
Journal of Systems Architecture 97 (2019) 416–427

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Hierarchical adaptive Multi-objective resource management for many-core

systems

André Luís del Mestre Martins a , Alzemiro Henrique Lucas da Silva

b , Amir M. Rahmani c ,

Nikil Dutt c , Fernando Gehm Moraes b , 1 , ∗

a Sul-Rio-Grandense Federal Institute, IFSul, Brazil
b School of Technology, PUCRS, Brazil
c Donald Bren School of Information and Computer Sciences, University of California, UCI, Irvine, USA

a r t i c l e i n f o

Keywords:

Self-Awareness

Adaptability

Multi-Objective

Many-Core

Resource management

a b s t r a c t

The typical workload of many-core systems produces peaks and valleys of resources utilization throughout the

time. The power capping limits the full system utilization in a workload peak, but also creates a power slack to

apply different resource management (RM) policy in a valley phase. Related works do not consider this workload

behavior, by proposing RMs with fixed goals. This work proposes a hierarchical adaptive Multi-Objective Re-

source Management (MORM) for many-core systems under a power cap. MORM works with dynamic workloads,

which presents peaks and valleys of utilization. The hierarchical approach allows clusters of processing elements

(PEs) to execute applications according to different objectives simultaneously. A cluster can drive the PEs to opti-

mize either performance or energy. MORM can dynamically shift the goals of a cluster according to the workload

behavior. Comparison with a state-of-the-art RM optimized for single objective shows that MORM achieves equiv-

alent results in a workload valley while outperforming up to 37.19–49.03% the performance in a workload peak

regardless of the power cap. The comparison reveals relevant features to be considered in large many-core sys-

tems: hierarchical organization, multi-task mapping, and joint adaptability between software (remapping) and

hardware (DVFS) actuation.

1

m

D

p

[

f

g

a

t

m

e

i

t

c

d

F

p

T

p

p

w

p

c

i

p

t

t

h

t

e

e

h

R

A

1

. Introduction

Many-core systems provide high-performance computing for distinct

arket segments, such as embedded systems, desktop PCs, and servers.

ue to the high power dissipation inherent in recent technology nodes,

ower capping constrains the full utilization of many-core systems

1–3] . A resource management (RM) unit dynamically allocates tasks

rom arriving applications for execution on PEs. To meet the system

oals, RM employs distributed or hierarchical approaches to ensure scal-

bility in large systems [4] .

The challenge of executing dynamic workloads on many-core sys-

ems under specific constraints motivated researchers to employ RMs to

eet one or more specific objectives. At the application level, the RM

valuates if the system has enough power and resources for new incom-

ng applications [5,6] . Once the RM allows the application to execute,

ask mapping algorithms find the most suitable area to place the appli-

ation’ tasks. At runtime, task remapping [7] and Dynamic Voltage and
∗ Corresponding author.

E-mail addresses: almmartins@charqueadas.ifsul.edu.br (A.L.d.M. Martins), alzem

utt@uci.edu (N. Dutt), fernando.moraes@pucrs.br (F.G. Moraes).
1 The Author Fernando Moraes is supported by FAPERGS (17/2551-0001196-1) an

t

ttps://doi.org/10.1016/j.sysarc.2019.01.006

eceived 28 September 2018; Received in revised form 16 January 2019; Accepted 2

vailable online 23 January 2019

383-7621/© 2019 Elsevier B.V. All rights reserved.
requency Scaling (DVFS) may modify the system to adjust energy and

erformance of the applications according to the system status [8–10] .

hus, comprehensive management for many-core systems includes ap-

lication admission, task mapping and remapping, and DVFS under a

ower cap using a hierarchical scheme.

Fig. 1 shows a typical workload behavior of a computational system,

ith peaks and valleys of system utilization [11] and, consequently,

ower. The figure highlights the number of executing tasks and allo-

ated processors, in a peak and a valley of system utilization. The hor-

zontal line corresponds to the power cap. As shown, in the utilization

eak, the dissipated power is higher than the cap, justifying the adop-

ion of an RM. For example, mobile systems reproduce similar utiliza-

ion behavior by presenting low workload when in standby mode and

igh workload when the user is handling it [12] . Even in active mode,

he system utilization is frequently varying according to the number of

xecuting applications [13] . Servers for cloud computing are another

xample of a variation in the workload demand, but the time scale of

he variation can be hours or days [14] .
iro.silva@acad.pucrs.br (A.H.L. da Silva), amirr1@uci.edu (A.M. Rahmani),

d CNPq (302531/2016-5), Brazilian funding agencies.

2 January 2019

https://doi.org/10.1016/j.sysarc.2019.01.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2019.01.006&domain=pdf
mailto:almmartins@charqueadas.ifsul.edu.br
mailto:alzemiro.silva@acad.pucrs.br
mailto:amirr1@uci.edu
mailto:dutt@uci.edu
mailto:fernando.moraes@pucrs.br
https://doi.org/10.1016/j.sysarc.2019.01.006

A.L.d.M. Martins, A.H.L. da Silva and A.M. Rahmani et al. Journal of Systems Architecture 97 (2019) 416–427

Utilization and Power

 10

 20

 30

 40

 50

 60

 70

U
til

iz
at

io
n

(%
)

38 tasks
26 processors

17 tasks
11 processors

 50

 100

 150

 200

 250

 300

 10000 20000 30000

P
ow

er
 (

m
W

)

Tick Counter (Kticks)

Fig. 1. System utilization and power for a 6 × 6 many-core system running a

dynamic workload.

o

t

M

p

w

a

T

s

c

s

v

fi

[

a

n

d

t

o

j

a

i

t

c

m

m

n

r

a

o

a

t

g

i

o

c

a

S

p

t

S

p

2

b

m

(

m

[

b

t

t

b

A

h

M

a

r

M

o

n

p

g

m

n

[

i

p

o

p

m

i

t

s

T

w

m

c

c

c

r

r

m

w

b

P

t

o
Due to the power capping, the system may not admit power peaks

n a high utilization phase. For instance, the RM decides which applica-

ions should speed up and down, creating a resource sprinting situation.

eanwhile, the low workload may be an opportunity for boosting ap-

lications and perhaps finish some of them faster before the next peak

hen there is a power slack available. As another strategy, the RM can

lso activate a low power mode for the low workload to save energy.

herefore, an efficient RM requires adaptive mechanisms to make the

ystem follow different goals throughout the time and benefit from the

urrent workload status.

On the other hand, it has been shown in the literature that due to

everal constraints related to technology, environment, and workload

ariation (e.g., thermal issues, security, performance, and energy ef-

ciency), the current many-core systems demand multi-objective RMs

15] . These objectives can be partially/fully overlapping, contradicting,

nd conflicting with each other. In case of conflicting objectives, the RM

eeds to opportunistically select a subset of goals to track over time and

ynamically switch between the goals according to certain conditions

o satisfy multiple dynamic objectives. Thus, fixed-objective RM covers

nly specific cases chosen according to narrow contexts.

Accordingly, the development of an RM able to select different ob-

ectives at runtime is challenging due to the following reasons: (i) the

daptability required for shifting the goal of the system (or a portion of

t) at runtime according to the dynamic workload, (ii) the wide actua-

ors set that the RM needs to manage and coordinate to support runtime

hanges of system goals, and (iii) the scalability issue inherent to the

any-core systems.

This paper presents an RM called Multi-Objective Resource Manage-

ent – MORM. MORM targets large many-core systems running dy-

amic workloads under restricted power capping. MORM controls at

untime multiple actuators in a coordinated way to provide the required

daptability to the system and enable multi-objective capability. Multi-

bjective in this context indicates that MORM addresses power, energy,

nd performance concomitantly, considering communication, compu-

ation and scalability issues. MORM is also adaptive as it can switch

oals at runtime and optimize either performance or energy. This work

s aligned with important trends for resource allocation [4] : (i) multi-

bjective resource allocation, (ii) consideration of communication and

omputation loads together, and (iii) addressing scalability in large-scale

rchitectures.

The main contributions of this work are as follows:

– An approach that can dynamically prioritize different objectives

by changing the system settings according to the workload vari-

ation throughout the time;
417
– A holistic approach including techniques for application admis-

sion, task mapping, task remapping, and DVFS, to make a trade-

off between conflicting objectives: performance or energy in a

coordinated way;

– A hierarchical organization which distributes the workload in

clusters for allowing applications to run according to different

goals in different regions simultaneously.

This paper is organized as follows. Section 2 reviews related works.

ection 3 presents the many-core architectural features and the ap-

lication model. Sections 4 overviews MORM. Sections 5 and 6 de-

ail the MORM decisions at the system and cluster levels, respectively.

ection 7 presents the experimental results, and Section 8 concludes this

aper.

. Related works

Table 1 summarizes related works concerning the features required

y RMs: (i) management of the applications admission (AA); (ii) task

apping/remapping (TM and TR); (iii) DVFS control; (iv) power cap;

 v) hierarchical management; and (vi) adaptive goals, i.e., the RM can

anage the applications to meet distinct goals dynamically.

Regarding application admission (second column), works

6,18] present frameworks for deciding the best number of tasks

y adapting the application parallelism to the available resources on

he system or the power capping. In the work by Rahmani et al. [16] ,

he application enters the system if there are available processors,

ut can also be killed suddenly if the power overcomes the capping.

n alternative approach for AA assumes that application tasks can

ave approximated versions to trade-off power and performance [20] .

ORM can remap running tasks to share PEs and map incoming

pplications in a reduced number of PEs to open power and resources

oom.

