
Towards Fault Adaptive Routing in Metasurface
Controller Networks

Dimitrios Kouzapas1, Constantinos Skitsas1, Taqwa Saeed1,2, Vassos Soteriou3, Marios Lestas2, Anna Philippou1,
Sergi Abadal4, Christos Liaskos5, Loukas Petrou6, Julius Georgiou6, and Andreas Pitsillides 1

1Department of Computer Science, University of Cyprus, Nicosia, Cyprus
2Department of Electrical Engineering, Frederick University Cyprus, Nicosia, Cyprus

3Dept. of Electrical Eng., Computer Eng. and Informatics, Cyprus University of Technology, Limassol, Cyprus
4Department of Computer Architecture, Universitat Politcnica de Catalunya, Barcelona, Spain

5Institute of Computer Science, Foundation of Research and Technology Hellas, Heraklion, Greece
6Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus

{dkouza01,cskits01,annap,andreas.pitsillides}@cs.ucy.ac.cy1, {st009698@stud.fit.eng,lm@frederick}.ac.cy2,
vassos.soteriou@cut.ac.cy3, abadal@ac.upc.edu4, cliaskos@ics.forth.gr5, {petrou.loukas,julio}@ucy.ac.cy6

Abstract—HyperSurfaces (HSFs) comprise structurally recon-
figurable metasurfaces whose electromagnetic properties can be
changed via a software interface, using an embedded minia-
turized network of controllers, enabling novel capabilities in
wireless communications, including 5G applications. Resource
constraints associated with a hardware testbed of this break-
through technology, currently under development, necessitate
an interconnect architecture of a Network of Controllers (CN)
that is distinct from, yet reminiscent to, those of conventional
Network-on-Chip (NoC) architectures. To meet the purposes of
our HSF testbed, we rationalize the construction of an irregular
topology where its controllers are interconnected in a Manhattan-
like geometry, with the flow of control directives conducted in a
handshaking mode, and routing operated by an XY-YX algorithm
that is agnostic of the CN connectivity, determined following the
results of model specification and model checking techniques.
With such controllers prone to the appearance of permanent
faults, threatening the operation of such HSFs, we propose,
develop and evaluate two fault adaptive routing algorithms
aiming to enhance the successful delivery of packetized control
directives to their recipients: (1) Loop Free Algorithm (LFA),
and (2) Reliable Delivery Algorithm (RDA) of deterministic and
probabilistic variants. LFA and RDA are developed based on
utilizing said topology-agnostic XY-YX routing algorithm as a
base, along with an appropriate adoption of routing turn rules,
to address said HSF CN challenges that deviate from traditional
fault tolerant routing algorithms seen in NoCs. Experimental
evaluation results obtained using a custom developed simulator,
show that probabilistic RDA exhibits top performance in terms
of successful packet delivery ratio and topology coverage, albeit
at the expense of a higher path hop count. Pointers in addressing
tradeoffs between HSF CN performance and resource utilization
are also provided.

I. INTRODUCTION

Hypersurfaces (HSFs) constitute a recently proposed [1]
metamaterial-based paradigm, envisioned to realize a new
generation of applications, as for example, programmatically-
controlled wireless environments [2]. The core technology

This work was partially funded by the European Union via the Horizon
2020: Future Emerging Topics call (FETOPEN), grant EU736876, project
VISORSURF (http://www.visorsurf.eu) and Cyprus RPF HSadapt, COMPLE-
MENTARY/0916/0008.

involved in HSFs is metasurfaces [3], essentially planar artifi-
cial structures comprising a periodically repeated element, the
meta-atom, over a substrate. Metasurfaces may be engineered
and then reconfigured to exhibit customized Electromagnetic
(EM) characteristics fully defined by the chosen form of the
meta-atom. As such, HSFs can be used to realize application-
related functionalities such as perfect absorption, beam steer-
ing via anomalous reflection, or polarization control, all lead-
ing to a plethora of effective applications. For instance, the
authors in [4] propose the concept of HSF-enabled wireless
environments, where HSFs are integrated into walls to control
the intensity and direction of reflections in mmWave com-
munications suitable for 5G, leading to the implementation of
physical-layer security, or to maximize received power in non-
trivial ways for non-line-of-sight wireless communication.

Early metasurface structures were static in nature, i.e.,
implemented for a very specific EM functionality (e.g., ab-
sorption, beam steering, etc.) and fixed operational conditions
(e.g., angle of incidence or reflection, frequency, etc.), severely
limiting their scope. Such metasurfaces cannot adapt to en-
vironmental changes or host multiple said functionalities. To
this end, intense research activity has been spent in developing
reconfigurable metamaterials [5] to render dynamic metasur-
faces. Such setup involves materials responsive to stimuli, as
well as switches which can change their behavior in response
to different types of signals such as thermal, optical, or
even mechanical. Although dynamic metasurfaces constitute
a major breakthrough, the lack of programmatic control over
the functionality has motivated the introduction of the concept
of software-defined metasurfaces, or HSFs for short [6].

The main underlying concept in the HSF paradigm is
the introduction of an integrated Network of Miniaturized
Controllers, dubbed CN for short, through which software
directives are transformed into reconfiguration stimuli on the
metasurface [6]. Such directives originate from external user
input (which can be transmitted wirelessly), inserted via a
gateway (that is itself interconnected to a distinct network of
devices) connected directly to the edge of the CN, as Figure 3
shows. These directives are then translated into said specific

commands, that are packetized by the gateway, to route along
the CN accordingly so as to reach individual controller chips.
These commands specify the state at which a unit meta-atom
cell should be in, the implementation of which depends on
the unit cell structure and the tuning mechanisms in place,
resulting to changes in the structure of the meta-arom and
thus the EM properties of the metasurface on demand. For
instance, the state can refer to resistance or capacitance levels
of a variable resistor or a varactor, or to the position of a
given diode. In the most basic version of this HSF concept,
the controllers activate or deactivate corresponding switches,
that affect electromagnetic loading elements. The CN design
is challenged by a number of factors [6], [7], such as the
relatively small meta-atom size, the large number of nodes that
conceivably need to be accommodated, the need to avoid EM
emissions during configuration, and the possible appearance
of faults. The above necessitate simple, low implementation
cost, low power-operating, and fault-tolerant solutions [8].

A. NoCs vs. HSF CNs: Resemblance and Differences

At the system-level, there exists resemblance between on-
chip network interconnected multiprocessor architectures and
the HSF’s CN interconnect layout, in terms of level of minia-
turization and overall blueprint. As such, this clearly points us
to the direction that Network-on-Chip (NoC) methodologies
can be readily adopted to the HSF paradigm [5], [9], with the
advantage of employing such expertise in a new application
domain, i.e., the proposed HSF CN network. However, the
shift in the design requirements and primarily the need for
simplicity, due to scarcity in the availability of resources,
suggest that although NoC methodologies can serve as kickoff
points in the design procedure, customized solutions need to
be developed and deployed in HSF CN structures, given that
a major project objective of the same authors is the ultimate
development of a prototype to realize the HSF concept [2].

Taking into consideration the design specifications outlined
above, as well as additional hardware constraints, a CN archi-
tecture has been adopted [6] which possesses the following
specifications, as well as differences with most traditional
NoCs1. First the HSF CN is characterized by an asynchronous
operation2 which means that it is clockless and uses 4-way
handshaking signals to send a packetized directive from one
controller (the equivalent of routers in NoCs) to the next
along the CN; in contrast most NoCs are clocked, albeit most
of them use asynchronous-like signalling such as credits to
establish correct flow-control [10], [11]. Essentially our HSF
CN does not establish network-spanning flow control, as in
most NoCs, as the flow of packets is carried out on a local,
controller node-by-node basis. The concept of flow-control
units (or flits for short) is absent here, a widespread notion
in wormhole flow-controlled NoCs, as each packet acts as a
unit message and is not logically split across many flits, which

1We intentionally emphasize the term “most” as NoCs exhibit a plethora
of different operational characteristics, and obviously not all implementations
are identical.

2Throughout this paper the term “asynchronous” refers to a clock-less HSF
control network that uses four handshaking signals between a sender-receiver
controller pair, as described in Section II-C, unless otherwise stated.

in turn determines our simplistic flow control protocol outlined
above. The HSF controllers also comprise a single buffer vs.
NoCs which contain multiple virtual channels each composed
of several flit-housing buffers [11].

Next, our HSF CN possesses an irregular Manhattan-like
topology [12], where alternating rows (columns) comprise
links with the opposite packet flow directionality compared to
their two parallel neighbors; most NoCs possess a planar fully-
connected regular mesh topology [13], [11] with two opposite-
directionality links among each router node pair. Following, in
the HSF CN one GateWay (GW) with a single point of entry
into the CN injects packetized directives to be delivered to a
targeted controller(s), and subsequently a meta-atom(s); hence
the HSF controllers only consume packetized messages, and
do not produce any directives to be routed to any other nodes,
albeit only acknowledgement messages to be received by a
CN-attached ACKnowledgment GateWay (ACK GW) at the
opposite topology end (see Section II-B for details) to confirm
individual meta-atom EM setup; in contrast, NoC routers are
each able to both consume and produce packetized messages
which often contain cache-line data [11], [10].

B. Reliable Routing of Packetized Directives in HSF CNs
HSFs are complex devices that will densely integrate unit

cells, tuning elements, controller chips, and on-/off-chip in-
terconnects in non-standard packages [4]. As such, HSFs
are prone to faults during fabrication, deployment, or op-
eration. Connector misalignment, EM, wear-out, physical or
intentional damage of unit cells, or even future technology
miniaturization attempts, all constitute possible sources of HSF
faults [8], raising high reliability concerns for such state-of-
the-art systems. Aiming toward the sustainability of depend-
able communication among interconnected controllers in an
HSF structure, the introduction of link-level fault avoidance
in its underlying CN, where faulty links are bypassed by
control messages using a suitably designed Fault Adaptive
(FA) routing function, becomes paramount. We note that in
this work we take a hard stance and assume the handling
of permanent faults by our proposed routing algorithms, as
detailed in Section III-B; being able to address intermittent
faults is left as future work, which would lightly affect the
design of our two proposed routing algorithms (see Section III.

Many Fault-Tolerant (FT) schemes target the NoC domain
that our proposed HSF CN resembles. FT approaches appli-
cable to NoCs have been inspired from macro-level inter-
connection networks, where Radetzkis survey [10] provides
a broad coverage in the field. Essentially, as long as FT
routing provides full connectivity devoid of cyclic channel
dependencies in a sub-connected (i.e., faulty) topology, then
the FT function crucially guarantees packet delivery devoid
of deadlocks and livelocks [13]. Such deadlock-avoidance3

3Throughout this paper We utilize the term “deadlock-freedom” as used
in the seminal work by Duato [13]; that is, message traversals along the
CN network are devoid of cyclic patterns as no channel (i.e., links in our
case) dependencies are allowed, done by carefully constructing our proposed
routing algorithm(s) (see Section III). As a result any messages cannot be
involved in a deadlocked situation, occurring, either (1) between packetized
software directives, or (2) between such directives and acknowledgement
packets (ACKs), or (3) among ACK packets, all scenarios which may halt
the flow of messages indefinitely and render the CN of the HSF inoperable.

mechanisms are explored by techniques such as in the Turn
Model for adaptive routing [14], where certain 90 degree turns
in mesh networks are prohibited so as to break the formation
of said cycles and channel dependencies.

Many FT routing algorithms are build on the above princi-
ples to ensure seamless communication in NoCs, such as the
FT scheme in [15] which initiates a local detour every time a
faulty node is encountered. As such, new path directives are
added to the header which may create a large overhead. Al-
ternatively, the method proposed in [16] works proactively by
disseminating routing data that is used to update routing tables
right after a new fault is encountered, so as to bypass faulty
links and routers. Another approach in [17] employs the notion
of faulty blocks, where healthy links are victimized along
with spatially adjacent faulty links, to design a deterministic
FT method where routed packets bypass such faulty blocks.
Next, the method in [18] decouples communication from
computation in NoC-interconnected multicore chips, and uses
stochastic communication and techniques such as branching
to send multiple packets among alternative paths so as to
statistically enhance the delivery of messages in networks that
are marred with faulty components. Last, in an attempt to
sustain good performance while avoiding deadlocks, several
authors have utilized virtual channels [10]. This concept,
however, is costly in terms of buffering, protocols buildup,
and control resources, which cannot be afforded in the HSF
CN.

C. Contributions: Fault adaptive routing in HSF CNs

In this paper, we extend our work in [19], aiming toward
the development of lightweight fault adaptive routing protocols
applicable to said HSF, that establish a simple, yet effective,
operational mode requiring stringent network resources, as
such specifications are dictated by the hardware investment
restrictions imposed upon the HSF CN [7], [6]. We employ a
fault adaptive methodology which attempts to deliver packets
to their router node destinations in the presence of faulty
network components, unlike fault tolerance methods in which
packet deliveries are ensured albeit under the assumption of
having bounded faulty spatial patterns in the network (i.e., by
constraining both the number of faults and their distribution).
Given the constraints of our topology it is very unlikely to be
able to deploy classic fault-tolerant methods in our resource-
constraint HSF CN, hence we direct our efforts to using fault
adaptive routing that provides a best case packet delivery
scenario (i.e., delivery rates equal to 100%, at best, given the
density amd distribution of network component faults).

