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Abstract

Time-triggered communication facilitates the con-
struction of multi-component real-time systems whose
components are in control of their temporal behaviour.
However, the interface of a time-triggered commumni-
cation system has to be accessed with care, to avoid
that the temporal independence of components gets lost.
This paper shows two interfacing strategies, one for
asynchronous interface access (in two variants, one be-
ing the new Rate-bounded Non-Blocking Communica-
tion protocol) and one for time-aware, synchronized in-
terface access, that allow components to maintain tem-
poral independence. The paper describes and compares
these interfacing strategies.

1 Introduction

In many safety- and time-critical applications (e.g.,
powerplants, medical devices, planes), an increasing
number of functions are realized by embedded com-
puter systems. As a consequence, embedded computer
systems get more complex. They need more compu-
tational resources and are implemented as distributed
systems, consisting of an ever-growing number of com-
puter units. Given this growth, we have to ensure that
the additional interactions of components do not cre-
ate interferences that make the system behavior unpre-
dictable [17], thus infringing the safety of applications.

A composable system design limits the interferences
between the components (see discussion on near de-
composability in [16]) of a distributed embedded sys-
tem [7]. The components of a composable multi-
component system are highly autonomous: the point
of control that determines which actions a component
performs and when these actions are triggered resides
within, not outside the component. Component au-
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tonomy ensures that components and multi-component
subsystems can be developed independently. Their
functionality and timing can be verified and validated
in isolation, thus cleanly separating the responsibilies
of the suppliers of different subsystems.

Prior work has shown that time-triggered commu-
nication allows components of multi-component sys-
tems to autonomously control their timing behavior [4].
Reading from or writing to a time-triggered communi-
cation interface is similar to reading or writing program
variables that are regularly updated. As opposed to
event-triggered interfaces, where every received mes-
sage has to be read and consumed in order to keep
the receiving component in a consistent state (i.e., the
receiver must read/process every message within a de-
fined time after its arrival), time-triggered communica-
tion does not impose control pressure (or variable load)
on components whose interface data get updated [2, 6].
Messages can be classified as either event-messages,
state messages, or semi-state messages [10]. Time-
triggered communication is suitable for state messages
or semi-state messages.

While the program-variable semantics of time-
triggered interface data does not create an external
control pressure on components from the side of the
communication system, mutual-exclusion blocking,
which must be enforced when the communication
system and a component access the interface con-
currently, might still lead to external control on the
blocked subsystem.

In this paper we explore two approaches to avoid
external influences on control due to mutual-exclusion
blocking when accessing the data-sharing interface of a
time-triggered communication system. The contribu-
tions of this article are as follows:

e Identification of two fundamental access strate-
gies for time-triggered communication interfaces,
namely asynchronous and synchronous access.



e Comparing these two access strategies in the light
of replica-determinism and fault tolerance.

e Introducing the Rate-bounded Non-Blocking Com-
munication (RNBC) protocol for asynchronous
time-triggered communication interfaces. RNBC
is more predictable than the existing NBW proto-
col [8], while also having a smaller implementation
overhead.

e Providing a schedulability criterion for RNBC and
NBW with formal proof.

e Providing an extended version of RNBC, based on
buffer arrays, to be able to handle more demanding
real-time requirements than RNBC can handle.

In the asynchronous approach, subsystems access
the interface asynchronously, without coordination.
The software for interface access prohibits external con-
trol on subsystems by masking access conflicts (Sec-
tion 4.1). In the synchronous approach, computing
components that access the time-triggered communi-
cation interface are time-aware. They synchronize to
the global time of the communication system and take
advantage of the statically available information about
the send and receive times of messages to avoid con-
trol conflicts when accessing the interface (Section 4.2).
After introducing each of these two approaches for in-
terface access, Section 5 compares the two strategies in
detail. In this comparison, particular attention will be
given to how each of the interfacing strategies supports
replica determinism, as replica determinism is essen-
tial for the construction of dependable, safety-critical
real-time applications. Section 6 shows exemplary be-
haviour of the different access strategies.

2 Time-Triggered Communication

A time-triggered communication system (TTCS) is
an autonomous subsystem of a distributed real-time
computer system that transports state messages be-
tween the nodes of the computer system in a time-
predictable way [3]. Time-triggered messages have a-
priory known sending times and are typically sent pe-
riodically. The TTCS transports the messages from
a sender node to one or more receiver nodes accord-
ing to a static message-transmission schedule that is
constructed at design time. The clock synchroniza-
tion service of the TTCS provides a global clock to
the distributed system. Communication end points of
the TTCS, the linking-interface subsystems (LIFSS) of
the nodes, use this global clock to maintain a uniform
view about the progress of time and coordinate their

message send and receive operations according to the
message schedule. Further, the computational compo-
nents (CC) of the nodes can program the LIFSS to
generate (periodic) clock interrupts. This allows com-
putational components to synchronize their operation
to the global clock (see e.g., [14]).

Computational
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Component (CC

> >
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- - - -
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TTCSS: Time-Triggered
Communication Subsystem

Figure 1. Time-Triggered System Model.

Figure 1 sketches the structure of a time-triggered
distributed computer system. The nodes of the dis-
tributed system consist of the interacting, autonomous
computational components (CCs) and the LIFSS. The
LIFSS of all nodes and the communication network
taken together constitute the TTCS.

2.1 Fault Tolerance

Since systems of high time-predictability are typi-
cally needed for building safety-critical systems, we dis-
cuss in the following fault tolerance for time-triggered
systems.

