
A Priority, Power and Traffic-aware Virtual Machine Placement of IoT
Applications in Cloud Data Centers

Shvan Omera, Sadoon Azizia, Mohammad Shojafarb,∗, Rahim Tafazollib

aDepartment of Computer Engineering and Information Technology, University of Kurdistan, Sanandaj, Iran
bInstitute for Communication Systems, 6G Innovation Centre, University of Surrey, Guildford, GU27XH, United Kingdom

Abstract

Recent telecommunication paradigms, such as big data, Internet of Things (IoT), ubiquitous edge computing (UEC),
and machine learning, are encountering with a tremendous number of complex applications that require different
priorities and resource demands. These applications usually consist of a set of virtual machines (VMs) with some
predefined traffic load between them. The efficiency of a cloud data center (CDC) as prominent component in UEC
significantly depends on the efficiency of its VM placement algorithm applied. However, VM placement is an NP-
hard problem and thus there exist practically no optimal solution for this problem. In this paper, motivated by this,
we propose a priority, power and traffic-aware approach for efficiently solving the VM placement problem in a CDC.
Our approach aims to jointly minimize power consumption, network consumption and resource wastage in a multi-
dimensional and heterogeneous CDC. To evaluate the performance of the proposed method, we compared it to the
state-of-the-art on a fat-tree topology under various experiments. Results demonstrate that the proposed method is
capable of reducing the total network consumption up to 29%, the consumption of power up to 18%, and the wastage
of resources up to 68%, compared to the second-best results.

Keywords: Cloud Computing, Internet of Thing (IoT), Cloud Data Center (CDC), Virtual Machine Placement
(VMP), Priority-aware and Traffic-aware, Power Consumption.

1. Introduction

Cloud computing has become a promising platform for various applications such as big data analysis [1], Internet
of Things (IoT) [2], machine learning [3], etc. Different applications require different resources in terms of computing
power, storage space, and network bandwidth. Moreover, the quality-of-service (QoS) of applications also are differ-
ent [4]. For example, applications like vehicular networks [5], deadline constraint scientific workflows [6], and face
detection and tracking [7] require high QoS, such as minimal response time. Consequently, cloud providers (CPs)
should provision resources in a way that these various requirements are satisfied.

CPs provision their resources in the form of virtual machine (VM) instances and allocate them to cloud users on
a pay-as-you-go basis. Each cloud user requests a set of VMs to run its application on a cloud data center (CDCs),
where VMs usually communicate to each other to process the application. Although virtualization technology allows
cloud providers to run multiple VMs on a physical machine (PM), how to place the VMs of different applications on
a pool of PMs is a challenging task. Efficient virtual machine placement (VMP) allows CPs to maximize their profit
through minimizing the energy consumption of CDC, reducing the resource wastage of PMs, and maximizing the
QoS offered to cloud users [8].

VMP is an NP-hard combinatorial optimization problem [9] for which there exist no optimal solution in practice.
Therefore, in the literature numerous heuristics and metaheuristics have been applied for this problem [10, 11, 12].

∗Corresponding author
Email addresses: shvan.omer@eng.uok.ac.ir (Shvan Omer), s.azizi@uok.ac.ir (Sadoon Azizi), m.shojafar@surrey.ac.uk

(Mohammad Shojafar), r.tafazolli@surrey.ac.uk (Rahim Tafazolli)

Preprint submitted to Journal of Systems Architecture March 13, 2021

The VMP problem has many perspectives such as the power consumption, resource wastage, traffic among VMs,
and priority of applications. A vast majority of the proposed algorithms have focused only on reducing energy con-
sumption [13, 14, 15, 16, 17]. Some of them have formulated the VMP as a bi-objective problem, considering the
minimization of energy consumption and resource wastage [18, 19, 20]. A few of them have taken into account the
network connection between VMs of a requested application [21, 22, 23]. The priority of applications has been con-
sidered only by the authors of [4]. To the best of our knowledge, this is the first effort that addresses all the above
perspectives altogether.

Several questions arise addressing the priority and traffic-aware VMP in a multi-dimensional, heterogeneous CDC.
How we can provide high QoS for IoT applications with higher priority? How the power consumption, resource
wastage and network consumption of a CDC can be optimized. Can we assure that the proposed approach could
provide low time complexity?

1.1. The goal of the paper and contributions

In this work, we propose a novel priority-aware VMP algorithm that jointly optimizes the consumption of power,
wastage of resource and consumption of network resources in a CDC with multidimensional and heterogeneous
resources. Based on the priority level of a requested IoT application (critical or normal), we propose two efficient
heuristic algorithms. For critical applications, a Joint Power and Traffic optimization algorithm, called JointPT, is
presented. JointPT is an energy-efficient and QoS-aware approach which has two main goals including minimizing
the power consumption by exploiting the power-efficient PMs and reducing the network consumption by allocating
mutual VMs with the higher traffic demand into PMs with the closest proximity. For normal applications, we present
a Joint Power and Resource optimization algorithm, called JointPR. The key objectives of JointPR are minimizing
the total power consumption and resource wastage of a CDC by hosting each VM of a normal application on the
power-efficient PM with sufficient resources and the least resource wastage.

The major contribution of this work are as follows:

• The VMP problem is formulated as a mixed integer linear programming (MILP) model with three objectives, i.e.,
the consumption of power, wastage of resources and consumption of network resources of a CDC.

• To efficiently solve the VMP problem in a CDC with multidimensional and heterogeneous resources, a priority-
aware scheme is proposed.

• Various experiments are conducted to evaluate the performance of the proposed algorithm. In comparison with
the state-of-the-art, results reveal that the proposed algorithm is a promising solution for the energy, resource, and
network-aware VMP in CDC of UEC.

1.2. Roadmap

Related works are discussed in Section 2. The proposed system architecture and problem formulation are described
in Section 3 and , Section 4, respectively. In Section 5, the proposed algorithm is presented. Experimental evaluation
of the proposed algorithm and analysis of the results are given in Section 6. The limitation of our work is discussed
in Section 7. Finally, Section 8 concludes the paper and highlights some future research directions.

2. Related Work

In this section, we explain different research works that associated to the virtual machine placement problem. The
background of the problem and the analysis of the state-of-the-art strategies can be found in [8, 10, 11]. Generally
speaking, VM placement algorithms can be categorized into network-agnostic and network-ware. Network-agnostic
algorithms do not consider the communication traffic between VMs and network connection among PMs, whereas
network-aware ones take into account them. In the following, we briefly discuss some of the most relevant ones, with
focus on their main contributions.

2

2.1. Network-agnostic VMP

Modified best fit decreasing (MBFD) [13] is the most well-known heuristic algorithm that has been proposed for
VM placement. MBFD first sorts VMs based on their resource requirement and then place each of them on a PM
with the least increase in the energy consumption of the data center. In [18], the authors propose an ant colony system
(ACS) based algorithm for VM placement whose main goals are minimizing the energy consumption and resource
wastage. Similar to this work, the authors of [19] present a biogeography-based optimization method to achieve the
aforementioned goals. A multi-objective ant colony optimization (MACO) approach to host VMs on PMs with the
aim of minimizing energy consumption, resource wastage and communication energy cost is proposed in [24]. Also,
the authors of [15] introduce an energy-aware method based on the cultural algorithm for placing VMs on PMs. In
[25], the authors propose a deep reinforcement learning approach for resource provisioning and task scheduling to
minimize the energy cost of CPs. To balance the load in PMs, the authors of [26] present a reinforcement learning
based algorithm to efficiently replace VMs.

In [27], the authors focus on the online VM consolidation problem and propose a micro genetic-based approach
for minimizing the energy consumption of a CDC. The authors of [28], take into account the maximization of VM
performance and the balancing of PM workload in their optimization problem and then solve it using a greedy-based
algorithm. The authors in [29] propose a thermal-aware scheduling method to minimize the temperature of a CDC.
The simulation results show that their strategy can improve the energy consumption and other QoS parameters such as
latency and temperature. In [20], we formulate the VM placement as a bi-objective problem and present an efficient
greedy randomized approach based on the combination of the ’power of two choices’ model [30] and the first fit
strategy [31] to minimize the energy consumption and resource wastage in a data center. It is worth to mention that
the main differences between this work compared to our previous work are as follows. First, in our previous work,
i.e., [20], we have not considered the data center network (DCN) topology and the traffic matrix among VMs while in
this study we consider both of them. Second, in that work, we have assumed that all requests have the same priority
while the present paper is priority-aware, i.e., requests can have different priority.

Although the above-mentioned algorithms are promising solutions for VM placement, they have not considered
the impact of communication traffic between VMs on a data center network.

