
EMVS: Embedded Multi Vector-core System

Tassadaq Hussain1,3, Amna Haider1,3, Adrian Cristal2,4,5 and Eduard Ayguadé2

1 Riphah International University Islamabad, Pakistan
2 Barcelona Supercomputing Center, Spain

3 UCERD Islamabad, Pakistan
4 BarcelonaTech, Spain

5 IIIA Artificial Intelligence Research Institute CSIC Spanish National
Research Council

tassadaq@ucerd.com

Abstract

With the increase in the density and performance of digital electronics, the de-
mand for a power-efficient high-performance computing (HPC) system has been
increased for embedded applications. The existing embedded HPC systems suffer
from issues like programmability, scalability, and portability. Therefore, a param-
eterizable and programmable high-performance processor system architecture is
required to execute the embedded HPC applications. In this work, we proposed
an embedded multi vector-core system (EMVS) which executes the embedded ap-
plication by managing the multiple vectorized tasks and their memory operations.
The system is designed and ported on an Altera DE4 FPGA development board.
The performance of EMVS is compared with the Heterogeneous Multi-Processing
Odroid XU3, Parallela and GPU Jetson TK1 embedded systems. In contrast to the
embedded systems, the results show that EMVS improves 19.28 and 10.22 times
of the application and system performance respectively and consumes 10.6 times
less energy.

1. Introduction

With the improvement in the number of processor on a chip, it directs sys-
tem architects to develop and use a processor architecture that exploits maximum
parallelism and improve the performance of Embedded HPC applications. Cus-
tom digital system architectures give the best results for a specific application,

Preprint submitted to Elsevier June 28, 2018

© 2018 Elsevier . This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

but growing mask and development expenses restrict application specific proces-
sors. Even then, application specific hardware is inappropriate for the product
that needs instantly change during run-time requirements. Programmable appli-
cation specific processor [1] is the more flexible option, and they have developed
to utilize particular kinds of parallelism familiar to certain types of embedded ap-
plications. The resulting devices have application-specific instruction sets with
several parallel execution and synchronization models, making them difficult to
program. Data Level Parallel (DLP) [2] accelerators give the maximum perfor-
mance by processing multi data elements with a single instruction. Because of
the fixed architecture, these hardware accelerators do not exploit DLP for a set of
data-intensive applications.

Because of the increase and improvement in the digital electronics, many man-
ufacturers [3] [4] provide high performance single board computer systems for
a large range of embedded applications. Similarly, the increase in the perfor-
mance and density of Field Programmable Gate Arrays (FPGA)s [5] [6] allows
the embedded applications industry to develop low power, low cost and high-
performance systems, which can execute complex real-time applications on a sin-
gle chip. The latest FPGA [7] devices provide the programmable high perfor-
mance reconfigurable hardware with the programmable system integration capa-
bilities, including both the high bandwidth serial I/O and signal processing band-
width, as well as the highest on-chip memory density. As the FPGA architectures
become larger, it allows many low power, low frequency, and high-performance
processing cores in the design. The FPGA systems direct system architects to
develop and use a processor architecture that exploits maximum parallelism and
improve the performance of Embedded HPC applications. However, these system
architectures suffer from poor efficacy due to programmability, scalability and
portability issues.

To deal with programmability, scalability and portability issues, in this work
we propose an Embedded Multi Vector-core System (EMVS). Some salient fea-
tures of proposed EMVS architecture are:

• Consists scalable vector processors (VP) with parameterizable vector lanes
(VL).

• Uses on chip specialized vector memory and on-chip bus network that effi-
ciently handles complex/irregular data patterns.

• Manages memory access patterns of multiple vector processors in hardware
thus improves the system performance by prefetching these complex access

2

Figure 1: Embedded Multi Vector-core System Architecture

patterns in parallel with the vector processing.

• Uses an efficient run-time resource-aware Scheduler that manages and sched-
ules multiple vector processor data and application tasks by using compile-
time program and run-time automated scheduling policies.

• When compared the performance of EMVS with the Odroid XU3, Parallela,
GPU Jetson TK1 systems, the results show that EMVS improves between
1.46 to 19.28 and 3.01 to 10.22 times application and system performance
respectively and consumes 10.6 times less energy.

The rest of the work is arranged as follows. In Sections 2 and 3, we describe
the architecture and working principle of EMVS respectively. The Section 4 gives
details on the EMVS and hardware integration of multi-vector to a Baseline Sys-
tem. The performance and power comparison of EMVS by executing application
kernels are provided in Section 5. Major differences between our proposal and
state of the art are described in Section 6. Section 7 summarizes our main conclu-
sions.

2. Embedded Multi Vector-core Processor System

The Embedded Multi Vector-core Processor System (EMVS) is shown in Fig-
ure 1. EMVS is divided into the Processing System, Bus System, the Memory Hier-
archy, the Scheduler, the Memory Manager and the Pattern Aware Main Memory
Controller.

3

2.1. Processing System
The EMVS Processing System uses a single Reduced Instruction Set Com-

puter (RISC) processor and Multi-Vector cores. The RISC core is used to pro-
gram the Multi-Vector cores and performs the scalar operations. The scalar core
keeps working in parallel with the Multi-Vector cores except control instructions
and scalar load/store instructions.

The Multi-Vector cores holds multiple Vector Processors (VP)s. A VP is also
called as a single instruction, multiple data (SIMD) processor [8], that can work
on an array of data in a pipelined mode, one element at a time applying a single
instruction. For high performance, a VP can use multiple vector lanes (VL) to
operate in lock-step on several elements of a vector in parallel. The structure of a
single VP is given in Figure 2. The number of VLs defines the number of ALUs
and elements that can be executed in parallel. The width (W) of any VP lane is
32-bit and can be set to 16-bit or 8-bit wide. The maximum vector length (MVL)
limits the size of the vector register files (RF). Improving the MVL allows a single
vector instruction to encapsulate extra parallel processes. This also increases the
size of vector register file. Higher MVL values allow the application to utilize
higher parallel processing in fewer vector instruction.