Time-triggered architectures like the TTA [5] pro-
vide support for fault tolerance to address the demands
of safety-critical real-time systems. In order to cope
with internal physical faults under the single-fault hy-
pothesis, both the transmission medium and the nodes
of a time-triggered system can be replicated to form
fault-tolerant units. Fault-tolerant units (FTUs) con-
sist of actively replicated nodes that either ensure er-
ror detection via voting or error masking by the im-
plementation of self-checking mechanisms that make
nodes fail-silent (i.e., the nodes deliver either correct
results or no results at all).

As a prerequisite for the realization of the described
mechanisms of active redundancy, the behavior of the
nodes must be replica-deterministic [12, 13], i.e., given
an equal set of timed inputs, replicated nodes visit the
same externally visible state and produce the same out-
put messages at points in time that are at most an
interval of d time units apart [4].

The TTA provides replica determinism at the LIFSS
of the communication subsystem. It is, however, up to
the designer and developer of the CC to ensure the
replica determinism for the whole node. Within this
paper we will show how the way of interfacing to the
LIFSS influences replica determinism. This will be of
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central interest when judging and comparing the two
interfacing strategies proposed in this paper with re-
spect to their adequacy for safety-critical applications.

3 Autonomy of Components

In a general distributed computer system, individ-
ual components communicate via the exchange of mes-
sages. Besides the data flow, we have to establish ap-
propriate control flow relations between communicat-
ing components when we aim at constructing systems
that guarantee component autonomy. The control flow
determines who initiates message transfers and is in
command of the individual steps of the transfer. Let
us consider the transfer of a message from a sending
to a receiving component. If the sender is entirely in
control of the message transfer, then the control flow
originates at the sender and terminates at the receiver.
We call this an information-push [4] operation. If the
receiver is in control of transferring the message from
a sender, then the control-flow direction is from the re-
ceiver to the sender, in opposite direction of the data
flow. We call this an information-pull [4] operation.

Information-push operations are ideal for senders.
For an information-push operation, the sender does
not have to wait until the receiver is ready, neither
does it need buffers for storing messages while waiting.
Information-pull operations are ideal for receivers. Fol-
lowing the information-pull policy, receivers can pro-
cess messages under their own control — message-pull
receivers cannot be disturbed by messages that arrive
at times that are not under their own control.

In a TTCS, there is no explicit control flow across
the communication system. Due to the program-
variable semantics of state messages, message arrival
does not impose external control on CCs. Conse-
quently, CCs may, in principle, read ports of the LIFSS
in information-pull operations and write to ports in
information-push operations at any time. The only
potential control conflicts at a LIFSS can arise due to
mutual-exclusion blocking when the LIFSS and a CC
try to access a shared data item at the same time. We
will show how these mutual-exclusion control conflicts
can be resolved by taking advantage of the properties
of time-triggered communication respectively by using
LIFSS services.

4 Non-blocking Interfaces

In the following we will discuss the two alternative
strategies of accessing the LIFSS without control dis-
turbances due to mutual-exclusion blocking. CCs may

adopt one of these strategies. The chosen strategy de-
termines how and when CCs access the LIFSS ports
and whether they use the clock interrupt service of
their LIFSSs. Depending on application requirements,
CCs may use the data-sharing interface of the LIFSS
either as a

e time-agnostic, asynchronous interface, or as a
e time-aware, time-synchronized interface.

In the following we discuss these two different LIFSS
interfacing strategies in detail.

4.1 Time-Agnostic, Asynchronous Interface

Assuming that network communication is time-
triggered, but the program activation on the compu-
tational component (CC) is event-controlled, a time-
agnostic asynchronous communication protocol is re-
quired at the LIFSS. In this section we introduce the
novel Rate-bounded Non-Blocking Communication Pro-
tocol (RNBC) as such a protocol.

RNBC allows the parallel write and read of shared
data without the need for blocking or waiting, support-
ing one writer and multiple readers. To facilitate non-
blocking, RNBC comes with a schedulability criterion
that bounds the rate of write accesses. Reading via
RNBC always provides the latest completely written
data. Any pending data write becomes only available
for reading, once the write is completed.

RNBC has been inspired by the Non-blocking Write
Protocol (NBW) [8]. To understand the benefit of
RNBC, we first briefly describe NBW, as shown in
Figure 2. The data to be communicated is stored in
the buffer buff. In addition, the writer maintains the
concurrency control flag ccf, to indicate the writing
status. Whenever ccf is odd, a writing is in progress,
and when ccf becomes even again (and incremented
by 2), the writing has completed. Thus, the reader
performs a busy waiting during reading to make sure
that ccf was even and did not change during the whole
read operation.