2.2. Network-aware VMP

Traffic communication between VMs has drastic impact on the overall performance of a DCN. Hence, in the
literature, many approaches take into account this aspect and propose network-aware VM placement. In [21], the
authors present a traffic-aware VMP problem (TVMPP) to improve the network consumption of a data center. To
achieve this objective, they propose a two-tier heuristic algorithm which places VMs with large mutual traffic on PMs
with low-cost connections. The authors in [32] propose a graph community-based algorithm for mapping VMs to
PMs in DCNs. The algorithm first makes partitions of PMs regrading to their connectivity, then clusters VMs based
on the amount of traffic exchanged between them. After that, it uses the well-known bin packing strategies to fit
the clusters in the partitions. EQVMP is an energy-efficient and QoS-aware approach for VM placement in software
defined DCNs [22]. EQVMP is a three-tier algorithm; First, it partitions VMs into uniform groups with low traffic
connection among them. Then, it inspires a heuristic-based bin packing algorithm to place VMs on PMs to reduce
the number of power-on PMs. After the placement process, a load balancing mechanism is used to improve the
network performance. An ACO based approach for VM placement with the aim of minimizing energy consumption is
proposed in [33]. The authors consider both PM-side and network-side constraints in their optimization formulation.

The authors of [34] present a topology-aware algorithm to consolidate groups of VMs in a small area of a hierar-
chical DCN. For each group of VMs, the algorithm selects an area with the least increasing of power consumption.
The authors also consider the path allocation for the flows between VMs. Another topology-aware VM placement
algorithm is proposed in [35] which aims to minimize the maximum link utilization of a DCN. The basic idea of
this work is placing all the VMs of a request on a PM as far as possible; otherwise, the request is split into several
sub-requests. Then, sub-requests are sorted based on their number of VMs is ascending order and best fit strategy
is used to host VMs. PAVA is a priority-aware VM allocation approach in SDN-enabled clouds [4]. PAVA tries to
place VMs of the high-priority application on the host group having more computing and networking resources. For a
low-priority application, the authors use first fit decreasing (FFD) strategy. They also propose a bandwidth allocation
(BWA) method to allocate the required network bandwidth for a high-priority application. Recently, the authors in

3

[23] present a three-objective VM placement optimization problem to minimize power consumption, resource wastage
and bandwidth usage and propose a hybrid multi-objective genetic algorithm for solving the problem.

Table 1 summarizes existing works and highlights the research gap that is covered by this work. To the best of our
knowledge, this is the first work that considers the energy consumption, resource wastage and network consumption
of a DCN, the heterogeneity of PMs, and the priority of application requests altogether.

Table 1: Summary of literature review. App:=Applications; Homo:=Homogeneous; Hetero:= Heterogeneous.

References Energy-aware Resource-aware Network-aware App Priority PM Type Approach
Beloglazov et al. [13] • ◦ ◦ ◦ Hetero Heuristic
Gao et al. [18] • • ◦ ◦ Hetero ACS
Zheng et al. [19] • • ◦ ◦ Hetero Biogeography
Malekloo et al. [24] • • ◦ ◦ Hetero ACO
Mohammadhosseini et al. [15] • ◦ ◦ ◦ Hetero Cultural
Cheng et al. [25] • ◦ ◦ • Hetero Deep Reinforcement Learning
Ghasemi et al. [26] • • ◦ ◦ Hetero Reinforcement Learning
Tarahomi et al. [27] • • ◦ ◦ Hetero Micro-genetic
Zhao et al. [28] ◦ • ◦ ◦ Homo Greedy
Tuli et al. [29] • ◦ ◦ ◦ Hetero Artificial Intelligence
Azizi et al. [20] • • ◦ ◦ Hetero Greedy Randomized
Meng et al. [21] ◦ ◦ • ◦ Homo Heuristic
Dias et al. [32] ◦ ◦ • ◦ Homo Heuristic
Wang et al. [22] • ◦ • ◦ Hetero Heuristic
Gao et al. [33] • ◦ • ◦ Hetero ACO
da Silva et al. [34] • ◦ • ◦ Hetero Heuristic
Li et al. [35] ◦ ◦ • ◦ Homo Heuristic
Son et al. [4] • ◦ • • Hetero Heuristic
Farzai et al. [23] • • • ◦ Hetero GA

This Study • • • • Hetero Heuristic

3. Proposed Architecture

In this section, we first describe the considered system architecture which is illustrated in Fig. 1. Specifically, we
discuss about its components along with interaction between them. Then, we present an ILP model for the virtual
machine placement problem.

Cloud users submit their application requests to the cloud provider through the Internet. Each application request
is characterized by some specific profiles including its priority information, number of VMs, flows between VMs,
resource requirements of each VM, and so on. These specifications can be set based on user requirements which is
provided by the most of cloud service providers such as Amazon AWS an Microsoft Azure [4]. It is worth mentioning
that application requests can be submitted to the system at any time.

On the cloud provider side, there exist three main components: named Application Receiver, Resource Manager
and Allocation Manager. Fig. 1 shows these components along with the interaction between them. In the following,
we describe the function of each of these components in detail.

The application receiver component is responsible for receiving application requests from end users. When an
application request is submitted to this component, it analyzes the resource requirement of the application VMs.
Then, it asks the resource manager component whether PMs have enough resources to host this application or not.
If the answer is ‘yes’, it accepts the request and pass it to the allocation manager component to find a suitable place
to host the VMs of the application. Otherwise, it rejects the request and informs the user. In the allocation manager,
the priority analyzer module specifies the priority of the requested application, which can be determined by either
the user of the cloud provider [4]. In this work, similar to [4], we consider two priorities for applications: critical
(high priority) and normal (low priority). Based on the output of the priority analyzer module, one of our proposed
algorithms is executed. If the requested application is critical, our JointPT is running to find a suitable VM-to-
PM mapping; otherwise, our JointPR is running. Our algorithms solve the VMP problem based on the information
provided by the resource manager component (such as the list of available PMs, their remaining resource capacity,
their power consumption profile, and so on). Finally, the offered solution is sent to VM placer module to host VMs
on the relevant PMs.

4

Application
Receiver

Resource
Manager

C
lo

u
d

 P
ro

v
id

e
r

Internet

P
o

d
R

a
ck

Normal

Priority Analyzer

VM Placer

A
ll

o
ca

ti
o

n
 M

a
n

a
g

e
r

JointPT JointPR

Critical

Data Traffic

Configuration Data

Rack switches (Tier 1)

Aggregation switches (Tier 2)

Core switches (Tier 3)

User

Figure 1: The considered system architecture for the provider of Cloud Data Center (CDC) where it consists of rack;
Pods connecting to the Allocation Manager. JointPT:= Joint Power and Traffic optimization algorithm; JointPR:=
Joint Power and Resource optimization algorithm.

5

The computing resources in our system architecture are PMs connecting to each other based on a particular phys-
ical topology. In this work, similar to many works [22, 4, 36, 16, 23], we consider the well-known, three-tier fat-tree
topology [37] as depicted in Fig. 1. At the tier 1, there are r/2 servers connected to a r-port Rack switch. At the tier
2, r/2 of Racks are connected together through r/2 aggregation switches which constitute a Pod. Finally, at last tier,
r Pods are connected to each other through (r/2)2 core switches.

Table 2: Main notation.

Symbol Definition Type - Unit Appears in Eq.

Se
t

A Set of applications and | A |= M - -
V Set of of VMs and |V |= n - -
E Set of edges as dependencies among VMs of an application and | E |= Emax - -
P Set of PMs and | P |= N - -

In
de

x k,k
′

Index of PM, k,k
′ ∈ P Integer - [units] -

i, j Index of VM, i, j ∈V Integer - [units] -
l Index of application , l ∈ A Integer - [units] -

r Number of switch ports Integer - [units] -
ei j Amount of traffic between VMs Vi and Vj Continues - [units] (10)
Pc

k CPU capacity of Pk Integer - [cores] (3), (5), (13)
Pm

k Memory capacity of Pk Continues - [GB] (4), (14)
V c

i CPU demand of Vi Integer - [cores] (3), (13)
V m

i Memory demand of Vi Continues - [GB] (4), (14)
P f ull

k Power consumption of Pk in full utilization state Continuous - [watt] (5), (6)
Pidle

k Power consumption of Pk in idle state Continuous - [watt] (6)

In
pu

tP
ar

am
et

er
s Uc

k Normalized CPU utilization of Pk Continuous - [units] (3), (6), (8)
Um

k Normalized memory utilization of Pk Continuous - [units] (4), (8)
Rc

k Normalized remaining CPU utilization of Pk Continuous - [units] (8)
Rm

k Normalized remaining memory utilization of Pk Continuous - [units] (8)
Pk Power efficiency of Pk Continuous - [units] (8)

Ppower
k Power consumption of Pk Continuous - [watt] (6), (7)

Rwastage
k Resource wastage of Pk Continuous - [watt] (8), (9)

Nnetwork
l Network consumption for the VMs of application Al Continuous - [units] (10), (11)