We base our fault tolerance approach on a topology-agnostic
XY-YX routing algorithm (where oblivious XY refers to
dimension ordered routing and is a routing protocol of choice
for NoCs) for the HSF CN Manhattan-like topology due to
its implementation simplicity (see Section III for details). Our
topology agnostic XY-YX algorithm under non-fault condi-
tions is verified to satisfy deadlock freedom [13] using model
specification and model checking techniques. Specifically, a
model of the HSF CN was developed using the UPPAAL
model checker tool [20]. Through model checking, that ex-
haustively searches the state-space of the model execution,

the HSF CN setting was found not to induce any deadlocks.
(refer to Section III-A)

Based on said agnostic XY-YX routing, we introduce two
fault adaptive routing algorithms, so as to expose different
design/cost tradeoffs, dubbed as: (1) Loop-free algorithm
(LFA), and, (2) Reliable Delivery algorithm (RDA) which
comes in two versions: deterministic and (b) its probabilistic
(see Section III-D). First, the LFA routing algorithm alternates
between XY and YX routing (hence the name XY-YX), where
the latter is the mirror image of XY, in order to bypass detected
faulty links along routing paths, and employs a set of turn rules
to maximize routing flexibility in the presence of such faults.
Next, the RDA algorithm aims to achieve high reliability in
routing by forming two disjoint paths between any two nodes
in the network, such that when a fault occurs in the first path,
the routed packetized message is forced to take an alternative
path that does not overlap with the originally intended path
that is found to be now faulty.

The fault-adaptiveness of the two algorithms is evaluated
via simulations conducted on a custom developed simulator,
with primary performance metrics considered being those of
successful packet delivery ratio and the coverage ratio, i.e., the
percentage of nodes nodes that can be reached via a routing
algorithm. The simulation experiments also evaluate our two
proposed algorithms in terms of their resource utilization, such
as the average message hop count traversed by packetized
messages on their way to their destination. Our results indicate
that the probabilistic version of the RDA algorithm exhibits
the best performance in terms of both its successful delivery
ratio and network coverage, albeit at the expense of increased
number of hops, while the deterministic version of RDA
exhibits a good trade-off between performance and resources
utilized. Finally, to mitigate the effects of very long paths
which might arise, a time to live field is introduced in the
message header, where design guidelines as to the suitable
choice of its value is evaluated using system simulation.

The rest of the paper is organized as follows. Next, Sec-
tion II discusses the considered network architecture, while
in Section III the proposed routing algorithms are introduced.
Section IV discusses the simulation results and finally conclud-
ing remarks and future plans are summarized in Section V.

II. HYPERSURFACE CONTROLLER NETWORK

A schematic overview of the HSF architecture [2] is shown
in Figure I-C. It comprises a network of miniaturized con-
trollers, each of which controls one or more metasurface
switches. Depending on the switch status, different switch
configurations can be dictated, which in turn change the
meta-atom structure thus modifying the electromagnetic (EM)
functions of the system. The input Gateway (GW), through
a master-slave setup, provides connectivity between the CN
and external networking devices. Although a single tile of
controllers is shown in Figure I-C, provisioning is made
to allow for multiple tiles, with the GW offering inter-tile
communication as well.

A first full-functioning HSF prototype is targeted in [6],
[12]. In the development of this prototype a three-layer Printed

Switch Element

Controllable State
(ON/OFF)

Control Layer

• Diode array approach
 OR

• Embedded control agents approach

IoT Gateway

• Tile central power supply
• Inter-tile communication
• Tile-to-external world
communication
• Environmental sensing duties
(optional)

Configuration
to

EM Function
Correspondence

Tile
orientation

FUNCTION

ABSORB(Incoming Direction, Frequency)
STEER(Incoming/Outgoing Direction, Frequency)

Figure 1. Decomposition of a complete HSF system: i) the metasurface layer; ii) the tile hardware layer; iii) the tile inter network Layer; and iv) the
environment control layer.

Circuit Board (PCB) structure has been considered where
the top layer consists of metal patches, the second layer
consists of a ground plane, and the bottom layer consists of
an array of Application-Specific Integrated Circuits (ASIC) in
which the controller functionality is embedded. The bottom
layer is connected to the top metal patch layer through vias.
The role of the ASIC is to regulate the EM properties of
the top layer by providing adjustable complex impedance
loading as well as networking functionality. The adjustable
complex impedance loading is offered by digitally-controlled
varactors and varistors. A number of system requirements and
constraints dictate the CN architecture, reviewed below.

A. HSF Design Specifications
System design targets must be characterized by simplicity of

construction, low power consumption and low implementation
cost [12]. These are dictated by the need for scalability, due to
the large number of meta-atoms that will be accommodated in
practice, the small meta-atom size required for correct meta-
material operation at small wavelengths, and the need to avoid
EM interference. The meta-atom size is of critical importance
to the ability of the metasurface to control EM waves. The
size of the meta-atom should be comparable to the incident
wave wavelength λ (in the order of λ/2), while the metasurface
thickness should be much smaller than the wavelength (in the
order of λ/10). Taking into consideration that at least 5 meta-
atoms per wavelength are required for correct operation, to
accommodate for example 60 GHz communication, sizes less
than 1 mm × 1 mm are required. Such small meta-atom sizes
have led to the consideration of a single chip ASIC for each
meta-atom. In addition, the small meta-atom size indicates that
a large number of meta-atoms and thus controllers will be
involved in practical applications. This implies that the cost
of each tile must be kept at a minimum and that the pursued
solutions must be able to scale well with the network size.
The potentially large surfaces to be covered, such as building
walls, also necessitate designs of low power consumption.

EM interference avoidance with the incident waves is also
of utmost importance. A large surface which is clocked can

input2

output2

input1

output1

data0
data1

ack bit
data0
data1
ack bit

(a) Chip Pins (b) Two inputs/outputs (c) Communication: Pin allocation

Figure 2. (a) controller chip underside showing pins placement, (b) single
controller with its two unidirectional inputs and two unidirectional outputs,
(c) CN chip pin allocation to facilitate external communication.

potentially radiate significant interference signals, a fact which
prompts for an asynchronous digital design. An asynchronous
design is also preferable in terms of scalability and cost as
there will be no need for oscillators within a dense array, thus
reducing space and cost. Moreover, asynchronous circuits are
considered to be extremely energy-efficient. Electromagnetic
interference poses constraints on the network wiring and thus
the topology. Wiring should be kept at a minimum, thus favor-
ing a grid-networked controller approach (see Section II-B).

Another significant factor to be considered is the issue
tolerance to faults. The CN architecture must offer reliable
data delivery even in the presence of faults, foreseen due to
imminent component failure(s), external influences such as
accidental/intentional damage, and loss of connectivity. It must
be noted, however, that unlike in high-performing traditional
NoCs, HSF applications are expected to provide somewhat
relaxed performance in terms of routing latency and offered
reliability levels. This implies that unsuccessful delivery of
some packetized software meta-atom reconfiguration direc-
tives to the controller nodes might not be observable at the
macroscopic level. Another factor to be accounted for, is that
the workload that most applications are expected to incur is
relatively low. Hence, the take away message is that, the CN
will be characterized by asynchronous operation, simplicity
of implementation, provision of fault tolerance, low power
consumption, and grid-like controller interconnectivity.

B. Controller Network (CN) Topology

The current implementation technology node chosen for
the controller chip has a limitation of 25 input/output signal
pins [12] as shown in Figure 2-(a). The adoption of an
asynchronous circuit leads to the implementation of a four-
phase asynchronous handshake communication protocol [21]
between two controllers. The communication protocol requires
three input/output pins per controller to transmit a single bit. In
accommodating these restrictions, the design chosen provides
two input channel endpoints and two output channel endpoints
as shown in Figure 2-(b). Such setup leads to the allocation
of 12 pins for bit-by-bit communication (3 pins per channel
endpoint) as shown in Figure 2-(c). The remaining 13 pins
are used for configuring the meta-material and are allocated
to global signals.

The interconnect geometry design of choice for the HSF
CN network is a Manhattan-like topology [12] where the
directionality of rows (and columns) alternates from one row
(column) to the next, resembling a mesh topology where
approximately half of its unidirectional links are missing. This
network does not contain wraparound links that connect nodes
found at the edges with their opposite topology nodes like in
torus topologies; for clarification purposes, we dub such links
as “end-to-end wraparound links.” Figure 3 shows a 4×4 grid
HSF topology, which forms a snippet of the expected 24× 24
full-size HSF topology, as simulated in our experiments of
Section IV-A; the full-size topology is merely a recursion of
the CN interconnect shown here.

The choice of not including end-to-end wraparound links
is justified by the limitations imposed by the hardware im-
plementation; in such a scenario, the PCB would require the
construction of two more layers for wraparound circuits and,
moreover, controllers at the edges would require transistors
with a higher signal drive to achieve the transmission of a
signal through such wraparound links. Instead, in the CN
topology nodes that reside on the same edge row (column)
are connected between them through edge wraparounds as
shown in Figure 3. This Manhattan-like HSF controller in-
terconnectivity was chosen as it adheres to the constrained
resource requirements of the HSF CN; at the same time it
offers improved communication robustness as compared to
alternative topologies such as a monotonous topology like
a plain mesh or ring. This is because it offers additional
connectivity via the interconnection of every pair of switch
controllers at the edges of the topology using said edge
wraparound links. The level of robustness attainment in the
face of faulty links in our proposed HSF CN topology is
further discussed in Section III.

The CN is configured via two GWs, as shown in Figure 3;
the left-side GW is also responsible for packetized software
directive generation. GWs are “smart” devices that connect
the CN to external world communication with the possible
addition of environmental sensory capabilities. The input
GW forms a single point of entry into the CN and injects
packetized directives to be delivered to targeted controllers,
and subsequently meta-atoms, while the Acknowledgement
GW (i.e., ACK-GW), connects to the opposite CN site so

Figure 3. Manhattan-like HSF controller network with edge wrap-around
links. The input gateway is connected at the south west corner of the CN,
while the ACK gateway connects at the south east corner of the CN. The
symbols “E” and “O” respectively denote even and odd rows or columns.

as to receive acknowledgements from individual controllers
to confirm individual meta-atom EM setup. HSF controller
addressing is implemented using Cartesian coordinates that
directives use to navigate along the CN topology, as again
depicted in Figure 3, where (x,y) pair values are incremented
starting from the bottom left corner of the CN topology. Even
rows (columns) possess an even y-coordinate (x-coordinate);
the remaining rows and columns are labeled “odd.”

C. Inter-HSF Communicaton Signaling

The authors in [6] justify the reasoning behind choosing
asynchronous circuits over synchronous ones for deployment
in metasurfaces. First, while in synchronous systems com-
ponents depend on clock events to exchange information,
asynchronous systems rely on on-demand events, a setup
which saves energy dissipated vs. observed in regular clock
cycles. In addition, maintaining reliable global clock cycles
becomes challenging in large surfaces, such as metasurfaces.
Also, the absence of clocking saves space and is cost efficient.
Instead, asynchronous circuits employ handshaking to manage
data flow. In the HSF controller network, asynchronous com-
munication among nodes is carried out through the exchange
of three signals between a transmitter and a receiver.

Four-phase Handshake Communication: Figure 2-(c) de-
picts the three pins in each input and output port which
accommodate the four-way handshake signals carried out
betwen two HSF controllers (nodes), namely Data0, Data1
and ACK. First, the sender node sets one of the two data
signals according to the transmission bit; Data0 signal is set
if the bit to be sent is 0, otherwise Data1 signal is set if the
intended transmission bit is 1. When the receiver receives this
data signal it sets the ACK signal. The Sender then resets its
Data signal, followed by a reset of the ACK signal by the
receiver, at which point both the sender and the receiver are
ready to pass the next bit.

The justification for connecting the input gateway at
the [bottom left] network corner is to enable the intended
deadlock-free property of our proposed XY-YX routing algo-
rithm. After exhaustive analysis (see Section III-A) we found

out that in case the ACK gateway was connected elsewhere
at the left CN boundary, then routing would become prone to
deadlocks. For a complete analysis of XY deadlock freedom
the reader is urged to refer to Section III-A.