Applications need to be mapped once they enter into the system.

apping heuristics have inherent challenges such as disturbances in

ther applications, traffic, and scalability [7] . In general, for homoge-

eous many-core systems, runtime mapping heuristics assume one task

er PE and assign tasks in a continuous shape to avoid network con-

estion and optimize performance [22] . On the other hand, the assign-

ent of more than one task per PE minimizes the hop number and the

umber of active PEs and leads to energy savings [23] . Some proposals

6,16,20,21] deploy distinct algorithms to map one task per processor

n square shapes (third column). Another mapping approach to meet

ower constraints is the pattern mapping [24] . MORM takes advantage

f the hierarchical system organization to propose two lightweight map-

ing heuristics that enable a fast adaptation between energy and perfor-

ance goals.

Task remapping employs task migration to deal with the availabil-

ty of resources dynamically. When a task arrives to execute, remapping

he running tasks before mapping the incoming task delivers a better re-

ult than mapping straight the incoming task on the available resources.

he overhead of a task migration is low for homogeneous many-cores

ithout shared memory [25] . As some works [6,16,20] do not support

ulti-tasking mapping, task remapping brings no significant advantages

oncerning power and resources, and then it is not employed (fourth

olumn). Pathania et al. [21] benefit from an exponential property of

ontiguous square shapes to optimally remap running tasks and avoid

esources fragmentation due to dynamic workload. MORM uses two task

emapping approaches, join and split , to perform adaptability for opti-

izing the system or part of the system to a new goal according to the

orkload. The join remapping stimulates the PE sharing to save energy

y reducing the communication between tasks and creating more idle

Es for power gating. The split remapping spreads the tasks in more PEs

o optimize performance.

As soon as tasks are running, DVFS is the power actuator to trade-

ff energy and performance at the task level. Besides that, some works

A.L.d.M. Martins, A.H.L. da Silva and A.M. Rahmani et al. Journal of Systems Architecture 97 (2019) 416–427

Table 1

Features of comprehensive RM for many-core systems.

Proposal AA TM TR DVFS Pwr cap Scalability Adaptive Goal

Kapadia et al. [6]
√ √ √ √

Rahmani et al. [16]
√ √ √

Zhang et al. [17]
√ √ √ √

Olsen et al. [18]
√ √ √

Pathania et al. [8]
√ √ √ √

Kim et al. [19]
√ √

Kanduri et al. [20]
√ √ √ √ √

Pathania et al. [21]
√ √ √

This work
√ √ √ √ √ √ √

AA: Application Admission; TM: Task Mapping; TR: Task Remapping

[

t

p

i

[

t

p

t

t

R

s

m

R

t

v

o

a

[

i

e

w

t

R

m

s

c

B

t

t

i

c

t

l

s

3

t

h

m

Fig. 2. NoC-based homogeneous many-core system.

o

t

d

c

m

e

b

a

c

o

p

f

w

power consumption when t and t share the same PE.
6,16,20] employ DVFS (fifth column) at the application level to op-

imize the power with PID controllers. Alternative approaches for

ower capping propose DVFS assignment through reinforcement learn-

ng [19] and probabilistic [8] techniques. However, a recent work

17] shows that a joint actuation between DVFS and resources alloca-

ion boost the performance under a power cap. The DVFS approach em-

loyed in this proposal works with task mapping/remapping heuristics

o maximize the adaptive goal as well as can also identify opportunities

o save energy according to the task phase.

Regarding scalability (sixth column), distributed and hierarchical

M can guarantee scalability for current many-core systems [26] . In

uch complex systems, a centralized RM compromises the system perfor-

ance by inducing network congestion and hotspots. The probabilistic

M of Pathania et al. [8] require no management messages to observe

he system and avoid most of the overheads from management to pro-

ide scalability up to thousands of PEs. This work employs a hierarchical

rganization by grouping PEs in clusters to guarantee scalability.

Finally, the main feature and contribution of MORM is the adapt-

bility according to the workload. The RM proposed in Kanduri et al.

20] can dynamically choose between an accurate version or an approx-

mated version of the same task to make the application follow differ-

nt goals. The remaining works do not assume dynamic changes in the

orkload, i.e., the RM strategy follows the same goal regardless the sys-

em utilization. While the workload is low, the power slack allows the

M to decide an optimization for saving energy or a boosting on perfor-

ance. At peaks of workload, the cluster hierarchy allows the RM to set

ome clusters to boost some applications while still keeping the power

apping by slowing others clusters down.

Overall, Table 1 highlights the comprehensiveness of related RMs.

esides, the discussion of the motivational example (Fig. 1) evidences

hat RMs for many-cores definitely require multi-objective purpose func-

ions. Moreover, power-cap and scalability are primaries concerns and

nclude additional complexity in the RM. Therefore, the key issue is the

oordination of the wide actuation set (AA, TM, TR, and DVFS) to adapt

he system for meeting a new goal when an event (e.g. the system uti-

ization due to the workload) leverage to a goal shifting, while keeping

calability and power capping.

. Background

Fig. 2 presents the main architectural features of the many-core sys-

em to support the techniques herein proposed. The system adopts a

ierarchical organization, with virtual regions, named clusters. Each PE

ay assume distinct roles, defined by software:

– Slave PE – SP : execute applications’ tasks using a multi-task sched-

uler (round-robin scheduler) and send observed data to a man-

ager PE.

– Cluster Manager PE – CM : manage the SPs of a given cluster, exe-

cuting functions such as mapping, remapping, DVFS control, and

sends the cluster information to the global manager. CMs only

execute management functions.
418
– Global Manager PE – GM : Execute all functions of the CMs and

also selects the cluster to execute incoming applications from the

external world (application repository).

Fig. 2 has four 3 × 3 clusters. Each cluster has one manager PE (CM

r GM) and a set of SP s. The reason to adopt this hierarchical organiza-

ion is to ensure scalability, by distributing the management actions at

ifferent manager PEs. The cluster size is defined at design time. At exe-

ution time, when the cluster has all its resources in use, its manager PE

ay borrow resources from neighbour clusters. According to Castilhos

t al. [27] , a cluster size with 16 (4 × 4) PEs represents a good trade-off

etween execution time optimization and resources reserved for man-

gement. Moazzemi et al. [28] survey RMs for many-core systems and

onclude that the Supervisory Control Theory (an approach similar to

urs) is the most suitable approach regarding scalability.

All PEs have the same hardware, with a router, a clock generator, a

rivate memory, a processor and a network interface (DMNI). Relevant

eatures of the PEs related to this work include:

– DVFS at PE level : the router always works at the nominal fre-

quency to avoid network stalls, while other modules may work

at different frequencies according to the workload.

– Observing : SPs have virtual sensors , able to count the number of

packets traversing the router, the number of memory accesses,

and the number of executed instructions periodically, according

to a sampling window. The data from these counters enables the

CM to estimate the consumed energy [29] .

Applications are modeled as directed acyclic task graphs, A = (T, E) ,

here:

– the vertex t i ∈T is a task, with a weight q i corresponding to its

power consumption when t i executes in a PE with no resources

sharing;

– the directed edge e ij ∈E , with a weight p ij , corresponds to the
i j

A.L.d.M. Martins, A.H.L. da Silva and A.M. Rahmani et al. Journal of Systems Architecture 97 (2019) 416–427

Fig. 3. Steps to obtain q i and p ij weights for a given application.

a

c

a

p

v

p

e

c

b

S

t

t

a

t

s

t

t

e

c

S

𝑝

t

a

F

𝑝

4

w

t

s

c

e

t

(

A

v

c

a

C

D

e

i

C

Fig. 4. Overview of the multi-objective resource management for many-core

systems.

a

t

f

D

t

e

D

o

t

D

G

D

r

a

m

t

5

d

F

p

(

i

a

Obtaining q i and p ij weights require a design-time evaluation of the

pplication set. Applications are simulated individually in the many-

ore to avoid disturbances from other sources. The number of PEs is set

ccording to the number of the tasks. All SPs are set to the nominal vf-

air (voltage-frequency pair) to get q i , and to the most energy efficient

f-pair to obtain p ij .

Fig. 3 shows the steps to generate q i and p ij weights for a given ap-

lication. To obtain q i , the tasks are manually mapped so that an SP

xecutes one task in a contiguous shape. At the end of the simulation, q i
orresponds to the worst-case value among all power sampling reported

y the SP where t i was allocated.

Next, to derive a p ij , the communicating tasks t i and t j share the same

P while the remaining tasks run individually in another SPs. Similarly

o q i , p ij is the worst-case value among all power samplings reported by

he SP where t i and t j are allocated. Differentely from other works that

ssign to the edges the communication power [30,31] , p ij corresponds

o the power measure when the communicating task t i and t j share the

ame PE. Note that, generating all p ij values require multiple simula-

ions to test all e ij values assigned exclusively to an SP. For instance,

he application from Fig. 3 has six edges and needs three simulations to

xtract all p ij values. For this example, the first task mapping could allo-

ate t A and t B 1 , and t B 2 and t C to share SPs for deriving 𝑝 𝐴 − 𝐵1 and 𝑝 𝐵2− 𝐶 .

econd simulation reports 𝑝 𝐴 − 𝐵2 and 𝑝 𝐵3− 𝐶 and the last one generates

 𝐴 − 𝐵3 and 𝑝 𝐵1− 𝐶 .

Once q i and p ij weights are computed, the manager PEs can derive

he application power from any mapping combination. In Fig. 3 (a) the

pplication power is the sum of all q i weights (𝐴 𝑝𝑤𝑟 =

∑
𝑞 𝑖) while in

ig. 3 (b) the application power corresponds to 𝐴 𝑝𝑤𝑟 = 𝑞 𝐵3 ∗ 𝑘 + 𝑝 𝐴,𝐵1 +
 𝐵2 ,𝐶 where k is a constant to obtain q i in energy mode (Section 5).

. Multi-objective resource management – MORM

Fig. 4 overviews MORM concerning the hierarchical organization,

hich adopts the observe-decide-act paradigm [32] to manage the sys-

em. Section 5 details the system level decisions, related to the admis-

ion of new applications. Next, Section 6 presents the adaptability at the

luster level.