Depending upon the application requirement and hardware resources, the EMVS
can integrate multiple VP cores in the architecture, which are handled by the
scheduler (discussed in Section 2.5). In current prototype architecture on Altera
DE4 FPGA, the EMVS can integrate a maximum of 8 VP cores each VP is capa-
ble of using the maximum of 128 VL. Each VP has its own program memory. At
runtime a VP core reads the instructions from the program memory, decodes the
instruction and proceeds to the replicate pipeline stage in parallel. The replicate

Figure 2: Single Vector Processor Architecture

4

pipeline stage divides the elements of work, requested by the vector instruction
into smaller groups that are mapped onto the VLs. A hazard is generated when
two or more of concurrent vector instructions conflict and do not execute in con-
secutive clock cycles. The hazard check stage examines hazards for the vector and
flags register files and stalls if required. Execution occurs in the next two stages
(or three stages for multiple instructions) where VL operand pairs are read from
the register file and sent to the functional units in the VLs.

2.2. Bus System
The Bus System transfers control information, address, and data between scalar

core, VP cores, and memory components. The Status Bus controls the multiple
VP cores by utilizing the data transfer requests, acknowledgment, wait/ready and
error/ok signals. The Control Bus manages the processing tasks, data transfer
requests, and input/output operations. The Address Bus is used to classify the op-
erations to read or write data from memory components or the Processing System.
The Address Bus of EMVS is decoded and arbitrated by the Memory Manager (see
Section 2.4). The Data Bus is used to transfer data between the Main Memory and
the Processing System.

2.3. Memory Hierarchy
The EMVS Memory Hierarchy connects each byte in the Local Memory or the

Main Memory to the VL of multiple VP cores. The Memory Hierarchy allocates
and manages the Local Memory and the Main Memory address ranges for each VP
cores. The EMVS Memory Hierarchy uses four types of memories which are the
Descriptor Memory, the Buffer Memory, the Specialized Vector Memory, and the
Main Memory. The Descriptor Memory [9] [10] hold the processing, data trans-
fer, and scheduling information. The Specialized Vector Memory is used as the
Local Memory that stores data set for processing by a VP core. Each VP core has
separate Specialized Vector Memory. The Main Memory is shared between all the
VP cores. Depending upon the vector data transfer the EMVS Address Manager
(see Section 2.4) takes a single or multiple instructions from the Descriptor Mem-
ory and transfers a vector data set to/from the Specialized Vector Memory and the
Main Memory. A single Descriptor holds the following parameters: Processing
Information, Processor ID, Main Memory address, Priority, Stream, Stride and
Offset. The Processing Information holds the vector or scalar processor arithmetic
instruction. The Processor ID parameter specifies a processor core to execute the
processing instruction. The Main Memory address specify the memory locations
to read and write data. The Priority applies the order in which the processing

5

instructions are executed. Stream defines the number of data elements to be trans-
ferred. Stride specifies the jumps between two continuous memory addresses of a
stream. The Offset parameter field is used for scatter/gather operations. It points
the next scattered data transfer through the main address.

The Buffer Memory holds the Load Buffer, the Update Buffer and the Reuse
buffer. The Buffer Memory transfers data to the vector lanes using the Update
Buffer. The Load and Reuse buffers are used by the Memory Manager that man-
ages the Specialized Vector Memory data. The Specialized Vector Memory has
configurable structure and is divided into multiple planes [11], where each plane
represents the rows and the columns. The Specialized Vector Memory uses the
Task ID as the based address and has an address space separated from the Main
Memory. A VP core holds a read Specialized Vector Memory and a write Spe-
cialized Vector Memory. The data of the read Specialized Vector Memory is sent
directly to the vector lanes using the Update Buffer, and the results are written
back into the write Specialized Vector Memory. The Main Memory is composed
of structure of DRAMs and can be accessed using Pattern Aware Main Memory
Controller (discussed in Section 2.6)

2.4. Memory Manager
The EMVS uses memory instructions for describing consecutive, strided, and

Offset data transfer for the Processing System cores. The Offset transfer is used
to move data in scatter/gather patterns. The Memory Manager of the EMVS pro-
cesses and loads the requested address in the Memory Queue (MQ) for respective
lane and then assign the data to the lanes. The EMVS Memory Manager uses
Address Manager and Data Manager. At run-time, the Memory Manager takes
memory address requests from the control bus using the Scheduler (shown Sec-
tion 2.5) and transfers it to the Address Manager. The Address Manager uses a
vector transfer instruction and reads the appropriate Descriptor Memory with data
transfer information. It uses a single or multiple descriptors, maps addresses in
hardware and saves assigned addresses into its address buffer for further reuse and
rearranges them. The Data Manager performs on-chip data alignment and reuse.
The Data Manager is used to rearrange the output data of vector lanes for reuse or
update. The Data Manager uses the Buffer Memory to load, rearrange and write
vector data. The Data Manager checks data requests from the Specialized Vector
Memory, if data is available there then the data manager transfers it to the Update
Buffer. If the data is not available then, the Memory Manager assigns the data
information to the Pattern Aware Main Memory Controller (see 2.6) that accesses
data from the Main Memory to the Load Buffer. The Load Buffer with the Reuse

6

Buffer make data alignment and reuse where needed, and load the Update Buffer.
Next, the Update Buffer assigns data to the vector lanes.

2.5. Scheduler
The EMVS Scheduler manages multiple VP cores data transfer and processing

tasks. The EMVS uses Descriptor Memory to calls data transfer patterns of each
VP core, which reduces the input/output interfaces and multi-vector cores commu-
nication time. At run-time, the Scheduler receives multiple VP cores processing
and data transfer tasks and perform data transfer and computation task partition-
ing, communication, and mapping of tasks on hardware. As generic Multi-core
System scheduling, the Scheduler applies the Symmetric and Asymmetric schedul-
ing policies [12]. The Scheduler also performs run-time adaptive scheduling [13].
The run-time adaptive scheduling is depending upon the VP core data transfer and
processing tasks and free hardware devices.