D(Vi,Vj) Shortest distance between the source and destination PMs hosted Vi and Vj Integers - [hops] (10)
U c

ik Normalized CPU utilization of Pk after placing Vi Continuous - [units] (17)
U m

ik Normalized memory utilization of Pk after placing Vi Continuous - [units] (17)
Rc

ik Normalized remaining CPU utilization of Pk after placing Vi Continuous - [units] (17)
Rm

ik Normalized remaining memory utilization of Pk after placing Vi Continuous - [units] (17)
Rwastage

ik Resource wastage of Pk after placing Vi Continuous - [units] (17)
ε Very small positive real number Continuous - [units] (8), (17)

Va
ri

ab
le

s xik Binary variable to show if VM Vi is placed on PM Pk Binary - [units] (1), (3), (4), (13)-(16)
yk Binary variable to show if PM Pk is active Binary - [units] (2), (7), (9), (13), (14), (16)
Ptot Total power consumption of a CDC Continuous - [watt] (7), (12)
Rtot Total resource wastage of a CDC Continuous - [units] (9), (12)
Ntot Total network consumption of a CDC Continuous - [units] (11), (12)

4. Optimization Problem and Formulation

In this section, we present a mathematical model of the VMP optimization regarding to the proposed system
architecture. For easy reference, all notation used throughout the paper is summarized in Table 2.

4.1. List of Applications

Suppose A = {A1,A2, . . . ,AM} is the set of M applications that are submitted to the cloud provider by the cloud
users, one by one. Formally, an application can be modeled as a graph G = (V,E), where V = {V1,V2, . . . ,Vn} is the
set of VMs and E is the set of edges representing dependencies among VMs. Each edge ei j = (Vi,Vj) indicates the
amount of traffic between VMs Vi and Vj. We denote the size of E as Emax, i.e., |E|= Emax. A VM has some specific
resource requirements such as the number of processing cores, the amount of memory, the size of storage, and so on.
In this work, we focus on the processing power and memory, which are the most commonly used characteristics of
VMs [18, 38, 23]. We use notations V c

i and V m
i to represent respectively the number of CPU cores and the amount

of memory needed by VM Vi, for all i ∈ {1,2, . . . ,n}. We should mention that each application can consist of any
number of VMs.

6

4.2. List of Physical Machines (PMs)

In a cloud data center with a three-tier fat-tree network topology and r-port switches, N = r3/4 PMs can be
networked together. For example, using 16-port switches, we will have a data center network including 1024 PMs. So
let P= {P1,P2, . . . ,PN} be a set of N heterogeneous PMs in the data center in which the capacity of each PM in terms of
the number of CPU cores and the amount of memory is denoted by Pc

k and Pm
k , respectively, for all k ∈ {1,2, . . . ,N}.

We also use notations P f ull
k and Pidle

k to represent respectively the power consumption profile of PM Pk in the full
utilization and idle state, for all k ∈ {1,2, . . . ,N}.

4.3. Optimization model

The main goal of the VMP is finding an optimized solution for mapping function f : V → P in a way that some
predefined objectives and constraints are met. In the following, we present a MILP model of the addressed problem.
The main decision variable of our optimization problem is a binary variable which can be defined as follows:

xik =

{
1 if VM Vi is hosted to PM Pk

0 otherwise
, ∀Vi ∈VVV ,∀Pk ∈PPP (1)

We say that a PM is active if at least one VM is placed on it; otherwise, it is inactive. To mathematically identify
the state of a PM, we use another decision variable which can be represented by the following equation:

yk =

1 if
n

∑
i=1

xik ≥ 1

0 otherwise
, ∀Pk ∈PPP (2)

For an active PM Pk, we define Uc
k and Um

k to specify its normalized CPU and memory utilization, respectively,
which are obtained using the following equations.

Uc
k =

M

∑
l=1

n

∑
i=1

xik×V c
i

Pc
k

, ∀Pk ∈ P (3)

Um
k =

M

∑
l=1

n

∑
i=1

xik×V m
i

Pm
k

, ∀Pk ∈ P (4)

These values can be obtained by dividing the resource requirements of all VMs placed on that PM by its resource
capacity. We also use notations Rc

k = (1−Uc
k) and Rm

k = (1−Um
k) to express the normalized remaining CPU and

memory of PM Pk, respectively. It is worth to mention that in our considered system architecture, the value of these
parameters can be obtained by the resource manager component (see Fig. 1).

In a cloud data center with heterogeneous computing resources, PMs usually have different power consumption
and computing power characteristics. Therefore, we can define a key parameter to identify the efficiency of a PM. In
this regard, we define the power efficiency of PM Pk as follows [39]:

Pk =
Pc

k

P f ull
k

, ∀Pk ∈ P (5)

The objectives of the current study are to place the VMs of applications in a way that power consumption, resource
wastage and network consumption are minimized. Hence, in the following, we give a mathematical model for each of
these objectives.

7

4.3.1. Power consumption model
The power consumption of a PM highly depends on its CPU utilization. The most common model used for

calculating the power consumption of a PM is a linear model presented in [40]. Accordingly, we use the following
equation to calculate the power consumption of PM Pk.

Ppower
k =

{
Pidle

k +
(

P f ull
k −Pidle

k

)
×Uc

k if Uc
k > 0

0 otherwise
, ∀Pk ∈ P (6)

Based on the above formula, the total power consumption of a CDC can be obtained using the below equation:

Ptotal =
N

∑
k=1

yk×Ppower
k (7)

4.3.2. Resource wastage model
To fully utilize of a multi-dimensional, activated PM, its resource utilization must be maximized and balanced in

all dimensions. In other words, its resource wastage must be minimized. To this end, in [18], authors have proposed
an intelligent equation which calculates the value of this parameter for a PM Pk as the following

Rwastage
k =

| Rc
k−Rm

k |+ε

Uc
k +Um

k
, ∀Pk ∈ P (8)

where ε is a very small positive real number that we set it to 0.0001, similar to [18].
Having this equation, the total resources wasted by a VM placement algorithm is obtained using the following

equation:

Rtotal =
N

∑
k=1

yk×Rwastage
k (9)

4.3.3. Network consumption model
To reduce the communication cost among the VMs of an application during the execution, they must be carefully

placed. To determine how a placement algorithm achieves this goal, we need to define an appropriate metric based
on the distances between the source and destination PMs of all VMs of an application. In this work, we introduce a
metric called network consumption to measure the proximity of an application VMs in a fat-tree network topology.
The proposed metric is defined based on the application graph (or traffic matrix) and the location of PMs in the
topology.

For each edge ei j = (Vi,Vj) of the application graph, let Pk and Pk′ be the source and the destination PMs of Vi
and Vj, respectively. We define D(Vi,Vj) as the shortest distance in the number of hops between their source and
destination PMs. Regarding the topological structure of fat-tree, there are four possible cases for two PMs Pk and Pk′ :
Case 1: They are the same host. In this case, D(Vi,Vj) = 0; because Vi and Vj can communicate with each other
through the host memory without injecting any traffic to the network.
Case 2: Pk and Pk′ are within the same Rack. So the traffic between two VMs is transferred through a Rack switch
which needs two hops, i.e., D(Vi,Vj) = 2.
Case 3: Two PMs are inside the same Pod, but with a different Rack. In this case, each packet must traverse four hops
from the source VM to the destination VM, i.e., D(Vi,Vj) = 4.
Case 4: The last case occurs when VMs Vi and Vj are hosted on the PMs located within the different Pods, where they
will be six hops apart from each other. Thus, D(Vi,Vj) = 6.

Hence, the network consumption for the VMs of an application, say Al , is defined as follows:

Nnetwork
l = ∑

i, j∈V
D(Vi,Vj)× ei j, ∀l ∈ A (10)

8

The key idea behind this equation is to place mutual VMs with the higher traffic demand on PMs with the closest
proximity. This leads to a reduction in traffic injected to a DCN. The total network consumption of a CDC for M
application requests can be obtained using the following equation:

Ntotal =
M

∑
l=1

Nnetwork
l (11)

4.3.4. Objective function
The objective function of the considered VMP problem can be formulated as the following an MILP model:

min (Ptotal +Rtotal +Ntotal) (12)

s.t:
M

∑
l=1

n

∑
i=1

xik×V c
i ≤ yk×Pc

k , ∀Pk ∈ P (13)

M

∑
l=1

n

∑
i=1

xik×V m
i ≤ yk×Pm

k , ∀Pk ∈ P (14)

N

∑
k=1

xik = 1, ∀Vi ∈V (15)

xik,yk ∈ 0,1, ∀i ∈V ,k ∈ P (16)

where constraints (13) and (14) respectively ensure that the CPU and memory utilization of active PMs must not ex-
ceed their capacity. Constraint (15) indicates that each VM can be hosted only on one PM. Constraint (16) determines
that the decision variables used in the model are binary.