Observing data follows a bottom-up direction. SPs send data (e.g., en-

rgy, CPU utilization, NoC congestion) to their CMs. Each CM transmits

o the GM the current power consumption of its cluster. Manager PEs

CMs and GM) take decisions at cluster and system levels respectively.

t the cluster level, a given CM may decide to modify, for example, the

oltage-frequency pair of a set of SPs. At the system level, the GM may

hange the operation mode of a given cluster. Thus, actuation follows

 top-down direction, with actions send from the GM to CMs and from

Ms to SPs.

efinition 1. Operation modes – clusters may operate in one of two op-

ration modes: (i) performance mode - CM optimizes the resources to min-

mize the execution time of the running applications; (ii) energy mode -

M optimizes the resources to improve the energy efficiency.
419
In Fig. 4 , gray and white boxes correspond to decision algorithms

nd virtual sensors , respectively. Labels inside each box correspond to

he event responsible for firing both decisions algorithms and observing

rom sensors. Events are classified into four classes:

efinition 2. Application events - correspond to external notifications to

he GM that an application is ready for admission or a CM reports the

nd of an application to the GM.

efinition 3. Task events - correspond to the moment that a CM maps

r remaps a task to an SP or the moment an SP reports to a CM that a

ask finished its execution.

efinition 4. Operation Mode events - correspond to the moment that

M changes the operation mode of a given cluster.

efinition 5. Epoch events - correspond to a periodical hardware inter-

uption, where SPs report the observing data to its CM.

The system level management is in charge to take decisions at the

pplication level, to maintain the power cap, and to choose the operation

odes (Section 5). The cluster level management controls the DVFS, and

ask mapping and remapping (Section 6).

. MORM System level decisions

MORM allows a new arriving application to execute if the application

oes not exceed the power cap, and the system has available resources.

irst, the GM verifies the additional power required by the incoming ap-

lication (Section 5.1). After, the GM verifies the resources availability

 Section 5.2). If none of the conditions are satisfied, MORM can mod-

fy the operation mode of the clusters to find room for the incoming

pplication.

A.L.d.M. Martins, A.H.L. da Silva and A.M. Rahmani et al. Journal of Systems Architecture 97 (2019) 416–427

Algorithm 1 MORM Operating Mode Selector.

1: Inputs : 𝑎𝑝𝑝 , 𝑒𝑛𝑒𝑟𝑔𝑦𝐶𝑙 𝑠𝑒𝑡 , 𝑝𝑒𝑟𝑓𝐶𝑙 𝑠𝑒𝑡
2: if 𝑎𝑝𝑝 is arriving then

3: 𝑛𝑒𝑤𝑃 𝑤𝑟 ← 𝑠𝑦𝑠.𝑝𝑤𝑟 + 𝑎𝑝𝑝.𝑝𝑤𝑟𝑃 𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

4: if 𝑛𝑒𝑤𝑃 𝑤𝑟 < 𝑠𝑦𝑠.𝑝𝑤𝑟𝐶𝑎𝑝 then

5: Allows the admission of the app. in performance mode

6: else

7: 𝑛𝑒𝑤𝑃 𝑤𝑟 ← 𝑠𝑦𝑠.𝑝𝑤𝑟 + 𝑎𝑝𝑝.𝑝𝑤𝑟𝐸𝑛𝑒𝑟𝑔𝑦

8: if 𝑛𝑒𝑤𝑃 𝑤𝑟 > 𝑠𝑦𝑠.𝑝𝑤𝑟𝐶𝑎𝑝 then

9: for each 𝑐𝑙 𝑖 ∈ 𝑝𝑒𝑟𝑓𝐶𝑙 𝑠𝑒𝑡 do

10: 𝑛𝑒𝑤𝑃 𝑤𝑟 ← 𝑛𝑒𝑤𝑃 𝑤𝑟 + 𝑐𝑙 𝑖 .𝑝𝑤𝑟𝑉 𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

11: if 𝑛𝑒𝑤𝑃 𝑤𝑟 > 𝑠𝑦𝑠.𝑝𝑤𝑟𝐶𝑎𝑝 then

12: shiftOpMode (𝑐𝑙 𝑖 , energy)

13: end if

14: end for

15: if 𝑛𝑒𝑤𝑃 𝑤𝑟 < 𝑠𝑦𝑠.𝑝𝑤𝑟𝐶𝑎𝑝 then

16: Allows the admission of the app. in energy mode

17: else

18: Application enqueued to be admitted later

19: end if

20: else

21: if 𝑒𝑛𝑒𝑟𝑔𝑦𝐶𝑙 𝑠𝑒𝑡 = ∅ then

22: 𝑐𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 ← maxAvailSPs (𝑝𝑒𝑟𝑓 𝐶𝑙 𝑠𝑒𝑡 , 𝑝𝑒𝑟𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒)
23: shiftOpMode (𝑐𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 , 𝑒𝑛𝑒𝑟𝑔𝑦)
24: end if

25: Allows the admission of the app. in energy mode

26: end if

27: end if

28: else ⊳ 𝑎𝑝𝑝 finished its execution

29: for each 𝑐𝑙 𝑖 ∈ 𝑒𝑛𝑒𝑟𝑔𝑦𝐶𝑙 𝑠𝑒𝑡 do

30: 𝑛𝑒𝑤𝑃 𝑤𝑟 ← 𝑠𝑦𝑠.𝑝𝑤𝑟 + 𝑐𝑙 𝑖 .𝑝𝑤𝑟𝑉 𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

31: if 𝑛𝑒𝑤𝑃 𝑤𝑟 < 𝑠𝑦𝑠.𝑝𝑤𝑟𝐶𝑎𝑝 then

32: shiftOpMode (𝑐 𝑙 𝑖 , 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐 𝑒)
33: end if

34: end for

35: end if

Algorithm 2 MORM Application Admission.

1: Inputs : 𝑎𝑝𝑝 , 𝑎𝑝𝑝 𝑚𝑜𝑑𝑒 , 𝑠𝑦𝑠.𝑐𝑙 𝑠𝑒𝑡
2: Outputs : 𝑐𝑙 𝑜𝑢𝑡𝑝𝑢𝑡
3: 𝑐𝑙 𝑠𝑒𝑡 ← ∅
4: 𝑆𝑃 min ← getMinSPsAdmitApp (𝑎𝑝𝑝, 𝑎𝑝𝑝 𝑚𝑜𝑑𝑒)
5: for each 𝑐 𝑙 𝑖 ∈ 𝑠𝑦𝑠.𝑐 𝑙 𝑠𝑒𝑡 do

6: if 𝑎𝑝𝑝 𝑚𝑜𝑑𝑒 = 𝑐𝑙 𝑖 .𝑚𝑜𝑑𝑒 and 𝑐𝑙 𝑖 .𝑓𝑟𝑒𝑒𝑆 𝑃 ≥ 𝑆 𝑃 min then

7: 𝑐 𝑙 𝑠𝑒𝑡 ← 𝑐 𝑙 𝑠𝑒𝑡 ∪ 𝑐 𝑙 𝑖
8: end if

9: end for

10: if 𝑐𝑙 𝑠𝑒𝑡 ≠ ∅ then

11: 𝑐 𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 ← maxAvailSPs (𝑐 𝑙 𝑠𝑒𝑡 , 𝑎𝑝𝑝 𝑚𝑜𝑑𝑒)
12: return 𝑐𝑙 𝑜𝑢𝑡𝑝𝑢𝑡
13: end if

14: 𝑐 𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 ← maxAvailSPs (𝑠𝑦𝑠.𝑐 𝑙 𝑠𝑒𝑡 , 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐 𝑒)
15: 𝑎𝑝𝑝 𝑚𝑜𝑑𝑒 ← 𝑒𝑛𝑒𝑟𝑔𝑦

16: 𝑆 𝑃 min ← getMinSPsAdmitApp (𝑎𝑝𝑝, 𝑎𝑝𝑝 𝑚𝑜𝑑𝑒) ⊳ update 𝑆 𝑃 min
17: if 𝑐𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 .𝑓𝑟𝑒𝑒𝑆 𝑃 ≥ 𝑆 𝑃 min then

18: shiftOpMode (𝑐𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 , 𝑒𝑛𝑒𝑟𝑔𝑦)
19: return 𝑐𝑙 𝑜𝑢𝑡𝑝𝑢𝑡
20: else

21: return ∅
22: end if

p

i

e

f

n

5

e

v

D

t

f

D

p

a

v

D

S

D

t

t

D

D

o

(

M

d

s

u

a

m

t

w

t

p

e

(

a

e

u

a

2

t

c

i

t

a

e

(

420
Algorithms 1 and 2 have a linear complexity ( (𝑛)) and do not im-

act directly in the applications’ performance since they are executed

n manager processors. Such algorithms may impact in the applications’

xecution time when a given application changes its operation mode

rom performance to energy to respect the power cap when admitting a

ew application.

.1. Operating mode selector

The GM decides the operation mode of each cluster based on differ-

nt power values from the system, cluster and application. The power

alues used in the Operating Mode Selector are the following:

efinition 6. Application Power Performance - prediction of the applica-

ion power by using the performance mode . This prediction is obtained

rom

∑𝑛

𝑖 =1 𝑞 𝑖 , where n is the application tasks’ number.

efinition 7. Application Power Energy - prediction of the application

ower by using the energy mode . This prediction considers weights p ij
nd q i as a function of the mapping, and a k ratio to adjust q i to the

f-pair of energy mode (Fig. 3).

efinition 8. Cluster Power - sum of all monitored power samples in the

Ps belonging to the CM.

efinition 9. Cluster Power Variation - effect on the Cluster Power when

he cluster operation mode changes (Definition 1). Section 6.4 details

he cluster power variation computation.

efinition 10. System Power - the sum of all Cluster Power values.

efinition 11. System Power Cap - the upper bound value of power.

MORM employs proactive actuations to respect the power cap based

n the estimation of power disturbances due to the application events

 Definition 2) and operation mode events (Definition 4).