The EMVS Scheduler takes the complete control of the multiple VP cores and
executes the instructions by applying a lock and unlock instruction. The Sched-
uler executes a task/thread on a separate cores until it completes. The Scheduler
generates an SIMD instruction on a specific VP clock cycle based on the arbi-
tration policy. The EMVS Scheduler controls the run-time requests and program
priorities of VP cores. Each VP core′s task includes a data transfer and processing
operation. The EMVS programming model performs task partitioning at program
time, and assign a priority state to the Task ID. The VP tasks are categorized into
three states, busy (VP core is processing on local buffer), requesting (VP core is
idle), and request & busy.

The Address Manager of EMVS has particular Descriptor Memory (register
set) for each VP core. These descriptors are masked with a request and interrupt
signals. Once a VP task generates a request, the Address Manager starts memory
operation for the VP core using its descriptors. After completion of data transfer
operation and processing, the EMVS scheduler receives an interrupt (ack) signal
from the memory management unit. This signal informs the scheduler to select the
next data transfer request of the VP core to process. The scheduler captures the ack
signal from the memory manager and assigns the grant signal to the appropriate
VP core.

2.6. Pattern Aware Main Memory Controller
The Pattern Aware Main Memory Controller (PAMMC) reads/writes data from/to

multiple Main Memory using several DRAM Controllers. PAMMC can integrate

7

multiple DRAM Controllers using separate data buses, which increases the mem-
ory bandwidth. There is one DRAM Controller per SDRAM Module. In the cur-
rent evaluation environment, two DRAM Controllers are integrated. Each DRAM
Controller takes memory addresses from the Memory Manager, performs address
translation from physical address to DRAM address and reads/writes data from/to
its SDRAM Module.

3. EMVS Programming and Functionality

In this section, we discuss the important challenges faced by the embedded
multi vector-core system and explain our solution. The section is further divided
into two subsections: Memory Hierarchy, and Programming EMVS.

3.1. Memory Hierarchy
A generic VP system employs the cache hierarchy to increase the data locality

by providing and reusing the needed data set to the processing cores. With a large
number of vector processor core having multiple vector lanes and with strider
data, the vector memory hierarchy does not meet the data spatial locality. EMVS
improves the data spatial locality by accessing complex data elements into its
Specialized Vector Memory and assigning them to VL using the Buffer memory.
Non-unit stride accesses do not exploit spatial locality granted by caches which
result in a significant loss of resources. EMVS manages non-unit stride memory
accesses alike to unit-stride ones. Similar to a cache of VP, the EMVS Specialized
Vector Memory tentatively holds data to speed up remaining accesses. Unlike a
cache, data is purposely located in the Specialized Vector Memory at a known
location, rather than automatically cached according to a set hardware strategy.
The EMVS Memory Manager along with the Buffer Memory grip knowledge of
unit and non-unit stridden transfer, update and reuse them for later accesses.

The EMVS Memory Manager performs vector chaining [14] that transfers the
output of a VP instruction to a dependent vector instruction, avoiding the vec-
tor register file, therefore bypassing serialization and maintain multiple dependent
vector instructions to perform together. Vector chaining can be coupled by in-
creasing the amount of VPs and VLs. It requires free processing cores with a high
MVL and increases the impact on the performance of vector chaining. When the
loop is vectorized, and the primary loop number is higher than the MVL, the Mem-
ory Manager involves strip-mining technique [15]. The body of the strip-mined
vectorized loop operates on blocks of MVL elements. EMVS Memory Manager

8

performs strip mining that transforms a loop into two nested loops: an outer strip-
control loop with a step size of a multiple of the original loops step size, and an
inner loop contains the original step size and the loop body. The EMVS Memory
Manager performs strip mining [15] by breaking loops into pieces that fit into
vector registers. Strip mining moves vector components of the original loop in the
inner loop and transfers all vectorized statements in the body of the outer strip-
control loop. In this way, strip mining folds the array-based parallelism to fit in
the available hardware. When all MC requests have been satisfied the MQ shifts
all its contents up by MC.

3.1.1. Memory Crossbars
To load and store data in a generic multi-core vector system, the vector reg-

ister file is attached to the data cache by distributing read and write crossbars. If
the input to the vector lanes is mismatched the vector processor requires an addi-
tional instruction that transfers and aligns the vector data. The crossbars rearrange
bytes/half-words/words of their byte-offset against memory into word size at a dis-
tinct byte-offset in the vector register file. The size of the crossbars is restrained
on one end by the overall width of the vector register file, and on the opposite
side by the overall width of the on-chip memory/cache. The size and complexity
of crossbars increase when the VP core is configured to operate more lanes. The
EMVS uses the Buffer Memory to assign data to the vector register file which is
simpler than using crossbar and data alignment. The Buffer Memory adjusts data
when output vector elements are required to process with new input elements. It
also reuses and updates existing vector data and loads data which is not present in
the Specialized Vector Memory.

3.1.2. Address Registers
The vector processor applies address registers to access the Main Memory

data. The memory unit utilizes address registers to process the valid address of
a processing core in the Main Memory. A generic vector processor maintains
unit-stride, stridden and offset transfers. The EMVS uses a separate register file
to operate the Descriptor Memory using data transfer instructions to operate with
the MIPS Instruction Set Architecture (ISA). The EMVS Descriptor Memory ac-
cesses larger than the MVL without changing the ISA. EMVS uses a single or
multi descriptors to transfer various complex non-stride transfers.