III. PROPOSED ROUTING PROTOCOLS FOR HSF CN
As stated, most existing FT algorithms [10], [15], [22] are

applicable to NoCs that provide resources and capabilities
that are not available in the HSF CN, for instance, full-
duplex links and ample bit-width for embedding routing data
in the packet header, useful in storing info to form paths that
bypass faults [15]. Taking into account the resource constraints
exhibited in the HSF CN, Dimension-Order Routing (DOR;
or “XY”) algorithm that enjoys widespread use in 2-D mesh
NoCs [23], [14] due to its inherent deadlock-avoidance prop-
erty and implementation simplicity as it demands minimum
route computation overheads, was chosen as the foundation
protocol in developing deadlock-free routing algorithms for
fully-connected (i.e., healthy) CN topology, and subsequently
fault-adaptive routing functions for the same HSF CN.

DOR used “as is” would not operate correctly at all in
the Manhattan-like HSF CN topology, for a simple reason:
referring to Figure 4, strict XY cannot support delivery of
packetized directives to controllers placed onto odd-labeled
columns above the row of controllers located at the bottom-
most even row despite traversing an entirely healthy topology,
due to the reverse directionality of links residing in those odd
columns. This leads us to seek XY variant routing algorithms
in order to adhere correctly to the particularity of the HSF
CN topology, and to later develop combined XY-XY routing
to also account for the presence of possible faulty links that
reduces the original path diversity offered by the base fully-
connected (i.e., healthy) topology even further.

Figure 4 demonstrates two such XY variant routing algo-
rithms: i) oblivious to the topology’s interconnectivity and
faults XY-YX routing that continuously alternates between
routing horizontally and vertically, respectively across rows
and columns; and ii) our proposed deadlock-free XY-YX
variant that is odd/even column/row agnostic. We dub the first
“XY-YX oblivious” and the second “XY-YX agnostic.”

To explain how the two above XY-YX algorithms work,
we make use of two demonstration examples as follows.
We assume the presence of the HSF CN topology shown in
Figure 4 where all packetized directives are inserted from the
input GW at coordinate (x=0,y=0), with a node destination
residing at (3,4). We begin with oblivious XY-YX where due
to its topology non-agnostic nature the packet traverses the
horizontal dimension rightwards (east) until node (3,0) where
it discovers that it cannot go north and hence hops one more
link to the right to reach (4,0) where it eventually again
traverses north in an oblivious manner to reach node (4,4); we
note that at (3,0) the packet could make a 180◦ turn, traverse
a hop to the left (west) and then head up (north), but such a
semi-cyclic scenario enhances the possibility of a deadlocked
situation. At this point again it discovers that it cannot turn
to the west direction to reach its destination and hence hops
to the north, then west, then down (south) to finally reach its
destination. Here, no full cycle is formed and hence it may be

E E E EO O O

E

E

E

O

O

O

E

In
p

u
t

G
W

A
C

K

G
W

 Oblivious XY-XY ACK Agnostic XY-YX

(0,0) (2,0)

(2,4)
(3,4)

(4,0) (5,0)

(3,5) (4,5)

(4,4) (5,4)

(3,0)

Figure 4. Paths taken by: (1) oblivious XY-YX routing (orange), (2) topology-
anostic XY-YX routing (blue), and (3) ACK packet routing (purple).

considered a non-deadlocked situation; unfortunately however,
the superimposition of said path with the ACK packet’s path
(dotted purple line in Figure 4) starting from the destination at
(3,4) forms a complete 360◦ cycle, showing that this algorithm
is prone to formations of deadlocks. This calls for a change
in the XY-YX algorithm, and the solution is to alter the
XY-YX algorithm to take into account the geometry of the
topology, i.e., to be agnostic to it in therms of link/column-
row directionality (i.e., odd/even column designation).

As such, the XY-YX agnostic algorithm makes a turn from
east to north at node (2,0), instead of at node (4,0), as shown by
the solid blue line in Figure 4, i.e., two hops earlier than that of
the XY oblivious algorithm. The rationale for this is to allow
space for maneuvering progressively towards the east where
the destination node resides, eliminating the loop encountered
earlier in XY-YX oblivious routing, which ultimately caused
a full routing cycle and hence a deadlocked situation. Hence
once the packet is done traversing north at node (2,4), it can
now just hop to the east and reach its destination; here, there
is no superimposed path with the ACK packet’s route, and
hence no deadlock arises, unlike in XY-YX oblivious routing.
The rule formed here is to use the even CN column, one hop
before the destination’s odd X coordinate, to head north so
as to eliminate any future deadlock. Hence considering all
such routing scenarios, depending on where the destination
resides and the column/row odd/even location, a complete yet
uncomplicated XY-YX routing algorithm which is deadlock
free is proposed and built for the HSF CN as detailed next.

A. Evaluation of Agnostic XY-XY Routing for the HSF CN:
Deadlock Freedom Property

As mentioned in Section II-B, due to severe resource
constraints, the interconnect geometry design of choice for
the HSF CN network is a Manhattan-like topology [12] where
the directionality of rows (and columns) alternates from one
row (column) to the next, resembling a mesh topology where
approximately half of its unidirectional links are missing, as
Figure 4 shows. The geometry of a network topology and

the routing protocol that it utilizes are strongly coupled and
greatly affect the deadlock-free property of the entire system,
especially for the routing protocol. As such, here we utilize
an analytical technique based on model checking to verify the
deadlock-free property of the HSF CN system.

Said model checking is an analytical technique based on
exhaustive state-space search. In contrast to traditional set
theoretic techniques used to define rules for, and also vali-
date deadlock-freedom [13], model checking: i) develops a
graph/state-machine model of the system; and ii) is used for
checking general properties of a system, beyond the deadlock
freedom property.

In particular, specification models for candidate design alter-
natives using the UPPALL SMC model checking toolkit were
developed, with the model against the property of deadlock-
freedom in the presence of multiple packets within the HSF
CN was checked. At the design phase multiple options for
node connectivity and gateway placement were considered
in a multidimensional design space. At this phase, applying
traditional set theoretic techniques to validate each of the
options would have proved an endless procedure. Model
checking, however, has proved to be an efficient design tool
in reaching final decisions on the chosen architecture for the
HSF CN.

In contrast to most simulative approaches, model checking
allows for the development of a model of the design of
the system with rigorous properties. The model checker then
performs an exhaustive state-space exploration of the model
to check multiple properties, as expressed by the user in a
formal language. This can lead to strong verification results
and property guaranties. Traditional simulative approaches
do not support state space exploration, neither can extract
rigorous and strong verification results, a fact that may lead
to the presence of bugs in a system, despite being thoroughly
simulated.

Strong verification results, however, come at the cost of
scalability, since formal state exploration of models suffer
from the state-explosion problem. In the current analysis the
scalability problems are alleviated by: i) using a tool that
performs statistical reasoning on the derived state-space of
a formal model, and thus allowing for statistically exploring
designs at a scale; ii) gradually scaling up to a network
size that reaches the performance threshold of the model
checker and observing the performance trend as the network
scales (since the network is symmetric our experiments in the
aforementioned network size is representative of any network
size); and iii) presenting the results of experiments on a 10
10 network, which is a symmetric large enough chunk of the
Hypersurface and, moreover, it is a network which is larger
than conventional NoC mesh networks.

We encode the HSF CN topology and the deadlock-free
XY-YX agnostic routing protocol in the input language of the
UPPAAL SMC model checker and its subsequent evaluation.
UPPAAL SMC is the statistical extension of UPPAAL, a model
checker for real-time systems represented by networks of
timed automata [20]. The reasons leading to the selection of
this tool to carry out the formal evaluation of the protocols
considered here are threefold: First, our design is associ-

ated with dense time behaviour and requirements that can
be modelled as an UPPAAL time automata model. Second,
UPPAAL implements statistical reasoning about properties of
timed systems. Given the large state space generated by the
models, statistical model checking enables the derivation of
results for larger networks than if we had used standard model
checking. Third, it supports basic data structures expressed in
the syntax of the C programming language, thereby allowing
for concise encodings of the system’s features, e.g, buffers.

The modelling presented assumes the following assump-
tions. First, the network is taken to be a 10×10 grid. Second,
in line with the intended operation of the system, the models
account only for the routing of configuration sequences and
not of arbitrary sequences of packets. Finally, given that nodes
are identical (thus they have the same speed) and are operating
very fast, we assume the presence of a global clock and that at
every tick of the clock all nodes that may fire a transition will.
Following the near-future manufacturing of the first prototype
chip, timing measurements (in the form of time bounds for
each operation) will be provided and encoded in the model in
order to obtain a more precise timing analysis.

All system variants are given by the parallel composition
of 100 timed automata modelling the nodes, and a timed
automaton (automata, respectively) representing the gateway
(gateways, respectively). The communication between the
nodes is encoded by means of four-dimensional adjacency
matrices of pairwise communication channels, where item
[x][y][x′][y′] denotes the communication channel taking input
from node (x, y) and outputting to node (x′, y′).

Figure 5 depicts the timed automaton modelling the nodes.
The automaton is composed of two states (locations) and ten
transitions. Initially a node is in state idle. On the receipt of
a message from either input in1 or in2 (respectively, input1,
input2 in Figure 2-(b)), the node transitions to state Process-
ing. The state models the processing of the data of the control
packet before the latter is routed to its destination. While in
this state, a node may perform either one of the following
actions: (i) if it has not reached the destination node, then it
routes the packet to one of its neighbours according to the XY-
YX agnostic algorithm; (ii) if it has reached the destination
node, then it will create and route an acknowledgement packet
to one of its neighbouring nodes towards the ACK gateway
(GW). (iii) if it is equipped with buffers, then it may receive
a second packet which it enqueues in its buffer. In the Figure
every transition is guarded by a boolean condition determining
whether or not the transition can be fired. The condition
requires from the sender-receiver pair to respect the XY-YX
agnostic routing scheme and from the receiver to be in a state
where the packet can be queued. Further conditions guarding
the transitions enable the synchronous evolution of the system.
Specifically a node can perform an action only when its local
clock is equal to 1; following the action, the node resets its
clock; if there is no enabled action the node simply resets its
clock whenever this equals 1.

The timed automata modelling the GWs are responsible
for generating configuration sequences and for receiving the
acknowledgements sent by the nodes. Following the topology
of the network, different configurations of the GW position and

Figure 5. Timed automaton for intra-tile controller.

the orderings of the packets may induce different settings for
the presence of deadlocks. We therefore consider the following
configurations:

1) A GW that sends control packets towards the HSF CN is
connected at the south west corner of the HSF CN and a
GW that receives acknowledgement packets is connected
at the south east corner of the HSF CN as depicted in
Figure 3.

2) A GW that sends control packets towards the HSF CN is
connected at the south west corner of the HSF CN. The
same GW also acts the GW that receives acknowledge-
ment packets, as depicted in Figure 6-(a).

3) A GW that sends control packets towards the HSF CN is
connected at the south west corner of the HSF CN and a
GW that receives acknowledgement packets is connected
at the south east corner of the HSF CN as depicted in
Figure 6-(b).

Moreover, we assume that the packets are sent row by row
from south to north, and that the packets in a row are sent
from west to east.

Initially, we deployed the statistical extension module of
the UPPAAL toolkit that uses statistical sampling of the state
space to provide results with a high degree of confidence
(approx., 95%). We report the experimental results obtained by
checking the system variants against specifications pertaining
to deadlock-freedom, using the UPPAAL SMC query:

φack , E[≤ 300; 1000](max : acks)

Above, acks is a variable representing the number of acknowl-
edgements that have been received. φack gives the expected
maximum value of acks that are calculated on the first 300
time units, where empirical evaluation showed this to be an
upper bound for the completion of the protocol, and for a
sample of 1000 traces. During the lifespan of the design
phase, the specifications were evaluated on progressively more
complicated designs.

Evidently, UPPAAL SMC revealed that the latter two con-
figurations present deadlocks, whereas the former configura-

tion does not present any deadlocks. In subsequent experimen-
tation we used the UPPAAL query

A〈〉(acks == awaitedAcks)

requiring that in any execution of the model all the ex-
pected acknowledgements will be received by the ACK GW.
The experimentation has been conducted on the entire state-
space of the configurations and has verified that the former
configuration (i.e., the configuration in Figure 3) is deadlock-
free. Moreover, for the latter two configurations has revealed
two traces, respectively, for which the execution deadlocks.

Figure 6 demonstrates an UPPAAL-generated simulation
trace showcasing a deadlock a 4 × 4 size HSF CN for
configuration (2). Node (0, 2) is trying to route a data packet
to node (1, 3) through node (0, 3), which in turn is trying
to route an acknowledgement packet to node (0, 1) through
node (0, 3). Consequently node (0, 2) is waiting on node (0, 3)
and node (0, 3) is waiting on node (0, 2), thereby creating
a deadlock. Figure 6 (down) shows a part of an UPPAAL-
generated simulation trace that demonstrates the deadlock in
a 4×4 size HSF CN for configuration (3). The problem arises
when a configuration packet is routed towards controller (3, 1),
as shown with red colour. The packet necessarily needs to
be routed through controller (3, 2), which is connected to
the ACK GW. Also, in the problematic trace it happens that
the configuration packet is interleaved with acknowledgement
packets, as shown with green colour, that are routed towards
controller (3, 2). The interleaving creates an input/output de-
pendency between controllers (2, 1), (2, 2), (3, 2), and (3, 1).