Application events modify the total system power and the Operating

ode Selector takes decisions by evaluating the expected power impact

ue to these events. If an application finishes its execution, the CM re-

ets the counters of the SPs where the application was mapped and then

pdates the GM with new power values. When an application requests

dmission, the GM takes decisions based on the application power esti-

ation (Definition 6).

Operation mode events disturb the cluster power (Definition 8) due

o task remappings and voltage-frequency changes that the CM executes

hen receiving a new operation mode (Section 6). The GM is aware of

he power disturbance from operation mode events by observing cluster

ower variation (Definition 9) of each cluster.

Algorithm 1 is the proactive power control knob for shifting op-

ration modes of the clusters while respecting the system power cap

 Definition 11) based on the amount of power disturbance induced by

pplication events (Definition 2). At the beginning of the system ex-

cution, all clusters operate in performance mode . The algorithm may

pdate the operation mode of the clusters when an application requests

dmission into the system (lines 2–29), or it finishes the execution (lines

8–34).

The algorithm receives as inputs the application description (app),

he set of clusters operating in energy mode (energyCl set), and the set of

lusters operating in performance mode (perfCl set).

If app is requesting its admission (line 2), MORM estimates the power

ncreases if the application is mapped in performance mode (line 3). If

he estimation does not exceed the system power cap (Definition 11),

pp may be admitted in performance mode (line 5). Otherwise, MORM

stimates the increasing of power to admit the application in energy mode

line 7):

– If the estimated power is above the cap, the loop between lines 9–

14 evaluates if app may be admitted by changing a given cluster

in perfCl to energy mode . Line 10 makes this estimation by using
set

A.L.d.M. Martins, A.H.L. da Silva and A.M. Rahmani et al. Journal of Systems Architecture 97 (2019) 416–427

a

p

c

s

c

a

5

p

r

t

t

t

n

a

m

a

c

m

c

T

m

A

r

c

d

m

r

p

6

f

m

a

6

l

f

Off Manager VFperf VFEDP VFmin

B1 B2

A C

B3 B4

B1 B2

A C

B3 B4

B1 B2

A C

B3 B4

Reference Performance mode Energy mode

A

B1

B2

B3

B4

C

Fig. 5. MORM Adaptative DVFS selects the VF settings of a 3 × 3 cluster in both

operation modes for a given application. Reference: no DVFS.

c

j

b

i

t

s

T

e

t

t

b

𝑉

6

o

p

c

m

t

E

b

n

s

a

t

s

r

S

S

g

r

s

w

×

m

t

t

m
the cl i .pwrVariation (Definition 9), and if it is possible to admit

app, cl i shifts from performance to energy mode (line 12). If the

power is below the capping, the app may be admitted in energy

mode (line 16). Otherwise, app is enqueued to be executed later

(line 18).

– If the estimated power is below the capping it is possible to admit

app the in energy mode - lines 21–26. For that, one cluster must be

in energy mode to receive app . If there is no cluster in energy mode

(line 21), the function maxAvailSPs finds the cluster running in

performance mode with the maximum number of available pro-

cessors, cl output . The algorithm then shifts cl output to energy mode

(line 23).

When a given application finishes its execution (lines 29–34), the

lgorithm verifies if it is possible to shift a cluster from energy mode to

erformance mode , without violating the power cap. The reasoning to

hange the operation mode is to benefit from the power slack and boost

ome applications running in clusters in performance mode . When appli-

ations run in performance mode , they are more likely to finish earlier

nd open room for the execution of new applications.

.2. Application admission

After verifying the application admissibility regarding power, Ap-

lication Admission (Algorithm 2) verifies the application admissibility

egarding available resources and selects the cluster to map the applica-

ion. The algorithm receives as inputs the application description (app),

he app mode defined in Algorithm 1 , and the set of clusters (sys.cl set).

The algorithm starts by creating an empty set, cl set , which will con-

ain the clusters candidate to receive app (line 3). Next, it computes the

umber of SPs required for executing an application according to the

pplication mode, function getMinSPsAdmitApp (line 4). In performance

ode , the number of SPs is equal to the number of the application tasks,

nd in energy mode , this value is smaller due to the CPU sharing among

ommunicating tasks.

The loop between lines 5–9 fills cl set with the clusters’ identifiers that

ay receive app . At the end of the loop, if cl set is not empty, the selected

luster is the one with the maximum SPs running no tasks (lines 10–13).

he function maxAvailSPs returns a cluster identifier with an operation

ode equal to the app mode (second parameter of the function).

If there is no SPs available in any cluster, i.e., cl set is empty,

lgorithm 2 selects a cluster in performance mode as the candidate to

eceive the new application (line 14). In this case, the application mode

hanges to energy mode (line 15) and the number of required SPs is up-

ated (line 16). If cl output can receive app in energy mode, Application Ad-

ission changes its operation mode to energy mode (line 18), and cl output

eceives app (line 19). Otherwise, the function returns null, and the ap-

lication waits in a queue for later admission.

. MORM Cluster level decisions

The adaptability at the cluster level enables clusters to work at dif-

erent operation modes simultaneously. This section describes the three

echanisms adopted at the cluster level: adaptive DVFS, task mapping

nd task remapping.

.1. Adaptive DVFS

Adaptive DVFS is an adaptive threshold-based algorithm that fol-

ows the cluster operation mode [33] . From an available set of voltage-

requency pairs (vf-pairs), the algorithm adopts three modes:

– Performance – VF perf : nominal vf-pair , i.e., the highest voltage and

frequency values;

– Low power – 𝑉 𝐹 min : lowest voltage and frequency values;

– EDP – VF EDP : most energy efficient vf-pair between VF perf and
𝑉 𝐹 min . f

421
The Adaptive DVFS applies 𝑉 𝐹 min in two cases related to communi-

ation issues, regardless the operation mode:

1. HI (high injection): an SP is injecting messages on the network

in a higher speed than the messages are consumed;

2. LU (low processor utilization): an SP is in idle state most of time

waiting for messages.

MORM adopts a similar method to [16] to evaluate the message in-

ection rate. The injection rate is the average utilization of the input

uffer in the local port. The HI threshold is activated when the injection

s higher than, for example, 75%. The LU threshold is activated when

he utilization is below than, for instance, 25%.

Fig. 5 illustrates an example of how Adaptive DVFS associates VF

ettings according to the operation mode by using DVFS to save power.

he CM sets most of SPs at VF perf in performance mode and at VF EDP in

nergy mode . In this example, SPs executing tasks t A and t C are most of

he time in the idle state, because these tasks send data to the processing

asks (t B 1 to t B 4) and receive the processed data, respectively. Thus, in

oth performance and energy modes , the SPs executing these tasks use

 𝐹 min .

.2. Task mapping

MORM employs two mapping algorithms to meet the different goals

f the two operation modes. Besides that, the mapping algorithms also

rovide adaptability for remapping when the cluster operation mode

hanges. The mapping algorithms receive the name of the operation

odes. Performance Mapping is a single-task mapping, which maximizes

he parallelism of applications and optimizes the execution time. The

nergy Mapping employs multi-task mapping to enable the SP sharing

etween tasks. The Energy Mapping follows three constraints: (i) commu-

icating tasks may be mapped in the same SP; (ii) parallel tasks never

hare the same SP (as t B 1 to t B 4 in Fig. 5); (iii) tasks belonging to different

pplications never share the same SP.

The mapping algorithms benefit from the hierarchical organization

o reduce the hop distance between communication tasks. Even if the

ystem is large (e.g., 12x12), the cluster size is typically 4 × 4 [27] to

educe the search space of mapping. The mapping algorithms select the

Ps in a spiral order, which is the recommended way to transverse the

Ps in 2D-mesh NoCs [34] . Also, the algorithms traverse the application

raph using the Breadth-First Search (BFS) algorithm. Finally, the algo-

ithms try to find a contiguous group of free SPs in the spiral path in

uch a way to avoid interleaving between tasks of distinct applications

hen possible.

Fig. 6 (a)–(c) shows the task mappings for two applications in a 4

4 cluster. The numbers labeling the graph vertices sort the tasks for

apping. The system admits the blue application first (Fig. 6 (a)). For

he applications in Fig. 6 (a), for example, Performance Mapping produces

he single task mapping (Fig. 6 (b)) while Energy Mapping results in the

ulti-task mapping (Fig. 6 (c)). Note that the Energy Mapping example

ollows the constraints defined for energy savings.

A.L.d.M. Martins, A.H.L. da Silva and A.M. Rahmani et al. Journal of Systems Architecture 97 (2019) 416–427

Fig. 6. How MORM maps tasks of two applications into a 4 × 4 cluster for

performance mode and energy mode .

6

c

t

f

R

u

o

s

i

b

m

h

M

d

m

J

n

w

t

a

c

t

s

t

Z

a

6

S

v

c

e

h

p

t

Algorithm 3 MORM Power Calculator.

1: Input : cl

2: Outputs : pwrVariation

3: 𝑝𝑟𝑒𝑑 𝑖𝑐𝑡𝑒𝑑 𝑃 𝑤𝑟 ← 0
4: for each 𝑎𝑝𝑝 i ∈ 𝑐𝑙.𝑎𝑝𝑝 set do

5: if cl.opMode = ENERGY then

6: 𝑝𝑟𝑒𝑑 𝑖𝑐𝑡𝑒𝑑 𝑃 𝑤𝑟 + = 𝑎𝑝𝑝 i .𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑃 𝑤𝑟𝑃 𝑒𝑟𝑓

7: else

8: 𝑝𝑟𝑒𝑑 𝑖𝑐𝑡𝑒𝑑 𝑃 𝑤𝑟 + = 𝑎𝑝𝑝 i .𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑃 𝑤𝑟𝐸𝑛𝑒𝑟𝑔𝑦

9: end if

10: end for

11: 𝑝𝑤𝑟𝑉 𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 ← 𝑐𝑙.𝑝𝑤𝑟 − 𝑝𝑟𝑒𝑑 𝑖𝑐𝑡𝑒𝑑 𝑃 𝑤𝑟

t

f

t

(

a

t

s

A

e

t

a

w

7

t

s

D

(

a

o

p

f

e

P

t

t

u

e

i

f

a

l

t

.3. Task remapping

When the GM changes the operation mode of a cluster, the CM exe-

utes task remapping algorithms. When the change is from performance

o energy mode, Join Remapping maps communicating tasks in an SP

ollowing the assumptions of Energy Mapping . On the other hand, Split

emapping algorithm looks for tasks sharing SPs to split their execution

sing more SPs when changing from energy mode to performance mode .