9

f o r (i = 0 ; i<l e n g t h ; i = i +1)
{
d a t a o u t [i] = a [i ∗ 64] + b [i] + c [i] ;
}

(a)

/∗Address o f d a t a o u t = 0 x10000000 ∗ /
/∗Address o f a = 0 x00000000 ∗ /
/∗Address o f b = 0 x00000100 ∗ /
/∗Address o f c = 0 x00000200 ∗ /

f o r (i =0 ; i<l e n g t h ; i +=64)
{
VLD. S (/∗Main Memory∗ / 0 x00000000+ i , /∗ V ec to r R e g i s t e r ∗ / , VR0 , /∗ S t r i d e ∗ / 0x40) ;
VLD (/∗Main Memory∗ / 0 x00000100+ i , /∗ V ec to r R e g i s t e r ∗ / , VR1) ;
VADD VR0 , VR1 , VR2
VLD (/∗Main Memory∗ / 0 x00000200+ i , /∗ V ec to r R e g i s t e r ∗ / , VR3) ;
VADD VR2 , VR3 , VR3
VST (/∗ Main Memory∗ / 0 x10000000+ i , /∗ V ec to r R e g i s t e r ∗ / VR3) ;
}

(b)

EMVS VLD (/∗Main Memory∗ / 0 x00000000 , /∗ Loca l Memory ∗ / 0 x00001000 , /∗ S i z e ∗ / l e n g t h ,
/∗ S t r i d e ∗ / 0x40) ;

EMVS VLD (/∗Main Memory∗ / 0 x00000100 , /∗ Loca l Memory ∗ / 0 x00001040 , /∗ S i z e ∗ / l e n g t h ,
/∗ S t r i d e ∗ / 0x04) ;

EMVS VLD (/∗Main Memory∗ / 0 x00000200 , /∗ Loca l Memory ∗ / 0 x00001080 , /∗ S i z e ∗ / l e n g t h ,
/∗ S t r i d e ∗ / 0x04) ;

f o r (i =0 ; i<l e n g t h ; i +=64)
{

VLD (/∗ Loca l Memory∗ / 0 x00001000+ i , /∗ V ec to r R e g i s t e r ∗ / , VR0) ;
VLD (/∗ Loca l Memory∗ / 0 x00001040+ i , /∗ V ec to r R e g i s t e r ∗ / , VR1) ;
VADD VR0 , VR1 , VR2
VLD (/∗ Loca l Memory∗ / 0 x00001080+ i , /∗ V ec to r R e g i s t e r ∗ / , VR3) ;
VADD VR2 , VR3 , VR3
VST (/∗ Loca l Memory∗ / 0 x11000000+ i , /∗ V ec to r R e g i s t e r ∗ / VR3) ;

}
EMVS VST (/∗Main Memory∗ / 0 x10000000 , /∗ Loca l Memory ∗ / 0 x11000000 , /∗ S i z e ∗ / l e n g t h ,

/∗ S t r i d e ∗ / 0x04) ;

(c)

Figure 3: (a) Scalar Loop (b) Conventional Vector Loop (c) EMVS Vector Loop

10

Figure 4: EMVS Data Transfer Example

3.1.3. Main Memory System
The generic Main Memory System employs a direct memory access (DMA) or

Load/Store system to transfer data between the Main Memory and cache memory.
Thus, a generic vector memory system uses a single DMA request to transfer a
unit-stride access between the Main Memory and a cache line. But for complex
or non-unit stridden accesses, the memory unit uses multiple DMA or Load/Store
requests which need additional time to initialize addresses, synchronize on-chip
buses and main memory banks. The EMVS PAMMC utilizes descriptors for a unit
and non-unit stride transfer that grow the memory bandwidth by giving descriptors
to the memory controllers, rather than using the individual addresses to access data
from the multi-SDRAM devices.

3.2. Programming EMVS
A common concern, when using a multi VP core is the compiler support. A

vector processor typically requires in-line assembly code that interprets vector in-
structions with an updated GNU assembler. In order to explain how EMVS is

Figure 5: 3D Stencil Access

11

Figure 6: 3D Stencil Vector Access

used, the supported memory access patterns for multiple vector instructions are
discussed in this section. The EMVS uses GNU gcc 4.2.0 compiler. We imple-
ment C macros which facilitate the programming of general access patterns and
loop generation by a set of function calls, combined with an API. The data transfer
and multi VP cores processing information are included in the EMVS header file
and implements function calls (e.g. STRIDE(), INDEXED(), etc.) that require
primary knowledge of the local memory and the data set. The programmer has to
define the code using EMVS function calls. The function calls are used to transfer
the whole data set between the Main Memory and the Specialized Vector Memory.
EMVS manages complex data transfers in parallel with vector processing.

3.2.1. Task Scheduling
Like generic multi-core system the EMVS tasks are programmed at program-

time. Unlike other systems, the EMVS Scheduler performs the task scheduling
in hardware. The EMVS Programming Model takes the parallel program, con-
verts the program into multiple tasks and places the information of the task in
Scheduler buffer. At run-time, the EMVS executes the multiple tasks on multi-
ple VP cores independently by using the EMVS Scheduler. The Scheduler buffer

12

perform pipelining and divides the elements of work, requested by the vector in-
struction into smaller groups that are mapped onto the VL lanes of a single or
multiple VP cores. The Scheduler generates a hazard if two or more of parallel
vector instructions conflict and do not execute in consecutive clock cycles. The
Scheduler checks the hazard for the VP cores and generates flags and stalls if re-
quired. The parallel task execution process is performed in three stages where VL
operand pairs are read from the register file and sent to the functional units in the
VL lanes.

3.2.2. Data Transferring
Figures 3 (a), (b) and (c) show vector loops (with MVL of 64) for a scalar

processor architecture, conventional vector architecture and the EMVS, includ-
ing the EMVS memory transfer instructions respectively. The VLD.S instruction
transfers data with the specified stride from the Main Memory to vector registers
using cache memory. For long vector access and a high number of vector lanes,
the memory unit generates delay when data transfers do not fit in a cache line.
This also requires complex crossbars and efficient prefetching support. Delay and
power increase for complex non-stride accesses and crossbars. The EMVS VLD
instruction uses a single or multiple descriptors to transfer data from the Main
Memory to a Specialized Vector Memory. EMVS rearranges and manages ac-
cessed data in the Buffer Memory and transfers it to vector registers. In Figure 4,
EMVS prefetches vectors longer than MVL in the Specialized Vector Memory.
After completing the first transfer of MVL, the EMVS sends a signal to the vector
processor that acknowledges that the register elements are available for process-
ing. In this way, EMVS pipelines the data transfers and parallelizes computation,
address management, and data transfers.