While NBW is simple to understand, part of its na-
ture is that it has a variable execution time, depending
on whether the read operation overlaps with a write op-
eration or not. To reduce the likelihood of such a read
delay, the authors included in the original paper also
an extended variant of NBW, which manages a ring
buffer [8]. This way, a write operation started during
a read does not necessarily cause a delayed reading.
Only in case multiple writes fill up the ring buffer dur-
ing a pending read, then a delayed read will happen.
It has to be noted that this Extended NBW can still
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int buff; // shared msg buffer
int cef = 0; // 0 means empty buffer

void nbw_write_msg(int msg) {
ccf++; // becomes odd: write in progress 1
buff = msg; 2
ccf++; // becomes even: write completed 3
} 1
int nbw_read_msg () { 6
int msg;
int ccfl ,ccf2=0; 8
do { 9
ccfl = ccf; 10
if (odd(ccfl)) continue; 11
msg = buff; 12
ccf2 = ccf;
} while (ccfl != ccf2);

return msg;

}

Figure 2. NBW: Classical Non-Blocking Write
Protocol

suffer from occasional read delays, however, making
them more rare. But at the same time the Extended
NBW has a significantly higher code overhead than
the standard NBW, making read/write clashes more
likely. These given limitations of NBW and its ex-
tended ring-buffer variant motivated us to develop the
Rate-bounded Non-Blocking Communication Protocol
(RNBC), a new concurrent read-write protocol that is
inspired by the field of lock-free communication data
structures, for example, lock-free message queues [1, 9].

4.1.1 RNBC: A Rate-bounded Non-Blocking
Communication Protocol

The design strategy for RNBC was, instead of aiming
to minimise the likelihood of read /write clashes, to de-
velop a precise schedulability criterion that guarantees
the absence of read/write clashes. This at the same
time allowed us to develop a protocol that has minimal
code overhead.

The code of RNBC is shown in Figure 3. The key
feature of RNBC is to have two communication buffers,
one for the current write operation, and the other one
for current read operations. This concept of double
buffering is very common and used for different pur-
poses, e.g., to smoothen the output of computer graph-
ics [11, 15]. Whenever a write finishes, the roles of
these two buffers are swapped. The shared flag wbuff
indicates which buffer index (0 or 1) is currently allo-
cated for next writing. As we can see from the code,
the implementation of both the reader and writer in

RNBC is extremely simple, consisting basically just of
the access/update of the buffer and the control flag.

int buff[2]; // shared msg buffer
int wbuff = 0; // buffer index of write

void rnbc_write_msg (int msg) {
buff [wbuff] = msg;
wbuff = 1-wbuff; // swap read/write buffer

-}

int rnbc_read_msg() {
int rbuff = l1-wbuff;
return buff[rbuff];

}

Figure 3. RNBC: Rate-bounded Non-Blocking
Communication Protocol

4.1.2 Schedulability Criterion of RNBC

The strong contribution behind RNBC is the precise
schedulability criterion that guarantees the absence of
read/write clashes regardless of the relative phase be-
tween read and write operations. Before introducing
this schedulability criterion, we have to first introduce
some definitions:

¢t the worst-case execution time (WCET) of the read
operation

cw: the WCET of the write operation

mint: the minimum inter-arrival time between two
messages, i.e., consecutive write operations

Based on these definitions, we can state the schedu-
lability criterion of RNBC:

Theorem 4.1 Without any further assumption about
the synchrony between read and write, the following is a
necessary and sufficient schedulability condition for the
RNBC protocol with non-preemptable read and write:

Cw + ¢ < mint (1)

This schedulability criterion implies that the maxi-
mum execution time ¢, ;,q4, available for a read opera-
tion, is as follows: ¢, maz < Mmint —c,. In other words,
we have to make sure that the worst-case execution
time (WCET)[18] of the read and write operation to-
gether is less or equal than the minimum inter-arrival
time of messages. The write and read operations have



to be non-preemptive, so that ¢, and ¢, do limit the
access time to the shared variables.

Proof (Theorem 4.1) To prove this, we have to show
that the scheduleability criterion is both sufficient and
necessary. To do so, we use Figure 4 to visualise some
key properties of the behaviour of RNBC. The first row
write shows in which buffer the individual write oper-
ations are writing (with distance mint between them).
The 2nd row wbuff shows the timing diagram of the
flag wbuff, following directly from the implementation.
The row rbuff shows the behaviour of a read operation,
depending on its starting time in comparison to write
operations. This means that the flag rbuff at the start
of a read operation is always set as the opposite of the
current value of the wbuff flag. This line shows that af-
ter the completion of a write operation to buffer b;, any
read operation started afterwards and before the next
writing operation starts, will read from b;. The lines
rwindow by and rwindow by show the possible reading
window for buffer index 0 respectively 1, such that no
read/write clash will occur. The reading window for
each buffer b; spans from the completion of a write
into b; till the beginning of the next write operation
into b;.

Part 1: Sufficient: As shown in Figure 4, the read
access from buffer b; can only start after completion of
its write till the next write completion of buffer b;_;,
which is a time span of mint. At the same time, the
reading window of buffer b; starts as well directly after
the completion of its write and lasts till the beginning
of the next write operation to buffer b;, which is a time
span of 2mint — ¢,,. Any valid read to b; has to start
within the state rbuff == b; and has to complete before
the end of the reading window rwindow b;, for which
the minimum duration is:

length(rwindow) — length(rbuff)

which is
(2mint — ¢,) — mint

and can be simplified to
mint — ¢y

Hence, the minimum guaranteed time available for
reading is mint — ¢,,, which implies that ¢, < mint —
¢y 1is sufficient for non-clashing read/write operations.
This proves that the schedulability condition of Theo-
rem 4.1 is sufficient.

Part 2: Necessary: To proof that the schedula-
bility condition is necessary, we use an indirect proof.
We start with the assumption that the schedulability
condition does not hold and derive from it that the

read/write operations can clash.
Assuming that the schedulability condition does not
hold, we have the following property:

CwF+er=mint+A | A>0

To look for the worst case, we assume that the read
access to buffer b; starts just at the end of state
rbuff == b;, i.e., when rbuff has been directed to b; for
the duration mint, which is the last possible time be-
fore reading is switched to buffer b;_;. In that situation
the remaining time of reading window rwindow b; is
mint — ¢, because length(rwindow) — length(rbuff) =
(2mint — ¢,y) — mint = mint — c,).