B. Building a Fault-Tolerant XY-YX Agnostic Routing Protocol
for Fault-Prone HSF Control Networks

The above XY-YX agnostic routing protocol is designed for
a fully-connected HSF CN topology, and in case faulty net-
work components are encountered it cannot offer path adapt-
ability in bypassing such faults; as such it is not fault tolerant.
Meanwhile, traditional fault-/congestion-tolerant variations of
the XY-YX algorithm proposed in prior-art [24], [25], [26],

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)
In

pu
t

G
W

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

In
pu

t
G

W

A
C

K
G

W

data packet ack packet

Figure 6. Deadlocked scenarios: (a) Up: paths forming a loop at the south
west acknowledgement gateway, (b) Down: paths forming a loop at the north
east acknowledgement gateway.

[27] are not suitable for the HSF CN because of requirements
such as supporting a large packet header, duplex channels, and
redundant messages, among others. While deadlock freedom is
essential for well-conceived fault tolerant routing algorithms,
the design of a fault-tolerant deadlock-free routing technique
for the considered topology is quite challenging; especially in
the presence of the aforementioned constraints. Next, the HSF
applications are expected to produce moderate to low traffic
rates, which can reduce the probability of induced deadlocks
dramatically, as packet paths may not overlapped causing
superimposed cyclic dependencies. Therefore, at this stage,
we focus on the development of simple fault-adaptive routing
schemes based on the agnostic XY-YX mechanism introduced
earlier.

Our developed goals aim toward avoiding livelocks (i.e.,
endless packet cyclic routes without packets eventually being
delivered to their destinations) and reliable data delivery. Our
fault-adaptive routing techniques make use of the orientation
and coordinates of both destination nodes and faulty nodes to
provide fault adaptability; as such our routing protocols are
agnostic of both the HSF CN topology and the positions of
faulty components, such as links and routers. According to
the location of a network controller, there exist four different
types of topological orientations: nodes that reside on an even

0
E

1

2
O

E

3

O

Figure 7. The four possible controller node orientations based on their
odd/even row/column positioning.

row and an even column (i.e., type 0), nodes located on an
odd row and an even column (i.e., type 1), nodes that reside
on an even row and an odd column (i.e., type 2), and finally
nodes located on an odd row and an odd column (i.e, type 3),
as depicted in Figure 7.

As such, we propose two distinct fault-adaptive routing
algorithms tailored for our HSF CN: Loop-Free Routing (LFA)
and Reliable Delivery Algorithm (LDA). All the routing rules
of the two said algorithms can be found in Appendices A
and B, respectively. Each such algorithm uses a set of rules
to decide the routing direction at each node. Despite these
extensive sets of rules, the controller node implementation con-
tinues to be characterized by simplicity of design, low power
consumption, and low hardware implementation costs. This is
because the rules for route decision making are implemented
by merely extending the base DOR routing algorithm, and thus
operate under common principles; at the hardware level the
router circuitry implements a number of conditional routing
checks to establish faulty network component bypassing of
routed packets, to utilize memory in terms of look-up tables,
and without substantially changing the overall block archi-
tecture of the node’s circuitry. Therefore, the only trade-off
seen in achieving fault-adaptiveness is the fact that conditional
fault-adaptive routing turn rules are more extensive vs. those
required in implementing DOR routing.

In this work we take a hard stance and assume that only
permanent faults are handled by our two proposed routing
algorithms, although intermittent faults can also appear and
subsequently be addressed [8]. For instance, intentional power
gating can be considered transient, whereas physical damage
can be considered permanent. Either way, we assume that
the HSF CN along with its two GWs periodically checks the
status of the controllers through polling, and as such detects
permanent fault appearances; this is left as future work, to be
implemented in the HSF CN prototype [2].

C. Loop-Free Algorithm (LFA)

As discussed earlier, despite the fact that the Turn Model
for adaptive routing [14] has been adopted directly in prior-
art to target routing algorithm construction in regular mesh
networks [23], [17], in the case of the HSF CN under
consideration such direct adoption of the Turn Model routing
rules is not doable. This is because for 2-dimensional regular
meshes the Turn Model assumes the existence of duplex links
in all four Cartesian directions at every router, totalling eight
unidirectional links for every router node. In the case of the

HSF CN however, each router supports only one direction in
either the horizontal (network row) or the vertical (network
column) dimensions, as it possesses half the number of links as
opposed to a regular 2D mesh router; only two, perpendicular
to each other, unidirectional output links exist per router.

As such, the Turn Model [14] rules cannot be effectively
mapped onto such an irregular network that the HSF CN
dictates, as by eliminating turns at each router in the quest of
achieving deadlock-freedom in the presence of faulty network
links, many of the routers will be directed to route packets
along just one routing direction, a limiting fact which is
guaranteed to cause a significant drop in the delivery ratios of
routed packets in the presence of faulty network components.
Next, oblivious XY-YX routing is, however, not adaptive to
faults and is hence not fault-tolerant. Therefore, to achieve
adaptivity to faults in an HSF CN, our Loop-Free routing
Algorithm (LFA) combines 1) agnosticism of the topology
connectivity status (i.e., the locations of faulty components and
destination node) to achieve adaptability to faults by circum-
venting faulty links and router nodes, and 2) turn prevention
in routing so as to avoid livelocks by proposing a variant
scheme of our proposed XY-YX agnostic routing algorithm
(see Section III-A). As such, livelock-inducing routing loops
are avoided while faults are bypassed, simultaneously.

XY-YX agnostic routing employed by LFA is continuously
aware of the status of the output channels4, either healthy
or faulty, at each router node so as to alternate between
using XY and YX routing, accordingly. An output channel
is considered to be faulty if it is defective with no packets
being able to traverse it, or it leads to a non-functioning node
despite the outgoing link from an operational router being non-
faulty. Under LFA, a packet is initially forwarded using XY
routing (i.e. horizontally then vertically) until a faulty channel
is detected in its path; in such case, the packet is then directed
to utilize the alternative (i.e., second, since each router contains
just two output links) healthy output channel of the same router
node. At this point, the header of the packet is altered to reflect
upon the usage of YX routing (i.e. forwarded vertically then
horizontally) to be employed starting from the next visited
node along its routing path. In case another fault is later
detected along the packet’s path, the same swapping process
is repeated. This technique is referred to as fault adaptive, FA
XY-YX for short.

Simulation experiments carried out using MATLAB (details
are not reported here) consistently produced considerable
improvements in successful delivery rates of our proposed
FA XY-YX as compared to other XY routing variants. How-
ever, blindly applying XY routing followed by YX routing
prescribes a routing scheme that is prone to livelocks in the
presence of faulty links. This is because the combined XY-
YX algorithm can sometimes forward packets back to the
same original faulty path, hence forming an infinite number
of routing loops with packets never being delivered to their
destinations, i.e., livelocks. Thus, to avoid such adverse phe-
nomena while maintaining routing flexibility in the presence of

4The terms “link” and “channel” are used interchangeably in Section III.
The same applies for the terms “router” and “node.”

faults, we utilized appropriate turn rules and adopted them to
agnostic FA XY-YX routing that accounts for 1) the presence
of faulty links in the vicinity of a packet’s route, 2) the packet’s
destination node location, and, 3) the current horizontal-
vertical topology orientation of the packet. We note that not
all current faulty link-destination node pairs scenarios induce
a livelock, hence we limit the usage of our proposed turn
prevention policy to the locations where faults are expected
to create loops. As such, the routing mode in which turn
prevention is employed is referred to as abnormal routing,
while when FA XY-YX is used is dubbed normal routing.

Our proposed routing protocols work as follows; the list
of all routing rules and pseudo-code is provided in the Ap-
pendix A, and the reader is urged to refer to them for complete
coverage: A packet is routed in the normal routing mode using
agnostic XY routing until a fault is encountered, at which
point (based on the horizontal-vertical Cartesian location of
the fault) the packet’s header is altered such that the routing
algorithm is set to agnostic YX routing, and depending on
the prevailing network condition, the routing mode can also
be switched to abnormal routing mode (this is controlled by
the rules in item b) in Appendix A). This abnormal routing
mode restricts certain routing turns so as to break potential
cycles that would cause livelocks, and delivers the packet to
the next router via its input channel that was not targeted in
the original routing mode. In other words, if XY routing is to
deliver a packet through the first input of a certain destination
node, YX routing (with the abnormal mode if necessary)
now targets the second (the only alternative) input port of
the same destination router. This scenario aims to route the
packet around the faulty node, hence bypassing the current
fault. However, there exist special cases where a fault may
render the destination node physically disconnected from the
network due to the spatial placement of faults in the network,
in which case routing to that destination becomes impossible;
for example when node (2,2) in Figure 3 is faulty, nodes
(2,3), (3,2) and (3,3) automatically become disconnected. To
avoid localized deadlocks and livelocks, the proposed routing
scheme forbids self-looping 180◦ turns (i.e., going back to the
same edge node where the packet had departed from using its
wraparound link) at the edge wraparounds.

LFA requires the use of two bits in the packet header, one
to indicate the routing technique, either XY or YX, and the
other to designate the routing mode. The node prior to the
location of a fault selects the appropriate routing mode which
is accomplished by comparing the faulty node’s location and
orientation with those of the destination node. Next, having
an extra bit in the header to indicate the routing mode enables
the proposed method to terminate when a loop cannot be
avoided. Hence, if abnormal mode is employed and the packet
encounters an additional fault that forces a packet in taking a
blocked turn, the routing algorithm terminates to avoid livelock
induction; as such, the packet is dropped.

Walk-through Example Figure 8 shows two distinct paths
taken by an equivalent number of routing algorithms to route
a packet to the destination node indicated as a red circle. The
destination node category is of “type 3” meaning that it lies on
an odd network column and an odd network row. LFA starts

E E E EO O O

E

E

E

O

O

O

E

In
p

u
t

G
W

A
C

K

G
W

Agnostic XY-XY LFA

p q

rstu

Figure 8. Routes traversed by: 1) the agnostic FA XY-YX routing shown as a
dotted orange line, and 2) the LFA routing algorithm shown as a combination
of said orange dotted line followed by the solid blue line, in reaching the
destination node denoted by a red circle. The faulty node depicted with a
cross causes XY-YX to fail, while LFA bypasses the fault a node earlier (i.e.,
at node p) and succeeds in its delivery.

routing the packet from the input GW using XY routing toward
the destination node colored in red. When the faulty link is
detected at the visited neighboring node located prior to the
fault, each algorithm takes a different action to bypass it; XY
routing fails to direct the packet towards its destination and
hence terminates, while LFA forwards the packet to the healthy
output of the current node (to the east direction), from where
the packet then re-routes starting from the node labeled q. At
node q, LFA switches to YX and the routing mode to abnormal
(based on the rules in item b) in Appendix A). YX routing
would normally forward the packet to the north direction to
eliminate the spatial offset created in the vertical dimension,
and then westwards (left) to eliminate the horizontal offset
created. However, this leads the packet back to the same faulty
node which hence creating a cycle, i.e., livelock. Therefore,
in LFA the only turn allowed at node q in this case is
towards east-south (i.e., to the south direction), which is found
following the set of rules in item c) of Appendix A, since
neither the current node or the destination are on the edge of
the network (which would have required using the boundary
rules in item d) in Appendix A). At node r no turns are
restricted, and as such YX routing sends the packet to node s,
at which point if no forbidden turns were applicable, it would
direct the packet upwards (north) leading to the same cycle.
Therefore, the west-north turn at node s is blocked (following
the rules in item c in Appendix A), and hence from node s
the packet is forwarded westwards towards node t and then
u, since t routes non-progressively toward the south. From
node u YX routing is used to route the packet to its final
destination without requiring further turns to be blocked. As
such the packet is routed to the even row which resides one
row to the north of the destination node, the packet then makes
a turn and travels one hop east, and finally one hop south to
reach its destination.

D. Reliable Delivery Algorithm (RDA)

The Reliable Delivery Algorithm (RDA) is developed based
on the principle that each source node can choose between
two alternative, disjoint paths5, dubbed Path1 and Path2, to
route a packet towards a target node in the presence of faulty
components. Path1 initiates at one of the two output links (i.e.,
edges or channels) at the source node, and ends at one of the
two input links of the destination node. Equivalently, Path2

initiates at the alternative output channel of the source node,
and terminates at the alternative input channel of the target
node. Note that, in a similar manner, the oblivious XY routing
algorithm along with its symmetric oblivious YX algorithm
also comprise disjoint paths onto the proposed topology. An
additional property of any of these route-traversing path pairs
is that the first path spans the topology in a clockwise mode,
while the second path spans it in a counter-clockwise mode.