The EMVS memory manager efficiently transfers data with long strides, longer
than MVL size and feeds it to a VP core. For example, a 3D stencil access re-
quires three descriptors. Each descriptor accesses a separate (x, y and z) vector in
a different dimension, as shown in Figure 5. By combining these descriptors, the
EMVS exchanges 3D data between the Main Memory and the Specialized Vector
Memory buffer. The values X, Y and Z define the width (row size), height (col-
umn size) and length (plane size) respectively of the 3D memory block. When
n=4, 25 points are required to compute one central point. The 3D-Stencil has x, z
and y vectors having the direction of row, column and plane respectively. The x, y
and z vectors have a length of 8, 9 and 8 points respectively. The vector x has unit
stride, the vector z has stride equal to row size and the vector y has stride equal to
the size of one plane, i.e. row size× column size. For multiple or complex vector

13

accesses (shown in Figure 6), EMVS prefetches data using vector access function
calls (e.g. INDEXED(), etc.), arranges them according to the predefined patterns
and buffers them in the Specialized Vector Memory.

4. Experimental Framework

In this section, we describe the FPGA based Embedded Multi Vector-core
Processor, GPU and Heterogeneous Multi-core Systems. The section is further
divided into five subsections: the Odroid XU3 System, the Parallela System, the
Jetson TK1 System, the FPGA based EMVS and the Test Applications.

4.1. Odroid XU3 System
The Odroid XU3 System (shown in Figure 7) uses embedded heterogeneous

multi-core architecture. The architecture has Octa-Core processing system which
gives high performance with less energy consumption The processing system
consists of a high-performance a Cortext-A15 quad-core processor, a low-power
Cortex-A7 quad-core processor and an ARM Mali-T628 GPU processor with six
cores. The system uses 2GB DRAM LPDDR3 as main memory. The Odroid Sys-
tem contains four real-time current sensors for measuring dynamic power. The
ARM A7 and A15 processors operate the same ISA with different performance
features. Ubuntu 14.04 Operating System and C and C++ programming languages
are used to program the applications kernels by using g++ compiler version 4.9.2,
with the support of OpenCL v1.1, OpenMP 4.0 and Pthreads. The board also in-
cludes 30 general purpose input outputs (GPIO) which include parallel I/O, SPI,
I2C, ADC, UART and GPIO IRQ are used to interface the real-time embedded
applications.

4.2. Parallella System
An open source computer platform called Parallella is also used (shown in

Figure 8). The Parallella System is a heterogeneous multi-core, high performance
computing system. The heterogeneous architecture of Parallella System uses a
Zynq System-On-Chip (SoC) and Adapteva accelerators. The Zynq SoC uses
dual-core ARM-A9 processors and Artix-7 FPGA having 85K logic cells. The
Adaptevas Epiphany uses16-multi-accelerators. Each accelerator uses a 32-bit
dual-issue superscalar RISC architecture working at 1 GHz of the clock frequency.
The accelerator core can deliver maximum performance of 32 GFLOPS. The cores
are connected by using a 2D-mesh Network on a Chip (NoC) bus system. The ac-
celerator cores support floating-point RISC ISA and have a shared global address

14

Figure 7: Heterogeneous Multi-core: Odroid XU3 System

Figure 8: Multi-core: Parallella System

space. To program the applications OpenMP C infrastructure is used. The Paral-
lella System OpenMP is a source to source compiler and provides runtime system
flexibility. The compiler takes an application written in C annotated with OpenMP
pragmas.

15

4.3. Jetson TK1 System
The Jetson TK1 System is a GPU based embedded supercomputer board shown

in Figure 9. The Jetson TK1 is integrated by a Tegra K1 processing system, which
gives high performance computing with low power for embedded systems appli-
cations.

The Jetson TK1 System is a CUDA-capable GPU based mobile processor us-
ing a GK20A Kepler GPU architecture with 192 single precision CUDA cores and
a quad-core ARM Cortex-A15 processor. The Jetson TK1 System uses dual Image
Signal Processor (ISP) Core that delivers 1.2 GigaPixels per second of raw pro-
cessing power supporting camera sensors up to 100 Megapixels. The Jetson TK1
System has 2GB of main memory. Ubuntu 14.04 distribution is used to operate
the Jetson TK1 System. The applications are programmed C++ programming lan-
guage and accULL compiler. The accULL is a free compiler that works on ARM
processors. The accULL distributes the compute intensive part of the program
on GPU cores. It translates the compute-intensive part into CUDA code using
directives similar to OpenACC.

4.4. FPGA based EMVS
The FPGA based EMVS architecture is shown in Figure 10. The FPGA based

EMVS design uses multiple VP cores each core has parameterizable design en-
abling a large design space of possible VP configurations. These parameters can
modify the EMVS processing system architecture, instruction set architecture, and
memory system. In the current FPGA evaluation on Altera DE4 board, four VP
cores are integrated into the Multi-Vector System. Two VP cores use 32 lanes, and

Figure 9: GPU based: Jetson TK1 System

16

Figure 10: Altera Stratix-IV FPGA based EMVS Architecture

other two are using 64 lanes. Each VP core uses 8kB of SVM as local memory.
The Altera Quartus II version 13.0 and the Nios II Integrated Development En-
vironment (IDE) are used to develop the systems. The systems are tested on an
Altera Stratix-IV FPGA-based DE4 board.

An SPREE [16] scalar processor is used to execute the scalar operations of
Multi-Vector System. The SPREE is a 3-stage MIPS pipeline with full forwarding
core and has a 4K-bit branch history table for branch prediction. The SPREE core
keeps working in parallel with the vector processor except for control instructions.

The FPGA based EMVS compiler performs the task partitioning, assign inter
VP core communication and maps the tasks to the Scheduler. The priorities of
each vector processor core task can statically declare. From the main program,
the application is spawned as multiple parallel threads. At run-time, the EMVS
scheduler handles multiple VP cores processing tasks and manages on-chip data
and off-chip data movement using the Buffer Memory and the Descriptor Memory.

