A Thread Synchronization Model for the PREEMPT _RT Linux
Kernel

Daniel B. de Oliveira®?<, Rémulo S. de Oliveira®, Tommaso Cucinotta®

*RHEL Platform/Real-time Team, Red Hat, Inc., Pisa, Italy.
b Department of Systems Automation, UFSC, Floriandpolis, Brazil.

CRETIS Lab, Scuola Superiore Sant’Anna, Pisa, Italy.

Abstract

This article proposes an automata-based model for describing and validating sequences of
kernel events in Linux PREEMPT _RT and how they influence the timeline of threads’ execu-
tion, comprising preemption control, interrupt handling and control, scheduling and locking.
This article also presents an extension of the Linux tracing framework that enables the trac-
ing of kernel events to verify the consistency of the kernel execution compared to the event
sequences that are legal according to the formal model. This enables cross-checking of a
kernel behavior against the formalized one, and in case of inconsistency, it pinpoints possible
areas of improvement of the kernel, useful for regression testing. Indeed, we describe in
details three problems in the kernel revealed by using the proposed technique, along with a
short summary on how we reported and proposed fixes to the Linux kernel community. As
an example of the usage of the model, the analysis of the events involved in the activation
of the highest priority thread is presented, describing the delays occurred in this operation
in the same granularity used by kernel developers. This illustrates how it is possible to take
advantage of the model for analyzing the preemption model of Linux.

Keywords:
Real-time computing, Operating systems, Linux kernel, Automata, Software verification,
Synchronization.

1. Introduction

Real-time Linux has been successfully used throughout a number of academic and industrial
projects as a fundamental building block of real-time distributed systems, from distributed
and service-oriented infrastructures for multimedia [1], robotics [2], sensor networks [3] and
factory automation [4], to the control of military drones [5] and distributed high-frequency
trading systems [6, 7]. However, there is still a gap between the restrictions imposed in

Preprint submitted to Journal of Systems Architecture May 31, 2020

the task model used in academic work, and the restrictions imposed by the synchronization
needed in the real Linux implementation. For instance, the frequent use of assumptions like
tasks are completely independent, the operating system is (fully) preemptive, and operations
are atomic [8, 9] is a frequent critique from Linux developers. They argue that such restric-
tions do not reproduce the reality of real-time applications running on Linux, raising doubts
about the results of the development of theoretical schedulers when put in practice [10].
On the other hand, Linux was not designed as a real-time operating system (OS), and so
does not use the conventions already established in the real-time academic community. For
example, the main evaluation metric used on Linux, the latency, is an oversimplification of
the main metric utilized in the academy, i.e., the response time of tasks [11].

On Linux, tasks can interfere with each other in a non-negligible way both explicitly, due to
programmed interactions and synchronizations, and implicitly, due to in-kernel operations
that may cause synchronizations among tasks that are not even directly related [12]. Those
in-kernel operations are necessary because of the non-atomic nature of a sophisticated OS
like Linux. For example, the highest priority thread, once activated, will not be atomically
loaded in the processor, starting to run instantaneously. Instead, to notify the activation of
a thread, the system needs to postpone the execution of the scheduler to avoid inconsistency
in the data structures used by the scheduler. Then, interrupts must be disabled, to avoid
race conditions with interrupt handlers. Hence, delays in scheduling and interrupt handling
are created during activation of a thread [13]. The understanding of the synchronization
primitives, and how they affect the timing behavior of a thread, is fundamental for the
development of real-time software for Linux.

However, the amount of effort required to understand all these constraints is not negligible.
It might take years for a newcomer to understand the internals of the Linux kernel. The
complexity of Linux is indeed a barrier, not only for researchers but for developers as well.
Inside the kernel, scheduling operations interact with low-level details of the underlying
processor and memory architectures, where complex locking protocols and “hacks” are used.
This is done to ensure that such a general-purpose operating system (GPOS) behaves as
efficiently as possible in the average case, while at the same time it is done to ensure that,
with proper tuning, the kernel can serve an increasing number of real-time use cases as
well, effectively becoming a real-time operating system (RTOS). Efforts along this line are
witnessed, for example, by the progressive chasing and elimination over the years of any
use of the old global kernel lock, the extensive use of fine-grain locking, the widespread
adoption of memory barrier primitives, or even the postponement of most interrupt handling
code to kernel threads as done in the PREEMPT _RT kernel. These are all examples of a
big commitment into reducing the duration of non-preemptible kernel sections to the bare
minimum, while allowing for a greater control over the priority and scheduling among the
various in-kernel activities, with proper tuning by system administrators.

As a consequence, Linux runs in a satisfactory way for many real-time applications with
precise timing requirements. This is possible thanks to a set of operations that ensure

the deterministic operation of Linux. The challenge is then, to describe such operations,
using a level of abstraction that removes the complexity due to the in-kernel code. The
description must use a format that facilitates the understanding of Linux dynamics for real-
time researchers, without being too far from the way developers observe and improve Linux.

The developers of Linux observe and debug the timing properties of Linux using the tracing
features present in the kernel [14, 15, 16, 17]. They interpret a chain of events, trying to
identify the states that cause “latencies” in the activation of the highest priority thread, and
then try to change kernel algorithms to avoid such delays. For instance, they use ftrace [18]
or perf! to trace kernel events like interrupt handling, wakeup of a new thread, context
switch, etc., while cyclictest? measures the “latency” of the system.

The notion of events, traces and states used by developers are common to Discrete Event
Systems (DES). The admissible sequences of events that a DES can produce or process can
be formally modeled through a language. The language of a DES can be modeled in many
formats, like regular expressions, Petri nets and automata.

Paper Contributions. This article proposes an automata-based model describing the possible
interleaving sequences of kernel events in the code path handling the execution of threads,
IRQs and NMIs in the kernel, on a single-core system. The model covers also kernel code
related to locking mechanisms, such as mutexes, read/write semaphores and read/write
locks, including the possibility of nested locks, as for example in the locking primitives’ own
code [19].

This article also presents the extension of the kernel tracing mechanism used to capture
traces of the kernel events used in the model, to enable validation of the model by applying
a modified perf tool running in user-space against traces captured from the live running
system. This article also presents a major result achieved during the validation of the
presented model: three problems found in the kernel code, one regarding an inefficiency in
the scheduler, another one in the tracing code itself leading to occasional loss of event data,
and erroneous usage of a real-time mutex. These problems were reported to the Linux kernel
community, including suggestions of fixes, with some of them already present in the current
Linux code. Finally, this paper demonstrates how the model can improve the understanding
of Linux properties in logical terms, in the same granularity used by developers, but without
requiring reading the kernel code.

This paper constitutes an extended and consolidated version of preliminary results already
published at conferences by the authors [20, 21, 22]. However, in this paper, we propose,
for the first time, a complete optimized model encompassing both IRQ, NMI, and threads,

'More information at: http://man7.org/linux/man-pages/manl/perf.1.html.
2The tool is available within the rt-utils software available at: https://git.kernel.org/pub/scm/
utils/rt-tests/rt-tests.git

which has been tested with a broader number of kernel versions (until the last kernel up to
date). We present a deeper comparison with prior works and present details about the needed
modifications to the kernel and the perf framework. Finally, the description on how to use
the proposed technique and the results obtained through its application has been extended,
including, besides the two bugs already described in earlier works, a third problem which
has already been notified to kernel developers and for which we proposed another solution.

Paper Organization. The paper is organized as follows. Section 2 briefly recalls related work
in the area and Section 3 provides background information about the automata theory used
throughout the paper. Section 4 provides the details of the modeling strategy and discusses
the development of the tracing tool used to validate the model. Section 5 includes examples
of applicability of the model: first, an accurate description of the dynamics of the operations
involved in the scheduling of the highest priority thread is provided; then, three examples of
inconsistency between the model and (unexpected) run-time behavior are presented. Finally,
Section 6 draws conclusions, while presenting possible next steps for this line of research.

2. Related Work

This section presents prior literature relevant to the work being presented in this paper,
spanning across two main areas: use of automata in real-time and operating systems analysis;
and formal methods applied to operating systems kernel, with a special focus on papers
involving the Linux kernel.

2.1. Automata-based real-time systems analysis

Automata and discrete-event systems theory has been extensively used to verify timing
properties of real-time systems. For example, in [23], a methodology based on timed discrete
event systems is presented to ensure that a real-time system with multiple-period tasks is
reconfigured dynamically at run-time using a safe execution sequence, under the assumption
of single-processor, non-preemptive scheduling. In [24, 25, 26], the Kronos tool is used for
checking properties of models based on multi-rate and parametric/symbolic timed automata.

In [27], parametric timed automata are used for the symbolic computation of the region of
the parameters’ space guaranteeing schedulability of a given real-time task set, under fixed
priority scheduling. Authors extend symbolic analysis of timed automata [28], by enriching
the model with parametric guards and invariant constraints, which is then checked recurring
to symbolic model checking. The approach is also applied to an industrial avionic case-
study [29], where verification has been carried out using the UPPAAL model checker [30].
A similar methodology can be found in [31], where parametric timed automata are used to
perform sensitivity analysis in a distributed real-time system. It makes use of CAN-based

communications and fixed priority CPU scheduling, and solved with a tool called IMITA-
TOR [32]. Similar in purposes is also the work in [33], where a technique is proposed to
compute the maximum allowed imprecision on a real-time system specification, still pre-
serving desired timing properties. Additionally, some authors [34] considered composability
of automata-based timing specifications, so that timing properties of a complex real-time
system can be verified with reduced complexity.

Similarly to the approach of UPPAAL [30], the TIMES tool has been used [35] with an
automata-based formalism to describe a network of distributed real-time components for
analyzing their temporal behavior from the viewpoint of schedulability.

The mentioned methodologies focus on modeling the timing behavior of the applications,
and their reciprocal interference due to scheduling. Compared to the work being presented
here, they neglect the exact sequence of steps executed by an operating system kernel, in
order to let, for example, a higher-priority task preempt a lower-priority one. None of these
works formalize the details of what exact steps are performed by the kernel and within
its scheduler and context-switch code path. However, as it will be clarified later, these
details can be fundamental to ensure the build of an accurate formal model of the possible
interferences among tasks, as common in the real-time analysis literature.

Further works exist introducing mathematical frameworks for analyzing real-time systems,
such as in [36, 37|, making use of Hybrid and Timed Input/Output Automata to prove
safety, liveness and performance properties of a system. However, these methodologies are
purely mathematical and oriented towards manual reasoning and properties verification. A
comprehensive literature review of these formalisms is out of scope for this paper.

2.1.1. Automata-based models for Linux

In [38], a model of an RT system involving Linux is presented, with two timing domains:
a real-time and a non-real-time one. These are abstracted as a seven-state and three-state
models, respectively. The model, however, is a high-level one and does not consider the
internal details of the Linux kernel.

The usage of trace and automata to verify conditions in the kernel is also presented in [39].
The paper presents models for SYN-flood, escaping from a chroot jail, and, more inter-
estingly, locking validation and real-time constraints validation. The models are compared
against the kernel execution using the LTTng tracer [15]. The models presented are proof of
concepts of these ideas, and are very simple: the largest model, about locking validation, has
only five states. The real-time constraints model has only two states. But still, this paper
corroborates the idea of the connection between automata and tracing as a translation layer
from kernel to formal methods, also for problems in the real-time features of Linux.