Fig. 6 (d)-(e) presents the remapping results from mapping examples

f Fig. 6 (b)-(c). Both algorithms search for tasks to migrate on the oppo-

ite spiral order. The new SPs to receive the migrating tasks are chosen

n the spiral order. This search order is required to avoid fragmentation

etween idle SPs and running SPs concerning one application. The frag-

entation (in the spiral order) between idle SPs and running SPs can

appen between applications, like the remapping shown on Fig. 6 (d).

The goals of the mapping and remapping algorithms adopted in

ORM are: (i) minimization of the task migrations, which is a time-

emanding operation; (ii) low computational time for updating task

apping for each application and operation mode events. For instance,

oin remapping (Fig. 6 (d)) needs to migrate four tasks (in red). If a

ew mapping targeting energy was executed, the number of migrations

ould be higher (eleven in this example).

The literature presents remapping algorithms [21,35] that may lead

o better results, regarding hop distance between tasks, than the ones

dopted in MORM. The reason to adopt in MORM a simple algorithm

omes from the adoption of the hierarchical organization, which reduces

he search space, i.e., the heuristic evaluates the cluster resources in-

tead of the entire system.

Note that, task (re)mapping and DVFS deploy a joint effort to drive

he cluster according to the operation mode. MORM is aligned with

hang et al. [17] work, which shows the cooperation of both hardware

nd software power knobs to optimize performance.

.4. Cluster power variation computation

The CM provides the estimated power variation value to the GM.

ince the cluster operation mode changes dynamically, power variation

alue is an estimation of power in the opposite operation mode to the

urrent one. The GM employs the estimated power variation on the op-

ration mode selector algorithm (Section 5.1). Algorithm 3 describes

ow CM estimates the power variation.

When the cluster is running in energy mode , the CM estimates the

ower in performance mode from profiling data of all running applica-

ions (lines 5–6) - Definition 6 (on page 5). Otherwise, the CM predicts
422
he power of all running applications in energy mode (lines 7–8). The dif-

erence between the current power value from the observing data and

he predicted power variation is the estimated power variation value

line 11).

Estimate the power variation before task or application events with

ccuracy is challenging due to events like NoC traffic, CPU utiliza-

ion, and memory accesses. A more accurate algorithm should con-

ider all these features, but most of them are unpredictable. Note that,

lgorithm 3 also does not consider remapping algorithms may gen-

rate different task placements than mapping ones (Fig. 6). Despite

hat, Algorithm 3 enables MORM to respect the power cap employing

 lightweight algorithm since the application power profiling consider

orst-case power samplings (Section 3).

. Results

The experiments use in an in-house clock cycle accurate RTL Sys-

emC model of the reference many-core system. The benchmarks, de-

cribed in C language, are DTW (6 tasks), AES (5 tasks), MPEG (5 tasks),

ijkstra (7 tasks). Sort (5 tasks), Audio/Video (7 tasks), and Synthetic

6 tasks, communication intensive application).

Results compare MORM to state-of-art comprehensive system man-

gement targeting dynamic workloads: performance - objective control (PF-

nly). PF-only employs a first node selection [22] for single task map-

ing aiming congestion reduction [36] and, from the same Authors, a

eedback-based PID control that uses DVFS to follow the power cap ref-

rence [16] . The first node selection, the mapping algorithm, and the

ID control were implemented in the reference platform.

Carrying out a fair comparison between MORM and PF-only requires

hat both systems share the following assumptions:

– Observing epoch set to 250 Kticks. This value was chosen accord-

ing to experiments conducted in [27] , which represents a trade-

off between reaction time of the heuristics and overhead at the

manager PEs. Reducing the epoch value may reduce the reaction

time of the heuristics once the observed data arrives faster at the

manager PE, but these PEs become overloaded to treat incoming

packets. The opposite effect occurs increasing the epoch value;

– Both approaches consider the router energy (PF-only does not

consider the NoC energy in its original version [16]);

– The SPs running no tasks are considered off (power gating).

The first set of experiments compares MORM and PF-only under a

ypical workload with peaks and valleys of utilization (Fig. 1). This eval-

ation details the mapping and vf-settings at different moments of the

xecution to highlight the MORM contributions concerning adaptabil-

ty and to evidence the actuation differences of both RMs.

The second set of experiments isolates the peak and valley workloads

or analysis. Test cases with low workload and high workloads are cre-

ted to illustrate pros and cons of MORM and PF-only at distinct work-

oad phases. In this experiment, results evaluate power, total execution

ime, and energy under different power caps.

A.L.d.M. Martins, A.H.L. da Silva and A.M. Rahmani et al. Journal of Systems Architecture 97 (2019) 416–427

Power (mW)

 80

 130

 180

 230

 280

 2000 12000 22000 32000 42000

MORM w/o pwr cap
S

na
ps

ho
t 1

S
na

ps
ho

t 2

S
na

ps
ho

t 3

 80

 130

 180

 230

 280

 2000 12000 22000 32000 42000
Tick Counter (Kticks)

MORM w/ 180mW pwr cap

S
na

ps
ho

t 1

S
na

ps
ho

t 2

S
na

ps
ho

t 3

(a) MORM

Power (mW)

 80

 130

 180

 230

 280

 330

 2000 12000 22000 32000 42000

PF-only w/o pwr cap

S
na

ps
ho

t 1

S
na

ps
ho

t 2

S
na

ps
ho

t 3

 80

 130

 180

 230

 280

 330

 2000 12000 22000 32000 42000
Tick Counter (Kticks)

PF-only w/ 180mW pwr cap

S
na

ps
ho

t 1

S
na

ps
ho

t 2

S
na

ps
ho

t 3

(b) PF-only

Fig. 7. Average power results for (a) MORM and (b) PF-only running typical workload. The top graphs correspond to RMs running without power cap. The bottom

graphs illustrate the power for 180 mW-power cap. Y-axis: power (mW), X-axis: time (in Kticks).

a

t

t

c

e

7

c

F

T

B

d

s

b

b

r

a

a

T

A

a

M

a

p

c

f

f

w

t

s

t

r

p

h

d

1

l

a

e

i

b

p

t

i

a

t

t

a

a

d

t

𝑉

f

c

T

D

𝑉

p

e

a

t

P

h

b

(

b

a

o

a

v

o

t

c

7

a
The third set of experiments evaluates the effect of RMs in the aver-

ge application execution time. The goal of this experiment is to mitigate

he overheads for starting applications by focusing only at the applica-

ion level instead of the workload level, as in the two first experiments.

The fourth set of experiments evaluates MORM operation modes and

luster level actuation. The goal is to demonstrate that MORM trades

nergy and performance according to the operation mode.

.1. Typical workload results

To create a scenario corresponding to a typical workload, appli-

ations arrive in bursts and can leave the system at any moment.

ig. 7 presents the average power consumption of MORM and PF-only.

op graphs show the average power without the actuation of any RM.

ottom graphs illustrate the average power of MORM and PF-only un-

er a power cap of 180mW. The vertical lines in Fig. 7 correspond to

napshots taken at the same execution time for all simulations after a

urst of two applications entering into the system. Thus, after the third

urst, six applications are executing in the many-core.

When the RMs are executing without a power cap, the task mapping/

emapping (TM/TR) algorithms are active, and the only restriction for

dmitting an application is the availability of resources. Since PF-only

nd MORM employ distinct algorithms for AA (Application Admission),

M and TR, they generate distinct power graphs for the same scenario.

lthough the distinct power graphs, the top graphs present power peaks

nd valleys for both RMs. In Snapshot 1 and 2, the average power for

ORM and PF-only are similar. However, MORM power stays constant

fter the third burst, while PF-only power increases in Snapshot 3. The

eak of MORM power in Snapshot 3 is smaller than PF-only power be-

ause MORM sets two clusters to energy mode to open resources room

or two more applications. Therefore, after Snapshot 3, MORM executes

our applications in a reduced number of PEs by employing multitasking

hile PF-only keeps more PEs active to execute the same six applica-

ions. As a result, MORM is 10.66% faster than PF-only concerning the

imulation without power cap.

When the RMs are executing under a 180 mW-power cap, the proac-

ive actuation adopted in the Operating Mode Selector allows MORM to

un with no violations, while the reactive PID controller in PF-only

resents power violations after a burst of applications. On the other

and, these overshoots of power for PF-only might not be a real problem

ue to the thermal inertia [3] .

Fig. 8 details the snapshots under a 180mW-power cap. Snapshot

 (Fig. 8 (a)) shows the system status after the first burst. Due to the

ow workload at this moment, both RMs execute the two applications
423
t VF perf and still produce power slack (Fig. 7). Note that MORM can

ventually apply 𝑉 𝐹 min in the SPs to save energy even with the cluster

n performance mode by checking HI and LU thresholds.