Essentially, the RDA algorithm employs both the topology-
agnostic XY-YX algorithm, presented as an example using
the blue-colored path in Figure 4, as well as the oblivious
XY-YX algorithm, presented as an example using the orange-
colored path in the same figure. One of the two spans the
topology in a clockwise manner, while the other acts as a
symmetric counterpart and spans the topology in an anti-
clockwise manner; each route accordingly follows either the
routing turn rules in Table I or those in Table II of Appendix B.
Having the option between alternative disjoint routing paths
towards a target node increases the likelihood of delivering
a packet, since path disjointnes enhances the avoidance of
possible faults in one of the two paths.

RDA utilizes a single bit in the packet header to indicate
whether a node will route a packet either along Path1 or along
Path2. In the case where a fault is next encountered along its
path (i.e., the next connected node in the originally spanned
path possesses a fault), say Path1, the controller node then
flips said RDA packet header bit to designate that the same
packet will start traversing the alternative path, say Path2. The
disjointness of the two paths implies that each path utilizes a
distinct routing node output channel, and, that also each such
path terminates at a unique input channel at that target node.

Using two disjoint paths to reach the destination node may
result in one of the offered paths not being minimum in length.
The send Gateway sets the RDA packet header bit, according
to which of the two paths (Path1 or Path2) has a minimal
length; if no faults are encountered the packet will reach the
destination with the minimal number of steps.

The gist behind RDA’s workings, is that it pre-targets one
of the two input channels of the destination node based on
both the packet header bit and its agnosticism concerning the
odd/even row/column orientation of the destination node. For
example, as seen in Table I in Appendix B, which provides
details of Path1, if the packet header bit is equal to logic “0”
corresponding to Path1 (computed using the rules of Table I
in Appendix B) and the destination node orientation type is 0,
then RDA aims for the input channel of a target node residing
on the vertical CN axis (i.e., column). If a fault is detected

5The two paths are edge independent, and to the most part node indepen-
dent, with only the first and the last nodes being common.

E E E EO O O

E

E

E

O

O

O

E

O
O

E E E EO O O

E

E

E

O

O

O

E

O
O

E E E EO O O

E

E

E

O

O

O

E

O
O

E E E EO O O

E

E

E

O

O

O

E

O
O

(B)(A)

(C) (D)(a)

E E E EO O O

E

E

E

O

O

O

E

O
O

E E E EO O O

E

E

E

O

O

O

E

O
O

E E E EO O O

E

E

E

O

O

O

E

O
O

E E E EO O O

E

E

E

O

O

O

E

O
O

(B)(A)

(C) (D)(b)

E E E EO O O

E

E

E

O

O

O

E

O
O

E E E EO O O

E

E

E

O

O

O

E

O
O

E E E EO O O

E

E

E

O

O

O

E

O
O

E E E EO O O

E

E

E

O

O

O

E

O
O

(B)(A)

(C) (D)

(c)

E E E EO O O

E

E

E

O

O

O

E

O
O

E E E EO O O

E

E

E

O

O

O

E

O
O

E E E EO O O

E

E

E

O

O

O

E

O
O

E E E EO O O

E

E

E

O

O

O

E

O
O

(B)(A)

(C) (D)

(d)

Figure 9. Routing examples for the Reliable Delivery Algorithm.

along this path, then the packet header bit is flipped to 1, and
is then routed towards the alternative path that aims for the
alternative input channel of the destination node that resides
on the horizontal CN axis (i.e., row).

After the source node decides on path towards target,
the RDA compares the target node location with the source
node location to choose the appropriate topology-agnostic XY-
YX algorithm to route the configuration packet. However,
in some cases topology-agnostic XY-YX algorithm and its
symmetric ones are not sufficient to establish two disjoint
paths. In this case, the RDA proposes a set of turn rules,
based on the Turn Model for adaptive routing [14], to achieve
path disjointedness. The turn rules are defined in the Turn
Rules sections of Table I and Table II of Appendix B. These
conditions identify the cases where path disjointness cannot
be achieved using topology-agnostic XY-YX algorithm and
describe turn rules for forbidding turns.

We provide the following summary of RDA steps for clarity:
i. RDA works by first using its packet header bit to identify

the appropriate routing rules (either Table I or Table II in
Appendix B);

ii. Next, RDA checks its turn rules, and upon their satisfac-
tion avoids the forbidden routing turn;

iii. Otherwise, on a failure of the above it checks and imple-
ments the XY routing variant conditions.

Figure 9 illustrates the disjoint paths taken by the RDA
algorithm for some main routing cases. Source nodes are
shown in red color while target nodes in turquoise color.
Disjoint paths (coloured in red and blue, respectively) start
from each source node and end at different input channels on
the target node. The two alternative paths can be computed
with the help of Table I and Table II in Appendix B. Table I
corresponds to Path1 when the packet header bit equals to logic
“0” and Table II symmetrically corresponds to Path2 and the
RDA packet header bit being equal to logic “1.”

The case shown in the diagram (c) of Figure 9 is demon-
strated; other cases are similar. The routing node (type 0) has
address (0, 0) (denoted as a light blue circle in the diagram)
and the destination node (also of type 0) has address (4, 4)
(denoted as a red circle in the diagram). According to the state
of the RDA packet header bit, it decides which of the two
decision Tables to use. For Path1 the routing node (0, 0) uses
the topology-agnostic XY-YX algorithms section of Table I to

compare its own coordinates with the target node coordinates
(4, 4) and decide on the routing algorithm suitable to reach
the target from the horizontal input. In this case, condition
x ≤ a and y < b (under D=0) is true, resulting in choosing the
symmetric Oblivious XY-YX algorithm that follows an anti-
clockwise direction. Respectively, if the RDA packet header
bit is 1 and Path2 is enabled, the same conditions will result in
using the Oblivious XY-YX routing algorithm (under D=0 in
the topology-agnostic XY-YX algorithms section of Table II)
and the destination will be reached from the south input using
a clockwise direction to the target.

A case where turn rules need to be used is also explained.
Assume that the packet is routed from node (0, 0) (type
0) towards the target node (4, 0) (also of type 0). If Path1

is decided for routing, then the Oblivious XY-YX algorithm
(Table I, under D=0, first condition) will be used. Similarly, if
Path2 is decided for routing, then also the Oblivious XY-YX
algorithm will be used (Table II is used, under D=0, the first
condition). For both paths the same algorithm will be used. To
achieve path disjointness for Path1 and Path2 the Turn Rule
section of Tables I (respectively, Table II) must be used. In
this case, the second rule on Table I is used, which forbids
routing west when the routing node is on a y-coordinate equal
to 0.

A variant of the RDA is the probabilistic RDA. In the
probabilistic RDA when a fault is next encountered along its
path the routing node will route the packet to the alternative
output but will flip the RDA packet header bit based on
a probability. This implies that the routing path might not
change upon encountering a fault. Intuitively, the probabilistic
RDA can offer more alternative paths to reach a target node;
the non-deterministic nature of the probabilistic RDA can
be used to escape a livelock that would otherwise appear if
the non-probabilistic RDA version was used. However, more
alternative paths and livelock escape implies additional number
of hops towards reaching the target node. Non-probabilistic
RDA is also referred to as probabilistic RDA with probability
1, RDA-1.

As explained above, RDA rules ensure that Path1 and Path2
are disjoint towards the destination node. However RDA rules
do not exclude the presence of livelocks, that may appear
given the position of faults in the network. In the presence
of a livelock the RDA requires a Time-to-Live (TTL) field in

the packet header that is reduced each time a packet makes
a routing hop. If the TTL value reaches 0, then the routing
node assumes that the packet cannot reach its destination
and terminates the routing process. It is important to make
appropriate choices for the TTL value that achieve a good
trade-off between successful delivery and waste of resources.
A further analysis of importance of the TTL variable is shown
on the Evaluation section.

IV. PERFORMANCE EVALUATION

Routers in the HSF CN are not clocked and thus employ
asynchronous communication. Most available NoC simulators,
however, are based on scheduling and do not offer a ready-
to-use clock-less communication operating mode option. As
such, we built a custom-made simulator, dubbed HSF CN
Asynchronous Simulator, or HCNAS for short, that employs a
four-phase asynchronous handshake communication protocol
(see Section II-C), which allows routers to communicate
asynchronously, using the AnyLogic multimethod simulation
modeling tool [28].

HCNAS relies on conditional events to achieve asynchronic-
ity. The network is connected to two “smart” gateways which
are equipped with clocks and are responsible for generating
data traffic and handling ACKs, one placed at the lower left
side of the network, while the second gateway is placed at
the lower right side of the HSF CN as depicted in Figure 3.
A router node comprises of two output ports and two input
ports, which connect each router to its neighbors, as shown
in Figure 3. Edge router nodes are connected to each other
through edge wraparounds, with each creating a bidirectional
channel between each two edge neighbors. In addition, a router
node incorporates enough buffering space to receive an entire
packet before forwarding it to the next neighboring router.

Faulty nodes are determined and designated at the initializa-
tion time before any packets containing data enter the network.
Each router node performs a four-way hand shake to receive
and transmit every bit, for a bit-by-bit serial transmission,
until the whole packet is sent. Once an output port (input
port at the intermediate, or neighboring, router receiver) is
selected for transmission (reception at the neighboring router)
it cannot be changed until the current transmission (reception
at the neighboring router) of the packet is completed. Next, a
router node is never in a position to receive and transmit at
the same time, nor receive from or transmit to two different
nodes simultaneously; hence, one operation is carried out at a
time, and this is done to simplify the hardware design of each
HSF CN router node.

Depending on the control data contained in the packet
header, nodes locally decide the direction of the next hop.
Additionally, each router node is assumed to possess local
knowledge of its faulty neighbors, and thus disables its output
ports that are connected to such faulty nodes. Thus, to avoid
transmitting a packet towards a faulty node which would
evidently cause an unacceptable transmission error, the packet
is either redirected to the healthy channel (ideal scenario), or
is stalled, or as a last resort, it is dropped; the choice depends
on the routing algorithm being employed. If both outputs at a

router node are disabled (or, blocked) packets are either stalled
or dropped altogether. RDA and LFA ensure that packets will
either be routed or dropped, but they can never be stalled,
since stalling might result in the entire network getting stalled
due to back-pressure. This is achieved by not sending packets
to nodes that are healthy but have both their outputs blocked
due to faulty neighbors.

A. Simulation Results

The simulation experiments aim at comparing the perfor-
mance of the fault-adaptive routing algorithms proposed in
Section III. The evaluation is conducted with respect to the
ability of the algorithms to successfully deliver packets to their
destinations in the presence of faults taking into account the
resources utilized as these are quantified by the number of
hops. A time to live field (TTL) is also introduced to prevent
overlength paths, and simulations are conducted to provide
guidelines for the selection of a suitable value of the TTL
which would yield good performance. In order to evaluate
the performance of the proposed routing algorithms in the
presence of faults, simulation experiments are conducted for a
24× 24 Manhattan-like network with edge wraparounds; this
network resembles the alternating row and column directional-
ity of the network shown in Figure 3, albeit being a 4×4-sized
network. The input gateway and acknowledgement gateway
are assumed to be at the bottom left corner and bottom right
corner of the network, respectively. To emulate a HSF CN with
faulty components, each router node is assigned a probability
of failure equal to Pf , where Pf assumes values in the range
0.0−0.08 in increments of 0.02; such a span of failure values
establishes reasonable failure patterns so as to evaluate the
performance of a HSF CN under realistic scenarios of network
defects. A single packet is sent from the input GW to its
destination node, while in the event of successful delivery, an
acknowledgement packet is forwarded from this destination
router node to the acknowledgement gateway.

The first experiment evaluates the fault-adaptiveness of the
agnostic XY-YX (non fault adaptive), LFA, RDA (probability
1 and probability 0.7), and the probabilistic agnostic FA
XY-YX (probability 1 and probability 0.7) fault adaptive
algorithms. The non fault adaptive agnostic XY-YX is used as
a measure of rating the fault adaptability of each algorithm.
In order to evaluate the performance of our proposed routing
algorithms and to aid the understanding of their behavior
in bypassing network faults, the network is segmented into
four equal-sized quadrants. A destination in each quarter of
the network is selected. Each of the four destinations has a
different orientation. For each destination node the experiment
is repeated 5, 000 times for a total of 20, 000 repetitions, for
each Pf value.

Figure 10 demonstrates the average percentage of data pack-
ets successfully delivered to their respective destination nodes
when the probability of faults, Pf , increases. All algorithms,
except the agnostic XY-YX, achieve a percentage of successful
delivery of more than 93% for Pf = 0.02 with the best results
achieved by the RDA-0.7 algorithm that has a 97% successful
delivery ratio. As the Pf value increases to 0.08 the successful

10

20

30

40

50

60

70

80

90

100

0.02 0.04 0.06 0.08

S
u

cc
e

ss
fu

l
d

e
li

v
e

ry
 r

a
ti

o
 (

%
)

Probability of controller node failure

Agnostic XY-YX LFA

FA XY-YX (0.7) FA XY-YX (1)
RDA (0.7) RDA (1)

Figure 10. Percentage of packetized directives successfully delivered to their
destination controller nodes vs. per controller node failure probability.