An important area that makes use of a formal definition of the system is the State based/S-
tateful robustness testing [40]. Robust testing is a fault tolerance technique [41] also applied

in the OS context. In [42], a case study of state-based robustness testing including the OS
states is presented. The OS under investigation is a real-time version of Linux. The results
show that the OS state plays an important role in testing for corner cases not covered by
traditional robustness. Another project that uses Linux is SABRINE [43], an approach for
state-aware robustness testing of OSs using trace and automata. SABRINE works as follows:
In the first step, it traces the interactions between OS components. Then, the software au-
tomatically extracts state models from the traces. In this phase, the traces are processed, in
such a way to find sequences of functions that are similar, to be grouped, forming a pattern.
Later, patterns that are similar are grouped in clusters. Finally, it generates the behavioral
model from the clusters. A behavioral model consists of states connected by events, in the
format of finite-state automata (FSA).

The possibility of extracting models from the operating system depends on the specification
of the operating system components and their interfaces. The object of this paper is not a
component of the system, but the set of mechanisms used to synchronize the operations of
NMI, IRQs, and threads. The events analyzed in this paper, such as disabling interruptions
and preemption, or locks, are present in most of the subsystems. Both works can be seen
as complementary. The approach proposed by SABRINE can be used to define the inter-
nal models between states of the model proposed by this paper. For example, the model
presented in this paper identifies the synchronization events that cause the delay in the ac-
tivation of the highest priority thread. Many different code paths are taken between the
event that blocks the scheduling and the event that re-enables the scheduling. SABRINE’s
approach can then be used to auto-generate the finite-state automata of such code paths.

The TIMEOUT approach [44] later improved SABRINE by recording the time spent in
each state. The FSA is then created using timed automata. The worst case execution time
observed during the profiling phase is used as the timing parameter of the Timed-FSA, and
so it is also possible to detect timing faults.

2.2. Formal methods for OS kernels

An area that is particularly challenging is the one of verification of an operating system kernel
and its various components. Some works that addressed this problem include the BLAST
tool [45], where control flow automata have been used, combining existing techniques for
state-space reduction based on abstraction, verification and counterexample-driven refine-
ment, with lazy abstraction. This allows for an on-demand refinement of parts of the spec-
ification by choosing more specific predicates to add to the model while the model checker
is running, without any need for revisiting parts of the state space that are not affected
by the refinements. Interestingly, authors applied the technique to the verification of safety
properties of OS drivers for the Linux and Microsoft Windows NT kernels. The technique
required instrumentation of the original drivers, to insert a conditional jump to an error
handling piece of code, and a model of the surrounding kernel behavior, in order to allow
the model checker to verify whether or not the faulty code could ever be reached.

The static code analyzer SLAM [46] shares major objectives with BLAST, in that it allows
for analyzing C programs to detect violation of certain conditions. It has been used also to
detect improper usage of the Microsoft Windows XP kernel API by some device drivers.

Witkowski et al. [47] proposed the DDVerify tool, extending the capabilities of BLAST and
SLAM, e.g., supporting synchronization constructs, interrupts and deferred tasks.

Chaki et al. [48] proposed MAGIC, a tool for automatic verification of sequential C programs
against finite state machine specifications. The tool can analyze a directed acyclic graph
of C functions, by extracting a finite state model from the C source code, then reducing
the verification to a Boolean satisfiability (SAT) problem. The verification is carried out
checking the specification against a sequence of increasingly refined abstractions, until either
it is verified, or a counter-example is found. This, along with its modular approach, allows
the technique to be used with relatively large models avoiding the need for enumerating the
state-space of the entire system. Interestingly, MAGIC has been used to verify correctness
of a number of functions in the Linux kernel involved in system calls handling mutexes,
sockets, and packet sending. The tool has also been extended later to handle concurrent
software systems [49], albeit authors focus on verifying correctness and deadlock-freedom
in the presence of message-passing based concurrency, forbidding the sharing of variables.
Authors were able to find a bug in the Micro-C/OS source code, albeit when they notified
developers the bug had already been found and fixed in a newer release.

There have also been other remarkable works assessing formal correctness of a whole micro-
kernel such as sel4 [50], i.e., adherence of the compiled code to its expected behavior,
stated in formal mathematical terms. sel.4 has also been accompanied by precise WCET
analysis [51]. These findings were possible thanks to the simplicity of the seL.4 micro-kernel
features, e.g., semi-preemptability.

2.2.1. Formal methods in the Linux kernel community

The Linux kernel community is not new to the adoption of formal methods in the kernel
development and debugging workflow. Indeed, a remarkable work in this area is the lockdep
mechanism [52] built into the Linux kernel. Lockdep is capable of identifying errors in
using locking primitives that might eventually lead to deadlocks, by observing the order of
execution and the calling context of lock calls. The mechanism includes detection of mistaken
order of acquisition of multiple (nested) locks throughout multiple kernel code paths, and
detection of common mistakes in handling spinlocks across IR(Q handler vs process context,
e.g., acquiring a spinlock from process context with IRQs enabled as well as from an TRQ
handler. The number of different lock states that has to be kept by the kernel is reduced by
applying the technique based on locking classes, rather than individual locks.

In [53], a formal memory model is introduced to automate verification of fundamental con-
sistency properties of core kernel synchronization operations across the wide variety of sup-
ported architectures and associated memory consistency models. The memory model for

7

Linux ended being part of the official Linux release, with the addition of the Linux Kernel
Memory Consistency Model (LKMM) subsystem, which is an array of tools that formally
describe the Linux memory coherency model, and also produce ’litmus tests’ in form of kernel
code which can be directly executed and tested.

Moreover, the well-known TLA+ formalism [54] has been successfully applied to discover
bugs in the Linux kernel. Examples of problems that were discovered or confirmed by
using TLA+ goes from the correct handling of the memory management locking in the
context switch to the fairness properties of the arm64 ticket spinlock implementation [55].
These recent results raised interest in the potential of the usage of formal methods in the
development of Linux.

Finally, among the works that try to conjugate theoretic analytical real-time system models
with empirical worst-case estimations based on a Linux OS, we can find [56]. There, the
author introduced an “overhead-aware” evaluation methodology for a variety of considered
analysis techniques, with multiple steps: first, each scheduling algorithm to be evaluated is
implemented on the LITMUS RT platform, then hundreds of benchmark task sets are run,
gathering average and maximum values for what authors call scheduling overheads, then
these figures are injected into overhead-aware real-time analysis techniques. The discussion
about outliers in [56], along with the explicit admission of the need for removing manually
some of them throughout the experimentation, witnesses the need for a more insightful model
that provides more accurate information of those overheads. We aim explaining at a finer-
grained level of detail what these scheduling overheads are, where they originate from and
why, when referring to the Linux kernel, and specifically to its PREEMPT _RT variant. Our
automata-based model, that will be detailed in the next sections, sheds some light exactly
into this direction.

To the best of our knowledge, none of the above techniques ventured into the challenging goal
of building a formal model for the understanding and validation of the Linux PREEMPT_RT
kernel code sections responsible for such low-level operations as task scheduling, TRQ and
NMI management, and their delicate interplay, as done in this paper.

3. Background

We model the succession of events in the Linux kernel over time as a Discrete Event System.
A DES can be described in various ways, for example using a language (that represents the
valid sequences of events that can be observed during the evolution of the system). Informally
speaking, an automaton is just a formalization used to model a set of well-defined rules that
define such a language.

The starting point to describe a DES is the underlying set of events E = {e;}, which rep-
resents the “alphabet” used to form “words” (“traces”) of events that compose the DES
language. A trace of a DES run-time behavior can be described as a sequence of the vis-

Figure 1: State transitions diagram (based on Fig. 2.1 from [57]).

ited states and the associated events causing state transitions. Hence, a DES evolution is
described as a sequence of events eq, eg, €3, ...€,, where e; € E, with all possible sequences
of events defining the language £ that describes entirely the system. There are many pos-
sible ways to describe the language of a system. For example, it is possible to use regular
expressions. For complex systems, though, more flexible modeling formats were developed,
being automaton one of these. Automata are characterized by the typical directed graph or
state transition diagram representation. For example, consider the event set £ = {a,b, g}
and the state transition diagram in Figure 1, where nodes represent system states, labeled
arcs represent transitions between states, the arrow without source points to the initial state
and the nodes with double circles are marked states, i.e., safe states of the system.

Formally, a deterministic automaton, denoted by G, is a tuple

G=1{X,E, fT, 20 Xn} (1)

where: X is the set of states; F is the set of events; f : X x E — X is the transition function,
defining the state transition between states from X due to events from E; I': X = 2F is
the active (or feasible) event function, i.e., I'(x) is the set of all events e for which f(z,e) is
defined in the state x; x(is the initial state and X,, C X is the set of marked states.

For instance, the automaton G represented in Figure 1 can be described by defining X =
{l’,y,Z}, E = {aabag}7 f(a:,a) = T, f(Ivg> = % f(y7a) = T, f(yvb) =Y f(Z,b) =z
f(z,a) = f(z,9) =y, T'(z) ={a,g}, T'(y) = {a, b}, T(2) ={a,b,9}, xo = z and X,,, = {z, z}.
The automaton starts from the initial state xy and moves to a new state f(xg,e) upon the
occurrence of an event e € I'(xy) C E. This process continues based on the transitions for
which f is defined.

Informally, following the graph of Figure 1 it is possible to see that the occurrence of event
a, followed by event g and a will lead from the initial state to state y. The language L(G)
generated by an automaton G = {X, F, f,T', xo, X, } consists of all possible chains of events
generated by the state transition diagram starting from the initial state.

One important language generated by an automaton is the marked language. This is the
set of words in £(G) that lead to marked states. The marked language is also called the

9

language recognized by the automaton. When modeling systems, a marked state is generally
interpreted as a possible final or safe state for a system.

Automata theory also enables operations between automata. An important operation is the
parallel composition of two or more automata that can be combined to compose a single,
augmented-state, automaton.

3.1. Operations with automata

Parallel composition allows for merging two or more automata models into one single model.
The standard way of building a model of the entire system from models of individual system
components is by parallel composition [57].

When modeling a system composed of interacting components, it is possible to distinguish
two kinds of events, private events and common events. Private events belong to a single
component, while common events are shared among components.

Given two automata Gy = {Xi1, B, f1,I'1, 201, Xp1} and Gy = { Xy, B, fo, o, 202, Xima
their parallel composition is defined as:

G1 || G2 == Ac(X1 X X2, E1 U Ea, f1)2, T'1)j2: (%01, %02), Xm1 X Xm2) (2)

where Ac() is the operation that trims away states that are non accessible from the initial
state, and:

(fi(z1,€), fo(z2,€)) if e € T1(z1) NT2(x2)

_ (f1(z1,€),22) ife € Dy(z1)\E2
Fe((z1,22),e) = (21, f2(z2, €) if e € Da(z2)\Ex
undefined otherwise

Pyja((z1,22)) = Ti(z1) UT2(z2) (3)

In words, in the parallel composition, a private event, that is an event present in only one
automaton, can execute whenever possible. A common event, that is, an event in F; N Ej,
can only be executed if it is possible in all automata that contain the event, simultaneously.

In the parallel composition product, the initial state is the initial state of all the individual
automata. A state is marked if both its sub-states are marked in the composed automata.

3.2. Monolithic vs. modular modeling

In the modeling of complex systems using automata, there are two possible approaches to
model a system, the monolithic and the modular approach [58].

10

Although this approach is suitable for simple systems, it is not efficient in the modeling of
complex systems, as the number of states increases. In the modular approach, rather than
specifying a single automaton, the system is modeled as a set of independent sub-systems,
where each sub-system has its own alphabet. For systems composed of many independent
sub-systems, with several specifications, the modular approach turns out to be more efficient.