Since VMP is an NP-hard problem [41], proposing an efficient exact algorithm is unlikely to exist. Considering
multi-dimensionality, heterogeneity, and multi-objectivity make it even harder. Therefore, in this work, we present
two efficient heuristic algorithms to cope with this problem.

5. Proposed heuristic algorithms

In this section, we explain the proposed heuristic algorithms to solve the VMP problem efficiently. For critical
applications, we present JointPT whose major intuitions are twofold: i) minimizing the consumption of power by
exploiting the power-efficient PMs and reducing the number of active PMs, and ii) reducing the consumption of
network by considering the traffic between VMs and hosting them on PMs with the closest proximity. For normal
ones, we present JointPR, which aims to minimize both power consumption and resource wastage in a CDC. To
achieve the former goal, JointPR uses a strategy similar to JointPT; while for the next goal, it tries to find a suitable
VM-PM mapping to maximize resource utilization and balancing the load among multi-dimensional resources of
activated PMs. The detail of the proposed algorithms is discussed in the following subsections.

5.1. JointPT
The JointPT algorithm takes the network topology of PMs, inter-VM traffic matrix, resource and power consump-

tion profile of PMs, and resource demand of VMs as input. Then, it performs three major phases as follows.
Phase-1: In the first phase, JointPT calculates the power efficiency of each PM (based on eq.(5)) and then sorts

Pods, the Racks inside each Pod, and PMs within each rack in descending order of their power efficiency. It means
the algorithm gives higher priority to the power-efficient PMs.

Phase-2: In the second phase, JointPT determines the order of a requested application VMs according to the
Maximum Spanning Tree (MST) algorithm. Such a tree can be easily found using prim’s algorithm. For this end, we
first multiply the edge weights by -1 and then solve the minimum spanning tree problem on the obtained graph. An
illustrative example is shown in Fig. 2. Let us assume that VM V2 is the starting node. The sequence order of VMs is
as follows: V2,V5,V1,V3,V4,V6.

9

Phase-3: After determining the sequence order of VMs, the JointPT algorithm tries to allocate mutual VMs with
the higher traffic demand into PMs with the closest proximity. To this end, in the first attempt, JointPT will try to host
VMs with high traffic intensity on the same PM. If it could not do this, PMs located on the same Rack and then the
same Pod is examined. In the last attempt, a PM outside the Pod is found.

7

82
9

5

3

8

1

1 2

5

3

4 6

Figure 2: Maximum spanning tree for a traffic matrix among VMs

Algorithm 1 presents the pseudo-code of the proposed JointPT. First, the algorithm calculates the power efficiency
of PMs (line 1). After that, it sums up the power efficiency value of PMs inside each Pod (and each Rack), and then
sort Pods (and Racks) in descending order based on the obtained values (lines 2 and 3). The algorithm also sorts PMs
inside each Rack based on their power efficiency (line 4). In line 5, the sequence order of VMs is calculated using
Prim’s algorithm for the maximum spanning tree. Next, the algorithm iterates through VMs to host them on suitable
PMs (lines 6-33). Line 7 checks if Vi is the first VM of the requested application; If so, JointPT uses the First Fit (FF)
heuristic algorithm to allocate it on the first PM with sufficient capacity (line 8); otherwise, our algorithm will attempt
to find a PM which has enough resources to host Vi and provides the minimum network distance from the previous
VM, say Vi−1 (line 9 to 32).

10

Algorithm 1 Joint Power and Traffic optimization algorithm (JointPT)

Input: G(V,E): Application Graph, P: List of all PMs in DC
Output: VMP map

1: calculate the power efficiency of PMs using eq. (5);
2: sort Pods based on their power efficiency in descending order;
3: sort Racks inside each Pod based on their power efficiency in descending order;
4: sort Pk inside each Rack based on their power efficiency in descending order;
5: calculate the sequence order of VMs according to the MST algorithm;
6: for each Vi ∈VVV do
7: if i == 1 then . Vi is the first VM for placement
8: use FF algorithm to place Vi;
9: else

10: Pi← a PM that Vi−1 is hosted on it;
11: Q.insert(Pk);
12: Racki← a Rack that Vi−1 is included;
13: for each Pk ∈ Ri do
14: Q.insert(Pk);
15: end for
16: Podi← a Pod that Vi−1 is included;
17: for each Pk ∈ Podi do
18: Q.insert(Pk);
19: end for
20: for each Pk ∈ DC do
21: Q.insert(Pk);
22: end for
23: while (Q 6= /0) do
24: Pk ← delete(Q);
25: if V c

i ≤ Pc
k and V m

i ≤ Pm
k then

26: place Vi on Pk;
27: Pc

k ← Pc
k - V c

i ;
28: Pm

k ← Pm
k - V m

i ;
29: break;
30: end if
31: end while
32: end if
33: end for

5.2. JointPR
The major concerns in the JointPR algorithm are minimizing the power consumption and maximizing the utiliza-

tion of the activated PMs. To achieve these goals, the algorithm performs two main phases. The first one is the same
as the Phase-1 of JointPT. For the second phase, however, JointPR maps VMs on PMs in a way that the resource
wastage of the active PMs is minimized. Thus, for each VM, the algorithm checks all the active PMs and place it
on the PM with sufficient resources and the least resource wastage. To calculate the resource wastage of PM Pk after
mapping VM Vi, we can use the following equation:

Rwastage
ik =

|Rc
ik−Rm

ik)|+ε

U c
ik +U m

ik
, i ∈V ,k ∈ P (17)

where Rc
ik and Rm

ik are the normalized remaining CPU and memory of PM Pk if VM Vi is located on it, respectively.
We can use the same description for U c

ik and U m
ik which are normalized CPU and memory utilization of PM Pk.

Algorithm 2 shows the pseudo-code of the JointPR algorithm. Lines 1 to 4 are similar to Algorithm 1. In line
5, the algorithm creates a list from the previously activated PMs and puts them in the set P. After that the proposed
algorithm runs the outer loop (lines 6 to 27) to map application VMs on the most suitable PMs. To do this, for each
VM Vi, it searches among all the active PMs and tries to find a PM with the sufficient capacity and the least resource
wastage value, after placing VM Vi (see lines 7 to 16). If such a PM is available, the algorithm places the VM on
that PM and updates its resources (lines 17 to 20); otherwise, the next power efficient PM is activated to host the VM
(lines 21 to 26). It is worth mentioning that here we assume that an activated PM can host at least one VM.

11

Algorithm 2 Joint Power and Resource optimization algorithm (JointPR)

Input: G(V,E): Application Graph, P: List of all PMs in DC
Output: VMP map

1: calculate the power efficiency of PMs using eq. (5);
2: sort Pods based on their power efficiency in descending order;
3: sort Racks inside each Pod based on their power efficiency in descending order;
4: sort Pk inside each Rack based on their power efficiency in descending order;
5: P ← list of active PMs;
6: for each Vi ∈V do
7: for each Pk ∈P do
8: min← ∞

9: if V c
i ≤ Pc

k and V m
i ≤ Pm

k then
10: calculate Rwastage

ik using eq.(17)
11: if Rwastage

ik < min then
12: min← Rwastage

ik ;
13: index← k;
14: end if
15: end if
16: end for
17: if min 6= ∞ then
18: place Vi on Pindex;
19: Pc

index← Pc
index - V c

i ;
20: Pm

index← Pm
index - V m

i ;
21: else
22: activate the next PM Pk′ from the sorted list P and add it to P;
23: place Vi on Pk′ ;
24: Pc

k′
← Pc

k′
- V c

i ;
25: Pm

k′
← Pm

k′
- V m

i ;
26: end if
27: end for

12

To make our proposed method easy to understand, Fig.3 provides its flowchart description.

Receive an

application request

Calculate the power

efficiency of PMs

Sort Pods, Racks and PMs based on their

power efficiency in descending order

Application

type?

Calculate the sequence

order of VMs
𝒫 ← list of active PMs

Pick VM 𝑉𝑖 from List V

𝑉𝑖 is the

first VM?

𝑃𝑖 ←a PM that 𝑉𝑖 is

hosted on it
Use FF to place it

Insert PMs in Queue

according to their

proximity to 𝑃𝑖

𝑃𝑘 ← delete(Q);

𝑃𝑘 has enough

resources to

host 𝑉𝑖?

Place 𝑉𝑖 on 𝑃𝑘 and

update the resource of 𝑃𝑘

𝑉 = ∅?

Select 𝑃𝑘 with the

minimum resource

wastage

Pick VM 𝑉𝑖 from List V

There exists at

least one PM ∈ 𝒫
which has

enough resources

to host 𝑉𝑖

Place 𝑉𝑖 on 𝑃𝑘 and

update the resource of

𝑃𝑘

Activate the next PM

𝑃𝑘′ from the sorted PM

list and add it to 𝒫

Place 𝑉𝑖 on 𝑃𝑘′ and

update the resource of

𝑃𝑘′

End of proposed

method

𝑉 = ∅?