However, based on the assumed property ¢, + ¢, =
mint + A | A > 0 it follows that the reading time ¢,
is ¢, = mint — ¢, + A. Thus, the reading time of
buffer b; is by A longer than the remaining length of
the reading window rwindow b;, causing a clash of the
read/write operations to buffer b;. This proves that the
schedulability condition of Theorem 4.1 is necessary. [J

we E |

whuff

rbuff

rwindow b,

rwindow by

|
ilength(rwindow) = 2mint — ¢,

Figure 4. Properties of RNBC Protocol (used
in proof of Theorem 4.1)

Corollary 4.2 If the condition (cy, + ¢ < mint) can
be ensured, then there is no benefit in terms of reducing
read/write clashes by using more than two communica-
tion buffers, e.g., a ring buffer with n > 2 elements.

4.1.3 NBW vs RNBC

We have stated that RNBC relies on some real-time as-
sumptions for its correctness: the defined inter-arrival
time mint and WCETSs ¢, ¢,. NBW does not have
such requirements specified, thus NBW seems to be
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easier to deploy. However, we herewith compare the
protocols in further detail.

As stated in Theorem 4.1, the border-line case where
RNBC still works is ¢, + ¢, = mint.

Now lets assume that the WCETSs of the read and
write operations of NBW are denoted as ¢, and ¢,.
Comparing the implementations of NBW in Figure 2
and of RNBC in Figure 3, it is clear that NBW has
more overhead for both, read and write, i.e., ¢, >
cw N ¢ > ¢,. Since NBW has only one communication
buffer, read and write have to be strictly sequential.
From that it that follows that ¢, 4+ ¢,. > mint. This
means, while RNBC still just works for this mint value,
the same mint value will cause NBW to be caught in
never-ending read-write clashes, regardless of the phase
between read and write. Thus, also NBW has to rely
on some real-time assumptions, which are actually even
more strict than those required for RNBC.

To derive also a concrete schedulability condition for
NBW, we have to split the execution time ¢]. of NBW’s
reader into the following components:

/

Cpprim 18 the execution time of a read without retries
:

¢l 4a is the additional execution time for each han-
dling of an odd ccf (read attempt overlapped with
write)

Cine 1s the additional execution time for each handling
of the ccf incremented by two (complete write

happened within read duration)

We use this distinction between ¢, ;,; and ¢}, to allow
us to be more precise on the overall execution time, as
the code executed for these two cases slightly varies.
Based on that we can formulate the following sufficient
and necessary schedulability condition for NBW:

. , Cot Crodd |
mint = Cp prim + max Crodd " | — 7 | »Crinc
Cr,odd
(2)
/

This criterion has ¢, .., as the read’s basic execution
time. The schedulability criterion makes sure that the
total execution time of NBW’s read including poten-
tially multiple additional execution times of ¢, 5, or ¢},,..
always fits within the interval mint. In case of inter-
ference with a concurrent write activity, there are two
cases possible, expressed by the max statement:

1. For the case that the read attempt partially over-
laps with a write (identified by an odd ccf value),
the reader has to run multiple read attempts till
the write is finished, each adding c’mdd to the
reader’s execution time.

2. Ounly in the case that ¢, < ¢]. holds, it is possible
that the reader encounters a complete write that
happened within the read attempt (ccf still even
but incremented by two). In this case c; ;. is
added to the reader’s execution time.

It is worthwhile to note that the case 2 (c]. ;,.) cannot
happen multiple times or in combination with case 1
(c’nodd) for the same read attempt, as this is prevented
by the minimum value of mint. We do not go into de-
tail why the schedulability condition of NBW is more
strict than the one of RNBC given in Equation 1 of
Theorem 4.1, as we have already shown in the begin-
ning of this section that NBW demands a larger mint
value compared to RNBC.

Concluding, RNBC is an efficient implementation
for the concurrent single-writer multiple-reader com-
munication pattern, using real-time properties like
WCET and minimum inter-arrival time to assure cor-
rect behaviour. Under the given schedulability con-
dition, RNBC allows a constant access time for both
reader and writer. In contrast, with NBW only the
write has a constant access time, but not the read.

4.1.4 Extended RNBC using Multibuffer

As stated by Corollary 4.2, the basic RNBC is free of
any read/write clashes as long as one can ensure that
the property (¢, + ¢ < mint) holds. In most practi-
cal situations that might be the case. However, there
might be situations where ¢,, or ¢, are relatively long
compared to mint, which could be due to long message
transfer times, or due to narrow timing constraints, re-
quiring the initiation of new data updates while the
previous transfer is still pending. In this section we in-
troduce an extended version of RNBC, called Extended
RNBC (ExtRNBC) using more than two buffers, so
that the timing requirement (c,, + ¢, < mint) can be
replaced by a less strict one.