10101010

20202020

30303030

40404040

50505050

60606060

70707070

80808080

90909090

100100100100

0.02 0.04 0.06 0.08

S
u

cc
e

ss
fu

l
d

e
li

v
e

ry
 r

a
ti

o
 (

%
)

Probability of controler node failure

Agnostic XY-YX LFA

FA XY-YX (0.7) FA XY-YX (1)

RDA (0.7) RDA (1)

Figure 11. Percentage of ACK packets successfully delivered to the ACK
gateway vs. per controller node failure probability.

delivery metric drops in a linear fashion in the range 64% and
72% for the RDA variants and the probabilistic FA XY-YX
cases, whereas the LFA has a lower successful packet delivery
percentage of 51%. All fault adaptive algorithms deliver 18%
to 40% more packets than the non fault adaptive agnostic
XY-YX algorithm. Moreover, it is observed that the RDA-
0.7 achieves better results overall, whereas the LFA achieves
the worst successful delivery results in all cases. Interestingly,
the probabilistic algorithms of RDA and FA XY-YX that have
0.7 probability to change the routing path upon encountering
a fault, have higher percentage of successful delivery.

The next experiment aims at evaluating the successful deliv-
ery of the acknowledgement packets. Figure 11 shows the av-
erage percentage of successfully delivered acknowledgement
packets to the acknowledgement gateway, as the probability
of faults, Pf , increases. As expected, the successful delivery
drops compared to the successful deliveries to destination
nodes. The reason behind this is the fact that the ACK delivery
rates are calculated taking into account the total number of data
packets, regardless of their delivery status. We can observe,
a linear drop of the delivery percentage as Pf increases. In
fact, as Pf increases the delivery percentage approaches the
results of the non fault adaptive agnostic XY-YX algorithm.
The RDA-0.7 algorithm yields the best results, whereas the
LFA algorithm yields the worst. Overall, successful delivery
ratios decline when the destination is further away from the
input gateway, which is reasonable as the random fault model
used implies that longer paths are more likely to have faults.

Next, we evaluate the best performing algorithms of the
previous set of experiments with respect to a slightly different
performance metric which characterizes successful message
delivery, namely the coverage percentage. The coverage is a
measure of the average success probability over a number

30

40

50

60

70

80

90

100

0.02 0.04 0.06 0.08

C
o

v
e

ra
g
e

 p
e

rc
e

n
ta

g
e

 (
%

)

Probability of controller node failure

FA XY-YX (1) FA XY-YX (0.7)

RDA (1) RDA (0.7)

Figure 12. Coverage percentage as a function of the node failure probability:
Successful delivery of packets to the target node.

30

40

50

60

70

80

90

100

0.02 0.04 0.06 0.08

C
o

v
e

ra
g
e

 p
e

rc
e

n
ta

g
e

 (
%

)

Probability of controller node failure

FA XY-YX (1) FA XY-YX (0.7)

RDA (1) RDA (0.7)

Figure 13. Coverage percentage as a function of the node failure probability:
Successful delivery of acknowledgement packets to the Acknowledgement
Gateway.

of destination nodes and is defined as the number of nodes
that successfully receive a packet when a packet is sent to
each node in the network. We examine the coverage achieved
by RDA-1, RDA-0.7, XY-YX-1 and XY-YX-0.7, which are
the best performing algorithms of the previous experiments
whose results are shown in Figures 10 and 11. Specifically,
the coverage percentage of these algorithms is evaluated; a
packet is sent to each node that is connected to the gateway,
measuring the percentage of nodes that successfully receive
the packet. In practice however, the covered nodes can only
be detected through the received respective acknowledgement
packet. Thus, we consider the percentage of acknowledgement
packets received by the gateway in order to measure the
percentage of ”reported” covered nodes.

Figure 12 presents the coverage percentage corresponding to
the successful delivery of data packets to the destination nodes
as Pf increases from 0.02 to 0.08. The results validate the fact
that RDA-0.7 exhibits the best performance (as in Figure 10)
and algorithm FA XY-YX-1 exhibits the poorest performance
of the four algorithms. However, the coverage percentage
is higher compared to the successful delivery percentage in
Figure 10.

Similarly, Figure 13 presents the reported coverage through
the percentage of successfully received acknowledgement
packets at the acknowledgement gateway, as Pf increases from
0.02 to 0.08. Figure 13 shows a significant drop in reported
coverage percentage compared to Figure 12. The results con-
tinue to validate RDA-0.7 as the best-performing and XY-
YX-1 as the worst, similar to what is reported in Figure 11.
Moreover, we can see that RDA-0.7 has a respectable coverage
percentage of 67% for Pf = 0.08 in contrast to Figure 11
that reports a performance degradation of the order of 50% or
lower.

RDA-0.7 and RDA-1 achieve better results due to the
increased adaptability complemented by more complex deci-
sioning and intelligence. RDA-0.7 performs better than RDA-1
in all cases, and in some cases it reports significantly better
results, e.g., in Figure 13 RDA-0.7 has 65% coverage when
Pf = 0.08, while RDA-1 has 52%, a notable difference of
12%. This fact shows the advantage of adding a factor of
non-determinism to the fault adaptive algorithm.

Moreover, in order to investigate the scalability of the
proposed algorithms with respect to changing the network size,
we repeat the experiment for two additional sizes. We consider
network sizes of 24 × 24, 20 × 20 and 14 × 14, denoted by
Size 24, Size 20 and Size 14, respectively. In Figure 14, we
plot the percentage of successful deliveries of data packets
to destination node for RDA-1, RDA-0.7, FA XY-YX-1, and
FA XY-YX-0.7. It can be observed that the performance of all
four schemes deteriorates with the increase in the network size.
However, RDA-0.7 achieves the slightest deterioration with a
difference of less than 5% between the successful deliveries
of Size 14 and those of Size 20 for Pf = 0.08. It can also be
seen that as the probability of failure increases the decrease
in the performance is more evident at larger sizes. The same
applies for the percentage of deliveries of ACK packets, where
RDA-0.7 outperforms the rest of the algorithms as shown in
Figure 15. The decline in the performance reported at larger
sizes can be attributed to the fact that longer paths, as a result
of larger networks, are more likely to have faults than shorter
paths. The independent random faults model which we use,
implies that as the network size increases the absolute number
of fault increases. Thus, packets may encounter more faults
in larger networks which negatively affects the successful
delivery percentage of the proposed routing techniques in
larger networks.

In the second set of experiments we investigate the resources
utilized by the different algorithms in order to realize their
routing decisions, by observing the average number of hops
of the routing paths. Higher number of hops is undesirable
as it implies higher resource utilization which degrades per-
formance in cases of heavy load. Our results indicate that
higher coverage percentage comes at the cost of additional
resources utilized by the network. This is demonstrated in
Figure 16 which shows the average number of hops per packet
required to successfully deliver a packet to its destination and
subsequently its acknowledgement to the acknowledgement
gateway, in the network coverage scenario. As expected, the
most successful algorithms, e.g. RDA-0.7, require more hops
to successfully deliver a packet. This is due to the fact that
deterministic approaches cannot break encountered livelocks,
thus delivering less packets with a limited number of hops.
On the other hand, probabilistic methods are more likely to
break livelocks which can increase the hops taken by a packet
to achieve a successful delivery.

An interesting observation in Figure 16, is that the average
number of hops per packet does not change much for algo-
rithms RDA-1 and XY-1, i.e. the non-probabilistic versions,
whereas it steadily increases for algorithms RDA-0.7 and XY-
0.7, i.e. the probabilistic versions of the algorithms. This can
be explained by the fact that algorithms with probability 1

create deterministic combinations of 2 paths in the case of
faults, whereas algorithms with a probability lower than 1
create more alternative paths in a non-deterministic fashion. As
the fault percentage increases, the need for more alternative
paths becomes essential to achieve fault adaptiveness. This,
however, comes at the cost of extra resources, i.e. hops.

The results in Figures 10, 11, 12 and 13 demonstrate that the
probabilistic RDA-0.7 achieves higher successful packet deliv-
ery ratios and higher coverage ratios in all cases. Comparable
performance is also demonstrated by RDA-1 and probabilistic
LFA XY-YX-0.7. However, as indicated in Figure 16 RDA-0.7
achieves better ratios at the cost of higher number of hops.

A further study on the number of hops required to achieve
coverage is demonstrated in Figure 17, and Figure 18. The
scenario involves packets being sent to each of the controller
nodes and the graphs show the percentage of successful
deliveries which have required a particular number of hops
to be realized. Figure 17 shows the case of RDA-1. Figure 18
shows the case of RDA-0.7. This can be used as a guideline
for the optimal choice of the TTL field so that resources are
not wasted.

For RDA-1 all packets reach the target in no more than
70 hops, while RDA-0.7 requires up to 200 hops to deliver
packets to the destination. Specifically, for Pf = 0.02, RDA-1
delivers 96.6% of the total number of packets with less than
66 hops, while RDA-0.7 delivers 97.3% of the total number
of packets with less than 66 hops and 0.2% additional packets
with more hops (up to the TTL = 200 hops). Therefore, for
a low probability of faults RDA-0.7 outperforms the rest of
the algorithms even when the TTL value is limited to 66
hops. However, for higher Pf values, e.g. Pf = 0.08, RDA-1
delivers 72.1% of the total number of packets with the TTL
field settled to 71 hops, while RDA-0.7 delivers 78.6% of the
total number of packets with the number of hops being lower
than 71 and 3% more packets with a number of hops higher
than 71.

The TTL value is a parameter that affects the overall
performance of the RDA; setting the TTL value to a high value
may result in waste of resources, i.e number of hops, without
any significant gain as in the case of RDA-0.7 for Pf = 0.02.
The results in Figures 17, and 18 can be used as a guideline
to set the TTL field for the RDA variants, especially when the
trade-off between performance and resource is critical.

V. CONCLUSIONS

HyperSurfaces are novel planar devices that offer customiz-
able interaction with electromagnetic waves. A core compo-
nent is an embedded Network of miniaturized Controllers
(CN) that resembles NoC architectures, albeit with unique
restrictions in terms of available hardware resources and oper-
ational mode. The reconfigurability of the HSF meta-material
relies on disseminating relevant configuration information to
the controller switches which control the behavior of the meta-
surface cells. With such HSF components prone to permanent
faults, it is vital to employ an efficient fault-adaptive routing
technique in the HSF CN so as to establish reliable delivery
of directives to CN controllers to enable said reconfiguration.

30

40

50

60

70

80

90

100

0.02 0.04 0.06 0.08Su
cc

e
ss

fu
l d

e
liv

e
ry

 r
at

io
 (

%
)

Probability of controller node failure

Size 14

Size 20

Size 24

(a)

30

40

50

60

70

80

90

100

0.02 0.04 0.06 0.08

Su
cc

e
ss

fu
l d

e
liv

e
ry

 r
at

io
 (

%
)

Probability of controller node failure

(b)

30

40

50

60

70

80

90

100

0.02 0.04 0.06 0.08

Su
cc

e
ss

fu
l d

e
liv

e
ry

 r
at

io
 (

%
)

Probability of controller node failure

(c)

30

40

50

60

70

80

90

100

0.02 0.04 0.06 0.08

Su
cc

e
ss

fu
l d

e
ilv

e
ry

 r
at

io
 (

%
)

Probability of controller node failure

(d)

Figure 14. Successful delivery ratio of data packets of the proposed algorithms for different sizes of the network, namely, 14 × 14 (solid blue), 20 × 20
(dotted dashed), and 24× 24 (dashed) : (a) RDA (1) (b) RDA (0.7) (c) XY-YX (1) (d) XY-YX (0.7).

30

40

50

60

70

80

90

100

0.02 0.04 0.06 0.08

Su
cc

e
ss

fu
l d

e
liv

e
ry

 r
at

io
 (

%
)

Probability of controller node failure

Size 14

Size 20

Size 24

(a)

30

40

50

60

70

80

90

100

0.02 0.04 0.06 0.08

Su
cc

e
ss

fu
l d

e
liv

e
ry

 r
at

io
 (

%
)

Probability of controller node failure

(b)

30

40

50

60

70

80

90

100

0.02 0.04 0.06 0.08

Su
cc

e
ss

fu
l d

e
liv

e
ry

 r
at

io
 (

%
)

Probability of controller node failure

(c)

30

40

50

60

70

80

90

100

0.02 0.04 0.06 0.08

Su
cc

e
ss

fu
l d

e
liv

e
ry

 r
at

io
 (

%
)

Probability of controller node failure

(d)

Figure 15. Successful delivery ratio of ACK packets of the proposed algorithms for different sizes of the network, namely, 14 × 14 (solid blue), 20 × 20
(dotted dashed), and 24× 24 (dashed): (a) RDA (1) (b) RDA (0.7) (c) XY-YX (1) (d) XY-YX (0.7).