Critical Normal

JointPT JointPR

YesNo

No

Yes

Yes

No

No Yes

No

Yes

Figure 3: Flowchart of the proposed method

5.3. Complexity Analysis

Here, we present the time complexity of the proposed algorithms. Remember that a fat-tree topology with r-port
switches consists of N = r3/4 PMs, r Pods, r/2 Racks inside each Pod, and r/2 PMs connected to each Rack. Also,

13

n represents the number of VMs of a requested application.

JointPT: The complexity of line 1 is O(N). Lines 2, 3 and 4 requires O(r× logr), O(r2/2× log(r/2)) and O(N×
log(r/2)), respectively. Calculating the MST using Prime’s algorithm (line 5) requires O(Emax× logn). The com-
plexity analysis of lines 6 to 33 is as follows. For the first VM, the algorithm uses the FF algorithm (lines 7 and
8) wherein the worst case it should examine all PMs, i.e., O(N). For other (n− 1) VMs, the algorithm first in-
sert all PMs to a queue (lines 9 to 22) and then delete them from the queue (lines 23 to 32). Since we use a
simple First In First Out (FIFO) queue, both of them requires O(N). Thus, the complexity of lines 6 to 33 in the
worst case is equal to O(n×N). Therefore, the overall time complexity of JointPT for a requested application is
O(N× log(r/2)+Emax× logn+n×N).

JointPR: The complexity of lines 1 to 4 is similar to the above analysis. In line 5, the algorithm needs the list of
active PMs, which requires O(N). The rest of the algorithm includes two nested loops (lines 6 to 27). The first loop is
executed for all n VMs while the second one requires to check at most N PMs. Hence, the overall time complexity of
JointPR is equal to O(N× log(r/2)+n×N).

𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒

Pod#1 Pod#2

Rack#1 Rack#2 Rack#3 Rack#4

𝑷𝟓 𝑷𝟔 𝑷𝟕 𝑷𝟖

𝑽𝟏

𝑽𝟐

𝑽𝟑

𝑽𝟒

𝑽𝟐

𝑽𝟓

𝑽𝟑

𝑽𝟏

5

310

8

1

𝑽𝟏 𝑽𝟐

𝑽𝟒

𝑽𝟑

𝑽𝟓
6

3

6

1

𝑽𝟏 𝑽𝟐

𝑽𝟑

Application Requests

Application#1: Critical Application#2: Normal

VM Placer

Figure 4: An illustrative example

14

5.4. An Illustrative Example

To better understand of the proposed heuristic algorithms, here we give an illustrative example. For this end, we
consider a fat-tree topology with two available Pods, two Racks inside each Pod, and two PMs within each Rack. We
also consider two different application requests, one critical and one normal (see Fig.4). The characteristics of PMs
and VMs of applications are described in Tables 3, 4 and 5, respectively. Let us assume that Application#1 enters the
system first. We follow the next steps to map VMs to PMs based on the proposed JointPT and JointPR algorithms.
Step 1: The power efficiency of the PMs is calculated using eq. (7) as in Table 3.
Step 2: Based on the sorting phase of JointPT, the priority of PMs is obtained, where Pod#1 has higher priority
compared to Pod#2, Rack#1 has higher priority in comparison with Rack#2, P1 is more power efficient than P2, and
so on.
Step 3: The sequence order of Application#1 VMs is as follows: V1, V2, V4, V5, and V3.
Step 4: By checking the capacity of PMs and requirement of VMs, the placement is done, as it can be seen in Fig. 4.
Step 5: For Application#2, JointPR first tries to place V1 on active PMs, i.e., P1 and P2. However, these PMs cannot
host V1. Therefore, this VM is located on the next power efficient PM with sufficient resources which is P4. The other
two VMs, V2 and V3, are placed on the PMs with the minimum resource wastage that is P1 and P2, respectively.

Table 3: PMs’ Characteristics

#PM CPU [cores] Memory [GB] P f ull [W] P
P1 64 128 186 0.344
P2 24 64 112 0.214
P3 24 32 148 0.162
P4 32 64 156 0.205
P5 24 48 164 0.146
P6 16 32 132 0.121
P7 24 32 148 0.162
P8 32 48 196 0.163

Table 4: VMs’ Characteristics (Application#1).

#VM vCPU [cores] Memory [GB]
V1 8 16
V2 16 64
V3 12 16
V4 16 16
V5 16 32

Table 5: VMs’ Characteristics (Application#2).

#VM vCPU [cores] Memory [GB]
V1 16 32
V2 8 4
V3 4 16

6. Performance Evaluation

To evaluate the performance of the proposed method, we first describe simulation settings. After that benchmark
algorithms are introduced. Finally, we present results. The source code of our paper is available in [42].

15

6.1. Simulation setup

For conducting the experiments, we used Java programming language. The experiments were carried out on a PC
with Intel Core i7-6400U CPU 2.10 GHz (4 processors), 12 GB RAM, and Windows 10 OS. To provide results with
high confidence, each experiment is executed 10 times and reported an average of them. In order to examine the impact
of parameters, we tacked into consideration three various experiments. For experiment one, we varied the number of
applications from 4, 8, 16, 32, 64 to 128, while fixing the number of PMs to 1024 (a fat-tree topology with 16-port
switches). For experiment two, the number of applications is fixed to 16, whereas the number of PMs are varied from
16, 128, 1024 to 8192. In both of these experiments, we consider the number of critical and normal applications equal
to each other. However, for experiment three, we vary the ratio of critical applications to all applications from 0% to
100% and set the number of applications and PMs to 16 and 1024, respectively. In all experiments, the number of
VMs per application is set to U [1,16] and the amount of traffic connection between mutual VMs is set to U [1−100]
Mbps, where U [a,b] is a random uniform distribution between a and b.

For PMs and VMs, we use real data. To this end, the characteristics of PMs are collected from different venders
reported in SPECpowe ssj2008 - third and fourth quarters of 2019 [43] (see 6) and the VMs’ characteristics are get
from the Microsoft Azure B-series [44] (see 7) and the Amazon EC2 A1-series [45] (see 8).

Table 6: PMs’ Characteristics [43]

Vendor Model CPU [cores] Memory [GB] P f ull [W] Pidle [W]
Inspur Corp. NF5280M5 56 192 347 48.3
Dell R7515 64 128 246 99.5
Hewlett Packard DL385 Gen10 128 256 422 111
Lenovo SR850 112 384 672 121
Fujitsu LX1430 M1 64 256 250 60.8
Supermicro Inc. 1123US-TR4 56 192 385 48.6
ASUSTeK Computer Inc. RS720-E9-RS8 128 512 412 99.2

Table 7: Microsoft Azure B-series [44].

Name vCPU [cores] Memory [GB]
Standard˙B1s 1 1
Standard˙B1ms 1 2
Standard˙B2s 2 4
Standard˙B2ms 2 8
Standard˙B4ms 4 16
Standard˙B8ms 8 32
Standard˙B12ms 12 48
Standard˙B16ms 16 64
Standard˙B20ms 20 80

Table 8: Amazon EC2 A1-series [45].

Name vCPU [cores] Memory [GB]
a1.medium 1 2
a1.large 2 4
a1.xlarge 4 8
a1.2xlarge 8 16
a1.4xlarge 16 32

16

6.2. Benchmark algorithms
To demonstrate the effectiveness of the proposed method (JointPT+JointPR), we compare it to the following

three state-of-the-art algorithms. First Fit Decreasing (FFD) [31], Energy-efficient and QoS-aware Virtual Machine
Placement (EQVMP) [22], and Priority-aware VM Allocation (PAVA) [4]. In the FFD algorithm, VMs of a requested
application is initially sorted in decreasing order of their CPU requirements. Then for each VM, it searches the list of
PMs to host the VM based on the first fit manner, i.e., the VM is hosted on the first PM, which has enough resource
capacity. The description of EQVMP and PAVA is presented in Subsection 2.2. Table 9 compares the time complexity
of the algorithms. It is worth mentioning that PAVA and our proposed method are priority-aware while the other two
algorithms do not consider the priority of applications.

Table 9: Time complexity comparison. n:= number of VMs of a requested application. r:= number of switch ports.
N:= number of PMs. Emax:= size of E.