The principle of ExtRNBC is very similar to RNBC,
just that a buffer array of arbitrary size is used, result-
ing in a ring-buffer style access by the read and write
operations. The source code of ExtRNBC is given in
Figure 5. In the code, the buffer size is specified by
the constant B, using 3 just for demonstration pur-
pose. Whenever the write finishes the message trans-
fer, it will set the shared write buffer index to the next
element along the ring buffer, using the C operator
“7:” to distinguish between simple index increment
and wrap around. Whenever a read starts, it takes the
messages from the latest transferred message, regard-
less of how many messages have been written since the
last read.
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1 #define B 3 // size of ring—buffer
int buff[B]; // shared msg buffer
3 int wbuff = 0; // buffer index of write

1
5
6
8
9

10
11
12
13
14
15

16

void rnbc_ext_write_msg(int msg) {
buff[wbuff] = msg;
// set write buffer to next
wbuff = (wbuff==B-1)) ? 0 :
}

int rnbc_ext_read_msg () {
// set read buffer to one before current
// write buffer:
int rbuff = (wbuff==0) ? (B-1)
return buff[rbuff];

}

buffer:
(wbuff+1);

(wbuff—1);

Figure 5. Extended RNBC: Multi-buffer

Based on this multi-buffer access, we can state the
schedulability criterion of ExtRNBC:

Theorem 4.3 With a given buffer size B and no fur-
ther assumptions about the synchrony between read
and write, the following is a necessary and sufficient
schedulability condition for the ExtRNBC protocol with
non-preemptable read and write:

Cw +er < (B—1) - mint (3)

This schedulability criterion implies that the max-
imum execution time available for a read operation
Cr.maz 1S as follows: ¢, pmas < (B — 1) - mint — ¢y,. In
other words, we have to make sure that the WCET of
the read and write operation together is less or equal
than the minimum inter-arrival time of messages scaled
up by (B—1), where B is the number of available com-
munication buffers.

The following proof for Theorem 4.3 uses the same
structure as the proof of Theorem 4.1. The only differ-
ence is in the time domain, as ExtRNBC has a more re-
laxed timing requirement than RNBC due to the longer
time till a buffer b; gets overwritten again.

Proof (Theorem 4.3) To prove this, we have to show,
both, that the scheduleability criterion is sufficient and
also necessary. To do so, we use Figure 6 to visualise
key properties of the behaviour of ExtRNBC. While
this figure examplifies the behaviour for 3 buffers, the
given reasoning is based on the generic case B > 2.
The first row write shows in which buffer the individ-
ual write operations are writing (with distance mint
between them). The 2nd row wbuff shows the timing
diagram of the flag wbuff, which is a ring-buffer style

increment of the index, following directly from the im-
plementation. The row rbuff shows the behaviour of a
read operation, depending on its starting time in com-
parison to write operations. This means that the flag
rbuff at the start of a read operation is always set
to the latest completely written message, computed as
wbuff—1 wrap-around at zero to B—1. This line shows
that after the completion of a write operation to buffer
b;, any read operation started afterwards and before
the next writing operation starts, will read from b;.
The lines rwindow by, rwindow by, rwindow by show
the possible reading window for buffer indices 0 — 2
such that no read/write clash will occur. The read-
ing window for each buffer b; is from the completion
of a write into b; till the beginning of the next write
operation into b;.

Part 1: Sufficient: As shown in Figure 6, the read
access from buffer b; can only start after completion of
its write till the write completion at the next buffer
index along the ring-buffer (b(;+1) moa 5), Which is a
time span of mint.

At the same time, the reading window of buffer b;
starts as well directly after the completion of its write
and lasts till the beginning of the next write operation
to buffer b;, which is a time span of B-mint —c,,. Any
valid read has to start within the state rbuff == b; and
has to complete before the end of the reading window
rwindow b;, for which the minimum duration is:

length(rwindow) — length(rbuff),

which is
(B - mint — ¢y,) — mint

and can be further simplified to
(B —=1)-mint — ¢y

Hence, the minimum guaranteed time available for
reading is (B — 1) - mint — ¢,, which implies that
¢r < (B —1) - mint — ¢, is sufficient for non-clashing
read/write operations. This proves that the schedula-
bility condition of Theorem 4.1 is sufficient.

Part 2: Necessary: To proof that the schedula-
bility condition is necessary, we use an indirect proof.
We start with the assumption that the schedulability
condition does not hold and derive from it that the
read /write operations can clash.

Assuming that the schedulability condition does not
hold, we have the following property:

cwter=(B-1)-mint+A | A>0

To look for the worst case, we assume that the read
access to buffer b; starts just at the end of state
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rbuff == b;, i.e., when rbuff has been b; for the duration
mant, which is the last possible time before reading is
switched to the next buffer (b(j11) mod ). In that sit-
uation the remaining time of reading window rwindow
bi is

(B —1)-mint — ¢,

because
length(rwindow) — length(rbuff)

= (B - mint — ¢y,) — mint
= (B —1) -mint — ¢,

However, based on the assumed property ¢, + ¢, =
(B—1)mint+A | A > 01it follows that the reading time
¢ is ¢ = (B — 1) - mint — ¢y, + A. Thus, the reading
time of buffer b; is by A longer than the remaining
length of the reading window, causing a clash of the
read/write operations to buffer b;. This proves that the
schedulability condition of Theorem 4.3 is necessary. [

Corollary 4.4 ExtRNBC is schedulable for any values
of the parameters c,, c,,, mint by selecting a suitable
ring-buffer size B:

Vew, erymint. AB. ¢, + ¢ < (B —1) -mint (4)

Corollary 4.4 states that ExtRNBC is schedulable
for any c¢,, ¢, mint values by choosing a sufficiently
large ring-buffer size B. However, to keep the mem-
ory footprint low, we have to find the minimal possible
buffer size B that satisfies the schedulability condition
of ExtRNBC:

minB | B> [Cw-l-cr-‘

mant

The resulting buffer size is visualised in Figure 7
using the timing requirements expressed as the param-
eters r = %T”t and y = %”t Note that scales of the
x/y axis are not linear, but rather labelled by concrete
data points. The flat bottom plain represents the case
where the buffer size B is equal to 2, i.e., timing re-
quirements for which the normal RNBC protocol would
be sufficient. With the configuration z = y = 0.1 we
get a minimum buffer size B = 21. For smaller values
of x,y the minimum required buffer size would be even
higher.