At the second snapshot (Fig. 8 (b)), MORM distributes the workload

etween clusters, with three clusters running in energy mode and one in

erformance mode (with some tasks in 𝑉 𝐹 min), with some SPs running

wo tasks (multi-task mapping). PF-only selects two applications to run

n VF perf , one in VF EDP , and one in 𝑉 𝐹 min . On the other side, MORM en-

bles three applications to run in VF EDP when selecting energy mode for

he three clusters due to its multi-objective cost-function (tradeoff be-

ween energy and performance). Besides the update of vf-settings , MORM

verage power meets the power cap due to reduced leakage power, i.e.,

 lower number of SPs are active in MORM than in PF-only. The main

ifference observed at Snapshot 2 is that MORM enables all applications

o run at VF perf and VF EDP while PF-only sets one application to run at

 𝐹 min to respect the power cap. As a result, PF-only penalizes the per-

ormance of applications by executing them in 𝑉 𝐹 min to meet the power

ap. Note that, MORM manages applications by the joint actuation of

R, DVFS, and PG (power gating) while PF-only employs only DVFS.

Snapshot 3 (Fig. 8 (c)) illustrates both systems after the third burst.

ue to power cap violation at the third burst (Fig. 7), all SPs shift to

 𝐹 min in PF-only. Such actuation penalizes the performance of all ap-

lications in PF-only. In MORM, shifting all clusters to energy mode is

nough to meet the power cap because the energy mode allows joining

pplications’ tasks in one SP and, consequently, generates more idle SPs

o turn off. For instance, Snapshot 3 shows similar power in MORM and

F-only, but MORM has 22 active SPs running in VF EDP while PF-only

as 33 active SPs running in 𝑉 𝐹 min for the same workload.

Summarizing, despite the power overshoots identified in PF-only,

oth RMs respect the power cap while executing a typical workload

 Fig. 7). Snapshots illustrate that increasing the number of tasks makes

oth RMs actuate on power and reveals the differences between both

pproaches. To meet the power cap, MORM employs a joint actuation

f TR, PG, and DVFS at the cluster level, while PF-only performs a per-

pplication DVFS without modifying the applications’ mapping. An ad-

antage of MORM is the fact that it may execute more tasks simultane-

usly than PF-only due to the multi-task mapping. Observe in Fig. 8 (c)

hat some processors are off. Thus, only MORM could admit new appli-

ations if power is below the cap.

.2. Low and high workload evaluation

This Section evaluates MORM and PF-only by isolating the peaks

nd valleys of workload. In low and high workload scenarios, the many-

A.L.d.M. Martins, A.H.L. da Silva and A.M. Rahmani et al. Journal of Systems Architecture 97 (2019) 416–427

Fig. 8. System snapshots (6 × 6 many-core) taken according the moments high-

lighted in Fig. 7 to detail the task allocation and vf-settings .

c

t

t

t

o

L

2

(

u

t

T

3

a

p

m

(

t

c

e

p

(

t

f

o

o

r

p

p

c

a

a

(

b

m

c

s

s

c

T

l

a

s

i

P

i

d

s

3

i

c

a

a

(

n

i

a

i

D

S

a

p

i

a

o

o

T

i

w

l

t

p

t

b

7

a

a

t

p

a

s

t

p

p

i

t

f

P
ore loads applications at the beginning of the simulation in such a way

hat the number of executing tasks corresponds to 50% and 125% of

he number of SPs, respectively. The low workload scenario corresponds

o the valley behavior while the high workload corresponds to the peak

ne. The experimental setup of this Section contains four scenarios: (i)

W – low workload; (ii) HW 210 – high workload, power cap equal to

10 mW; (iii) HW 180 – high workload - power cap equal to 180 mW;

 iv) HW 150 – high workload - power cap equal to 150 mW.

Fig. 9 illustrates the average power consumption for the four eval-

ated scenarios. The first row of power graphs compares the power for

he LW scenario, while the remaining three rows show the HW s ones.

he red shaded area represents the power cap.

In the LW scenario, the power graphs present a similar behavior up to

0,000 Kticks because all applications execute in VF perf in PF-only, and

ll clusters are in performance mode in MORM. After 30,000 Kticks, ap-

lications finish their execution. The longer execution time of the system

anaged by PF-only comes mainly to the different mapping heuristics

PF-only adopts a more complex heuristic, which has main cost func-

ion the hop distance reduction), and higher monitoring data due to the

entralized management.

In the HW scenarios, both RMs respect the power cap. Note that, the

xecution time reduces when the power cap increases since the relaxed

ower constraint allows more applications to run in performance mode

MORM) and in VF perf (PF-only).

MORM power curves in HW scenarios meet the power cap, but

he power presents underutilization. The power underutilization comes

rom the worst-case power predictions (Section 3) and the proactive-

nly actuation. At 210 mW power cap, all clusters run in energy mode to

pen room for all applications. Thus, MORM cannot take advantage of a

elaxed power cap to speed-up some cluster. As a consequence, HW 210

resents the largest power underutilization. Concerning the smallest

ower caps (150 and 180 mW), the power curves stay steady longer and

loser to the cap because the Application Admission proactively blocks the

llocation of a new application to avoid a power violation. At 150 mW

nd 180 mW power cap, a period without samples is observed in MORM

5,000-35,000 Kticks at 150mW, and 10,000-30,000 Kticks at 180mW)

ut without power cap violations. 2

PF-only power curves in HW scenarios stay near to the power cap

ost of the time, despite some overshoots. The oscillation near to the
2 In our framework, the GM does not register power samples when an appli-

ation is waiting for admission. However, the power measures per cluster (not

hown in the graph) guarantee the power cap is met and provide data for deci-

ions.

c

c

c

t

N

R

424
ap line occurs because the PID control is constantly setting vf-pairs .

his behavior in HW has two reasons: (i) the actuation at the application

evel, which creates a larger impact in power compared to the SP grain

dopted by MORM; (ii) the NoC congestion is higher in HW than in LW

ince the NoC traffic has a correlation with vf-settings (higher vf-pairs

ncreases the packet injection rate) [16] and the system load.

Fig. 10 compares the execution time, energy and EDP (Energy-Delay

roduct), normalized to the PF-only results. In LW (Fig. 10 (a)), MORM

s 5.93% faster because the adoption of a hierarchical management re-

uces the NoC traffic traversing the applications. For instance, for the

ame scenario with an observing epoch eight times larger, PF-only is

.22% faster than MORM and 16.72% faster than PF-only with the orig-

nal epoch settings. Further, MORM and PF-only present similar energy

onsumption because the number of tasks and the number of active SPs

re the same for both RMs. As a result, MORM is 7.47% more efficient

t LW .

In HW scenarios, the smaller execution time in MORM comes from:

 i) hierarchical organization; (ii) adaptability; and (iii) comprehensive-

ess. Concerning adaptability, PF-only selects some applications to run

n 𝑉 𝐹 min (as depicted in Fig. 8 (c)) while MORM can reduce the power

nd delays by joining tasks in the same SP running in VF EDP . Concern-

ng comprehensiveness, MORM applies a joint actuation of TR, PG, and

VFS while PF-only employs DVFS to deal with power cap. For instance,

napshot 3 (Fig. 8 (c)) evidences the contrast between both RMs in HW

nd reveals the benefit of adopting multi-objective management in a

eak of workload: MORM respects the power capping without penal-

zing the applications’ performance. Furthermore, MORM can map all

pplications in HW scenarios due to the multitasking feature while PF-

nly has to wait for available SPs.

Although MORM total execution time is significantly lower than PF-

nly, the energy consumption savings do not follow the same trend.

he reason comes from the fact that PF-only executes most of the tasks

n 𝑉 𝐹 min , which has the lowest leakage, and demands one task per PE

hile MORM runs most of the time in VF EDP , which has an intermediate

eakage but uses a smaller number of PEs than PF-only due to the multi-

asking mapping.

Concluding, MORM is superior compared to PF-only at workload

eaks, as shown by the EDP bars in Fig. 10 . It is worthwhile to men-

ion that MORM has space for optimization because the power can stay

elow the cap for extended periods.

.3. Application level evaluation

Previous Sections evaluated RMs regarding execution time, energy,

nd power at the system level by comparing MORM and PF-only at peaks

nd valleys of workload. This section evaluates the average execution

ime of applications considering their start and end times. Although ap-

lications require admission at the same time, they start their execution

t different moments due to the different mapping heuristics and re-

ources availability. Fig. 11 presents the normalized average execution

ime per application for the same scenarios evaluated in Section 7.2 .

At LW , applications that exchange data intensively (communication

rofile) may present a smaller execution time with PF-only since its map-

ing heuristic has as main cost function the hop distance reduction. For

nstance, Dijkstra is 11.88% faster with PF-only, while MPEG (compu-

ation profile) is 14.11% slower.

In HW scenarios (Fig. 11 (b-d)), MORM executes applications 18.62%

aster than PF-only in average. Two reasons explain this result. First,

F-only set some application to run at 𝑉 𝐹 min in HW to meet the power

ap, penalizing the application execution time. Second, as PF-only uses

entralized management, the NoC traffic increases with the system load,

reating congested areas in the NoC. Thus, the advantage observed in

he LW scenario is not observed in the HW because the increasing in

oC traffic penalizes applications regardless of the application profile.

egarding the power cap variation in HW scenarios, the applications get

A.L.d.M. Martins, A.H.L. da Silva and A.M. Rahmani et al. Journal of Systems Architecture 97 (2019) 416–427

 90

 150

 10000 30000

(a) Low Workload

 90

 150

 10000 30000 50000 70000

(b) High Workload - 150mW

 120

 180

 10000 30000 50000 70

(c) High Workload - 180mW

 150

 210

 10000 30000 50000
Tick Counter (Ktics)

(d) High Workload - 210mW

(a) MORM

 90

 150

 10000 30000

(a) Low Workload

 90

 150

 10000 30000 50000 70000 90000 110000

(b) High Workload - 150mW

 120

 180

 10000 30000 50000 70000 90000 110000

(c) High Workload - 180mW

 150

 210

 10000 30000 50000 70000 90000
Tick Counter (Ktics)

(d) High Workload - 210mW

(b) PF-only

Fig. 9. Average power results for MORM and PF-only running low and high workloads. Y-axis: power (mW), X-axis: time (in Kticks).