FFD EQVMP PAVA Proposed
Critical Application O(n× logn+n×N) O(n4 +n× logn+n×N) O(n×N× logN) O(N× log(r/2)+Emax× logn+n×N)

Normal Application O(n× logn+n×N) O(n4 +n× logn+n×N) O(n×N2× logN) O(N× log(r/2)+n×N)

6.3. Results
In this part, we present the results of the paper.

6.3.1. Impact of varying the number of applications
Table 10 shows the network consumption versus the number of applications and reports the amount of consumed

network resources by critical and normal applications alongside with their summation. As we can see from the results,
the proposed algorithm and PAVA gives a better network consumption for critical applications. This is expected since
our algorithm takes into account the traffic demand between VMs of critical applications and allocate them into PMs
with the high computing resources and the closest proximity. Although PAVA ignores the traffic demand among VMs,
it places VMs of critical applications onto the Rack which provides more computing resources. EQVMP performs
well in terms of network consumption for normal applications. This is because of the hop reduction phase of this
algorithm which applies it for both critical and normal applications Where neither the proposed algorithm nor PAVA
uses this strategy for normal applications. But, compared to PAVA, our algorithm offers far less network consumption
for normal applications. This is because of the sorting phase of the PAVA algorithm for normal application which sorts
hosts in ascending order by their available resources. This leads to dispersing the VMs of a normal application across
many PMs. Interestingly, the proposed algorithm outperforms the others in terms of total network consumption.

Table 10: Network consumption vs. number of applications. C:= network consumption of critical applications. N:=
network consumption of normal application. T:=total network consumption.

FFD EQVMP PAVA Proposed
#Applications C N T C N T C N T C N T
4 1,492 1,332 2,824 1,279 1,245 2,525 959 3,526 4,485 476 1,254 1,730
8 3,171 3,138 6,309 2,746 3,060 5,806 2,061 6,314 8,374 1,719 3,670 5,389
16 6,728 7,308 14,035 6,091 6,376 12,467 3,767 18,256 22,023 3,667 8,040 11,707
32 13,784 12,686 26,470 12,889 10,879 23,768 8,528 40,263 48,790 8,836 14,104 22,940
64 28,888 26,387 55,275 27,203 24564 51,767 16,176 80,672 96,848 18,346 31,135 49,481
128 56,095 52,111 108,206 52,271 49,432 101,703 29,836 148,621 178,457 31,056 67,084 98,140

Fig. 5 and Fig. 6 respectively illustrates the power consumption and resource wastage of the considered data
center. Compared to the benchmarks, the proposed algorithm demonstrates better performance in both aspects. The
main reason behind the reduction in the consumption of power is that our algorithm prioritizing the most power
efficient Pods, Racks and PMs inside each Rack for VM placement. Furthermore, it hosts the normal application
VMs in a way that the wastage of resources is minimized which reduces the number of activated PMs. It is worth
mentioning that since PAVA attempts to allocate each set of critical application VMs into the host groups with high
computing resources, so a lot of resources is wasted.

17

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

4 8 16 32 64 128

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

K
W

)

Number of Applications

PAVA

FFD

EQVMP

Proposed

Figure 5: Impact of varying number of applications on power consumption

0

10

20

30

40

50

60

4 8 16 32 64 128

R
es

o
u

rc
e

W
a

st
a

g
e

Number of Applications

PAVA

EQVMP

FFD

Proposed

Figure 6: Impact of varying number of applications on resource wastage

18

6.3.2. Impact of varying the number of PMs
Table 11, Fig. 7 and Fig. 8 report the results of this experiment, where they respectively demonstrate the net-

work consumption, power consumption and resource wastage for different topology scales with the same number of
applications, i.e., 16. From Table 11 it can be inferred that PAVA has the lowest network consumption for critical
applications, as its goal is to host VMs of critical applications on the host group which provides more computing
resources. EQVMP gives the best results for normal ones, which is because of the hop reduction phase of this algo-
rithm. However, the proposed algorithm achieves the lowest total network consumption in all cases. The reason is that
our algorithm gives priority to PMs whose offer high computing resources and low power consumption. Therefore,
more VMs can be host on a single PM, where this also leads to less power consumption (see Fig. 7). Additionally,
our algorithm uses a traffic-aware approach for critical applications which resulting in significantly reducing the con-
sumed network. Due to resource wastage-awareness for normal applications, the proposed algorithm outperforms the
benchmark in this aspect (see Fig. 8).

Table 11: Network consumption vs. number of PMs. C:= network consumption of critical applications. N:= network
consumption of normal application. T :=total network consumption.

FFD EQVMP PAVA Proposed
#PMs C N T C N T C N T C N T
16 10,240 8,851 19,091 9,460 7,758 17,218 5,381 19,248 24,629 6,652 9,624 16,276
128 6,706 7,143 13,849 6,381 6,641 13,022 3,600 16,036 19,636 4,151 7,796 11,947
1024 6,728 7,308 14,035 6,091 6,376 12,467 3,767 18,256 22,023 3,667 8,040 11,707
8192 5,522 6,652 12,175 4,876 6,236 11,112 2,462 16,728 19,190 3,214 7,254 9,496

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

16 128 1024 8192

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

K
W

)

Number of PMs

PAVA FFD EQVMP Proposed

Figure 7: Impact of varying number of applications on resource wastage

6.3.3. Impact of varying the ratio of critical applications
This experiment investigates the performance of the different algorithms for various ratio of critical applications.

Table 12 presents the results obtained for the network consumption of the considered data center. Generally speaking,
for the low ratio, the proposed algorithm outperforms the comparison algorithms in terms of the consumed of network
resources by critical applications. The reason behind this is that when the number of critical applications is low, their
VMs get more chance to host on new PMs; because the most of active PMs are used by the large number of normal
applications VMs. However, as this ratio is increases, PAVA provides the best results for network consumption of
critical applications. As we stated in the previous experiments, PAVA tries to host VMs of each critical application on
the host group with the highest available computing resources which leads to low network consumption for critical

19

0

2

4

6

8

10

12

14

16 128 1024 8192

R
es

o
u

rc
e

W
a

st
a

g
e

Number of PMs

PAVA FFD EQVMP Proposed

Figure 8: Impact of varying number of applications on resource wastage

applications. In all cases, EQVMP has the lowest value for the network consumption caused by normal applications
as this algorithm consider the same strategy for both critical and normal applications. However, again our algorithm
obtains the first rank in the total network consumption aspect.

Table 12: Network consumption vs. ratio of critical applications. C:= network consumption of critical applications.
N:= network consumption of normal application. T :=total network consumption.

FFD EQVMP PAVA Proposed
C N T C N T C N T C N T

0% 0 15,507 15,507 0 14,185 14,185 0 38,114 38114 0 16,850 16,850
20% 2,936 11,496 14,432 2,502 10,137 12,639 1,966 26,789 28,756 1,190 12,843 14,034
40% 4,392 7,761 12,154 4,159 7,068 11,227 2,549 21,949 24,498 2,501 10,208 12,709
60% 7,646 4,761 12,407 6,831 4,305 11,136 4,826 15,678 20,503 5,105 5,963 11,068
80% 10,218 3,673 13,891 9,335 2,941 12,276 5,437 10,665 16,102 6,955 4,153 11,108
100% 13,021 0 13,021 11,098 0 11,098 6,157 0 6,157 8,503 0 8,503

By the analysis of Fig. 9 and Fig. 10, we conclude that the proposed algorithm gives the best results in terms of
the consumption of power and wastage of resources, respectively. As previously stated, this is because of prioritizing
the most power efficient PMs and considering the resource wastage in our objective function. Here we should note
an important point. As it can be observed from Fig. 9, by increasing the ratio of critical applications, the power
consumption of PAVA is decreased. This can be justified using the fact that PAVA places VMs of critical applications
on the most powerful PMs; therefore, it uses the fewer PMs compared to the others, which leads to reducing power
consumption. However, this policy dramatically increases the resource wastage (see Fig. 10). The reason behind this
is as follows. For each critical application, PAVA maps their VMs on the Rack with more computing resources. After
placing that VMs on the selected Rack, the available computing resources of the Rack is reduced and more probably it
may not be selected for other critical applications. However, most likely, there are some PMs inside that Rack which
are activated but their resources are not well used.

7. Discussion

In this work, the questions arised in the introduction are answered as follows. First, we proposed JointPT for
critical (higher-priority) applications which tries to place mutual VMs with the higher traffic demand on PMs with the
closest proximity. Therefore, critical applications enjoy low network latency, and thus high QoS. Second, to minimize
the power consumption of a CDC, we prioritize the power-efficient PMs and reduce the number of active PMs. Also,

20

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

0% 20% 40% 60% 80% 100%

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

K
W

)

Ratio of Critical Applications

PAVA FFD EQVMP Proposed

Figure 9: impact of varying number of applications on resource wastage

0

5

10

15

20

25

30

0% 20% 40% 60% 80% 100%

R
es

o
u

rc
e

W
a

st
a

g
e

Ratio of Critical Applications

PAVA FFD EQVMP Proposed

Figure 10: Impact of varying number of applications on resource wastage

21

to reduce the resource wastage, we proposed JointPR whose main objective is to host VMs of normal applications on
the PMs with the least resource wastage. Finally, our proposed algorithms have low running time which make them
suitable even for use in large-scale CDCs.