Should it happen that for the concrete values of ¢,
Cw, mint a buffer size of B = 2 is sufficient, then it is
preferable to use the implementation of RNBC instead
of ExtRNBC, since RNBC has a slightly lower resource
overhead in terms of execution time.

4.1.5 Predictability of Asynchronous Inter-
faces

An asynchronous interface like RNBC or ExtRNBC of-
fers predictability in the time domain, as the execution
time of neither the writer nor the reader has a variabil-
ity in the execution time. NBW offers the sime time-
predictability for the writer, but not for the reader.
However, RNBC, ExtRNBC, and NBW all suffer from
low predictability in the value domain, as it is non-
deterministic which message instance will be obtained
at a particular read access. As a consequence, the asyn-
chronous interfaces are less suitable to build replica-
deterministic systems, because the non-determinism in
the value domain makes it highly challenging to realise
replicas that have an identical output in the value do-
main.

4.2 Time-Aware Interface

The time-synchronized access strategy solves the
mutual-exclusion problem at the LIFSS by avoiding ac-
cess conflicts from the very beginning. To this end, it
carries out the read and write operations of CCs to
the LIFSS at times that do not coincide with the ac-
cesses by the TTCS — the times when CCs must not
access the LIFSS are derived from the TTCS message-
transmission schedule that is constructed at system-
construction time.

4.2.1 Accessing the LIFSS

When designing the software for a CC with time-
synchronized LIFSS access, one will pay particular at-
tention to synchronize the time of read and write op-
erations from the very beginning. On top of conflict
avoidance, one can even benefit from the timing infor-
mation contained in the message schedule and activate
the task on a CC tailored to the timing of LIFSS-read
and write operations of the TTCS: Such a task sched-
ule will ensure that a task that reads data from the
LIFSS will be activated shortly after the message with
these data has been received and made available by the
LIFSS. In a similar way, the scheduler will activate a
task that writes to the LIFSS right before the TTCS
will transmit the written data.

To align LIFSS-read and write operations with the
actual message transfers, the CC needs (a) a real-
time task scheduler and (b) a mechanism for adjusting
its local clock to the clock of the TTCS. The align-
ment can be accomplished by means of a static, table-
driven scheduler, where the scheduling table guarantees
that the CC accesses the LIFSS in time windows that
are guaranteed to be conflict-free. The programmable
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Figure 6. Properties of the Extended RNBC Protocol (ExtRNBC), shown with ring-buffer size B = 3

(used in proof of Theorem 4.3)

clock interrupt of the LIFSS can be triggered regularly
to synchronize the clock of the CC with the global time-
base, i.e., the local representation of the global clock in
the LIFSS of a node acts as a master clock for adjusting
the clock of the CC of that node in the clock-interrupt
handler that is regularly triggered. This clock synchro-
nization ensures that the task scheduler of the CC and
the message schedule of the TTCS stay consistent.

4.2.2 Interface-Timing Constraints

Let us provide a more detailed discussion on when a
CC may safely access its LIFSS without running into
mutual-exclusion conflicts. We assume that the sched-
ule of TTCS accesses to the LIFSS is given. Further we
assume that the CC regularly adjusts its clock to the
global clock using master-clock synchronization, i.e., in
the clock-interrupt handler the clock of the CC is set
to the value of the global clock.

In the time intervals between clock synchronization,
the clock of the CC may drift away from the global
clock. This relative drift has to be taken into account
when planning the conflict-free schedule of accesses to
the LIFSS. In the following, we will explore how the
possible clock drift can be considered when planning
the LIFSS access times for CCs. We make the following
assumptions:

e The clock of the communication controller that
represents the global time of the TTCS acts as
the reference clock.

e Tick 7 of the reference clock happens at time ¢;; t{
denotes the time of tick ¢ on clock j.

e The drift rate p denotes the maximum drift rate
of a CC clock relative to the reference clock, i.e.,
p combines the absolute drift rate of the local rep-
resentation of the global clock and the maximum
absolute drift rate of the clocks of the CCs.

When planning the LIFSS-read and write operations
of the CC, we have to ensure that the time intervals
of these read and write operations do not overlap with
LIFSS-data accesses by the TTCS. The determination
of these LIFSS-access intervals has to take the relative
drift of the clocks of the CC and the TTCS into account
(see Fig. 8).

Let us assume the TTCS accesses some LIFSS data
between ticks s and e on its clock, in the time inter-
val T = [ts, te] after the last synchronization point, at
time ty. Now we want to determine the start and end
ticks (w and r) of the access interval of the CCs that
guarantees mutual exclusion while accounting for the
drift of the clocks.