Time Energy EDP
0

0.5

1 -5.93%
-1.64%

-7.47%

PF-only MORM

(a) LW

Time Energy EDP
0

0.5

1

-37.19%

0.86%

-36.64%

(b) HW150

Time Energy EDP
0

0.5

1

-45.43%

-13.89%

-53,01%

(c) HW180

Time Energy EDP
0

0.5

1

-49.03%

-9.95%

-54.10%

(d) HW210

Fig. 10. System level results concerning execution time, energy and EDP. The

normalized histograms depict the results for the scenarios that represent valleys

(a – low workload) and peaks (b-d – high workload) of workload concerning

power capping variation.

a

t

t

t

t

i

p

7

i

a

m

o

M
P

E
G

D
T

W

D
ij
k
st

ra

0

0.5

1

-1
4
.1

1
%

-5
.1

5
%

1
1
.8

8
%

PF-only MORM

(a) LW

M
P

E
G

D
T

W

D
ij
k
st

ra

S
o
rt

A
u
-V

id

A
E

S

S
y
n
th

e
ti

c

0

0.5

1

-1
8
.6

8
%

-3
8
.8

8
%

-1
5
.6

0
%

-1
4
.3

6
%

-1
5
.8

4
%

-8
.1

5
%

-3
4
.4

3
%

(b) HW150

M
P

E
G

D
T

W

D
ij
k
st

ra

S
o
rt

A
u
-V

id

A
E

S

S
y
n
th

e
ti

c

0

0.5

1

-1
6
.9

3
%

-3
8
.5

8
% -1
1
.8

2
%

-1
4
.4

1
%

-1
7
.7

9
%

-1
0
.8

7
%

-3
6
.8

1
%

(c) HW180

M
P

E
G

D
T

W

D
ij
k
st

ra

S
o
rt

A
u
-V

id

A
E

S

S
y
n
th

e
ti

c

0

0.5

1
-1

8
.8

9
%

-3
8
.5

8
% -1
3
.8

9
%

-1
4
.4

5
%

-1
9
.4

3
%

-8
.0

9
%

-4
4
.2

9
%

(d) HW210

Fig. 11. Execution time results per application, for low and high workload sce-

narios, normalized w.r.t the PF-only method.

t

t

m

S

b

t

f

R

e

f

d

s
 slight traffic rise in more relaxed caps (HW 210) because processing

asks in low frequencies reduces network congestion.

Concluding, the applications’ performance in LW scenarios relies on

he application profile. PF-only can reduce the execution time of applica-

ions with a communication profile. On the other hand, in HW scenarios

he hierarchical approach and the comprehensive actuation employed

n MORM prevent losses in the performance of all applications, for all

ower caps, regardless of the application profile.

.4. Cluster level results

This Section evaluates the MORM actuation at the cluster level, by

solating the DFVS and the mapping contributions.

Fig. 12 (a) compares the cluster using the reference platform (no actu-

tion, vf -nominal) regarding to a cluster at performance mode and energy

ode . Both operation modes use the same mapping and the DVFS is the

nly actuation. The performance mode slightly increases the execution
425
ime because MORM can apply 𝑉 𝐹 min to SPs by identifying opportuni-

ies in tasks phases to reduce the total energy consumption. In energy

ode the execution time increases because MORM applies VF EDP to the

Ps to prioritize the energy efficiency. Both operation modes present

etter EDP than the reference platform.

Fig. 12 (b) and (c) evaluate task mapping algorithms for each opera-

ion mode considering two cluster sizes, normalized regarding the per-

ormance mode . For both modes, five different mappings are considered.

esults confirm that multi-task mapping (energy mode) is suitable for en-

rgy savings while the single task mapping is suitable for boosting per-

ormance (performance mode). 3 × 3 cluster results reveal a small stan-

ard deviation since the smaller cluster size restricts the mapping search

pace (Fig. 12 (b)). Although 4 × 4 cluster results produce a larger stan-

A.L.d.M. Martins, A.H.L. da Silva and A.M. Rahmani et al. Journal of Systems Architecture 97 (2019) 416–427

Time Energy EDP
0.6

0.8

1

1.2

3.2%

-12.4%
-9.6%

16.7%

-25.8%

-13.3%

Ref.

Perf. Mode

En. Mode

(a) DVFS

Time Energy EDP
0.6

0.8

1

1.2
12.93%

-17.41%

-4.32%

Perf. Mode

En. Mode

(b) 3x3 mapping

Time Energy EDP
0.6

0.8

1

1.2
15.11%

-21.12%

-9.02%

Perf. Mode

En. Mode

(c) 4x4 mapping

Fig. 12. Cluster level results. DVFS (a) results normalized regarding the reference scenario, for performance and energy modes (e.g.: Fig. 5). Average and standard

deviation mapping results for (b) 3 × 3 and (c) 4 × 4 clusters normalized regarding the performance mode .

d

T

s

p

t

r

m

e

f

8

t

t

t

n

e

c

a

a

t

f

j

w

f

t

u

a

g

t

S

t

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

ard deviation, the operation mode is correctly driven for both cases.

he standard deviation for performance mode is larger in 4 × 4 clusters

ince the traffic creates some congestion on the NoC because some map-

ings increase the distance between communicating tasks. The conges-

ion effect in the energy mode is smaller because the multi-task mapping

educes the NoC traffic.

Concluding, this Section demonstrates that a cluster in performance

ode actually prioritizes performance as well as a cluster in energy mode

mphasizes energy. Besides, the adaptability allows MORM to trade per-

ormance and energy at runtime.

. Conclusions

This work proposed the resource management for many-core sys-

ems called MORM. MORM can dynamically adapt the running applica-

ions according to peaks and valleys of workload inherent to real sys-

ems while guaranteeing the power cap. The cluster level adaptability,

amed as Operation Mode, allows distinct areas of the many-core to

xecute under different goals: energy or performance. MORM jointly

oordinates DVFS, mapping, and remapping to carry-out cluster adapt-

bility at runtime. At the system level, if power and resources are avail-

ble, the proactive MORM heuristics admit an application and choose

he adequate cluster and operation mode.

The management of operation modes at the cluster level stands out

rom related works since clusters can dynamically prioritize a given ob-

ective, as long as the power cap is met. Considering a typical dynamic

orkload of many-core systems, MORM can run applications up to 49%

aster in a workload peak compared to a single-objective approach op-

imized for performance.

Future works include: (i) include reactive actuation to avoid power

nderutilization; (ii) propose a method for estimating the power of tasks

t runtime; (iii) include additional operation modes to MORM to meet

oals such as reliability, lifetime, and security; (iv) include in the heuris-

ics the effect of the temperature with the goal to avoid hotspots.

upplementary material

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.sysarc.2019.01.006 .

eferences

[1] H. Esmaeilzadeh , E. Blem , R.S. Amant , K. Sankaralingam , D. Burger , Dark silicon

and the end of multicore scaling, IEEE Micro. 32 (3) (2012) 122–134 .

[2] M.-H. Haghbayan , A.-M. Rahmani , A.Y. Weldezion , P. Liljeberg , J. Plosila ,

A. Jantsch , H. Tenhunen , Dark silicon aware power management for manycore sys-

tems under dynamic workloads, in: ICCD, 2014, pp. 509–512 .
426
[3] A.M. Rahmani, P. Liljeberg, A. Hemani, A. Jantsch, H. Tenhunen, Dark

Side of Silicon, Springer International Publishing, AG Switzerland, 2016

10.1007/978-3-319-31596-6 .

[4] A.K. Singh , P. Dziurzanski , H.R. Mendis , L.S. Indrusiak , A survey and comparative

study of hard and soft real-Time dynamic resource allocation strategies for mul-

ti-/many-Core systems, ACM Comput. Surv. 50 (2) (2017) 24:1–24:40 .

[5] H. Khdr , S. Pagani , M. Shafique , J. Henkel , Thermal constrained resource manage-

ment for mixed ILP-TLP workloads in dark silicon chips, in: DAC, 2015, pp. 1–6 .

[6] N. Kapadia , S. Pasricha , VARSHA: Variation and Reliability-aware Application

Scheduling with Adaptive Parallelism in the Dark-silicon Era, in: DATE, 2015,

pp. 1060–1065 .

[7] A.K. Singh , M. Shafique , A. Kumar , J. Henkel , Mapping on multi/many-core systems:

survey of current and emerging trends, in: DAC, 2013, pp. 1–10 .

[8] A. Pathania , H. Khdr , M. Shafique , T. Mitra , J. Henkel , Scalable probabilistic power

budgeting for many-cores, in: DATE, 2017, pp. 864–869 .

[9] M. Shafique , B. Vogel , J. Henkel , Self-adaptive hybrid dynamic power management

for many-core systems, in: Proceedings of the Conference on Design, Automation

and Test in Europe, EDA Consortium, 2013, pp. 51–56 .

10] H. Khdr , S. Pagani , E. Sousa , V. Lari , A. Pathania , F. Hannig , M. Shafique , J. Te-

ich , J. Henkel , Power density-aware resource management for heterogeneous tiled

multicores, IEEE Trans. Comput. 66 (3) (2017) 488–501 .

11] X. Meng , C. Isci , J.O. Kephart , L. Zhang , E. Bouillet , D.E. Pendarakis , Efficient

resource provisioning in compute clouds via VM multiplexing, in: ICAC, 2010,

pp. 11–20 .

12] NVIDIA Corporation , Variable SMP - A multi-core CPU architecture for low power

and high performance, Technical Report, NVIDIA Corporation, 2011 .

13] NVIDIA Corporation , The benefits of quad core CPUs in mobile devices, Technical

Report, NVIDIA Corporation, 2011 .

14] H. Liu , A measurement study of server utilization in public clouds, in: DASC, 2011,

pp. 435–442 .

15] A.M. Rahmani , A. Jantsch , N. Dutt , HDGM: hierarchical dynamic goal management

for many-Core resource allocation, IEEE Embed. Syst. Lett. PP (99) (2017) 1–4 .