Although the present work provides an efficient solution for VMP problem, there are still several aspects con-
cerning this problem. First, the proposed method can be extended to include the allocation of network bandwidth
to provide high QoS for critical applications and avoid traffic congestion for normal ones. Second, in this work, we
assume uniform random traffic among VMs of a requested application. However, to improve it, we can incorporate
learning mechanisms for traffic prediction among VMs of requested applications in our future work. Third, this work
is focused on the VMP problem. However, to improve the energy efficiency of a DCN more and more, an efficient
VM consolidation phase also can be added to this work. Fourth, in this paper, we focused on the fat-tree topology.
However, with a little modification, it can be extended to cope with the generalized network topologies. Finally, the
proposed method cannot be directly applied in Fog/Edge-Cloud computing environments [46, 47]. To cope with such
environments, we are planing to extend our proposed method and compare it with different learning methods such as
those presented in [48, 49].

8. Conclusions and Future Work

In this paper, we studied the problem of VM placement of IoT applications in cloud data centers. We first formu-
lated the problem as an mixed integer linear programming model with the goals of minimizing power consumption,
network consumption and resource wastage. Then, we proposed a priority-aware scheme to efficiently solve the prob-
lem. To validate the effectiveness of our approach, we conducted extensive experiments and verify that the proposed
approach shows better performance compared to the state-of-the-art. As future work, we aim to propose a meta-
heuristic algorithm hybridized with a new bandwidth allocation mechanism to tackle this problem. Another interest-
ing research direction is to extend the proposed method in a way that it can be applied in the integrated IoT-Fog-Cloud
infrastructure [50, 51]. To this end, our system model should be improved to capture more prioritization attributes
for applications and experiments can be conducted by the well-known frameworks like FogBus [52]. Moreover, as
another research direction, we plan to modify our proposed heuristic algorithms to be applied for the allocation of
micro-service applications in container-based clouds [49, 53].

References

[1] C. P. Chen, C.-Y. Zhang, Data-intensive applications, challenges, techniques and technologies: A survey on big data, Information sciences
275 (2014) 314–347.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of things: A survey on enabling technologies, protocols, and
applications, IEEE communications surveys & tutorials 17 (4) (2015) 2347–2376.

[3] K. Hwang, Cloud computing for machine learning and cognitive applications, MIT Press, 2017.
[4] J. Son, R. Buyya, Priority-aware vm allocation and network bandwidth provisioning in software-defined networking (sdn)-enabled clouds,

IEEE Transactions on Sustainable Computing 4 (1) (2018) 17–28.
[5] M. R. Jabbarpour, A. Marefat, A. Jalooli, H. Zarrabi, Could-based vehicular networks: a taxonomy, survey, and conceptual hybrid architec-

ture, Wireless Networks 25 (1) (2019) 335–354.
[6] Z. Li, J. Ge, H. Hu, W. Song, H. Hu, B. Luo, Cost and energy aware scheduling algorithm for scientific workflows with deadline constraint in

clouds, IEEE Transactions on Services Computing 11 (4) (2015) 713–726.
[7] P. Vadakkepat, P. Lim, L. C. De Silva, L. Jing, L. L. Ling, Multimodal approach to human-face detection and tracking, IEEE transactions on

industrial electronics 55 (3) (2008) 1385–1393.
[8] H. Talebian, A. Gani, M. Sookhak, A. A. Abdelatif, A. Yousafzai, A. V. Vasilakos, F. R. Yu, Optimizing virtual machine placement in iaas

data centers: taxonomy, review and open issues, Cluster Computing (2019) 1–42.
[9] W. Lin, W. Wu, L. He, An on-line virtual machine consolidation strategy for dual improvement in performance and energy conservation of

server clusters in cloud data centers, IEEE Transactions on Services Computing (2019).
[10] M. C. Silva Filho, C. C. Monteiro, P. R. Inácio, M. M. Freire, Approaches for optimizing virtual machine placement and migration in cloud

environments: A survey, Journal of Parallel and Distributed Computing 111 (2018) 222–250.
[11] N. Donyagard Vahed, M. Ghobaei-Arani, A. Souri, Multiobjective virtual machine placement mechanisms using nature-inspired metaheuristic

algorithms in cloud environments: A comprehensive review, International Journal of Communication Systems 32 (14) (2019) e4068.
[12] M. Masdari, S. Gharehpasha, M. Ghobaei-Arani, V. Ghasemi, Bio-inspired virtual machine placement schemes in cloud computing environ-

ment: taxonomy, review, and future research directions, Cluster Computing (2019) 1–31.
[13] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation heuristics for efficient management of data centers for cloud com-

puting, Future generation computer systems 28 (5) (2012) 755–768.

22

[14] M. Tang, S. Pan, A hybrid genetic algorithm for the energy-efficient virtual machine placement problem in data centers, Neural Processing
Letters 41 (2) (2015) 211–221.

[15] M. Mohammadhosseini, A. T. Haghighat, E. Mahdipour, An efficient energy-aware method for virtual machine placement in cloud data
centers using the cultural algorithm, The Journal of Supercomputing 75 (10) (2019) 6904–6933.

[16] A. Jayanetti, R. Buyya, J-opt: A joint host and network optimization algorithm for energy-efficient workflow scheduling in cloud data centers,
in: Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing, 2019, pp. 199–208.

[17] S. Mishra, S. Jain, Ontologies as a semantic model in iot, International Journal of Computers and Applications 42 (3) (2020) 233–243.
[18] Y. Gao, H. Guan, Z. Qi, Y. Hou, L. Liu, A multi-objective ant colony system algorithm for virtual machine placement in cloud computing,

Journal of Computer and System Sciences 79 (8) (2013) 1230–1242.
[19] Q. Zheng, R. Li, X. Li, N. Shah, J. Zhang, F. Tian, K.-M. Chao, J. Li, Virtual machine consolidated placement based on multi-objective

biogeography-based optimization, Future Generation Computer Systems 54 (2016) 95–122.
[20] S. Azizi, M. Shojafar, J. Abawajy, R. Buyya, Grvmp: A greedy randomized algorithm for virtual machine placement in cloud data centers,

IEEE Systems Journal (2020).
[21] X. Meng, V. Pappas, L. Zhang, Improving the scalability of data center networks with traffic-aware virtual machine placement, in: 2010

Proceedings IEEE INFOCOM, IEEE, 2010, pp. 1–9.
[22] S.-H. Wang, P. P.-W. Huang, C. H.-P. Wen, L.-C. Wang, Eqvmp: Energy-efficient and qos-aware virtual machine placement for software

defined datacenter networks, in: The International Conference on Information Networking 2014 (ICOIN2014), IEEE, 2014, pp. 220–225.
[23] S. Farzai, M. H. Shirvani, M. Rabbani, Multi-objective communication-aware optimization for virtual machine placement in cloud datacen-

ters, Sustainable Computing: Informatics and Systems (2020) 100374.
[24] M.-H. Malekloo, N. Kara, M. El Barachi, An energy efficient and sla compliant approach for resource allocation and consolidation in cloud

computing environments, Sustainable Computing: Informatics and Systems 17 (2018) 9–24.
[25] M. Cheng, J. Li, S. Nazarian, Drl-cloud: Deep reinforcement learning-based resource provisioning and task scheduling for cloud service

providers, in: 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), IEEE, 2018, pp. 129–134.
[26] A. Ghasemi, A. T. Haghighat, A multi-objective load balancing algorithm for virtual machine placement in cloud data centers based on

machine learning, COMPUTING (2020).
[27] M. Tarahomi, M. Izadi, M. Ghobaei-Arani, An efficient power-aware vm allocation mechanism in cloud data centers: a micro genetic-based

approach, Cluster Computing (2020) 1–16.
[28] H. Zhao, Q. Wang, J. Wang, B. Wan, S. Li, Vm performance maximization and pm load balancing virtual machine placement in cloud, in:

2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), IEEE, 2020, pp. 857–864.
[29] S. Tuli, S. S. Gill, G. Casale, N. R. Jennings, ithermofog: Iot-fog based automatic thermal profile creation for cloud data centers using

artificial intelligence techniques, Internet Technology Letters (2020) e198.
[30] M. Mitzenmacher, E. Upfal, Probability and computing: Randomization and probabilistic techniques in algorithms and data analysis, Cam-

bridge university press, 2017.
[31] G. Keller, M. Tighe, H. Lutfiyya, M. Bauer, An analysis of first fit heuristics for the virtual machine relocation problem, in: 2012 8th

international conference on network and service management (cnsm) and 2012 workshop on systems virtualiztion management (svm), IEEE,
2012, pp. 406–413.