In the modular approach, a generator represents an independent part of the system, modeled
using a pairwise disjoint set of events. The global generator G is then composed by the
parallel composition of all sub-systems’ generators. The global generator represents all chains
of events that are possible for the composite system.

The specification of the synchronization of each sub-system is then done via a set of spec-
ification automata. Each specification synchronizes the actions of two or more generators,
referring to their events. The parallel composition of the model of each specification com-
poses the global specification S.

The parallel composition of the global generator G and the global specification S creates the
model of the system and its synchronizations. There are many benefits in using the modular
approach. In the scope of this work, the modular approach enables the analysis of important
properties of Linux by observing just a set of operations, and not the global system. This
advantage is explored in the analysis conducted in Section 5. The ability to compose the
global model is also crucial to the validation of the system as a whole, including the coherence
between the automata and the system. The global model enabled the validation of the model
with the kernel in constant-time complexity, as described in Section 4.

4. Modeling

Following the approach presented in Figure 2, the knowledge about Linux tasks is modeled
as an automaton using the modular approach. The main sources of information, in order of
importance, are the observation of the system’s execution using various tracing tools [18], the
kernel code analysis, academic documentation about Linux and real-time systems [13] [56],
and hardware documentation [59]. At the same time, we observe a real system running. The
development of the model uses the Linux vanilla kernel with the PREEMPT _RT patchset ap-
plied. The Linux kernel has many different preemption modes, varying from non-preemptive,
to fully-preemptive. This work is based on the fully-preemptive mode only, that is the mode
utilized by the real-time Linux community. The fully-preemptive mode also enables the
real-time alternative for locks. For instance, it converts mutexes into real-time mutexes
and read/write semaphores into real-time read/write semaphores. Moreover, in the fully-
preemptive mode, the vast majority of the work done in the hard and soft IRQ context is
moved to the thread context. The work left in the hard IRQ context is mostly related to
the notification of events from hardware to the threads that will handle the request, or to
decisions that cannot be delayed by the scheduler of threads. For example, the timer that

11

Informal .
knowledge Modeling
s Tracing
trace.data

Figure 2: Modeling phases.

NO
automaton.dot

Does the model

VEllEED matches the trace?

notifies the SCHED_DEADLINE about the throttling of a thread must run in this context to
avoid being delayed by the task it aims to throttle. The configuration options of this kernel
are based on the configuration of the Red Hat Enterprise Linux for Real Time, an enterprise
version of Linux with the PREEMPT _RT patchset. However, the kernel was configured to
run on a single CPU. The development of the model started with the version 4.1/ of the
PREEMPT RT, passing by the version 4.19. It is currently based on version 5.0.

4.1. Events

The most important part of the modeling is the choice of events used in the model. As a
computer program, Linux itself is already a model. However, it is a model with millions of
lines of code and complex data structures. The difficulty is then to reduce the model to the
set of events that contributes more to the purpose of the model. The level of abstraction
used in this paper is the one used by real-time Linux developers while discussing the base of
scheduling and synchronization problems, in the terms of real-time systems.

Linux schedules threads on the processors, but threads are not the sole execution context.
In addition to the threads, interrupts are considered a distinguished execution context. In-
terrupts are used by external devices to notify asynchronous events. For example, a network
card uses interrupts to inform of the arrival of network packets, which are handled by the
driver to deliver the packet contents to an application. Linux recognizes two different kinds
of interrupts: IRQs or Maskable Interrupts are those for which it is possible to postpone
the handling by temporarily disabling them, and NMIs or Non-Maskable interrupts, that
are those that cannot be temporarily disabled. Likewise, on Linux, the model considers
these three execution contexts: Threads, IRQs, and NMI, modeling the context and the
synchronization of these classes of tasks. To validate the level of abstraction and events,
the model was discussed with the main real-time Linux developers at the Real-time Linux
Summit 2018 [60] and The Linux Plumbers Conference 2018 [61, 62].

During the development of the model, the abstractions from the kernel are transformed into
automata models. Initially, the identification of the system is made using the tracepoints
already available. However, the existing tracepoints were not enough to explain the behav-

12

Table 1: IRQ Related Events.

Kernel event Automaton event Description
hw_local_irq_disable preemptirq:irq_disable Begin IRQ handler
hw_local_irq_enable preemptirq:irq-enable Return IRQ handler
local_irq_disable preemptirq:irq_disable Mask IRQs
local_irq_enable preemptirq:local_irq_enable Unmask IRQs
nmi_entry irg_vectors:nmi Begin NMI handler
nmi_exit irq_vectors:nmi Return NMI Handler

ior of the system satisfactorily. For example, although the sched:sched_waking tracepoint
includes the prio field containing the priority of the just awakened thread, it is not enough
to determine whether the thread has the highest priority or not. For instance, the SCHED-
_DEADLINE does not use the prio field, but the thread’s absolute deadline. When a thread
becomes the highest priority one, the flag TIF_NEED_RESCHED is set for the current running
thread. This causes invocation of the scheduler at the next scheduling point. Hence, the
event that most precisely defines that another thread has the highest priority task is the
event that sets the TIF_NEED RESCHED flag. Since the standard set of Linux’s tracepoints
does not include an event to notify the setting of TIF_NEED_RESCHED, a new tracepoint
needed to be added. In such cases, new tracepoints were added to the kernel.

Tables 1, 2 and 3 present the events used in the automata modeling and their related kernel
events. When a kernel event refers to more than one automaton event, the extra fields of
the kernel event are used to distinguish between automaton events. tracepoints in bold
font are the ones added to the kernel during the modeling phase.

Linux kernel evolves very fast. For instance, in a very recent release (4.17), around 1559000
lines were changed (690000 additions, 869000 deletions) [63]. This makes natural the rise
of the question: How often do the events and abstractions utilized in this model change?
Despite the continuous evolution of the kernel, some principles stay stable over time. IRQs
and NMI context, and the possibility of masking IRQs are present in Linux since its very
early days. The fully preemptive mode, and the functions to disable preemption are present
since the beginning of the PREEMPT _RT, dating back to year 2005 [64]. Moreover, the
scheduling and locking related events are implementation independent. For instance, the
model does not refer to any detail about how specific schedulers’ implementations define
which thread to pick next (highest priority, earliest deadline, virtual runtime, etc.). Hence,
locking and schedulers might even change, but the events and their effects in the timeline of
threads stay invariable.

4.2. Modeling
The automata model was developed using the Supremica IDE [65]. Supremica is an inte-

grated environment for verification, synthesis, and simulation of discrete event systems using
finite automata. Supremica allows exporting the result of the modeling in the DOT format

13

Table 2: Scheduling Related Events.

Kernel event

Automaton event

Description

preempt_disable

preemptirq:preempt_disable

Disable preemption

preempt_enable

preemptirq:preempt_enable

Enable preemption

preempt_disable_sched

preemptirq:preempt_disable

Disable preemption to call the scheduler

preempt_enable_sched

preemptirq:preempt_enable

Enables preemption returning from the
scheduler

schedule_entry

sched:sched_entry

Begin of the scheduler

schedule_exit

sched:sched_exit

Return of the scheduler

sched_need_resched

sched:set_need_resched

Set need resched

sched_waking

sched:sched_waking

Activation of a thread

sched_set_state_runnable

sched:sched_set_state

Thread is runnable

sched_set_state_sleepable

sched:sched_set_state

Thread can go to sleepable

sched_switch_in

sched:sched_switch

Switch in of the thread under analysis

sched_switch_suspend

sched:sched_switch

Switch out due to a suspension of the
thread under analysis

sched_switch_preempt

sched:sched_switch

Switch out due to a preemption of the
thread under analysis

sched _switch_blocking

sched:sched_switch

Switch out due to a blocking of the thread
under analysis

sched_switch_in_o

sched:sched_switch

Switch in of another thread

sched_switch_out_o

sched:sched_switch

Switch out of another thread

Table 3: Locking Related Events.

Kernel event

Automaton event

Description

mutex_lock

lock:rt_mutex_lock

Requested a RT Mutex

mutex_blocked

lock:rt_mutex_block

Blocked in a RT Mutex

mutex_acquired

lock:rt_mutex_acquired

Acquired a RT Mutex

mutex_abandon

lock:rt_mutex_abandon

Abandoned the request of a RT Mutex

write_lock

lock:rwlock_lock

Requested a R/W Lock or Sem as writer

write_blocked

lock:rwlock_block

Blocked in a R/W Lock or Sem as writer

write_acquired

lock:rwlock_acquired

Acquired a R/W Lock or Sem as writer

write_abandon

lock:rwlock_abandon

Abandoned a R/W Lock or Sem as writer

read_lock

lock:rwlock_lock

Requested a R/W Lock or Sem as reader

read_blocked

lock:rwlock_block

Blocked in a R/W Lock or Sem as reader

read_acquired

lock:rwlock_acquired

Acquired a R/W Lock or Sem as reader

read_abandon

lock:rwlock_abandon

Abandon a R/W Lock or Sem as reader

14

sched_need_resched
LN

—{|need_resched

schedule_entry

Figure 3: Examples of generators: G05 Need Resched (left) and G04 Scheduling Context (right).

sched_waking

sched_set_state_runnable
slecpable sched_set_state_sleepable

Figure 4: Examples of generators: G0I Sleepable and Runnable.

that can be plotted using graphviz [66], for example.

The model was developed using the modular approach. All generators and specification were
developed manually. The generators are the system’s events modeled as a set of independent
sub-systems. Each sub-system has a private set of events. Similarly, each specification is
modeled independently, but using the events of the sub-systems of the generators it aims to
synchronize.

Examples of generators are shown in Figure 3 and 4. The Need Resched generator (G05)
has only one event and one state. The Sleepable or Runnable generator (G01) has two
states. Initially, the thread is in the sleepable state. The events sched_waking and
sched_set_state_runnable cause a state change to runnable. The event sched_set_state-
_sleepable returns the task to the initial state. The Scheduling Context (G04) models the
call and return of the main scheduling function of Linux, which is __scheduler().

Table 4 shows statistics about the generators and specifications that compose the Model.
The complete Model is generated from the parallel composition of all generators and specifi-
cations. The parallel composition is done via the Supremica tool, automatically. The Model
has 34 events, 9017 states, and 20103 transitions. Moreover, the Model has only one marked
state, has no forbidden states, and it is deterministic and non-blocking.

The complete Model exposes the complexity of Linux. At first glance, the number of states
seems to be excessively high. But, for instance, as it is not possible to mask NMIs, these
can take place in all states, doubling the number of states, and adding two more transitions
for each state. The complexity, however, can be simplified if analyzed at the generators and
specifications level. By breaking the complexity into small specifications, the understanding
of the system becomes more natural. For instance, the most complex specification has only
seven events. The complete Model, however, makes the validation of the trace more efficient,
as a single automaton is validated. Hence, both the modules and the complete model are
useful in the modeling and validation processes.

One frequent question made during the development of this work was: Is it possible to auto-

15

Table 4: Automata models.