40

45

50

55

60

65

70

0.02 0.04 0.06 0.08

A
v
e

ra
g
e

 n
u

m
b

e
r

o
f

h
o

p
s

p
e

r

p
a

ck
e

t

Probability of controller node failure

FA XY-YX (1) FA XY-YX (0.7)

RDA (1) RDA (0.7)

Figure 16. Average number of hops for successfully delivered packets as a
function of the controller failure probability.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70

P
e

rc
e

n
ta

g
e

 o
f

p
a

ck
e

ts

d
e

li
v
e

re
d

 t
o

 d
e

st
in

a
ti

o
n

Number of hops

RDA (1) 0.02
RDA (1) 0.04
RDA (1) 0.06
RDA (1) 0.08

Figure 17. Percentage of successfully packet deliveries corresponding to a
particular number of hops.

As such, in this work we proposed HyperSurface-specific
fault adaptive techniques for said CN, based on XY-YX
routing algorithm variants and an appropriate adoption of
routing turn rules. The effectiveness of the proposed schemes
was demonstrated through extensive HSF CN simulations,
including directives successful delivery ratios as well as a
network scalatbility analysis.

Future goals include the development of a fault-tolerant

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200

P
e

rc
e

n
ta

g
e

 o
f

p
a

ck
e

ts

d
e

li
v
e

re
d

 t
o

 d
e

st
in

a
ti

o
n

Number of hops

RDA (0.7) 0.02

RDA (0.7) 0.04

RDA (0.7) 0.06

RDA (0.7) 0.08

Figure 18. Percentage of successfully packet deliveries corresponding to a
particular number of hops.

routing algorithm which in tandem ensures freedom from
deadlocks and livelocks. Possible techniques may involve node
victimization to ensure well-formed faulty regions so as to
restrict turns and hence eliminate any cyclic dependencies that
are precursor to undesirable deadlocked routing, as well as
time-division multiplexing techniques to avoid path superim-
position that would produce such routing cycles. Further future
works in the field will also focus on developing validated fault
models as HSF prototypes become available, which will help
in better determining the impact of the fault-tolerant routing
algorithms. Finally, power-gating mechanisms will be also
developed aiming to leverage fault tolerance provided by the
network in the pursuit of very low power consumption.

REFERENCES

[1] Christos Liaskos, Ageliki Tsioliaridou, Andreas Pitsillides, Ian F Aky-
ildiz, Nikolaos V Kantartzis, Antonios X Lalas, Xenofontas Dimitropou-
los, Sotiris Ioannidis, Maria Kafesaki, and CM Soukoulis. Design and
development of software defined metamaterials for nanonetworks. IEEE
Circuits and Systems Magazine, 15(4):12–25, 2015.

[2] C. Liaskos, S. Nie, A.i Tsioliaridou, A. Pitsillides, S. Ioannidis, and
I. Akyildiz. A new wireless communication paradigm through software-
controlled metasurfaces. IEEE Communications Magazine, 56(9):162–
169, 2018.

[3] H. Yang, X. Cao, F. Yang, et al. A programmable metasurface with
dynamic polarization, scattering and focusing control. Scientific reports,
6:35692, 2016.

[4] Christos Liaskos, Shuai Nie, Ageliki Tsioliaridou, Andreas Pitsillides,
Sotiris Ioannidis, and Ian Akyildiz. Realizing wireless communication
through software-defined hypersurface environments. IEEE, 2018.

[5] S. Abadal, C. Liaskos, A. Tsioliaridou, et al. Computing and com-
munications for the software-defined metamaterial paradigm: A context
analysis. IEEE access, 5:6225–6235, 2017.

[6] L. Petrou, P. Karousios, and J. Georgiou. Asynchronous circuits as an
enabler of scalable and programmable metasurfaces. In proceedings of
the ISCAS, pages 1–5. IEEE, 2018.

[7] P. Kouvaros, D. Kouzapas, A. Philippou, et al. Formal verification of a
programmable hypersurface - work in progress. In Proceedings of the
23rd FMICS, pages 83–97, 2018.

[8] H. Taghvaee, S. Abadal, J. Georgiou, A. Cabellos-Aparicio, and E. Alar-
con. Fault tolerance in programmable metasurfaces: The beam steering
case. In Proceedings of the ISCAS ’19, pages 1–5, 2019.

[9] S. R. Vangal, J. Howard, G. Ruhl, et al. An 80-tile sub-100-w
teraflops processor in 65-nm cmos. IEEE Journal of Solid-State Circuits,
43(1):29–41, 2008.

[10] M. Radetzki, C. Feng, X. Zhao, et al. Methods for fault tolerance in
networks-on-chip. ACM Computing Surveys, 46(1):1–38, 2013.

[11] J. Duato, S. Yalamanchili, and N. Lionel. Interconnection Networks: An
Engineering Approach, volume ISBN: 1558608524. Morgan Kaufmann
Publishers Inc., 2002.

[12] Loukas Petrou and Julius Georgiou. Hardware design and manufacturing
of the Hypersurface control nodes and hardware interface. VISORSURF
Second Project Meeting, Berlin, July 2017.

[13] J. Duato. A necessary and sufficient condition for deadlock-free adaptive
routing in wormhole networks. IEEE Transactions on Parallel and
Distributed Systems, 6(10):1055–1067, 1995.

[14] C. Glass and L. Ni. The turn model for adaptive routing. ACM SIGARCH
Computer Architecture News, 20(2):278–287, 1992.

[15] A. Vitkovskiy, V. Soteriou, and C. Nicopoulos. Dynamic fault-tolerant
routing algorithm for networks-on-chip based on localised detouring
paths. IET Computers & Digital Techniques, 7(2):93–103, 2013.

[16] K. Aisopos, A. DeOrio, L. Peh, et al. Ariadne: Agnostic reconfiguration
in a disconnected network environment. In Proceedings of the PACT,
pages 298–309. IEEE, 2011.

[17] J. Wu. A fault-tolerant and deadlock-free routing protocol in 2d meshes
based on odd-even turn model. IEEE Transactions on Computers,
52(9):1154–1169, 2003.

[18] P. Bogdan, T. Dumitra, and Marculescu R. Stochastic communication:
A new paradigm for fault-tolerant networks-on-chip. VLSI Design,
2007(95348):1–17, 2007.

[19] T. Saeed, C. Skitsas, D. Kouzapas, et al. Fault adaptive routing in
metasurface controller networks. In 2018 11th International Workshop
on Network on Chip Architectures (NoCArc), pages 1–6. IEEE, 2018.

[20] Peter E. Bulychev, Alexandre David, Kim Guldstrand Larsen, Marius
Mikucionis, Danny Bøgsted Poulsen, Axel Legay, and Zheng Wang.
UPPAAL-SMC: statistical model checking for priced timed automata.
In Proceedings of QAPL 2012, volume 85 of EPTCS, pages 1–16, 2012.

[21] S. Nowick and S. Montek. Asynchronous designpart 1: Overview and
recent advances. IEEE Design & Test, 32(3):5–18, 2015.

[22] Konstantinos Aisopos, Chia-Hsin Owen Chen, and Li-Shiuan Peh.
Enabling system-level modeling of variation-induced faults in networks-
on-chips. In Proceedings of the 48th Design Automation Conference,
pages 930–935. ACM, 2011.

[23] G. Chiu. The odd-even turn model for adaptive routing. IEEE
Transactions on parallel and distributed systems, 11(7):729–738, 2000.

[24] Shubhangi D Chawade, Mahendra A Gaikwad, and Rajendra M Pa-
trikar. Review of xy routing algorithm for network-on-chip architecture.
International Journal of Computer Applications, 43(21):48–52, 2012.

[25] A. Patooghy and S. Miremadi. Xyx: A power & performance efficient
fault-tolerant routing algorithm for network on chip. In Proceedings
of 27th the Euromicro International Conference on Parallel, Distributed
and Network-Based Processing, pages 245–251, 2009.

[26] A. Shafiee, M. Montazeri, and M. Nikdast. An innovational intermittent
algorithm in networks-on-chip (noc). World Academy of Science,
Engineering and Technology, 45:145–147, 2008.

[27] E. Pilakoutas. Development implementation and experimental evalua-
tion of a fault torelant algorhitm in a manhattan topology. Master’s
thesis, Department of Computer Science, University of Cyprus, Nicosia,
Cyprus, 2018.

[28] A. Borshchev. The big book of simulation modeling: multimethod
modeling with AnyLogic 6. AnyLogic North America Chicago, 2013.

APPENDIX A
LFA RULES AND PSEUDOCODE

a) LFA Rules: :
• LFA has three sets of rules:

1) Rules to define the routing mode (i.e. normal or abnormal). Abnormal mode is when turn prevention is employed.
2) Abnormal routing non-boundary rules.
3) Abnormal routing boundary rules.
4) In both normal and abnormal routing 180 degree turns at the edge wraparounds are forbidden.
• These rules only apply when a fault is encountered.
• The cases that are not included in the abnormal routing rules are when simply XY-YX is employed.
• When a blocked turn is forced because of a fault while abnormal mode routing is activated, the algorithm terminates.

b) Routing mode selection: :
• If one of the following cases is true, abnormal mode is activated, otherwise only the routing algorithm is switched

(XY YX)
1) The destination is on a boundary row or column.
2) The destination is type 1, faulty node is type 3 and targets x-coordinate is 1.
3) The destination is type 2, faulty node is type 0 and targets x-coordinate is 22.
4) The destination is type 3, faulty node is type 2 and targets x-coordinate is 21
5) The destination is type 1 and faulty node is type 2 or type 3.
6) The destination is type 3 and faulty node is type 2.
c) Abnormal non-boundary rules: :

• At type 2 nodes to the East or at the same column of destination turns to North are forbidden.
• At type 3 nodes:

– At nodes to the East or at the same column as the destination, WS turns are forbidden.
– At nodes to the North or at the same row as the destination, SW turns are forbidden.

• When the destination is type 3:
– At type 1 nodes: only turns to the South are allowed.
– At type 2 nodes to the East of the destination, WN turns are forbidden.
– At type 2 nodes to the West of the destination only turns to the North are allowed.

d) Abnormal boundary rules: :
• The destination is at the South boundary:

– The destination is type 0: at nodes to the West from the destination forbid East South turns and North West turns.
– The destination is type 0: at nodes to the East from the destination forbid South West turns.
– The destination is type 1: at nodes to the West from the destination forbid East South turns.

• The destination is at the East boundary:
– The destination is type 1: at nodes to the South or at the same row of the destination forbid North East turns.
– The destination is type 1: at nodes to the South and at the same column of the destination forbid East East.
– The destination is type 1: at nodes at the coordinate (destination.x-1) forbid West North turns.
– The destination is type 3: at type 1 nodes on the same column of and to the South from the destination by more than

one node forbid East East.
– The destination is type 3: at nodes to the West North from the destination forbid South East turns.
– The destination is type 3: at type 1 nodes to the West North from the destination forbid East East.
– The destination is type 3: at type 0 nodes at y coordinate equal (destination.y - 1) forbid East North.
– The destination is type 3: at type 3 nodes to the South from the destination forbid West South turns.
– The destination is type 3: at nodes to the South from the destination and at the column before last forbid West North

turns.
• The destination is at the North boundary:

– The destination is type 3: at nodes to the East from the destination forbid East East. At nodes at x-coordinate equal
(destination.x +1) forbid East North and at nodes at x coordinate equal destination.x-1 forbid North East.

– The destination is type 2: forbid East North turns, and West North unless current node is at x coordinate equal
(destination.x-1).