[32] D. S. Dias, L. H. M. Costa, Online traffic-aware virtual machine placement in data center networks, in: 2012 Global Information Infrastructure
and Networking Symposium (GIIS), IEEE, 2012, pp. 1–8.

[33] C. Gao, H. Wang, L. Zhai, Y. Gao, S. Yi, An energy-aware ant colony algorithm for network-aware virtual machine placement in cloud
computing, in: 2016 IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS), IEEE, 2016, pp. 669–676.

[34] R. A. da Silva, N. L. da Fonseca, Topology-aware virtual machine placement in data centers, Journal of Grid Computing 14 (1) (2016) 75–90.
[35] X. Li, Z. Lian, X. Qin, W. Jie, Topology-aware resource allocation for iot services in clouds, IEEE Access 6 (2018) 77880–77889.
[36] G. Cao, Topology-aware multi-objective virtual machine dynamic consolidation for cloud datacenter, Sustainable Computing: Informatics

and Systems 21 (2019) 179–188.
[37] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center network architecture, ACM SIGCOMM computer communication

review 38 (4) (2008) 63–74.
[38] D. Belabed, S. Secci, G. Pujolle, D. Medhi, Striking a balance between traffic engineering and energy efficiency in virtual machine placement,

IEEE Transactions on Network and Service Management 12 (2) (2015) 202–216.
[39] S. Azizi, M. Zandsalimi, D. Li, An energy-efficient algorithm for virtual machine placement optimization in cloud data centers, Cluster

Computing 23 (4) (2020) 3421—-3434.
[40] S. Pelley, D. Meisner, T. F. Wenisch, J. W. VanGilder, Understanding and abstracting total data center power, in: Workshop on Energy-

Efficient Design, Vol. 11, 2009, pp. 1–6.
[41] Z. Á. Mann, Approximability of virtual machine allocation: much harder than bin packing, in: 9th Hungarian-Japanese Symposium on

Discrete Mathematics and Its Applications, 2015, pp. 21–30.
[42] S. Omer, S. Azizi, M. Shojafar, R. Tafazolli, Priority, power, and traffic-aware vmp algorithm source code, https://github.com/

mshojafar/sourcecodes/tree/master/Shvan2020VMPJSA_Sourcecode (2020).
[43] SPECpower˙ssj2008 Results, https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer

(Accessed: 2020-11-03).
[44] Microsoft Azure. General purpose virtual machine sizes., https://docs.microsoft.com/en-us/azure/virtual-machines/

windows/sizes (Accessed: 2020-11-03).
[45] Amazon EC2. Amazon ec2 instance types., https://aws.amazon.com/ec2/instance-types/?nc1=h_ls (Accessed: 2020-11-03).
[46] C.-H. Hong, B. Varghese, Resource management in fog/edge computing: a survey on architectures, infrastructure, and algorithms, ACM

Computing Surveys (CSUR) 52 (5) (2019) 1–37.
[47] B. Omoniwa, R. Hussain, M. A. Javed, S. H. Bouk, S. A. Malik, Fog/edge computing-based iot (feciot): Architecture, applications, and

research issues, IEEE Internet of Things Journal 6 (3) (2018) 4118–4149.

23

https://github.com/mshojafar/sourcecodes/tree/master/Shvan2020VMPJSA_Sourcecode
https://github.com/mshojafar/sourcecodes/tree/master/Shvan2020VMPJSA_Sourcecode
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes
https://aws.amazon.com/ec2/instance-types/?nc1=h_ls

[48] S. Tuli, S. Ilager, K. Ramamohanarao, R. Buyya, Dynamic scheduling for stochastic edge-cloud computing environments using a3c learning
and residual recurrent neural networks, IEEE Transactions on Mobile Computing (2020).

[49] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley, I. Dunning, et al., Impala: Scalable
distributed deep-rl with importance weighted actor-learner architectures, in: International Conference on Machine Learning, 2018, pp. 1407—
-1416.

[50] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J. Kong, J. P. Jue, All one needs to know about fog computing
and related edge computing paradigms: A complete survey, Journal of Systems Architecture 98 (2019) 289–330.

[51] M. Abbasi, E. M. Pasand, M. R. Khosravi, Workload allocation in iot-fog-cloud architecture using a multi-objective genetic algorithm, Journal
of Grid Computing (2020) 1–14.

[52] S. Tuli, R. Mahmud, S. Tuli, R. Buyya, Fogbus: A blockchain-based lightweight framework for edge and fog computing, Journal of Systems
and Software 154 (2019) 22–36.

[53] B. Tan, H. Ma, Y. Mei, A nsga-ii-based approach for multi-objective micro-service allocation in container-based clouds, in: 2020 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), IEEE, 2020, pp. 282–289.

24

Biographies

Shvan Omer received his B.Sc. degree of Computer science and M.Sc. degree of computer engi-
neering (Artificial Intelligence) at the University of Kurdistan, Sanandaj, Iran, in 2017 and 2020,
respectively. His main research interests include Internet of Things (IoT), Green Computing, and
Cloud Data Centers. Currently, he is a member of Internet of Things and Computing Systems
Research Laboratory (IoTComSys Lab) at the University of Kurdistan.

Sadoon Azizi received the M.Sc. degree in computer science, with focus on high-performance
computing, and the Ph.D. degree in computer science, with focus on cloud data centers, from
Amirkabir University of Technology, Tehran, Iran, in 2012 and 2016, respectively. He is currently
an Assistant Professor with the Department of Computer Engineering and IT, University of Kurdis-
tan, Sanandaj, Iran. He is also the director of the Internet of Things and Computing Systems Re-
search Laboratory (IoTComSys Lab) and Head of the High-Performance Computing (HPC) center
at the University of Kurdistan. His current research interests include Cloud Computing, Fog/Edge
Computing, Internet of Things, and Heuristic Algorithms for Combinatorial Optimization Prob-
lems. For additional information: https://research.uok.ac.ir/~sazizi/en/

Mohammad Shojafar is a Senior Lecturer (Associate professor) in the Network Security and
an Intel Innovator working in the 6G Innovation Centre (6GIC) at the University of Surrey, UK.
Before joining 6GIC, he was a Senior Researcher and a Marie Curie Fellow at the University of
Padua, Italy. Dr. Mohammad was a PI of PRISENODE project, a 275,000 euro Horizon 2020
Marie Curie project in the areas of Fog/Cloud security collaborating at the University of Padua. He
also was a PI on an Italian SDN security and privacy (60,000 euro) supported by the University
of Padua in 2018 and a Co-PI on an Ecuadorian-British project on IoT and Industry 4.0 resource
allocation (20,000 dollars) in 2020. He was contributed to some Italian projects in telecommuni-
cations like GAUChO, SAMMClouds, and SC2. In 2016, he received his PhD in ICT from the
Sapienza University of Rome, Italy, with an assessment of ‘Excellent’. He is an Associate Editor
in IEEE Transactions on Consumer Electronics and IET Communications. For additional informa-
tion: http://mshojafar.com

Rahim Tafazolli is the Regius Professor, FREng of mobile and satellite communications, since
April 2000. He has also been the Director of ICS, since January 2010, and the Founder and
the Director with the 6G Innovation Centre (6GIC), University of Surrey, United Kingdom. He
has more than 25 years of experience in digital communications research and teaching. He has
authored and co-authored more than 500 research publications. He is a co-inventor on more
than 30 granted patents, all in the field of digital communications. He is regularly invited to
deliver keynote talks and distinguished lectures to International conferences and workshops. In
2011, he was appointed as a Fellow of Wireless World Research Forum (WWRF) in recogni-
tion of his personal contributions to the wireless world and the heading one of Europe leading
research groups. Many governments regularly invite him for advice on 5G technologies. He was
an Advisor to the Mayor of London in regard to the London Infrastructure Investment 2050 Plan,
from May to June 2014. He has given many interviews to international media in the form of
television, radio interviews, and articles in the international press. For additional information:
https://www.surrey.ac.uk/people/rahim-tafazolli

25

https://research.uok.ac.ir/~sazizi/en/
http://mshojafar.com
https://www.surrey.ac.uk/people/rahim-tafazolli

	Introduction
	The goal of the paper and contributions
	Roadmap

	Related Work
	Network-agnostic VMP
	Network-aware VMP

	Proposed Architecture
	Optimization Problem and Formulation
	List of Applications
	List of Physical Machines (PMs)
	Optimization model
	Power consumption model
	Resource wastage model
	Network consumption model
	Objective function

	Proposed heuristic algorithms
	JointPT
	JointPR
	Complexity Analysis
	An Illustrative Example

	Performance Evaluation
	Simulation setup
	Benchmark algorithms
	Results
	Impact of varying the number of applications
	Impact of varying the number of PMs
	Impact of varying the ratio of critical applications

	Discussion
	Conclusions and Future Work