Name States Events Transitions
G01 Sleepable or runnable 2 3 3
G02 Context switch 2 4 4
G03 Context switch other thread 2 2 2
G04 Scheduling context 2 2 2
G 05 Need resched 1 1 1
G06 Preempt disable 3 4 4
G07 IRQ Masking 2 2 2
G08 TRQ handling 2 2 2
G09 NMI 2 2 2
G10 Mutex 3 4 6
G11 Write lock 3 4 6
G12 Read lock 3 4 6
S01 Sched in after wakeup 2 5 6
S02 Resched and wakeup sufficency 3 10 18
S03 Scheduler with preempt disable 2 4 4
S0/ Scheduler doesn’t enable preemption 2 6 6
S05 Scheduler with interrupt enabled 2 4 4
S06 Switch out then in 2 20 20
S07 Switch with preempt/irq disabled 3 10 14
S08 Switch while scheduling 2 8 8
S09 Schedule always switch 3 6 6
S10 Preempt disable to sched 2 3 4
S11 No wakeup right before switch 3 5 8
S12 IRQ context disable events 2 27 27
S18 NMI blocks all events 2 34 34
S1/ Set sleepable while running 2 6 6
S15 Don’t set runnable when scheduling 2 4 4
S16 Scheduling context operations 2 3 3
S17 TRQ disabled 3 4 4
S18 Schedule necessary and sufficient 8 9 27
519 Need resched forces scheduling 7 25 53
S20 Lock while running 2 16 16
521 Lock while preemptive 2 16 16
522 Lock while interruptible 2 16 16
523 No suspension in lock algorithms 3 10 19
52/ Sched blocking if blocks 3 10 20
525 Need resched blocks lock ops 2 15 17
S26 Lock either read or write 3 6 6
S27 Mutex doesn’t use rw lock 2 11 11
528 RW lock does not sched unless block 4 11 22
529 Mutex does not sched unless block 4 7 16
530 Disable IRQ in sched implies switch 5 6 10
531 Need resched preempts unless sched 3 5 12
532 Does not suspend in mutex 3 5 11
533 Does not suspend in rw lock 3 8 16
Model 9017 34 20103

16

All sequences of events

Possible sequences of events

Existing sequences of events

Observed sequences of events

Figure 5: Sets of sequences of event.

matically create a model from the trace output? For instance, SABRINE [43] has done this
before, so why not? It is certainly possible to trace the events used in this work and trans-
form them into an automaton or a direct acyclic graph (DAG). However, some difficulties
arise from such an approach.

Using Figure 5 as a reference, the approach presented in this paper starts with the outer set.
The synchronization of all generators creates an automaton with all sequences of events.
The synchronization of the generators and specifications reduces the set of events to those
events that are possible in the system.

In the reverse order, the trace of kernel events starts from the inner set, observing the
sequences of events that happened in a given system. However, there is no guarantee that
all existing sequences of events will be observed in a given system, or in reasonable time.
Similarly to what happens with code coverage in software testing, in order to observe a set
of interesting event sequences that may possibly trigger critical conditions, the system has
to be traced for a sufficiently long time, and it must be stimulated with a sufficiently diverse
set of workload conditions. For example, the chances of observing NMIs occurring in all
possible states they could happen are meager, given that they do not happen very often.
Moreover, there are sequences of events that do not exist in the code but are possible. For
instance, if the system is not idle, and the current thread disables the preemption to call the
scheduler, there is no place in the code in which interrupts get intentionally disabled before
calling the scheduler. This does not mean it is not a possible sequence, as long as interrupts
get enabled before calling the scheduler. The kernel will not break if such a sequence appears
in the future.

Hence, the refinement of the approach presented in this paper has the potential to define
all the possible sequences of events accurately. While an automatic approach can build an

17

rinTerce Trace to Event Graphviz/
P Interpreter Automaton

[re] start [re] start

Y
|
\

raw tracepoint

Y
Y

event

Y

irun the

N :
accept/deny event ... ;automaton

A

output string

perf binary

Figure 6: perf task.model report dynamic.

automaton with all observed sequences of events, the amount of time and resources required
to observe all existing sequences of events is undoubtedly challenging.

The major problem, however, comes from the occurrence of an event that is not present in the
model. In the modular approach, it is possible to analyze each generator and specification
separately, avoiding the analysis in the global model. A hypothetical automatically generated
model would require the analysis of the global automaton, which is not reasonable, given the
number of states and transitions of the global model. Furthermore, in the likely presence of
non-possible sequences in the kernel, the automated mode is prone to include non-possible
sequences in the model.

However, these methods are complementary: The modeling approach presented in this pa-
per was validated by observing the kernel execution. By observing the kernel events, the
automaton generated by the kernel is compared against the model, as described in the next
section.

4.8. Model Validation

The perf tracing tool was extended to automate the validation of the model against the
execution of the real system. The perf extension is called thread_model, and it was devel-
oped as a built-in command. A perf built-in command is a very efficient way to extend perf
features: They are written in C and compiled in the perf binary. The perf thread_model
has two operation modes: the record mode and the report mode.

The record mode configures the tracing session and collects the data. This phase involves
both the Linux kernel tracing features and perf itself in the user-space. In the kernel side,
tracepoints are enabled, recording the events in the trace buffer. Once set, tracepoints
collect data using lock-free primitives that do not generate events considered in the model,

18

struct task_model tmodel = {

.tool = {
struct task_model { .lost = process_lost_event,
struct perf_tool tool; .lost_samples = process_lost_event,
. other definitionssample = process_sample_event,
}; .ordered_events = true,

3,

. other definitions ...
Figure 7: perf_tool definition inside the i
task_model structure.

Figure 8: task-model and perf-tool initialization.

not influencing in the model validation. In the user-space side, perf continues running,
collecting the trace data from the kernel space, saving it in a perf.data file.

The record phase challenge is to deal with the high-frequency of events. A Linux system,
even without a workload, generates a considerable amount of events due to housekeeping
activities. For example, the periodic scheduler tick, RCU callbacks, network and disk opera-
tions, and so on. Moreover, the user-space side of perf generates events itself. A typical 30
seconds record of tracing of the system running cyclictest as workload generates around
27000000 events, amounting to 2.5 GB of data. To reduce the effect of the tracing session
itself, and the loss of tracing data, a 1 GB trace buffer was allocated in the kernel, and the
data was collected every 5 seconds.

After recording, the trace analysis is done using the perf thread model report mode. The
report mode has three basic arguments: the model exported by Supremica in the .dot
format; the perf.data file containing the trace; and the pid of the thread to analyze. The
modules of the tool are presented in Figure 6. When starting, perf interface opens the trace
file, and uses the Graphviz library® to open and parse the .dot file. The connection between
the trace file and the automata is done in the Trace to Event Interpreter layer.

In the built-in command source, the Trace to Event Interpreter is implemented as a
perf_tool. The definition of the tool is shown in Figures 7 and 8. Two callbacks implement
the tool, one to handle tracing samples, and another to notify the loss of tracing events.
While processing the events, perf calls the function process_sample_event for each trace
entry. Another important point of the tool is that the default handler for the kernel events
is substituted by a custom handler, as shown in Figure 9.

The process_sample_event waits for the initial condition of the automaton to be reached
in the trace. After the initial condition is met, the callback functions start to be called.
Figure 10 shows an example of a tracepoint callback handler. The tracepoint handlers
translate the raw trace to an event string used in the model.

The process_event function, in Figure 11, is used to run the automaton. If the automaton

3More information is available at: http://graphviz.org/.

19

const struct perf_evsel_str_handler model_tracepoints[] = {

{ "irg_vectors:nmi_exit", process_nmi_exit 3,
/* nmi_entry should be the last for NMI */

{ "irg_vectors:nmi_entry", process_nmi_entry 3,

{ "irg_vectors:move_cleanup_exit", process_int_exit 3,

{ "irg_vectors:move_cleanup_entry”, process_int_entry 3,

... lines omitted ...

{ "preemptirq:preempt_disable”, process_thread_preempt_disable 3},

{ "preemptirq:preempt_enable”, process_thread_preempt_enable 3,

{ "sched:sched_entry”, process_thread_sched_entry 3,
/* sched_exit should be the last for THREAD */

{ "sched:sched_exit", process_thread_sched_exit 3,

35

Figure 9: perf thread_model: Events to callback mapping.

static int process_nmi_entry(struct task_model *tmodel,
struct perf_evsel *evsel __maybe_unused,
struct perf_sample *sample)

{
const char *event = "nmi_entry”;
struct cpu *c = cpu_of_system(&tmodel->system, sample->cpu);
c—>in_nmi = 1;
process_event(tmodel, sample, event);
return 0;
}

Figure 10: Handler for the irq_vectors:nmi_entry tracepoint.

accepts the event, the regular output is printed. Otherwise, an error message is printed,
the tool resets the automaton and discards upcoming events in the trace until the initial
condition of the automaton is recognized again. Finally, because of the high-frequency of
events, it might be the case that the trace buffer discards some events, causing the loss of
synchronization between the trace and the automaton. When an event loss is detected, perf
is instructed to call the function process_lost_event (see Figure 8), notifying the user, and
resetting the model. Either way, the trace continues to be parsed and evaluated until the
end of the trace file.

The model validation is done using the complete model. The advantage of using the complete
model is that one kernel transition generates only one transition in the model. Hence the
validation of the events is done in constant time (O(1)) for each event. This is a critical
point, given the number of states in the model, and the amount of data from the kernel. On
the adopted platform, each GB of data is evaluated in nearly 8 seconds. One example of
output provided by perf thread model is shown in Figure 12.

When in a given state, if the kernel event is not possible in the automaton, the tool prints
an error message. It is then possible to use the Supremica simulation mode to identify the
state of the automaton, and the raw trace to determine the events generated by the kernel.

20

static int process_event(struct task_model *tmodel, struct perf_sample *sample,
const char xevent)

{

int retval;

event_print_before(tmodel, sample, event);

retval = automaton_event(tmodel->automaton, event);

if ('retval) {

event_not_expected(tmodel->automaton, event, sample);
reset_model (tmodel);

3

event_print_after(tmodel, sample, event);

return retval;
}

Figure 11: process_event: Trying to run the automata.

1: Reference model: thread.dot
2: +----> +=thread of interest - .=other threads
3: | +-> T=Thread - I=IRQ - N=NMI
4: | |
5: | | TID | timestamp | cpu | event | state | safe?
6: [...]
7: . T 8 436.912532 [000] preempt_enable -> g0 safe
8: . T 8 436.912534 [000] local_irqg_disable -> 8102
9: . T 8 436.912535 [000] preempt_disable -> 19421
10: . T 8 436.912535 [000] sched_waking -> q99
12: . T 8 436.912535 [000] sched_need_resched -> q14076
13: . T 8 436.912535 [000] local_irg_enable -> q1965
14: . T 8 436.912536 [000] preempt_enable -> q12256
15: . T 8 436.912536 [000] preempt_disable_sched -> q18615,923376
16: . T 8 436.912536 [000] schedule_entry -> q16926,q17108,q2649,q7400
17: . T 8 436.912537 [000] local_irq_disable -> q11700,q14046,q21391,q23792
18: T 8 436.912537 [000] sched_switch_out_o -> q10337,q20018,921933,97672
19: . T 8 436.912537 [000] sched_switch_in -> q10268,q20126
20: + T 1840 436.912537 [000] local_irg_enable -> 20036
21: + T 1840 436.912538 [000] schedule_exit -> 21033
22: + T 1840 436.912538 [000] preempt_enable_sched -> q4303

Figure 12: Example of the perf thread_model output: a thread activation.

If the problem is in some automaton, it should be adapted to include the behavior presented
by the kernel. However, it could be a problem in the kernel code or the perf tool. Indeed,
during the development of the model, three problems were reported to the Linux community.
More details will follow in Section 5.2. The source code of the model in the format used
by Supremica, the kernel patch with kernel and perf modifications and more information
about how to use the model and reproduce the experiments are available at this paper’s
Companion Page [67].

5. Applications of the Model

The model has manifold applications. This section presents two of them: 1) usage of the
model to describe the behavior of the kernel (Section 5.1); and 2) the usage of the model

21

for runtime verification [68] (Section 5.2), including discussion of the problems that have
already been found in the Linux kernel with the proposed methodology and reported to the
community.

