronization
error converges to 0 with the designed controller, when quan-
tization is in place it is not possible anymore to guaranteeing
convergence to zero. In the case of bare FLOPSYNC, the
synchronization error oscillates in the area[−1,1], while in
the case of its switched extension, it ends up oscillating in
the region[0,1] according to Theorem 4.1. As pointed out in
Remark 1, the oscillation extent does not improve if a higher
control resolution is adopted and only the frequency of the
oscillations is affected.

The results presented next refer to a simulation campaign
aimed at investigating the effect of the disturbance magnitude
on the synchronization quality, with and without the proposed
FLOPSYNC extension.

The campaign was carried out by choosing the values
of d reported in Table I. For each value ofd, the two
synchronization schemes, one with FLOPSYNC and the other
with FLOPSYNC-QACS, were initialized toe(0) = 0 and
u(0) = 0, and then subjected to a constant disturbance of the
selected amplitude. Data were collected over a time horizon
of H = 1000 synchronization periods. Table I summarizes the
results: the proposed extension decreases the RMS by about
30%.

Synchronization error RMS
d FLOPSYNC FLOPSYNC-QACS

±0.01 0.134 0.100
±0.02 0.195 0.141
±0.04 0.279 0.200
±0.05 0.313 0.223
±0.1 0.444 0.314
±0.2 0.631 0.447
±0.4 0.893 0.632

±(
√

2−1) 0.908 0.643

Table I: RMS values of the simulation campaign.

VII. C ONCLUSIONS AND FUTURE WORK

A control-based time synchronization mechanism for
WSNs, called FLOPSYNC-QACS, was proposed for reducing
the degradation effect due to quantization of both corrective
actions and synchronization error. FLOPSYNC-QACS was
implemented in a real WSN, and experimental results back
up the proposed solution.

As a future work, we plan to perform some study and
experimental analysis so as to evaluate the power consumption
requested by the proposed methodology compared to alterna-
tive state-of-the-art approaches.

REFERENCES

[1] Gartner, 2015, http://www.gartner.com/newsroom/id/3165317.
[2] L. Mainetti, L. Patrono, and A. Vilei, “Evolution of wireless sensor

networks towards the internet of things: A survey,” inSoftCOM, Sept
2011, pp. 1–6.

[3] N. Khalil, M. R. Abid, D. Benhaddou, and M. Gerndt, “Wireless sensors
networks for internet of things,” inISSNIP, April 2014, pp. 1–6.

[4] Y. C. Wu, Q. Chaudhari, and E. Serpedin, “Clock synchronization of
wireless sensor networks,”IEEE Sign. Proc. Mag., vol. 28, no. 1, pp.
124–138, Jan 2011.

[5] F. Sivrikaya and B. Yener, “Time synchronization in sensor networks: a
survey,” IEEE Network, vol. 18, no. 4, pp. 45–50, July 2004.

9

[6] G. Mao, B. Fidan, and B. D. Anderson, “Wireless sensor network
localization techniques,”Comp. Netw., vol. 51, no. 10, pp. 2529–2553,
2007.

[7] T. Schmid, P. Dutta, and M. B. Srivastava, “High-resolution, low-power
time synchronization an oxymoron no more,” inIPSN, 2010, pp. 151–
161. [Online]. Available: http://doi.acm.org/10.1145/1791212.1791231

[8] A. Leva, F. Terraneo, L. Rinaldi, A. V. Papadopoulos, andM. Maggio,
“High-precision low-power wireless nodes’ synchronization via decen-
tralized control,”IEEE Trans. Cont. Syst. Tech., vol. 24, no. 4, pp. 1279–
1293, July 2016.

[9] R. Silva, J. S. Silva, and F. Boavida, “Mobility in wireless sensor
networks – survey and proposal,”Comp. Comm., vol. 52, pp. 1–20,
2014.

[10] N. Aakvaag, M. Mathiesen, and G. Thonet, “Timing and power issues
in wireless sensor networks: An industrial test case,” inICPP, 2005, pp.
419–426.