16] A.-M. Rahmani , M.-H. Haghbayan , A. Kanduri , A.Y. Weldezion , P. Liljeberg ,

J. Plosila , A. Jantsch , H. Tenhunen , Dynamic power management for manycore plat-

forms in the dark silicon era: a multiobjective control approach, in: ISLPED, 2015,

pp. 219–224 .

17] H. Zhang , H. Hoffmann , Maximizing performance under a power cap: a comparison

of hardware, software, and hybrid techniquess, ACM SIGPLAN Notices 51 (4) (2016)

545–559 .

18] D. Olsen , I. Anagnostopoulos , Performance-aware resource management of multi-

-threaded applications on many-core systems, in: GLSVLSI, 2017, pp. 119–124 .

19] T. Kim , Z. Sun , H.-B. Chen , H. Wang , S.X.-D. Tan , Energy and lifetime optimizations

for dark silicon manycore microprocessor considering both hard and soft errors, IEEE

Trans. Very Large Scale Integr. VLSI Syst. 25 (9) (2017) 2561–2574 .

20] A. Kanduri , M.-H. Haghbayan , A.M. Rahmani , P. Liljeberg , A. Jantsch , H. Tenhunen ,

N. Dutt , Accuracy-aware power management for many-core systems running er-

ror-resilient applications, IEEE Trans. Very Large Scale Integr. VLSI Syst. 25 (10)

(2017) 2749–2762 .

21] A. Pathania , V. Venkataramani , M. Shafique , T. Mitra , J. Henkel , Defragmentation

of tasks in many-core architecture, ACM Trans. Archit. Code Optim. 14 (1) (2017)

21 .

22] M. Fattah , M. Ramirez , M. Daneshtalab , P. Liljeberg , J. Plosila , CoNA: Dynamic ap-

plication mapping for congestion reduction in many-core systems, in: ICCD, 2012,

pp. 364–370 .

23] M. Mandelli , L. Ost , G. Sassatelli , F. Moraes , Trading-off system load and communi-

cation in mapping heuristics for improving NoC-based MPSoCs reliability, in: ISQED,

2015, pp. 392–396 .

24] A. Kanduri , M.-H. Haghbayan , A.-M. Rahmani , P. Liljeberg , A. Jantsch , H. Tenhunen ,

Dark silicon aware runtime mapping for many-core systems: a patterning approach,

in: Computer Design (ICCD), 2015 33rd IEEE International Conference on, IEEE,

2015, pp. 573–580 .

https://doi.org/10.1016/j.sysarc.2019.01.006
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0002
https://link.springer.com/book/10.1007/978-3-319-31596-6
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0005
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0005
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0005
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0005
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0005
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0006
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0006
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0006
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0007
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0007
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0007
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0007
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0007
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0009
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0009
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0009
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0009
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0014
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0014
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0024

A.L.d.M. Martins, A.H.L. da Silva and A.M. Rahmani et al. Journal of Systems Architecture 97 (2019) 416–427

[

[

[

[

[

[

[

[

[

[

[

[

25] M. Ruaro , F.G. Moraes , Demystifying the cost of task migration in distributed mem-

ory many-core systems, in: ISCAS, 2017, pp. 148–151 .

26] W. Quan , A.D. Pimentel , A hierarchical run-time adaptive resource allocation frame-

work for large-scale MPSoc systems, Design Automat. Embedded Syst. 20 (4) (2016)

311–339 .

27] G. Castilhos , M. Mandelli , G. Madalozzo , F. Moraes , Distributed resource man-

agement in NoC-based MPSoCs with dynamic cluster sizes, in: ISVLSI, 2013,

pp. 153–158 .

28] K. Moazzemi , A. Kanduri , D. Juhász , A. Miele , A.M. Rahmani , P. Liljeberg ,

A. Jantsch , N. Dutt , Trends in on-chip dynamic resource management, in: 2018 21st

Euromicro Conference on Digital System Design (DSD), IEEE, 2018, pp. 62–69 .

29] A.L. Martins , D.R. Silva , G.M. Castilhos , T.M. Monteiro , F.G. Moraes , A method for

NoC-based MPSoC energy consumption estimation, in: ICECS, 2014, pp. 427–430 .

30] N. Chatterjee , S. Paul , P. Mukherjee , S. Chattopadhyay , Deadline and energy aware

dynamic task mapping and scheduling for network-on-Chip based multi-core plat-

form, J. Syst. Archit. 74 (2017) 61–77 .

31] M. Fattah , M. Daneshtalab , P. Liljeberg , J. Plosila , Smart hill climbing for agile dy-

namic mapping in many-core systems, in: DAC, 2013, pp. 1–6 .

32] N. Dutt , A. Jantsch , S. Sarma , Self-aware cyber-physical systems-on-chip, in: ICCAD,

2015, pp. 46–50 .

33] A.L. Martins , A.C. Sant’Ana , F.G. Moraes , Runtime energy management for many–

core systems, in: ICECS, 2016, pp. 380–383 .

34] N. Bansal , S. Gupta , N. Dutt , A. Nicolau , R. Gupta , Network topology exploration of

mesh-based coarse-grain reconfigurable architectures, in: DATE, 2004, pp. 474–479 .

35] J. Ng , X. Wang , A.K. Singh , T. Mak , Defrag: Defragmentation for efficient runtime

resource allocation in noc-based many-core systems, in: Parallel, Distributed and

Network-Based Processing (PDP), 2015 23rd Euromicro International Conference

on, IEEE, 2015, pp. 345–352 .

36] M.-H. Haghbayan , A. Kanduri , A.-M. Rahmani , P. Liljeberg , A. Jantsch , H. Tenhunen ,

Mappro: Proactive runtime mapping for dynamic workloads by quantifying ripple

effect of applications on networks-on-chip, in: NOCs, 2015, pp. 1–8 .

André Luís del Mestre Martins received the M.Sc. degree

in 2011 from the Federal University of Rio Grande do Sul

(UFRGS), and the Ph.D in 2017 from the Pontifical Catholic

University of Rio Grande do Sul (PUCRS). He is Associate Pro-

fessor at Sul-rio-grandense Federal Institute of Education (IF-

Sul). His main research interest includes multiprocessor sys-

tems on chip (MPSoCs) and networks on chip (NoCs).

Alzemiro Henrique Lucas da Silva received the M.Sc. de-

gree in 2010 from the Pontifical Catholic University of Rio

Grande do Sul (PUCRS), and currently is a Ph.D. candidate at

the same University. He worked for 7 years in industry as a

digital FPGA engineer and software development for network

protocols. His main research interest includes multiprocessor

systems on chip (MPSoCs) and energy efficient computing.
427
Amir M. Rahmani (SM) received his Masters degree from De-

partment of ECE, University of Tehran, Iran, in 2009 and Ph.D.

degree from Department of IT, University of Turku, Finland, in

2012. He is currently Marie Curie Global Fellow at University

of California Irvine (USA) and TU Wien (Austria). His research

interests span Self-aware Computing, Energy-efficient Many-

core Systems, Runtime Re-source Management, Healthcare In-

ternet of Things, and Fog/Edge Computing. He has served on

a large number of technical program committees of interna-

tional conferences, and guest editor for special issues in jour-

nals. He is the author of more than 150 peer-reviewed publi-

cations.

Nikil Dutt received a Ph.D. in Computer Science from the Uni-

versity of Illinois at Urbana-Champaign in 1989, and is cur-

rently a Distinguished Professor at the University of Califor-

nia, Irvine, with academic appointments in the CS, EECS, and

Cognitive Sciences departments. His research interests are in

embedded systems, EDA, computer systems architecture and

software, and brain-inspired architectures and computing. He

received numerous best paper awards at conferences. Dutt pre-

viously served as Editor-in-Chief of ACM TODAES and as As-

sociate Editor for ACM TECS and IEEE TVLSI. He has served

on several premier EDA and Embedded System Design con-

ferences and workshops, and serves or has served on the ad-

visory boards of ACM SIGBED, ACM SIGDA, ACM TECS and

IEEE Embedded Systems Letters (ESL). He is a Fellow of the

ACM, Fellow of the IEEE, and recipient of the IFIP Silver Core

Award.

Fernando Gehm Moraes (SM12) received the Electrical En-

gineering and M.Sc. degrees from the Universidade Federal do

Rio Grande do Sul (UFRGS), Porto Alegre, Brazil, in 1987 and

1990, respectively. In 1994 he received the Ph.D. degree from

the Laboratoire dInformatique, Robotique et Micro Ȩ lectronique de

Montpellier) , France. He is currently Professor at PUCRS. He

has authored and co-authored 29 peer refereed journal articles

in the field of VLSI design. His primary research interests in-

clude Microelectronics, FPGAs, reconfigurable architectures,

NoCs and MPSoCs.

http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0030
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0030
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0030
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0030
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0030
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0031
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0031
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0031
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0031
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0031
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0032
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0032
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0032
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0032
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0033
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0033
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0033
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0033
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0034
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0034
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0034
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0034
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0034
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0034
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0035
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0035
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0035
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0035
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0035
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0036
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0036
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0036
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0036
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0036
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0036
http://refhub.elsevier.com/S1383-7621(18)30440-5/sbref0036

	Hierarchical adaptive Multi-objective resource management for many-core systems
	1 Introduction
	2 Related works
	3 Background
	4 Multi-objective resource management - MORM
	5 MORM System level decisions
	5.1 Operating mode selector
	5.2 Application admission

	6 MORM Cluster level decisions
	6.1 Adaptive DVFS
	6.2 Task mapping
	6.3 Task remapping
	6.4 Cluster power variation computation

	7 Results
	7.1 Typical workload results
	7.2 Low and high workload evaluation
	7.3 Application level evaluation
	7.4 Cluster level results

	8 Conclusions
	Supplementary material
	References