5.1. Using the model to understand kernel’s dynamics

This section analyzes part of the kernel events related to the activation of the highest priority
thread. This behavior is important because it is part of the principal metric utilized by the
PREEMPT_RT developers, the latency. The analysis is done based on the model, not the
kernel code.

The generators that act during the activation of a thread are described first, then the spec-
ifications that synchronize the generators are presented. Next, specifications and generators
are used to explain the possible paths taken during the execution, and how they influence
the activation delay.

5.1.1. Generators

The model considers three execution contexts: 1) NMI; 2) IRQs and 3) Threads, referred to
as tasks in what follows. The generator G09 in Figure 13 shows the events that represent
the execution of an NMI. The NMI can always take place, hence interfering in the execution
of threads and TRQs. The second type of tasks are IRQs. Before starting the handling of an
IRQ, the processor masks interrupts to avoid reentrancy in the interrupt handler. Although
it is not possible to see actions taken by the hardware from the operating system point of
view, the irqsoff tracer of the Linux kernel has a hook in the very beginning of the handler,
that is used to take note that IRQs were masked [20]. In order to reduce the number of events
and states, the events that inform the starting of an interrupt handler were suppressed, and
the notification of interrupts being disabled by the hardware prior to the execution of the
handler are used as the events that notify the start of the interrupt handler. The same is
valid for the return from the handler. The last action in the return from the handler is the
unmasking of interrupts. This is used to identify the end of an interrupt handler. A thread
can also postpone the start of the handler of an interrupt using the local_irq.disable()
and local_irg_enable() and similar functions. The generator G07 models the masking of
interrupts by a thread. The generator G0§ models the masking of interrupts by the hardware
to handle a hardware interrupt. These generators are presented in Figure 14.

A thread starts running after the scheduler completes execution. The scheduler context starts
with the event schedule_entry, and finishes with the event schedule_exit, as modeled in
generator G04 (Figure 4).

The context switch operation changes the context from one thread to another. The model
considers two threads. One is the thread under analysis, and the other represents all other
threads in the system. On Linux, there is always one thread ready to run. That is because

22

nmi_entry

Figure 13: G09 NMI generator.

hw_local_irq_disable local_irq_disable
hw_local_irq_enable local_irq_enable

Figure 14: G08 TRQ Handling (left); G07 TRQ Masking (right) generators.

preempted

Figure 15: G03 Context switch other thread generator.

sched_switch_in

sched_switch_out_o
sched_switch_in_o

sched_switch_suspend
sched_switch_preempt
sched_switch_blocking

preempt_disable_sched
preempt_enable_sched scheduling
Figure 17: G06 Preempt disable.

the idle state runs as if it was a thread, the lowest priority thread. It is named swapper and
has the pid 0. In the initial state of the automata, any other thread is running. The context
switch operations from or to the other threads are presented in Figure 15.

The context switch generator for the thread under analysis is slightly different. In the initial
state, the thread is not running. After it starts running, the thread can leave the processor in
three different modes: 1) suspending the execution waiting for another activation; 2) blocking
in a locking algorithm like mutex, or read/write semaphores; or 3) suffering a preemption
from a higher priority thread, as shown in Figure 16.

The thread is activated with the sched_waking event in the generator G01, the notification of
a new highest priority thread, with set_need_resched event in the generator G05, as shown
in Figure 3.

The last involved generator is about preemption. In the initial state, the preemption is
enabled. But it can be disabled for two main reasons: first, to guarantee that the current
thread will not be de-scheduled; second, to avoid reentrancy in the scheduler code when
already executing the scheduler. In the first case, the preempt_disable and preempt_enable

23

preempt_enable
preempt_enable_sched
local_irq_enable
sched_need_resched py_Jocal_irg_enable
sched_waking

preempt_disable

preempt_disable_sched
local_irq_disable

hw_local_irq_disable

preempt_disable

preempt_disable_sched
local_irq_disable

hw_local_irq_disable

preempt_enable

preempt_enable_sched
local_irq_enable

hw_local_irq_enable

Figure 18: S02 Wakeup and Need resched takes place
with IRQs and preemption disabled.

local_irq_disable

irq_disabled
local_irq_enable

hw_local_irq_disable

hw_local_irq_enable

Figure 19: S17 IRQ disabled.

schedule_entry
schedule_exit

local_irq_disable

local_irq_enable

Figure 20: S05 Scheduler called with interrupts en-
abled.

sched_switch_in
sched_switch_suspend
sched_switch_preempt
sched_switch_in_o
sched_switch_out_o
sched_switch_blocking

local_irq_enable
preempt_enable_sched

local_irq_disable
preempt_disable_sched

local_irq_disable
preempt_disable_sched

local_irq_enable
preempt_enable_sched

Figure 21: S07 Switch with interrupts and preempt
disabled.

sched_switch_in
sched_switch_in_o
sched_switch_suspend
sched_switch_preempt
sched_switch_out_o
sched_switch_blocking

schedule_entry

schedule_exit

Figure 22: S08 Switch while scheduling.

schedule_entry
schedule_exit

preempt_disable_sched

preempt_enable_sched

Figure 23: S03 Scheduler called with preemption dis-
abled.

24

Figure 24:

'q_enable
Yy

local_irq_disable
schedule_entr

hw_local _ir¢

o
2
2
2
|
2
=
<
5
o
=4
g 2
8 B
s 5
2 o
3 =
H 32
H
| 2
g 2
g
<
2
g
3
=
£
= §
2
E &
2 |
k-1
=) 5
=
5] |
B < o
2 3 =
5 2 z
z 5
g E K
2 5}

preempt

q_disable
q_enable

enable_sched
hw_local_irc

enable_sched_exit

preempt_enable

preempt.
hw_local_ir

irq_

[preempt_enabled
schedule_exit

sched_switch_in

rq_enable

irq_disable
cal_irq_disable

preempt_disable
preempt_enable

hw_local_ir

sched_switch_in_o

sched_switch_in

sched_need_resched

quired

t_disable_sched

mutex_blocked
mutex_lock

read_abandon

read_acquired

preempt_enable

preempt_disable
schedule._er

mutex_ac

preempt

519 Need resched forces scheduling.

1: . T 8 271158.409224 [000] preempt_enable -> g0 safe
2: . T 8 271158.409224 [000] preempt_disable_sched -> q7169
3: .1 8 271158.410164 [000] hw_local_irq_disable -> 23201
4: .1 8 271158.410166 [000] sched_need_resched -> 2204
5: . 1 8 271158.410167 [000] hw_local_irqg_enable -> 68
6: . T 8 271158.410168 [000] schedule_entry -> q12032
7: . T 8 271158.410169 [000] local_irqg_disable -> 15580
8: . T 8 271158.410169 [000] sched_switch_out_o -> q19424
9: . T 8 271158.410169 [000] sched_switch_in_o -> Q16186

Figure 25: Need resched when already on the way to schedule.

events are generated, the second case generates the events preempt_disable_sched and
preempt_enable_sched. These two possibilities are modeled in the generator G06, as shown
in Figure 17.

5.1.2. Specification

In Figure 18, the specification S02 shows the sufficient condition for the occurrence of both
sched_waking and sched_need_resched: they can occur only with both preemption and
IRQs disabled. The specification works as follows: in the initial state (enabled) preemp-
tion and interrupts are enabled. In this state sched_waking and sched_need_resched are
not possible. After disabling either preemption or interrupts, the automaton moves to the
state p_ror_i. In this state, the events are still not possible. Then, after disabling both,
the automaton moves to the state disabled, where it is possible to execute sched_waking and
sched_need_resched. The automaton S02 allows the sequence of events local_irq_disable,
hw_local irqg.disable, giving the impression that it does not enforce both IRQ and pre-
emption to be disabled. In fact, the specification S02 does not forbid this sequence. This
sequence is forbidden in the specification S17 TRQ disabled, in Figure 19. The specifica-
tion S17 is a classical mutual exclusion. Interrupts are disabled either by hardware or by
software, but never by both. This specification, along with the generator of the preemption
disabled (G06), gives the properties needed to the specification S02 to have both IRQs and
preemption disabled in the disabled state.

The context switch of threads also depends on two main specifications: S07 both preemption
and TRQs should be disabled. However, with a slight difference of the specification S02:
interrupts disabled in the thread context (not because of an IRQ), and preemption disabled
during a scheduler call. Moreover, the context switch only happens inside the scheduling
context, because of the specification S08. These specifications are presented in Figure 21
and 22, respectively. The scheduler execution has two main specifications as well: the
specification S03, in Figure 23, restricts the execution of the scheduler for a non-preemptive
section. However, the scheduler is always called with interrupts enabled, as modeled in the
specification S05 in Figure 20.

The main goal of the PREEMPT _RT is to schedule the highest priority thread as soon as
possible. In the terms used in the model, the goal of the PREEMPT _RT developers is to cause

25

sched_switch_in or sched_switch_in_o events after the occurrence of set_need_resched as
soon as possible. The specification S19, in Figure 24, models this property.

The specifications explained so far described the sufficient conditions for these events. Given
the sufficient conditions, the specification S19 provides the necessary conditions to the con-
text switch in of the highest priority thread.

In the initial state, the system runs without changing the state, unless set_need_resched
takes place. Once set_need_resched occurs, the initial state will be possible only after the
context switch in of a thread. Hence, set_need_resched is a necessary condition to cause
a preemption, causing a context switch. When set_need_resched occurs, preemption and
interrupts are known to be disabled (502). Before returning to the initial state, the set of
events that can happen are limited for those that deal with IRQ/IRQ masking, preemption
and scheduling.

The return to the initial state is possible from two states: in the state p_and_i, and in the
re_scheduling. The first case takes place when set_need_resched occurs in the scheduler
execution. For instance, the sequence preempt_disable_sched, schedule_entry, local_irg-
_disable satisfies the specification S02 for the set_need_resched and S03, S05, SO7 and
S08 for the context switch. This case represents the best case, where all sufficient conditions
occurred before the necessary one.

If this is not the case, the return to the initial state can happen through a sole state, the
re_scheduling. From the state p_and_i until re_scheduling, calls to the scheduler function are
enabled anytime sufficient conditions are met. However, this implies that preemption was
disabled to call the scheduler (S03), which is the case of a thread running on the way to enter
in the scheduler, or already in scheduling context (G04). For instance through the chain
of events set_need_resched, hw_local irqg_enable, schedule_entry bring the specification
S17 to the re_scheduling state, forcing the scheduler, as exemplified in the lines 4, 5 and
6 in Figure 25. This case, however, is not the point of attention for Linux developers. The
point of interest for developers is in the cyclic part of the specification 5§17, between states
p_and_i, preempt_enabled, and irg_enabled, in which either or both IRQs and preemption stays
disabled, not allowing the progress of the system. Moreover, in the states in which IRQs are
enabled, like irq_enabled and preempt_and_irq_enable, interrupt handlers can start running,
postponing the context switch. Finally, NMIs can take place at any time, contributing to
the delay. These operations that postpone the occurrence of the context switch are part of
the latency measured by practitioners. The latency measurements, however, does not clarify
the cause of the latency: the kernel is evaluated as a black box. By modeling the behavior
of tasks on Linux, this work opens space for the creation of a novel set of evaluation metrics
for Linux.