4.5. Applications
Table 1 shows the problem applications that are processed on the systems

(discussed above) along with their required number of processing. The appli-
cations table incorporates a broad range of processing and data transfer require-
ment. These requirements are used to measure the behavior and performance of
data processing, data management and data transfer of the systems in a variety of
situations. Column Vector Operation presents maximum number vector operation
used by an application. Each application uses a multiple processor cores.

17

5. Results and Discussion

In this section, the system performance, dynamic power and energy of the
Odroid XU3 System, the Parallela System, the Jetson TK1 System and the FPGA
based EMVS is measured by executing Test Applications (shown in Table 1) at
200 MHz of clock rate. The section is further divided into the Application Perfor-
mance Comparison, the System Performance Comparison and the Dynamic Power
and Energy Comparison

5.1. Application Performance Comparison
For performance comparisons, we execute the applications of Table 1 with 256

MB of dataset on embedded systems (discussed in Section 4. Figure 11 shows the

Table 1: Brief description of application kernels
Application Description Vector

Operation
FIR Calculates the weighted sum 32

of the past and current inputs
1D Filter Low pass 1D Filter 32
Tri-Diogonal Determines the best local 32

arrangements among nucleotide
or protein patterns

Mat Mul Performs Matrix Multiplication 64
X=Y × Z

RGB2Gray Converts 24bit RGB to 8bit
Gray scale image 32

RGB2CMYK Converts RGB image data
into CMYK format 32

Gaussian Implements discrete convolution 64
filter to estimated the
2nd order derivatives

Image Blend Blend two images and
generate one image file 32

K-Mean A method of vector , 32
quantization perform cluster
analysis in data mining.

3D-Stencil Averages the nearest neighbor 96
points in Three Dimensions

18

applications processing time of the Odroid XU3 System, the Parallela System, the
Jetson TK1 System and the FPGA based EMVS. The X-axis represents application
kernels. The Y-axis shows the application execution time (seconds) in logarithmic
scale (less is better). Each bar represents the application data transfer time and
processing time for the embedded systems.

By using the FPGA based EMVS, the results show that the FIR kernel achieves
12.69x 9.94x and 5.24x of the speedup over the Odroid XU3 System, the Paral-
lela System and the Jetson TK1 System respectively. The 1D Filter application
achieves 14.05x, 6.5x and 3.19x of speedups. The FIR and 1D Filter application
kernel data processing have no data dependencies, therefore EMVS uses multiple
descriptors to access data and feed them multi-vector processor for the processing.
The Tri-diagonal kernel processes the matrix with sparse data placed in diagonal
format. The application has a diagonal data transfers with less data locality, there-
fore attains 6.64x, 4.84x 2.69x of speedup. The Mat Mul kernel accesses row and
column vectors. EMVS uses two descriptors to locate the two vectors. The row
vector access pattern has unit stride whereas the column vector has a stride equal
to the size of a row. The EMVS gets 7.46x 4.63x 3.14x of speedups. RGB2CMYK
and RGB2Gray have a 1D block of data access with maximum data locality and
achieves 14.63x, 6.51x, 3.89x and 19.28x, 6.37x, 4.46x of speedups respectively.
The Gaussian and Image Blend applications take the 2D block of data perform 2D

Figure 11: Single Application Execution Time on Different Vector Systems

19

Figure 12: Embedded Systems Time in Minutes while Processing the Applications Concurrently

processing. The applications achieve 7.08x, 5.40x, 2.28x and 8.40x, 4.90x, 2.94x
of speedups respectively. The K-Mean kernel has random load/store and 1D strid-
den data transfers with no data locality. The EMVS achieves 4.48x, 2.71x, and
1.46x of speedups. The reason for fewer speedups is, the application has ran-
dom memory accesses for the processing and has multiple branches, the EMVS
uses the scalar processor to perform the processing. The 3D-Stencil uses three-
dimensional data structure. The EMVS Specialized Vector Memory efficiently
handle 3D and feed it to multiple VPs. The EMVS system achieves 17.53x, 8.54x
and 4.12x of speedups. The vectorized applications of the Odroid XU3 System, the
Parallela System and the Jetson TK1 System always use the maximum processing
cores and the memory system accesses data with unit stride using load/store and
DMA operations. The memory management of the system uses a multi-banking
methodology which requires larger crossbar to routes the data to multiple process-
ing cores. The EMVS manages memory access patterns of multiple vector pro-
cessors in hardware thus improves the system performance by prefetching these
complex access patterns in parallel with computation and by transferring them to
vector processors without using a complex crossbar network. The EMVS Spe-
cialized Vector Memory unit holds complex vector data structures and efficiently
accesses, reuses, aligns and feeds data to multiple vector processors. EMVS sup-
ports multiple data buses that increase the local memory bandwidth and reduce
on-chip bus switching.

5.2. System Performance Comparison
The system performance is measured by executing application kernels simul-

taneously, on the Odroid XU3 System, the Parallela System, the Jetson TK1 System
and the FPGA based EMVS. Figure 12 shows the systems total time in minutes

20

Figure 13: Dynamic Power and Energy of Embedded System Architectures

while processing the application kernels concurrently. Each bar includes the ap-
plications parallel processing time on multiple processors, data transfer and man-
agement time and application tasks scheduling time. While processing the appli-
cation on the EMVS, the results show that the EMVS achieves 10.22x, 5.67x and
3.01x of performance improvement against the Odroid XU3 System, the Parallela
System and the Jetson TK1 System respectively. The EMVS manages memory ac-
cess patterns in hardware which improve the system performance by prefetching
these complex access patterns in parallel with the vector processing. The EMVS
Scheduler applies run-time resource-aware scheduling policies which efficiently
executes the application tasks on multiple processing cores.