To ensure that all LIFSS accesses by CCs preceding
the LIFSS access of the TTCS have completed before
T, we must make sure that even the CC with the slow-
est clock, say CC j, has completed its access at tick w
with t{u < ts, thus taking into account the worst-case

drift p we get
s
w = — | . 5
L +pJ ®)

Analogously, we must guarantee that CCs accessing
the LIFSS start only after the TTCS has completed
its access. In this case, the CC with the fastest clock,
CC k, must not start reading respectively writing the
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Figure 7. ExtRNBC: Minimum required buffer size B (the bottom plain represents B = 2, for which

RNBC is suffcient)

slow CC clock

————
t i . t/
fast CC clock : : €
thpn
TTCSclock " ° : s
t t t,

Figure 8. Time window for latest write to and
earliest read from LIFSS data.

LIFSS before tick r» with tff > t, and

T=M-

The deviation of the CC clocks from the TTCS clock
is smallest after resynchronization and increases over
time until the CC clocks are re-synchronized to the
TTCS clock again, i.e., the maximum deviation be-
tween CC clocks and TTCS clock can be observed right

(6)

10

before the end of the resynchronisation interval. So if
the duration of the resynchronization interval as timed
by the TTCS clock is Ry, then this maximum devi-

~

ation is Rgypc - p-

4.2.3 Scheduling CC Tasks

To maintain mutual exclusion, real-time tasks on the
CCs that access LIFSS data must be scheduled such
that they do not overlap with the respective [w,r] in-
tervals. These mutual exclusion constraints are added
to the application-specific precedence constraints of the
scheduler. If tasks are statically scheduled, the pre-
runtime scheduler uses those constraints together to
build the dispatch tables that the dispatchers running
on each of the CCs will interpret at runtime.

4.2.4 Interface Timing Properties

Synchronizing the LIFSS accesses of the CCs and the
TTCS has the following four positive effects on the
timing properties of the interface:

First, synchronizing both LIFSS-write and read op-
erations on all CCs to global time reduces the message-
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delay jitter in comparison to non-synchronized access.
In fact, if we use a synchronized, table-driven scheduler
to trigger the LIFSS reads and writes, the jitter can be
kept as small as II, the precision of the global clock.

Second, wusing table-driven schedules that are
aligned to the global clock allows system designers to
streamline task executions and message communica-
tion. This way, the overall response times of real-time
transactions spreading over two or more CCs can be
kept short.

Third, if all data manipulations and data transfers
via the TTCS follow a global time schedule, then the
information about the age of data items is implicitly
available at all CCs of the computer systems. As a
consequence, the time stamps of real-time observations
do not have to be transported via the TTCS. This
means, in a time-triggered network with fully time-
synchronized CCs, only the values of observations have
to be handed over to the LIFSS. Both, the name and
the time of the observation are implicitly known.

The final important point is that a synchronized
and planned LIFSS access helps us to construct
replica-deterministic components, which is crucial
for the construction of fault-tolerant systems. As
time-synchonized access involves the planning of every
access to the LIFSS and enforces a pre-determined
order and timing of all read and write operations to
the LIFSS, LIFSS accesses by replicated components
can be scheduled such that they are guaranteed to
work on the same message instances and inputs within
the needed time intervals.

5 Comparison

Each of the presented access strategies to the in-
terface of a time-triggered communication system aims
at the automomy of CCs, to make components time-
composable. The different strategies are, however,
paired with significant differences in the characteristics
of the components that constituate the overall system.
We discuss the differences of the component character-
istics in the following; see also Table 1.

A CC that accesses the LIFSS as a time-agnostic
interface acts fully autonomously, i.e., it ignores the
message schedule and potential conflicts when inter-
acting with the LIFSS. A time-aware component, in
contrast, uses its knowledge about the message sched-

ule to synchronize its LIFSS accesses to the operation
of the TTCS.
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5.1 Message-Validity Jitter

The fact that components with a time-agnostic in-
terface do not synchronize with the message schedule
leads to a message-validity jitter of (almost) two times
the message period for all data items read from the
LIFSS. This is due to the fact that at both, the sender
side and the receiver side, the duration of the time
interval between the LIFSS access of the TTCS and
access of the CC may vary between zero and the du-
ration of a message period. This jitter is significantly
higher than for time-aware interfaces, for which it is II,
the precision of the global clock.

5.2 Execution-Time Jitter

Write operations to the LIFSS always have a con-
stant execution time. Regarding read operations in
NBW, there is an execution-time jitter due to the
possibility of retries. Both, RNBC and the time-
synchronized reads have no execution-time jitter due
to LIFSS-access conflicts. This means that the use of
RNBC allows for a construction of components that
are fully autonomous, without any external control in-
fluences on their temporal behavior.

5.3 End-to-End Delay

The lack of synchronization at time-agnostic inter-
faces inhibits the streamlining (i.e., tight synchroniza-
tion) of tasks that read from or write to the LIFSS and
the messages that transport the respective data items.
A time-aware interface with time-synchronized inter-
face access, in contrast, allows for the synchronization
of these activities. Thus, time-aware interfaces sup-
port real-time transactions with much shorter end-to-
end delays than asynchronous interfaces.

When all operations of the components and the com-
munication system are time-triggered, controlled by a
global execution plan, then the knowledge about the
points in time of all data-read and write operations
are globally known, i.e., the timestamps of these oper-
ations are implicit global knowledge in the system. As
a consequence, and in contrast to systems which oper-
ate asynchronously, one does not need to transport the
times of real-time observations in time-synchronized
systems.

5.4 Replica Determinism & Fault Tolerance
Synchronizing the LIFSS-read and write operations

of a component with global time is a prerequisite for a
clear definition of the state of a CC, which, in turn, is
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Table 1. Comparison of the Component Characteristics for the Interfacing Methods.