26

1: ktimersoftd/e 8 [000] 784.425631: sched:sched_switch: ktimersoftd/@:8 [120] R ==> kworker/0:2:728 [120]
28 kworker/@:2 728 [000] 784.425926: sched:sched_set_state: sleepable

35 kworker/@:2 728 [000] 784.425936: sched:set_need_resched: comm=kworker/0:2 pid=728

4: kworker/0:2 728 [000] 784.425939: sched:sched_preempt_disable: at ___preempt_schedule <- ___preempt_schedule

53 kworker/0:2 728 [000] 784.425941: sched:sched_entry: at preempt_schedule_common

6: kworker/@:2 728 [000] 784.425945: sched:sched_switch: kworker/@:2:728 [120] R ==> kworker/0:1:724 [120]
7: irq/14-ata_piix 86 [000] 784.426515: sched:sched_waking: comm=kworker/0:2 pid=728 prio=120 target_cpu=000
8: kworker/@:1 724 [000] 784.426610: sched:sched_switch: kworker/@:1:724 [120] t ==> kworker/0:2:728 [120]
9: kworker/0:2 728 [000] 784.426615: sched:sched_preempt_disable: at schedule <- schedule

10: kworker/0:2 728 [000] 784.426616: sched:sched_entry: at schedule

1: kworker/@:2 728 [000] 784.426619: sched:sched_switch: kworker/@:2:728 [120] R ==> kworker/0:2:728 [120]

Figure 26: Kernel trace excerpt.

sched_need_resched

sched_switch_suspend
sched_switch_blocking

preempt_disable_sched

sched_switch_preempt

sched_sel_state_runnable preempt_disable_sched

sched_waking

sched_switch_in
preempt_disable_sched
sched_waking

ched_set_state_sleepabl
sched_need_resched sched_set_state_sleepabe

preempt_disable_sched
sched_switch_preempt

sched_switch_preempt
preempt_disable_sched
sched_need_resched

preemption_sleepable

sched_waking

sched_switch_in sched_switch_in

preempt_disable_sched

sched_switch_in

ion_to_runnable

sched_need_resched

sched_switch_preempt preempt_disable_sched

Figure 27: S18 Scheduler call sufficient and necessary conditions.

5.2. Kernel problems outlined by the automaton

This section presents three problems found in the kernel while validating the model. The
first is an optimization case, the second is a problem in the tracing, and the third is regarding
an invalid usage of real-time mutex in an interrupt handler.

5.2.1. Scheduling in vain

In Linux, the main scheduler function (__schedule()) is always called with preemption dis-
abled, as shown in Figure 23. In the model, it can be seen as the event that precedes a
scheduler call. The specification in Figure 27 presents the conditions for the thread un-
der analysis to disable preemption to call the scheduler. In the initial state, in which
the thread is not running, the preempt_disable_sched event is recognized, because other
threads can indeed schedule. The sched_switch_in switches the state of the thread to
running. The running state recognizes three events, the sched_set_state_sleepable, the
sched_need_resched, and the preempt_disable_sched. In the case of the occurrence of the
event sched_set_state_sleepable, the thread changes the state to sleepable, where the
preempt_disable_sched is recognized as well. In these states, the sufficient conditions to
call the scheduler exist. However, in the sleepable state, the thread can return to the previ-
ous state with the occurrence of the event sched_set_state_runnable, and so the scheduler

will not necessarily be called.

27

Table 5: Events and state transitions of Figure 26.

Line | Event New state

1 sched_switch_in running

2 sched_set_state_sleepable | sleepable

3 sched_need_resched preemption_sleepable
4 preempt_disable_sched preemption_sleepable
6 sched_switch_preempt preemption_sleepable

7 sched_waking preemption_to_runnable
8 sched_switch_in running

9 preempt_disable_sched vain

In the sleepable state, in the case of the occurrence of the event sched_need_resched, the
preempt_disable_sched will become possible, moving the thread to the state preemption-
_runnable. In this state, though, it is not possible to return to the running state without
a sched_switch_in event, meaning that a preemption will occur. As the preemption only
occurs in the scheduling context, the sched_need_resched event is both a necessary and a
sufficient condition to call the scheduler.

In the running state, it is already possible to call the scheduler, bringing to a state named
vain, which is a special case. Taking the trace of Figure 26, considering the thread kworker-
/0:2 in analysis, and the model in Figure 27 in the initial state, the events and state tran-
sitions of Table 5 take place.

The thread kworker/: 2 started to run at Line 1. From the running state, it sets its state to
sleepable in Line 2, followed by the need_resched event in Line 3, causing the preemption
to be disabled in Line 4, to call the scheduler in Line 5. Then, the thread switched the
context in preemption and left the processor. At Line 7 the thread is awakened, switching
the state to preemption_to_runnable. At Line 8 the context_switch_in takes place, and the
thread starts to run. However, right after returning from the scheduler function, the thread
disables the preemption to call the scheduler again at Line 9 and 10, calling the scheduler in
vain state. In fact, as shown in Figure 26, the call to the scheduler was in vain, at Line 11,
as no real context switch takes place.

In a deeper analysis, before calling __schedule() to cause a context switch, the schedule()
function runs sched_submit_work() to dispatch deferred work that was postponed to the
point that the thread is leaving the processor voluntarily, as an optimization. The optimiza-
tion, however, caused a preemption, that caused the scheduler to be called in the path to
call the scheduler. Hence, calling the scheduler twice. Calling the scheduler twice does not
cause a logical problem. But it causes the strange effect of calling the scheduler in vain,
doubling the scheduler overhead.

This behavior was reported to the Linux community, along with a suggestion of fix. The
suggestion was submitted to the real-time Linux kernel development list, and it was accepted
for mainline integration [69].

28

T 419 361931.701759 [000] preempt_enable -> qo safe
T 419 361931.701761 [000] preempt_disable -> 17630

T 419 361931.701761 [000] preempt_enable -> qo safe
. T 419 361931.701762 [000] sched_waking

361931.701762 event sched_waking is not expected in state q@
Figure 28: Missing kernel events: The output of perf thread_model.

xfsaild/dm-0 419 [000] 361931.701761: sched:sched_preempt_disable: at cfq_remove_request <- cfq_remove_request
xfsaild/dm-@ 419 [000] 361931.701761: sched:sched_preempt_enable: at cfq_remove_request <- cfq_remove_request
xfsaild/dm-0 419 [000] 361931.701762: sched:sched_waking: comm=irq/30-megasas pid=311 prio=49 target_cpu=000

Figure 29: Missing kernel events: The output of kernel tracepoints.

5.2.2. Tracing dropping events

During the validation phase, sometimes, the output of the perf thread_model pointed to
an error in the conditions in which either the sched_waking or sched_need_resched events
happen, like in Figure 28.

Both mentioned events require the preemption and IRQs to be disabled, as modeled in
Figure 18, which raised the attention for a possible problem in the kernel. While analyzing
the problem, it was noticed that the thing in common with all the occurrences of these errors
was that they took place in the wakeup of threads that are generally awakened by interrupts.
For instance, the trace in Figure 29 shows the raw trace from kernel for the case evaluated
in Figure 28, in which the thread that handles the IRQ of an HDD controller was being
awakened.

By checking the kernel code, it is possible to see that the wakeup of a thread and the setting
of need resched flag always occur with the rq_lock taken, and this ensures that both IRQs
and preemption are disabled. Also, checking with the ftrace function tracer, it was possible
to observe that interrupts and preemption were always disabled on the occurrence of the
sched_waking or sched_need_resched events by checking the flags of the events.

A bug report was sent to the Linux kernel developers [70]. The problems turned out to be
in the tracing recursion control.

Despite being lock-free and lightweight, tracing operations are not atomic, requiring the
execution of functions to register the trace into the trace-buffer, as in the pseudo-code in
Figure 30.

Many kernel functions are set as non-traceable, avoiding this problem. However, setting
functions as non-traceable might not always be desirable, as some of these functions may
be of interest for the developer in other call sites. To overcome this problem, the trace
subsystem uses a context-aware recursive lock. When the trace function is called, it will try
to take the lock. Considering the execution of a thread, if the lock was not taken, the trace
function will proceed normally. If the lock was already taken, the trace function returns

29

Q) 6.657 us
.) @) + 18.995 us
Figure 30: Pseudo-code of tracing recur- — g) <========== |

rence.

3

|

0) | do_IRQ() { /* First C function */

2) | irg_enter() {

0 x set the IR text. x

a_kernel_function() { 0; 1.081 us : 3} s ¢ 1RO contex !
trac?_functlgnk()) E) | handle_irq() {
unc{use _fy_ ;gce() {) | /% IRQ handling code */
race_function() { Q) + 10.290 us | }
. 0) | irg_exit() {
/% Trace Recursion */) | /* unset the IRQ context. x/

|
|

}

Figure 31: Trace excerpt with comments of where the
TRQ context is identified in the trace.

without tracing, avoiding the recursion problem.

However, the recursion is allowed for the case of a task in another context. For example, if
a thread owns the lock when an IR(Q) takes place, it is desired that the IRQ can take the
recursive lock to trace its execution. Likewise for NMIs. Hence, the recursive lock avoids
recursion of the trace in the same task context, but not on a different task context.

The context-aware recursive lock works correctly. The problem is that the variable with
information about the task context is set after the execution of the first functions of the IRQ
and NMI handlers, as in Figure 31. Hence, if an interrupt takes place during the recording
of a trace entry, the function do_IRQ() will be detected as a recursion in the trace, and will
not be registered, likewise, the tracepoints that take place before the operation that sets
the current context to the IRQ context.

The solution for this bug requires modification in the detection of the current context by
the tracing sub-system. A proof-of-concept patch fixing this problem was proposed by the
authors to the Linux kernel developers [71]. It involves detecting the current task context
before executing any C.

5.2.3. Using a real-time mutex in an interrupt handler

While validating the model against the 4.19-rt kernel version, the unexpected event in Fig-
ure 32 took place. In words, a mutex_lock operation was tried with interrupts disabled, to
handle an IRQ.

This operation is not expected, due to the specifications S12 and 522, as in Figures 33 and 34.
The raw trace showed that a real-time mutex was being taken in the timer interrupt, as shown
in Figure 35. The interrupt in case was the timer interrupt, while running the watchdog
timer. Figure 36 shows the stack of functions, from the interrupt to the mutex.

This BUG was the first regression found with the model. The model was first built and

30

+ + + +
HH - -

local_irq_disable
local_irq_enable
preempt_enable_sched
sched_set_state_runnable
sched_set_state_sleepable
sched_switch_in
sched_switch_in_o
sched_switch_out_o
sched_switch_preempt
sched_switch_suspend
sched_switch_blocking
schedule_entry
schedule_exit
mutex_abandon
mutex_acquired
mutex_blocked
mutex_lock
write_abandon
write_acquired
write_blocked
write_lock
read_abandon
read_acquired
read_blocked
read_lock

32019
32019
32019
32019

2564.541340 [000]

2564.541342 [000]
2564.541344 [000]
2564.541345 [000]

preempt_disable -> 98250
local_irg_enable -> 13544
hw_local_irq_disable -> 18001

mutex_lock

2564.541345 event mutex_lock is not expected in state q18001

reseting model

Figure 32: mutex_lock not permitted with interrupts disabled.

hw_local_irg_disable

hw_local_irq_enable

mutex_abandon
mutex_acquired
mutex_blocked
mutex_lock
read_abandon
read_acquired
read_blocked
read_lock
write_abandon
write_acquired
write_blocked

° hw_local_irq_disable
write_lock

local_irq_disable

hw_local_irq_enable
local_irq_enable

Figure 34: S22 Lock while interruptible.

Figure 33: S12 Events blocked in the IRQ context.

verified against the 4.14-rt kernel [22], and this problem was not present. A change in the
watchdog behavior added this problem: previously, the watchdog used to run as a dedicated
per-cpu thread, awakened by the timer interrupt. This thread used to run with the highest
FIFO priority. With the addition of the SCHED_DEADLINE, the watchdog thread started to be
postponed by the threads running in the SCHED_DEADLINE. To overcome this limitation, the
watchdog was moved to the stop_machine context, which runs with a priority higher than
the SCHED_DEADLINE. The problem, though, is that the queue of work in the stop_machine
uses mutexes. The patch that caused the problem was included in the kernel version 4.19.
The bug was reported to the kernel developers [72].