5.3. Dynamic Power and Energy Consumption
The dynamic power and energy of the Odroid XU3 System, the Parallela Sys-

tem, the Jetson TK1 System and the FPGA based EMVS is measured (shown in
Figure 13), while executing the Test Applications 1. To measure dynamic power
the DE4 board gives a resistor to sense current/voltage and 8-channel differen-
tial 24-bit analog to digital converters. While executing the test application, the
results show that the Odroid XU3 System, the Parallela System, the Jetson TK1
System and the FPGA based EMVS draw 5.6, 4.1, 9.5 and 5.4 watts of dynamic
power respectively. While comparing the dynamic power results show that EMVS
consumes 1.04 and 1.76 times less power than the Odroid XU3 System and the Jet-
son TK1 System respectively and draws 1.35 times more power than the Parallela
System. Whereas when we compared the energy it is absorbed that the EMVS
consumes 10.60, 4.20 and 5.30 times less energy than the Odroid XU3 System, the
Parallela System and the Jetson TK1 System.

21

6. Related Work

Severance et al [17] presents the VectorBlox MXP Matrix Processor, an FPGA-
based soft processor capable of highly parallel execution. The MXP processor
system utilizes C languages to program and executes data- parallel software algo-
rithms in hardware. The MXP processor architecture uses custom vector instruc-
tions and expandable DMA filters. The processor is integrated into existing Altera
and Xilinx development flows which simplifies the development process. Sever-
ance et al. [18] also developed a pipelining data path technique for the Streaming
Vector Processor (SVP). The SVP handles the pipeline data with high-bandwidth
and manages the outputs in an on-chip memory. The SVP processor uses C lan-
guage to programme the vector applications. Codreanu et al. [19] proposed an
adapted interleaved multi-threading technique that improves the performance and
reduces the vector processor energy consumption. The technique improves the
scalar processor pipeline performance and increases vector resources utilization.

Yu et al. [20] suggest a uni-core vector processor architecture called VIPERS.
The VIPERS consists of a RISC scalar core, that performs the memory manage-
ment, an address generation logic, and a memory crossbar that control the data
transfer movements and a vector core for processing application. Chou et al. [21]
provide a vector processor architecture having a scratchpad memory for local data
management called VEGAS. Severance et al. [22] proposed an updated version
of VEGAS called VENICE. The VENICE uses a scratchpad for software-based
data management and a DMA to access data from the main memory. VENICE has
reservations about the rearrangement of irregular/complex data with scatter/gather
support. Yiannacouras et al. propose the VESPA [23] processor that utilizes a con-
figurable cache and provides prefetching support in hardware for a fixed number
of cache lines that increase the memory system performance. The VESPA system
integrates wide processor buses to meet the system cache line sizes. VIPERS and
VEGAS integrates a scalar Nios core that moves the data between the main mem-
ory and the local memory. To align and rearrange the local data, the systems use
a crossbar network.

Robert et al [24] developed a single-board computer (SBC) at Los Alamos
National Laboratory for the aeronautical applications. The SBC is intended to
adhere the data and command handling demands for space missions by apply-
ing true space-grade radiation hardness and fault tolerance. The design uses
a space-quality dual-core application specific integrated circuit (ASIC) proces-
sor, an FPGA, memories, and front-end analog and digital interfaces to meet the
command- and data-handling requirements of medium-sized missions. The design

22

consumes 5 W and measuring less than 7 inches x 6 inches, the design supports
9-gigabit/s class bidirectional SerDes links, 6 SpaceWire ports, redundant MIL-
STD-1553B ports, 32 Mbytes of EDAC protected SRAM, 2 GBytes of nonvolatile
memory, and supports 200 MFLOPS operation.

Inoue [25] proposed a multi-vector processor system that largely aims at ef-
ficient satellite image processing. The multi-vector processor system has up to
64 processor units, a loop network, and an image memory. The processor units
can execute flexible vector processing with a unique vector access arrangement.
The loop network produces high-speed and contention-free data transfer among
the processor systems. Ronny [26] proposed the vector-thread (VT) architecture,
which provides high performance with little power and small area. The VT struc-
ture unites the vector and multithreaded compute models. It uses a control proces-
sor that fetches commands and broadcast instruction to all vector processor. The
vector and threaded control mechanisms provide a VT architecture to flexibly and
compactly encode application parallelism and locality, and a VT machine utilizes
to gain performance and effectiveness. Ronny [27] also proposed a vector-thread
architectures as a performance-efficient solution for all-purpose computing. The
VT structural model joins the vector and multithreaded compute designs. VT
gives the programmer with a command processor and a vector of virtual proces-
sors. Mike [28] described the SunOS multi-threading architecture for multiple
threads. The SunOS uses the lightweight threads to increase the UNIX Applica-
tion Programming Interface for a multi-threaded environment. The design permits
the programmer to check the level of physical concurrency the application needs
or permits the threads package to determine automatically this. The SunOS ar-
chitecture applies a regular synchronization mechanism between the threads to
handle local and global processes. The programmer can manage the mapping of
threads onto LWPs to obtain special improvement.

Tassadaq et al. [29] [10] discussed a uni-vector accelerator based memory sys-
tem and its implementation on an Altera FPGA to establish a fast communication
with the host. The design supports application-specific accelerators and scalar soft
core processor and integrates a pattern based Memory Controller for Vector Pro-
cessor. The Memory Controller for Vector Processor uses Buffer Memory and a
Data Manager are integrated that reduce the power dissipation and efficiently ac-
cess, reuse, align and feed data to the vector processor without a complex crossbar
network.

23

7. Conclusion

In this work, we proposed and designed an Embedded Multi Vector-core Sys-
tem (EMVS) architecture, that manages and schedules multiple vector proces-
sor and data transfers. The EMVS consists of parameterizable vector processors
(VP), vector lanes (VL), specialized vector memory, on-chip bus network and
Pattern Aware Main Memory Controller. The system uses C macros that applies
loop unrolling and strip-mining and access complex vector data for multiple vec-
tor processors. The EMVS memory manager and scheduler handles multi vector
data transfer and scheduling instruction in hardware. The performance of EMVS
is compared with different heterogeneous multi-core system architectures. The
benchmarking results show that EMVS achieves between 2.7x to 9.6x of speedup
against the GPU and Heterogeneous Multi-core Systems.