[11] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low power
wireless research,” inIPSN, 2005, pp. 364–369.

[12] S. Ping, “Delay measurement time synchronization for wireless sensor
networks,” Intel Research Berkeley Lab, Tech. Rep. IRB-TR-03-013,
2003.

[13] F. Terraneo, A. Papadopoulos, A. Leva, and M. Prandini,“Flopsync-
qacs: Quantization- aware clock synchronization for wireless sensor
networks,” inIEEE 4th International Workshop on Real-Time Computing
and Distributed systems in Emerging Applications, November 2016.
[Online]. Available: http://www.es.mdh.se/publications/4559-

[14] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The flooding time
synchronization protocol,” inSenSys, 2004, pp. 39–49.

[15] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with Glossy,” inIPSN, 2011, pp. 73–
84.

[16] F. Terraneo, L. Rinaldi, M. Maggio, A. V. Papadopoulos,and A. Leva,
“FLOPSYNC-2: Efficient monotonic clock synchronisation,”in RTSS,
2014, pp. 11–20.

[17] S. Yoon, C. Veerarittiphan, and M. Sichitiu, “Tiny-sync: Tight time
synchronization for wireless sensor networks,”ACM Trans. Sens. Netw.,
2007.

[18] A. Leva and F. Terraneo, “Low power synchronisation in wireless sensor
networks via simple feedback controllers: the FLOPSYNC scheme,” in
ACC, 2013, pp. 5017–5022.

[19] F. Ren, C. Lin, and F. Liu, “Self-correcting time synchronization using
reference broadcast in wireless sensor network,”IEEE Wireless Comm.,
2008.

[20] T. Schmid, Z. Charbiwala, R. Shea, and M. Srivastava, “Temperature
compensated time synchronization,”IEEE Embedded Systems Letters,
vol. 1, no. 2, pp. 37–41, 2009.

[21] F. Terraneo, A. Leva, S. Seva, M. Maggio, and A. V. Papadopoulos,
“Reverse flooding: Exploiting radio interference for efficient propagation
delay compensation in wsn clock synchronization,” inRTSS, 2015, pp.
175–184.

[22] R. Lim, B. Maag, and L. Thiele, “Time-of-flight aware time
synchronization for wireless embedded systems,” inEWSN, 2016,
pp. 149–158. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2893711.2893732

[23] F. Terraneo, A. Leva, and W. Fornaciari, “Demo: A high-performance,
energy-efficient node for a wide range of wsn applications,”in EWSN,
2016, pp. 241–242. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2893711.2893753

[24] V. Handziski, A. Köpke, A. Willig, and A. Wolisz, “TWIST: A
scalable and reconfigurable testbed for wireless indoor experiments
with sensor networks,” inREALMAN, 2006, pp. 63–70. [Online].
Available: http://doi.acm.org/10.1145/1132983.1132995

[25] L. Lamport, “Time, clocks, and the ordering of events ina distributed
system,”Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

[26] D. L. Mills, “Network time protocol (NTP),” Network Working Group
Report, Tech. Rep. RFC-958, 1985.

[27] F. Cristian, “Probabilistic clock synchronization,”Distributed Comput-
ing, vol. 3, no. 3, pp. 146–158, 1989.

[28] R. Gusella and S. Zatti, “The accuracy of the clock synchronization
achieved by TEMPO in berkeley UNIX 4.3BSD,”IEEE Trans. Soft.
Eng., vol. 15, no. 7, pp. 847–853, Jul 1989.

[29] J. He, P. Cheng, L. Shi, J. Chen, and Y. Sun, “Time synchronization
in WSNs: A maximum-value-based consensus approach,”IEEE Trans.
Aut. Cont., vol. 59, no. 3, pp. 660–675, March 2014.

[30] A. V. Papadopoulos, F. Terraneo, A. Leva, and M. Prandini, “Switched
control for quantized feedback systems: invariance and limit cycles
analysis,” 2017, submitted. Available as arXiv:1701.07482.

[31] F. Terraneo, Miosix embedded OS, sources available at
http://miosix.org.