1 Routing mode selection
2 If the next node is faulty

3 if destination is on a boundary row or column
4 switch to abnormal routing
5 elseif destination is type 1 && faulty node is type 3 && destination.x == min.x + 1
6 switch to abnormal routing
7 elseif destination is type 2 && faulty node is type 0 && destination.x == max.x - 1
8 switch to abnormal routing
9 elseif destination is type 3 && faulty node is type 2 && destination.x = max.x - 2

10 switch to abnormal routing
11 elseif destination is type 1 && faulty node is type 2 || faulty node type 3
12 switch to abnormal routing
13 elseif destination is type 3 && faulty node is type 2
14 switch to abnormal routing
15 else
16 continue with normal routing
17 switch routing from XY to YX or from YX to XY
18 end
19 end
20
21 while (abnormal routing = 1)
22 if destination node is on a boundary row or column
23 if destination.y = 0 % south boundary
24 if destination is type 0
25 if source.x < destination.x
26 block east south & north west turns
27 elseif source.x > destination.x
28 block south west turns
29 end
30 elseif destination is type 1 && source.x < destination.x
31 block east south turns
32 end
33 elseif destination.x = n % east boundary (max.x)
34 if destination is type 1
35 if source.y < destination.y && source.x = destination.x
36 block east east routes
37 elseif source.y <= destination.y
38 block north east turns
39 elseif source.x = (destination.x-1)
40 block west north turns
41 end
42 elseif destination is type 3
43 if source is type 1 && source.x = destination.x && source.y<destination.y-1
44 block east east routes
45 elseif source is type 1 && source.x < destination.x && source.y > destination.y
46 block east east routes
47 elseif source.x < destination.x && source.y > destination.y
48 block south east turns
49 elseif source is type 0 && source.y = destination.y-1
50 block east north turns
51 elseif source is type 3 && source.y < destination.y
52 block west south turns
53 elseif source.y < destination.y && source.x== n-1
54 block west north turns
55 end
56 elseif destination.y = m % north boundary max.y
57 if destination is type 3
58 if source.x > destination.x
59 block east east routes
60 elseif source.x = destination.x+1
61 block east north
62 elseif source.x = destination.x-1
63 block north east
64 end
65 elseif destination is type 2
66 if source.x != destination.x-1
67 block east north & west north
68 end
69 end
70 end
71 else

72 if source is type 2 && source.x >= destination.x
73 block turns to north
74 elseif source is type 3
75 if source.x >= destination.x
76 block west south turns
77 elseif source.y >= destination.y
78 block south west turns
79 elseif destination is type 3
80 if source is type 1
81 only route to south
82 elseif source is type 2 && source.x > destination.x
83 block west north turns
84 esleif source is type 2 && source.x < destination.x
85 only route to north
86 end
87 end
88 end
89 end
90 end
91 end

APPENDIX B
RDA RULES

RDA-Path1
Turn Rules

Condition Decision
c = 3 and x = 0 Forbid north
c 6= 3 and y = 0 Forbid west
c 6= 0 and y = 23 Forbid east
c = 0 and x = 23 Forbid south

D = 0 and x < a and y < b and c = 1 Forbid west
D = 0 and x = a and y > b Forbid west

x < a and y > b and c = 0 and D = 1 Forbid west
x > a and y > b and c = 2 and D = 1 Forbid east
x < a and y < b and c = 1 and D = 2 Forbid west

x = a and y > b and D = 2 Forbid east
x > a and y < b and c = 3 and D = 2 Forbid east

x < a and y ≥ b and D = 3 Forbid west
x > a and y > b and D = 3 Forbid west

Topology-agnostic XY-YX algorithms
D=0 D=1 D=2 D=3

Condition Decision Condition Decision Condition Decision Condition Decision
x < a and y ≤ b Obl. YX-XY x < a and y ≤ b Obl. YX-XY x ≤ a and y < b Obl. YX-XY x ≤ a and y < b Obl. XY-YX
x < a and y > b Obl. YX-XY x < a and y > b Obl. YX-XY x < a and y > b Obl. XY-YX x < a and y ≥ b Agn. YX-XY
x > a and y > b Agn. XY-YX x > a and y ≥ b Agn. YX-XY x > a and y > b Obl. YX-XY x > a and y > b Obl. YX-XY
x > a and y ≤ b Obl. YX-XY x > a and y < b Agn. XY-YX x > a and y < b Obl. YX-XY x > a and y < b Obl. YX-XY

Table I
RDA PATH 1 DECISION LOGIC. D: TARGET NODE TYPE , C: CURRENT NODE TYPE, X: CURRENT NODE X COORDINATE, Y: CURRENT NODE Y

COORDINATE, A: DESTINATION NODE X COORDINATE, B: DESTINATION NODE Y COORDINATE.

RDA-Path2
Turn Rules

Condition Decision
c 6= 3 and x = 0 Forbid north
c = 3 and y = 0 Forbid west
c = 0 and y = 23 Forbid east
c 6= 0 and x = 23 Forbid south

D = 0 and x < a and y < b and c = 2 Forbid north
D = 0 and x < a and y > b and c = 3 Forbid south
x < a and y < b and c = 2 and D = 1 Forbid north
x < a and y > b and c = 3 and D = 1 Forbid south
x > a and y > b and c = 1 and D = 2 Forbid south

x > a and y = b− 1 and D = 2 and c = 0 Forbid north
x ≤ a and y < b and D = 3 Forbid west
x > a and y >= b and D = 3 Forbid south

x > a and y < b and c = 0 and y 6= 0 and D = 3 Forbid west
Topology-agnostic XY-YX algorithms

D=0 D=1 D=2 D=3
Condition Decision Condition Decision Condition Decision Condition Decision

x ≤ a and y < b Obl. XY-YX x ≤ a and y < b Obl. XY-YX x ≤ a and y < b Obl. XY-YX x < a and y < b Obl. YX-XY
x ≤ a and y > b Obl. XY-YX x < a and y > b Obl. XY-YX x < a and y > b Agn. YX-XY x < a and y > b Obl. XY-YX
x > a and y ≥ b Agn. YX-XY x > a and y ≥ b Obl. XY-YX x ≥ a and y > b Agn. XY-YX x > a and y ≥ b Obl. XY-YX
x > a and y < b Obl. XY-YX x > a and y < b Obl. YX-XY x > a and y < b Obl. XY-YX x > a and y < b Agn. XY-YX

Table II
RDA PATH 2 DECISION LOGIC. D: TARGET NODE TYPE , C: CURRENT NODE TYPE, X: CURRENT NODE X COORDINATE, Y: CURRENT NODE Y

COORDINATE, A: DESTINATION NODE X COORDINATE, B: DESTINATION NODE Y COORDINATE.

Dr. Dimitrios Kouzapas is a Research Associate at the Department of Computer Science
University of Cyprus. His conducting research for the purposes of the research programme
”VISORSURF: A Hardware Platform for Software-driven Functional Metasurfaces” He
obtained his PhD at the Department of Computing, Imperial College London under the
supervision of Prof. Nobuko Yoshida. His researh interests include theoretical computer
science, formal methods, programming languages, and modelling and verification.

Taqwa Saeed is a PhD candidate at Frederick University, Cyprus. Her research work
focuses on the development of information dissemination solutions for emerging network
technologies, as for example, VANETs, molecular networks, and nano-networks using
probabilistic and optimization methods.

Constantinos Skitsas is a Research Assistant at the University of Cyprus, employed by
the research project VISORSURF: A Hardware Platform for Software-driven Functional
Metasurfaces. He obtained his Bachelor’s degree in Computer Science from the University
of Cyprus, Nicosia in 2018.

Marios Lestas, received the B.A and M.Eng degrees in Electrical and Information Engineer-
ing from the University of Cambridge U.K and the PhD degree in Electrical Engineering
from the University of Southern California in 2000 and 2006 respectively. He is currently
an Associate Professor at Frederick University. His research interests include application
of non-linear control theory and optimization methods in Complex Networks such as
Computer Networks, Transportation Networks, Power Networks, Molecular Nano-networks
and Metasurfaces. In the aforementioned networks he has investigated issues pertinent to
information dissemination, congestion control, network vulnerability, demand response and
more recently privacy and security.

Vassos Soteriou received the B.S. and Ph.D. degrees in electrical engineering from Rice
University, Houston, TX, in 2001, and Princeton University, Princeton, NJ, in 2006, respec-
tively. He is currently an Associate Professor at the Department of Electrical Engineering,
Computer Engineering and Informatics at the Cyprus University of Technology. He is a
recipient of a Best Paper Award at the 2004 IEEE International Conference on Computer
Design. His research interests lie in multicore computer architectures, and on-chip networks.

Anna Philippou is an Associate Professor at the Department of Computer Science,
University of Cyprus, where she co-founded and co-directs the Laboratory on Foundations
of Computing Systems and Theoretical Computer Science. She completed her undergraduate
studies at the University of Oxford, UK (B.A. in Mathematics and Computation, 1992)
and her graduate studies at the University of Warwick, UK (M.Sc. in Parallel Computers
and Computation, 1993; PhD in Computer Science, 1997). Her research interests include
Concurrency Theory and its Applications, Formal Methods for Safety-Critical Systems,
Type Systems, and Algorithmic Game Theory.

Sergi Abadal is Project Director at the NaNoNetworking Center in Catalonia, Universitat
Politecnica de Catalunya, where he also obtained his PhD in computer science engineering
(2016). He has co-authored more than 50 research papers. In 2013, he was awarded
by INTEL within his Doctoral Student Honor Program. He is Associate Editor of the
Nano Communication Networks (Elsevier) Journal. His research interests include on-chip
networking, many-core architectures, and graphene-based wireless communications.

Christos Liaskos received the Diploma in Electrical Engineering from the Aristotle
University of Thessaloniki (AUTH), Greece in 2004, the MSc degree in Medical Informatics
in 2008 from the Medical School, AUTH and the PhD degree in Computer Networking from
the Dept. of Informatics, AUTH in 2014. He is currently a researcher at the Foundation
of Research and Technology, Hellas (FORTH). His research interests include computer
networks, traffic engineering and novel control schemes for wireless communications.

Loukas Petrou received his Bachelor Degree in Electrical Engineering from the University
of Cyprus in 2016. He holds a Master’s Degree in Analogue and Digital Integrated Circuit
Design from Imperial College London. He is currently pursuing a PhD degree in Electrical
Engineering at the University of Cyprus. His research interests include integrated circuit
design and asynchronous digital circuits.

Julius Georgiou (IEEE M98-SM08) is an Associate Professor at the University of Cyprus.
He received his M.Eng degree in Electrical and Electronic Engineering and Ph.D. degree
from Imperial College London in 1998 and 2003 respectively. For two years he worked as
Head of Micropower Design in a technology start-up company, Toumaz Technology. In 2004
he joined the Johns Hopkins University as a Postdoctoral Fellow, before becoming a faculty
member at the University of Cyprus from 2005 onwards. Prof. Georgiou is a member of the
IEEE Circuits and Systems Society, was the Chair of the IEEE Biomedical and Life Science
Circuits and Systems (BioCAS) Technical Committee, as well as a member of the IEEE
Circuits and Systems Society Analog Signal Processing Technical Committee. He served as
the General Chair of the 2010 IEEE Biomedical Circuits and Systems Conference and is the
Action Chair of the EU COST Action ICT-1401 on Memristors-Devices, Models, Circuits,
Systems and Applications - MemoCIS. Prof. Georgiou was an IEEE Circuits and Systems
Society Distinguished Lecturer for 2016-2017. He is also is an Associate Editor of the IEEE
Transactions on Biomedical Circuits and Systems and Associate Editor of the Frontiers in
Neuromorphic Engineering Journal. He is a recipient of a best paper award at the IEEE
ISCAS 2011 International Symposium and at the IEEE BioDevices 2008 Conference. In
2016 he received the 2015 ONE Award from the President of the Republic of Cyprus
for his research accomplishments. His research interests include Low-power analog and
digital ASICs, implantable biomedical devices, bioinspired electronic systems, electronics
for space, brain-computer-interfaces (BCIs), memristive devices, inertial and optical sensors
and related systems.

Andreas Pitsillides is a Professor in the Department of Computer Science, Uni-
versity of Cyprus, co-director of the Networks Research Laboratory (NetRL,
http://www.NetRL.cs.ucy.ac.cy), and appointed Visiting Professor at the University of the
Witwatersrand (Wits), School of Electrical and Information engineering, Johannesburg,
South Africa. His broad research interests include communication networks, Software
Defined Metamaterials (including Hypersurfaces and intelligent communication surfaces),
Nanonetworks, Internet- and Web- of Things, and Smart Systems (e.g. Smart Grid) and
Smart Spaces (e.g. Home, City). He has a particular interest in adapting tools from various
fields of applied mathematics such as adaptive non-linear control theory, computational
intelligence, game theory, and complex systems and nature inspired techniques, to solve
problems in communication networks. Published over 270 refereed papers in flagship
journals (e.g. IEEE, Elsevier, IFAC, Springer), international conferences, and book chapters,
co-authored 2 books (1 edited), participated as principal or co-principal investigator in over
40 European Commission and locally funded research projects with over 6.6 million Euro,
received several awards, including best paper, presented several keynotes, invited lectures
at major research organisations, short courses at international conferences and short courses
to industry.

	Introduction
	NoCs vs. HSF CNs: Resemblance and Differences
	Reliable Routing of Packetized Directives in HSF CNs
	Contributions: Fault adaptive routing in HSF CNs

	HyperSurface Controller Network
	HSF Design Specifications
	Controller Network (CN) Topology
	Inter-HSF Communicaton Signaling

	Proposed Routing Protocols for HSF CN
	Evaluation of Agnostic XY-XY Routing for the HSF CN: Deadlock Freedom Property
	Building a Fault-Tolerant XY-YX Agnostic Routing Protocol for Fault-Prone HSF Control Networks
	Loop-Free Algorithm (LFA)
	Reliable Delivery Algorithm (RDA)

	Performance Evaluation
	Simulation Results

	Conclusions
	References
	Appendix A: LFA Rules and Pseudocode
	Appendix B: RDA Rules