References

[1] Earl Swartzlander. Application Specific Processors, volume 380. Springer
Science & Business Media, 2012.

[2] Kevin W Rudd. Vliw processors: efficiently exploiting instruction level par-
allelism. PhD thesis, Citeseer, 1999.

[3] Rem Gensh, Ali Aalsaud, Ashur Rafiev, Fei Xia, Alexei Iliasov, Alexander
Romanovsky, and Alex Yakovlev. Experiments with odroid-xu3 board. New-
castle University, Computing Science, Claremont Tower, Claremont Road,
Newcastle England, 2015.

[4] Spiros N Agathos, Alexandros Papadogiannakis, and Vassilios V Di-
makopoulos. Targeting the parallella. In Euro-Par 2015: Parallel Process-
ing, pages 662–674. Springer, 2015.

[5] David Lewis, Gordon Chiu, Jeffrey Chromczak, David Galloway, Ben
Gamsa, Valavan Manohararajah, Ian Milton, Tim Vanderhoek, and John
Van Dyken. The stratix 10 highly pipelined fpga architecture. In Proceedings
of the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 159–168. ACM, 2016.

[6] Louise H Crockett, Ross A Elliot, Martin A Enderwitz, and Robert W Stew-
art. The Zynq Book: Embedded Processing with the Arm Cortex-A9 on
the Xilinx Zynq-7000 All Programmable Soc. Strathclyde Academic Media,
2014.

24

[7] Xilinx Virtex-7. Leading fpga system performance and capacity, 2012.

[8] Richard M Russell. The cray-1 computer system. Communications of the
ACM 1978.

[9] Tassadaq Hussain et al. Reconfigurable Memory Controller with Pro-
grammable Pattern Support. HiPEAC WRC, Jan, 2011.

[10] Tassadaq. Hussain et al. PPMC: A Programmable Pattern based Memory
Controller. In ARC 2012.

[11] T. Hussain, O. Palomar, A. Cristal, O. Unsal, E. Ayguady and M. Valero.
Advanced Pattern based Memory Controller for FPGA based Applications.
In International Conference on High Performance Computing & Simulation,
page 8. ACM, IEEE, 2014.

[12] T. Hussain, O. Palomar, A. Cristal, O. Unsal, E. Ayguady and M. Valero.
Advance Multi-core Memory Controller. In International Conference on
Field-Programmable Technology FPT2014. IEEE, 2014.

[13] T. Hussain, O. Palomar, A. Cristal, O. Unsal, E. Ayguady and M. Valero.
MAPC: Memory Access Pattern based Controller. In 24th International
Conference on Field Programmable Logic and Applications (FPL). IEEE,
2014.

[14] Hui Cheng. Vector pipelining, chaining, and speed on the ibm 3090 and cray
x-mp. IEEE, Computer 1999.

[15] Michael Weiss. Strip mining on simd architectures. In Proceedings of the
5th international conference on Supercomputing. ACM, 1991.

[16] Peter Yiannacouras et al. The microarchitecture of fpga-based soft proces-
sors. In International conference on Compilers, architectures and synthesis
for embedded systems 2005.

[17] Aaron Severance and Guy GF Lemieux. Embedded supercomputing in fpgas
with the vectorblox mxp matrix processor. In Hardware/Software Codesign
and System Synthesis (CODES+ ISSS), 2013 International Conference on,
pages 1–10. IEEE, 2013.

25

[18] Aaron Severance, Joe Edwards, Hossein Omidian, and Guy Lemieux. Soft
vector processors with streaming pipelines. In Proceedings of the 2014
ACM/SIGDA international symposium on Field-programmable gate arrays,
pages 117–126. ACM, 2014.

[19] Valeriu Codreanu, Lucian Petrică, and Radu Hobincu. Increasing vector
processor pipeline efficiency with a thread-interleaved controller. In System
Theory, Control, and Computing (ICSTCC), 2011 15th International Con-
ference on, pages 1–4. IEEE, 2011.

[20] Jason Yu et al. Vector processing as a soft processor accelerator. ACM
Transactions on Reconfigurable Technology and Systems, 2009.

[21] Christopher H Chou et al. Vegas: soft vector processor with scratchpad
memory. In Proceedings of the international symposium on FPGA 2011.

[22] Aaron Severance et al. Venice: A compact vector processor for fpga ap-
plications. In International Conference on Field-Programmable Technology
2012.

[23] Yiannacouras, and others. VESPA: portable, scalable, and flexible FPGA-
based vector processors. In CASES 2008, Proceedings of international con-
ference.

[24] Robert Merl and Paul Graham. A low-cost, radiation-hardened single-board
computer for command and data handling. Technical report, Los Alamos
National Laboratory (LANL), Los Alamos, NM (United States), 2016.

[25] Atsushi Inoue and Akira Maeda. The architecture of a multi-vector processor
system, vpp. Parallel Computing, 8, 1988.

[26] Ronny Krashinsky, Christopher Batten, Mark Hampton, Steve Gerding,
Brian Pharris, Jared Casper, and Krste Asanović. The vector-thread archi-
tecture. In Computer Architecture, 2004. Proceedings. 31st Annual Interna-
tional Symposium on. IEEE, 2004.

[27] Ronny Krashinsky. Vector-thread architecture and implementation. PhD
thesis, Massachusetts Institute of Technology, 2007.

[28] Mike L Powell, Steve R Kleiman, Steve Barton, D Shan, Dan Stein, and
Mary Weeks. Sunos multi-thread architecture. In The SPARC Technical
Papers. Springer, 1991.

26

[29] T. Hussain, O. Palomar, A. Cristal, O. Unsal, E. Ayguady and M. Valero.
Memory Controller for Vector Processor. In The 25th IEEE International
Conference on Application-specific Systems, Architectures and Processors.
IEEE ASAP 2014 Conference, 2014.

27