: bash 32019 [000]
: bash 32019 [000]
: bash 32019 [000]
: bash 32019 [000]
: bash 32019 [000]

goA W N =

2564.541340:
2564.541342:
2564.541344:
2564.541344:
2564.541345:

preemptirq:preempt_disable:
preemptirg:irq_enable:
preemptirqg:irq_disable:
irg_vectors:local_timer_entry:
lock:rt_mutex_request:

caller=__up_write+0x36 parent=__up_write+0x36
caller=__up_write_unlock+@x75 parent=(nil)F
caller=trace_hardirgs_off_thunk+@xl1a parent=interrupt_entry+@xda
vector=236

pendingb_lock+@x@ queue_work_on+0x41

Figure 35: Trace of mutex_lock taken in the timer interrupt handler.

31

smp_apic_timer_interrupt(){
hrtimer_interrupt() {
__hrtimer_run_queues() {
watchdog_timer_fn() {
stop_one_cpu_nowait() {
#ifdef !CONFIG_SMP
schedule_work() {
queue_work() {
queue_work_on() {
local_lock_irgsave() {
__local_lock_irgsave() {
__local_lock_irq() {
spin_lock_irgsave() {
rt_spin_lock() {
mutex_lock() {

Figure 36: Function stack, from the timer IRQ to the mutex_lock, used in the report for the Linux kernel
developers.

6. Conclusions

Linux is a complex operating system, where common assumptions like that the scheduling
operation is atomic do not hold. The need for synchronization between the various task
contexts, like threads, IRQs and NMIs; the scheduling operation that cannot re-entry, the
lock nesting needed in the lock implementation, add a level of complexity that cannot be
avoided for the correct development of theoretical work that aims Linux. The definition of
the operations of the Linux kernel that affect the timing behavior of tasks is fundamental
for the improvement of the real-time Linux state-of-the-art.

By using the modular approach, it was possible to model the essential behavior of Linux uti-
lizing a set of small and easily understood automata. For example, the explanation presented
in Section 5 used only a set of specifications and not all of the models. The synchronization
of these small automata resulted in an automaton that represents the entire system. The
development of the validation method/tooling was simplified because of the shared abstrac-
tion of “events”. The problems found later in the kernel, mainly in the trace, endorse the
manual modeling: an automatically generated model from traces, albeit interesting, would
potentially include errors induced by possible problems in the kernel.

As regarding future work on this line of research, the natural continuation of the presented
work is the modeling of the multiprocessor behavior of Linux, including busy-wait locks and
migration restrictions to the model.

Although the authors expected that the usage of the presented model could help in the
debugging of Linux in the future, the fact that the model produced practical results during
the development was a pleasant surprise. The usage of the automata for the verification of
Linux is indeed a point that deserves further research and development, mainly focusing on
a more efficient runtime verification method, that could be done entirely in the kernel, like
lockdep does.

32

Another potential usage of the model is to define other metrics for the evaluation of the
PREEMPT_RT. The model sheds light in the internal operations that cause “latencies” in
the PREEMPT _RT, and the understanding of these operations can be used to turn the black
box test into a more precise set of metrics, closing the gap between real-time Linux and
real-time theory. Moreover, the model can be used to justify adaptations in well known
real-time schedulers, to add the states of Linux to their analytical models.

The idea of using the automata model to verify the kernel was presented to the main Linux
kernel developers, and there is a consensus that the approach should be integrated in the
kernel code, mainly to improve testing of the logical correctness of the kernel [62], but also
for timing regressions, with the creation of new metrics for the PREEMPT _RT kernel [73].
Further improvements in the tooling should be done to arrive at such goal, for instance by
improving the performance of the tracing by using eBPF. The approach has also potential to
be used in other areas of the kernel, by the modeling of other components.

References

[1] V. Vardhan, W. Yuan, A. F. H. III, S. V. Adve, R. Kravets, K. Nahrstedt,
D. G. Sachs, D. L. Jones, GRACE-2: integrating fine-grained application adapta-
tion with global adaptation for saving energy, IJES 4 (2) (2009) 152-169 (2009).
doi:10.1504/1JES.2009.027939.

URL https://doi.org/10.1504/1JES.2009.027939

[2] C.San Vicente Gutiérrez, L. Usategui San Juan, I. Zamalloa Ugarte, V. Mayoral Vilches.
Real-time linux communications: an evaluation of the linux communication stack for
real-time robotic applications [online] (Aug. 2018).

URL: https://arxiv.org/pdf/1808.10821.pdf.

[3] A. Dubey, G. Karsai, S. Abdelwahed, Compensating for timing jitter in computing sys-
tems with general-purpose operating systems, in: 2009 IEEE International Symposium
on Object/Component /Service-Oriented Real-Time Distributed Computing, 2009, pp.
55-62 (March 2009). doi:10.1109/ISORC.2009.28.

[4] T. Cucinotta, A. Mancina, G. F. Anastasi, G. Lipari, L. Mangeruca, R. Chec-
cozzo, F. Rusina, A real-time service-oriented architecture for industrial automa-
tion, IEEE Transactions on Industrial Informatics 5 (3) (2009) 267-277 (Aug 2009).
doi:10.1109/T11.2009.2027013.

[5] J. Condliffe. U.S. Military Drones Are Going to Start Running on Linux [online] (Jul.
2014).
URL: https://gizmodo.com/u-s-military-drones-are-going-to-start-running-
on-1linu-1572853572.

[6] J. Corbet. Linux at NASDAQ OMX [online] (Oct. 2010).
URL: https://1lwn.net/Articles/411064/.

33

[7]

8]

[15]

[16]

[17]

[18]

H. Chishiro, Rt-seed: Real-time middleware for semi-fixed-priority scheduling, in: 2016
IEEE 19th International Symposium on Real-Time Distributed Computing (ISORC).

B. B. Brandenburg, J. H. Anderson, Integrating hard/soft real-time tasks and best-
effort jobs on multiprocessors, in: 19th Euromicro Conference on Real-Time Systems

(ECRTS’07), 2007, pp. 61-70 (July 2007). doi:10.1109/ECRTS.2007.17.

J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, J. H. Anderson, Litmus®’:
A testbed for empirically comparing real-time multiprocessor schedulers, in: Pro-
ceedings of the 27th IEEE International Real-Time Systems Symposium, RTSS
‘06, IEEE Computer Society, Washington, DC, USA, 2006, pp. 111-126 (2006).
doi:10.1109/RT'SS.2006.27.

T. Gleixner, Realtime Linux: academia v. reality, Linux Weekly News (July 2010).
URL https://1lwn.net/Articles/397422/

B. Brandenbug, J. Anderson, Joint Opportunities for Real-Time Linux and Real-Time
System Research, in: Proceedings of the 11th Real-Time Linux Workshop (RTLWS
2009), 2009, pp. 19-30 (Sept 2009).

F. Cerqueira, B. Brandenburg, A Comparison of Scheduling Latency in Linux,
PREEMPT-RT, and LITMUS-RT, in: Proceedings of the 9th Annual Workshop on
Operating Systems Platforms for Embedded Real-Time applications, 2013, pp. 19-29
(2013).

D. B. de Oliveira, R. S. de Oliveira, Timing analysis of the PREEMPT_RT Linux kernel,
Softw., Pract. Exper. 46 (6) (2016) 789-819 (2016). doi:10.1002/spe.2333.

S. Rostedt. Using kernelshark to analyze the real-time scheduler [online] (February
2011).
URL: https://1lwn.net/Articles/425583/.

A. Spear, M. Levy, M. Desnoyers, Using tracing to solve the multicore system debug
problem, Computer 45 (12) (2012) 6064 (Dec 2012). doi:10.1109/MC.2012.191.

D. Toupin, Using tracing to diagnose or monitor systems, IEEE Software 28 (1) (2011)
87-91 (Jan 2011). doi:10.1109/MS.2011.20.

B. B. Brandenburg, J. H. Anderson, Feather-trace: A light-weight event tracing toolkit,
in: Proceedings of the Third International Workshop on Operating Systems Platformsfor
Embedded Real-Time Applications (OSPERT’07), 2007, pp. 61-70 (2007).

S. Rostedt, Secrets of the Ftrace function tracer, Linux Weekly NewsAvailable at:
http://lwn.net/Articles/370423/ [last accessed 09 May 2017] (January 2010).

34

[19]

[20]

[23]

[24]

[25]

[26]

[27]

28]

[29]

D. B. de Oliveira, D. Casini, R. S. de Oliveira, T. Cucinotta, A. Biondi, G. Buttazzo,
Nested Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on
Linux, in: Proc. of the 9th International Real-Time Scheduling Open Problems Seminar
(RTSOPS 2018), in conjunction with the 30th Euromicro Conference on Real-Time
Systems (ECRTS 2018), Barcelona, Spain, 2018 (July 2018).

D. B. de Oliveira, R. S. de Oliveira, T. Cucinotta, L. Abeni, Automata-based modeling
of interrupts in the Linux PREEMPT RT kernel, in: 2017 22nd IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), 2017, pp. 1-8
(Sept 2017). doi:10.1109/ETFA.2017.8247611.

D. B. de Oliveira, T. Cucinotta, R. S. de Oliveira, Modeling the Behavior of Threads in
the PREEMPT_RT Linux Kernel Using Automata, in: Proceedings of the Embedded
Operating System Workshop (EWiLi), Turin, Italy, 2018 (October 2018).

D. B. de Oliveira, T. Cucinotta, R. S. de Oliveira, Untangling the Intricacies of Thread
Synchronization in the PREEMPT_RT Linux Kernel, in: Proceedings of the IEEE
22nd International Symposium on Real-Time Distributed Computing (ISORC), Valen-
cia, Spain, 2019 (May 2019).

X. Wang, Z. Li, W. M. Wonham, Dynamic Multiple-Period Reconfiguration of Real-
Time Scheduling Based on Timed DES Supervisory Control, IEEE Transactions on
Industrial Informatics 12 (1) (2016) 101-111 (Feb 2016). doi:10.1109/T11.2015.2500161.

S. Yovine, Kronos: A verification tool for real-time systems, International Journal on
Software Tools for Technology Transfer 1 (1-2) (1997) 123-133 (1997).

A. Bouajjani, S. Tripakis, S. Yovine, On-the-fly symbolic model checking for real-time
systems, in: Proceedings Real-Time Systems Symposium, 1997, pp. 25-34 (Dec 1997).
do0i:10.1109/REAL.1997.641266.

C. Daws, S. Yovine, Two examples of verification of multirate timed automata with
Kronos, in: Proceedings 16th IEEE Real-Time Systems Symposium, 1995, pp. 6675
(Dec 1995). doi:10.1109/REAL.1995.495197.

A. Cimatti, L. Palopoli, Y. Ramadian, Symbolic Computation of Schedulability Regions
Using Parametric Timed Automata, in: 2008 Real-Time Systems Symposium, 2008, pp.
80-89 (Nov 2008). doi:10.1109/RTSS.2008.36.

E. Fersman, P. Pettersson, W. Yi, Timed automata with asynchronous processes:
Schedulability and decidability, in: J.-P. Katoen, P. Stevens (Eds.), Tools and Algo-
rithms for the Construction and Analysis of Systems, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2002, pp. 67-82 (2002).