Characteristic

Interface

Time Agnostic

NBW

Time Synchronized
RNBC/ExtRNBC

Control paradigm full autonomy

full autonomy adaptation to schedule

Message validity jitter 2x message period

2x message period precision of clock

Jitter of message read 0—2 failed read attempts 0 0

Task-msg. streamlining no no yes

Use of time value (explicit) value (explicit) control (implicit)
Replica determinism no no yes

Build complexity low low medium to high

Example applications

movie streaming,
sensor network

flight control, steel mill,
drive by wire, film stretching

needed for the realization of replica-deterministic com-
ponents (i.e., components that agree both in the value
and time domain within a defined time span). As the
provision of replica determinism greatly simplifies the
construction of fault-tolerant real-time systems, time-
aware LIFSS access of CCs is as well essential for im-
plementing fault tolerance.

As time-agnostic interface access is asynchronous to
the operation of the TTCS, redundant CCs may read or
write different data instances when accessing the inter-
face, thus obstructing replica determinism. E.g., due
to race conditions caused by slightly different quartz
oscillation rates at different nodes, it may happen that
one CC reads interface data before they are updated
by the LIFSS, while the read operation of a redundant
CC returns the data after they have been updated by
a new message. In constrast, when interface accesses
by CCs are aligned to the operation of the LIFSS, one
can ensure that all redundant CC copies behave consis-
tently when sending or receiving data, i.e., they always
send and receive the same data and extend the replica
determinism provided by the TTCS to the component
and application level. This greatly simplifies the con-
struction of real-time systems that are fault tolerant.

5.5 Build Complexity

The central advantage of using interfaces without
care about timing is the low build complexity of the
components and the overall system. When using time-
agnostic interfaces, developers do not need to know
about the temporal particularities of the LIFSS or
other components. In contrast, to fully exploit the
benefits of synchronized interface access, the timing of
operations on the components and message transmis-
sion on the TTCS have to be tightly coordinated. The
complexity and cost for designing such a system-wide
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coordination may be significant.
5.6 Example Applications

Typical example applications for non-synchonized
interfaces are entertainment systems, like movie
streaming, or monitoring systems (e.g., based on
sensor networks). Usually, these applications do not
require system-provided fault tolerance, but they
greatly benefit from the lower build complexity. Still,
they may need to compensate for jitter in the order of
message periods during message reception by appro-
priate buffering or queuing. In the case of monitoring
systems, observations can be time-stamped by reading
the global time available at the LIFSS after the
observation. Applications that use time-synchronized
interfaces trade the added build complexity for the
realization of deterministic real-time transactions with
short end-to-end delays. Typical examples of such
applications are related to control tasks (e.g., flight
control systems, film stretching systems), which often
require highly regular sense-control-act cycles. Some
control systems are safety critical and profit from fault
tolerance that is enabled at the architectural level by
the use of time-synchronized interfaces.

6 Example: CC Predictability

In this section we show the temporal predictability
of components using the different access strategies to
the interface of a time-triggered communication sys-
tem. Figure 9 shows the read/write behaviour at a
local network node between the CC and the LIFSS:

e The first row shows the time line of the write ac-
cess to the LIFSS, with different message instances
over time.
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Figure 9. Local behaviour of different inter-
facing methods

e The second row “read-NBW” shows examples of
asynchronous read access via the NBW proto-
col. The first read operation happens just after
completion of the last write access, and proceeds
with zero delay. The second read operation just
slightly overlaps with the write operation for mes-
sage msgl. This lead to two read attempts par-
tially overlapped with the write, causing them to
fail, and only the third attempt then finally suc-
ceds. Thus, NBW causes jitter to the temporal
behaviour of a component.

e The rows “read-RNBC a)” and “read-RNBC b)”
show examples of the asynchronous read with
RNBC. In both cases, the read operation has a
constant execution time, as RNBC is free of read-
/write conflicts by design. However, what the two
different examples also show, is that with RNBC
a small difference in the start of a read can cause
to read a different message instance. Thus, while
RNBC allows components to be time predictable,
the predictability in the value domain of messages
is not given.

e Finally, the row “read-synchr” shows access pat-
terns with synchronous interfacing. It shows that
synchronous interfacing not only gives constant
execution time of the read operation, but also pro-
vides predictability in the value domain, as read
operations are fixed scheduled with some time off-
set after the completion of each write access.
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7 Conclusion

In this paper we discussed different interfacing tech-
niques between a computing component (CC) and a
time-triggered communication network. The results
show that best predictability in time and value do-
main, and also the fault tolerance needed for saftey-
critical applications is achieved by synchronous inter-
facing, where the execution of activities at the CC
is synchronous with the message communication over
the time-triggered communication system (TTCS). To
achieve this, the local clock of the CC has to be syn-
chronized to the global clock of the time-triggered net-
work. With asynchronous access, neither clock syn-
chronisation nor global scheduling of activities is re-
quired, but it comes at the cost of unpredictability in
the value domain, as it is not ensured which message
instance is obtained by a read access. We have also
developed a new asynchronous access protocol, called
Rate-bounded Non-Blocking Communication protocol
(RNBC), which ensures the temporal predictability
and autonomy at the component level for asynchronous
access. For the case that the timing requirements can-
not be met with RNBC, we have also extended RNBC
to a multi-buffer variant, which can be made schedula-
ble for any timing requirements by adjusting the buffer
size.
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