T. T. H. Le, L. Palopoli, R. Passerone, Y. Ramadian, Timed-automata based schedu-
lability analysis for distributed firm real-time systems: a case study, International

35

[32]

[33]

[34]

[35]

[36]

[37]

Journal on Software Tools for Technology Transfer 15 (3) (2013) 211-228 (Jun 2013).
doi:10.1007/s10009-012-0245-y.
URL https://doi.org/10.1007/s10009-012-0245-y

P. Li, B. Ravindran, S. Suhaib, S. Feizabadi, A formally verified application-level frame-
work for real-time scheduling on POSIX real-time operating systems, IEEE Transactions
on Software Engineering 30 (9) (2004) 613-629 (Sept 2004). doi:10.1109/TSE.2004.45.

Y. Sun, R. Soulat, G. Lipari, E. André, L. Fribourg, Parametric schedulability analysis of
fixed priority real-time distributed systems, in: C. Artho, P. C. Olveczky (Eds.), Formal
Techniques for Safety-Critical Systems, Springer International Publishing, Cham, 2014,
pp. 212-228 (2014).

E. André, L. Fribourg, U. Kiihne, R. Soulat, IMITATOR 2.5: A tool for analyzing
robustness in scheduling problems, in: D. Giannakopoulou, D. Méry (Eds.), Proceedings
of the 18th International Symposium on Formal Methods (FM’12), Vol. 7436 of Lecture
Notes in Computer Science, Springer, Paris, France, 2012, pp. 33-36 (Aug. 2012).
URL http://www.1lsv.ens-cachan.fr/Publis/PAPERS/PDF/AFKS-fm12.pdf

K. G. Larsen, A. Legay, L.-M. Traonouez, A. Wasowski, Robust synthesis for
real-time systems, Theoretical Computer Science 515 (2014) 96 — 122 (2014).
doi:https://doi.org/10.1016/j.tcs.2013.08.015.

URL http://www.sciencedirect.com/science/article/pii/S0304397513006397

K. Lampka, S. Perathoner, L. Thiele, Component-based system design: analytic
real-time interfaces for state-based component implementations, International Jour-
nal on Software Tools for Technology Transfer 15 (3) (2013) 155-170 (Jun 2013).
d0i:10.1007/s10009-012-0257-7.

URL https://doi.org/10.1007/s10009-012-0257-7

T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, W. Yi, Times: A tool for schedu-
lability analysis and code generation of real-time systems, in: K. G. Larsen, P. Niebert

(Eds.), Formal Modeling and Analysis of Timed Systems, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004, pp. 60-72 (2004).

D. K. Kaynar, N. Lynch, R. Segala, F. Vaandrager, Timed [/O automata: a math-
ematical framework for modeling and analyzing real-time systems, in: RTSS 2003.
24th IEEE Real-Time Systems Symposium, 2003, 2003, pp. 166-177 (Dec 2003).
do0i:10.1109/REAL.2003.1253264.

N. Lynch, R. Segala, F. Vaandrager, Hybrid I/O automata, Information and Computa-
tion 185 (1) (2003) 105 — 157 (2003). doi:https://doi.org/10.1016/S0890-5401(03)00067-
1.

URL http://www.sciencedirect.com/science/article/pii/S0890540103000671

36

[38]

[39]

[40]

[44]

[45]

[46]

[47]

H. Posadas, E. Villar, D. Ragot, M. Martinez, Early modeling of linux-based rtos plat-
forms in a systemc time-approximate co-simulation environment, in: 2010 13th IEEE In-
ternational Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing, 2010, pp. 238-244 (May 2010). doi:10.1109/ISORC.2010.18.

G. Matni, M. Dagenais, Automata-based approach for kernel trace analysis, in: 2009
Canadian Conference on Electrical and Computer Engineering, 2009, pp. 970-973 (May
2009). doi:10.1109/CCECE.2009.5090273.

B. Lei, 7. Liu, C. Morisset, X. Li, State based robustness testing for com-
ponents, Electron. Notes Theor. Comput. Sci. 260 (2010) 173-188 (Jan. 2010).
d0i:10.1016/j.entcs.2009.12.037.

URL http://dx.doi.org/10.1016/j.entcs.2009.12.037

L. L. Pullum, Software Fault Tolerance Techniques and Implementation, Artech House,
Inc., Norwood, MA, USA, 2001 (2001).

D. Cotroneo, D. Di Leo, R. Natella, R. Pietrantuono, A case study on state-based
robustness testing of an operating system for the avionic domain, in: F. Flammini,
S. Bologna, V. Vittorini (Eds.), Computer Safety, Reliability, and Security, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 213-227 (2011).

D. Cotroneo, D. D. Leo, F. Fucci, R. Natella, Sabrine: State-based robustness testing
of operating systems, in: Proceedings of the 28th TEEE/ACM International Conference
on Automated Software Engineering, ASE’13, IEEE Press, Piscataway, NJ, USA, 2013,
pp. 125-135 (2013). doi:10.1109/ASE.2013.6693073.
URL https://doi.org/10.1109/ASE.2013.6693073

R. Shahpasand, Y. Sedaghat, S. Paydar, Improving the stateful robustness test-
ing of embedded real-time operating systems, in: 2016 6th International Conference
on Computer and Knowledge Engineering (ICCKE), 2016, pp. 159-164 (Oct 2016).
doi:10.1109/ICCKE.2016.7802133.

T. A. Henzinger, R. Jhala, R. Majumdar, G. Sutre, Lazy abstraction, in: Proceed-
ings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 02, ACM, New York, NY, USA, 2002, pp. 58-70 (2002).
doi:10.1145/503272.503279.

T. Ball, S. K. Rajamani, The SLAM Project: Debugging System Software via Static
Analysis, in: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL '02, ACM, New York, NY, USA, 2002, pp. 1-3
(2002). doi:10.1145/503272.503274.

T. Witkowski, N. Blanc, D. Kroening, G. Weissenbacher, Model Checking Concurrent
Linux Device Drivers, in: Proceedings of the Twenty-second IEEE/ACM International

37

[50]

[54]

[55]

[56]

[57]

Conference on Automated Software Engineering, ASE '07, ACM, New York, NY, USA,
2007, pp. 501-504 (2007). doi:10.1145/1321631.1321719.

S. Chaki, E. M. Clarke, A. Groce, S. Jha, H. Veith, Modular verification of software
components in C, IEEE Transactions on Software Engineering 30 (6) (2004) 388-402
(June 2004). doi:10.1109/TSE.2004.22.

S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, N. Sinha, Concurrent software verifi-
cation with states, events, and deadlocks, Formal Aspects of Computing 17 (4) (2005)
461-483 (Dec 2005). doi:10.1007/s00165-005-0071-z.

URL https://doi.org/10.1007/s00165-005-0071-z

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, S. Winwood, sel.4: Formal
Verification of an OS Kernel, in: Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles, SOSP 09, ACM, New York, NY, USA, 2009, pp.
207-220 (2009). doi:10.1145/1629575.1629596.

B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, G. Heiser, Timing analysis
of a protected operating system kernel, in: Proceedings of the 32nd IEEE Real-Time
Systems Symposium (RTSS11), Vienna, Austria, 2011, pp. 339-348 (November 2011).

J. Corbet. The kernel lock validator [online] (May 2006).
URL: https://1lwn.net/Articles/185666/.

J. Alglave, L. Maranget, P. E. McKenney, A. Parri, A. Stern, Frightening Small Children
and Disconcerting Grown-ups: Concurrency in the Linux Kernel, in: Proceedings of
the Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’18, ACM, New York, NY, USA, 2018,
pp. 405-418 (2018). doi:10.1145/3173162.3177156.

URL http://doi.acm.org/10.1145/3173162.3177156

L. Lamport, The temporal logic of actions, ACM Trans. Program. Lang. Syst. 16 (3)
(1994) 872-923 (May 1994). doi:10.1145/177492.177726.

C. Marinas. Formal methods for kernel hackers [online] (2018).
URL: https://linuxplumbersconf.org/event/2/contributions/60/attachments/
18/42/FormalMethodsPlumbers2018. pdf.

B. B. Brandenburg, Scheduling and Locking in Multiprocessor Real-Time Operating
Systems, Ph.D. thesis, University of North Carolina at Chapel Hill (2011).
URL https://cs.unc.edu/~anderson/diss/bbbdiss.pdf

C. G. Cassandras, S. Lafortune, Introduction to Discrete Event Systems, 2nd Edition,
Springer Publishing Company, Incorporated, 2010 (2010).

38

[58]

[59]

[60]

P. J. Ramadge, W. M. Wonham, Supervisory control of a class of discrete event pro-
cesses, STAM J. Control Optim. 25 (1) (1987) 206-230 (Jan. 1987). doi:10.1137/0325013.

Intel Corporation, Intel® 64 and IA-32 Architectures Software Developer’s Manual, 3rd
Edition, Intel Corporation, 2016 (2016).

D. B. de Oliveira. Mind the gap between real-time Linux and real-time theory, Part I
[online] (2018).

URL: https://wiki.linuxfoundation.org/realtime/events/rt-summit2018/
schedulet#fabstracts.

D. B. de Oliveira. Mind the gap between real-time Linux and real-time theory, Part II
[online] (2018).
URL: https://www.linuxplumbersconf.org/event/2/contributions/75/.

D. B. de Oliveira. How can we catch problems that can break the preempt_rt preemption
model? [online] (2018).
URL: https://linuxplumbersconf.org/event/2/contributions/190/.

J. Corbet. Statistics from the 4.17 kernel development cycle [online] (May 2018).
URL: https://1lwn.net/Articles/756031/.

P. McKenney. A realtime preemption overview [online] (August 2005).
URL: https://1lwn.net/Articles/146861/.

K. Akesson, M. Fabian, H. Flordal, R. Malik, Supremica - an integrated environ-
ment for verification, synthesis and simulation of discrete event systems, in: 2006 8th
International Workshop on Discrete Event Systems, 2006, pp. 384-385 (July 2006).
doi:10.1109/WODES.2006.382401.

J. Ellson, E. Gansner, L. Koutsofios, S. C. North, G. Woodhull, Graphviz — open source
graph drawing tools, in: International Symposium on Graph Drawing, Springer, 2001,
pp. 483-484 (2001).

D. B. de Oliveira. Linux Task Model [online] (2019).
URL: http://bristot.me/linux_task_model/.

E. Bartocci, Y. Falcone (Eds.), Lectures on Runtime Verification - Introductory and
Advanced Topics, Vol. 10457 of Lecture Notes in Computer Science, Springer, 2018
(2018). doi:10.1007/978-3-319-75632-5.

URL https://doi.org/10.1007/978-3-319-75632-5

D. B. de Oliveira. _schedule() being called twice, the second in vain [online| (July
2018).
URL: http://bristot.me/__schedule-being-called-twice-the-second-in-vain/.

39

[70] D. B. de Oliveira. BUG: ftrace/perf dropping events at the begin of interrupt handlers
[online] (2018).
URL: https://www.spinics.net/lists/linux-rt-users/msg19781.html.

[71] D. B. de Oliveira. Early context tracking patch set: fixing perf and ftrace losing events
[online] (2019).
URL: http://bristot.me/early-context-tracking-patch-set-fixing-perf-
ftrace-losing-events/.

[72] D. B. de Oliveira. BUG-RT: scheduling while in atomic in the watchdog’s hrtimer
[online] (2019).
URL: https://www.spinics.net/lists/linux-rt-users/msg20376.html.

(73] D. B. de Oliveira. Beyond the latency: New metrics for the real-time kernel [online]
(2018).
URL: https://linuxplumbersconf.org/event/2/contributions/241/.

40

