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Abstract

Significant progress in control design has been achieved by the use of nonsmooth and semi-

infinite mathematical programming techniques. In contrast with LMI or BMI approaches,

these new methods avoid the use of Lyapunov variables, which gives them two major strategic

advances over matrix inequality methods. Due to the much smaller number of decision

variables, they do not suffer from size restrictions, and they are much easier to adapt to

structural constraints on the controller. In this paper, we further develop this line and

address both frequency- and time-domain design specifications by means of a nonsmooth

algorithm general enough to handle both cases. Numerical experiments are presented for

reliable or fault-tolerant control, and for time response shaping.

Keywords: Nonsmooth optimization, H∞ synthesis, structured controllers, PID tuning, time-
domain constraints, fault tolerance control, time response shaping.

Notation

Let R
n×m be the space of n×m matrices, equipped with the corresponding scalar product 〈X, Y 〉 =

Tr(XT Y ), where XT is the transpose of the matrix X, Tr (X) its trace. The notation H
r stands

for the set of Hermitian matrices of size r. For complex matrices XH stands for its conjugate
transpose. For Hermitian or symmetric matrices, X ≻ Y means that X − Y is positive definite,
X � Y that X − Y is positive semi-definite. We use the symbol λ1 to denote the maximum
eigenvalue of a symmetric or Hermitian matrix. Given an operator T , T ∗ is used to denote its
adjoint operator on the appropriate space. The notation vec applied to a matrix stands for the
usual column-wise vectorization of a matrix. We use concepts from nonsmooth analysis covered
by [12]. For a locally Lipschitz function f : R

n → R, ∂f(x) denotes its Clarke subdifferential at x
while the notation f ′(x; h) stand for its directional derivative at x in the direction h.
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1 Introduction

Interesting new methods in nonsmooth optimization for the synthesis of controllers have recently
been proposed. See [10, 8] for stabilization problems, [4, 5, 20, 3, 11] for H∞ synthesis, and [3, 6]
for design with IQCs. These techniques are in our opinion a valuable addition to the designer’s
toolkit:

• They avoid expensive state-space characterizations, which suffer the curse of dimension,
because the number of Lyapunov variables grows quadratically with the system size.

• The preponderant computational load of these new methods is transferred to the frequency
domain and consist mainly in the computation of spectra and eigenspaces, and of frequency
domain quantities, for which efficient algorithms exist. This key feature is the result of the
idea of the diligent use of nonsmooth criteria of the form f(K) = maxω∈[0,∞] λ1 (F (K, ω)),
which are composite functions of a smooth but nonlinear operator F , and a non-smooth but
convex function λ1.

• The new approach is highly flexible, as it allows to address, with almost no additional cost,
structured synthesis problems of the form f(κ) = maxω∈[0,∞] λ1 (F (K(κ), ω)), where K(·)
defines a mapping from the space of controller parameters κ to the space of state-space rep-
resentations K. From a practical viewpoint, structured controllers are better apprehended
by designers and facilitate implementation and re-tuning whenever performance or stability
specifications change. This may be the major advantage of the new approach over matrix
inequality methods.

• The new approach is general and encompasses a wide range of problems beyond pure sta-
bilization and H∞ synthesis. A number of important problems in control theory can be
regarded as structured control problems. Striking examples are simultaneous stabilization,
reliable and decentralized control, multi frequency band design, multidisk synthesis, and
much else.

• Finally, the new methods are supported by mathematical convergence theory, which certifies
global convergence under practically useful hypotheses in the sense that iterates converge to
critical points from arbitrary starting points.

In this paper, we expand on the nonsmooth technique previously introduced in [4], and ex-
plore its applicability to structured controller design in the presence of frequency- and time-domain
specifications. We show that the same nonsmooth minimization technique can be used to handle
these seemingly different specifications. We address implementation details of the proposed tech-
nique and highlight differences between frequency and time domain. Finally, we present numerical
results in observer-based control design and reliable control, as well as for time-response shaping.

We refer the reader to the articles cited above for references on controller synthesis using
nonsmooth optimization. General concepts in nonsmooth analysis can be found in [12], and
optimization of max functions is covered by [23]. Time response shaping is addressed at length
in [13, 15, 17]. These techniques are often referred to as the Iterative Feedback Tuning (IFT)
approach, mainly developed by M. Gevers, H. Hjalmarsson and co-workers.
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2 Time- and frequency domain designs

P

K

yu

w z

Tw→z(K) :=

Figure 1: standard interconnection

Consider a plant P in state-space form

P (s) :





ẋ
z
y



 =





A B1 B2

C1 D11 D12

C2 D21 D22









x
w
u



 , (1)

where x ∈ R
n is the state vector of P , u ∈ R

m2 the vector of control inputs, w ∈ R
m1 the vector of

exogenous inputs or a test signal, y ∈ R
p2 the vector of measurements and z ∈ R

p1 the controlled
or performance vector. Without loss, it is assumed throughout that D22 = 0.

The focus is on time- or frequency domain synthesis with structured controllers, which consists
in designing a dynamic output feedback controller K(s) with feedback law u = K(s)y for the plant
in (1), having the following properties:

• Controller structure: K(s) has a prescribed structure.

• Internal stability: K(s) stabilizes the original plant P (s) in closed-loop.

• Performance: Among all stabilizing controllers with that structure, K(s) is such that
either the closed-loop time response z(t) to a test signal w(t) satisfies prescribed constraints,
or the H∞ norm of transfer function ‖Tw→z(K)‖∞ is minimized. Here Tw→z(K) denotes the
closed-loop transfer function from w to z, see figure 1.

For the time being we leave apart structural constraints and assume that K(s) has the fre-
quency domain representation:

K(s) = CK(sI − AK)−1BK + DK , AK ∈ R
k×k, (2)

where k is the order of the controller, and where the case k = 0 of a static controller K(s) = DK is
included. A further simplification is obtained if we assume that preliminary dynamic augmentation
of the plant P (s) has been performed:

A →

[

A 0
0 0k

]

, B1 →

[

B1

0

]

, etc.
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so that manipulations will involve a static matrix

K :=

[

AK BK

CK DK

]

∈ R
(k+m2)×(k+p2) . (3)

With this proviso, the following closed-loop notations will be useful:
[

A(K) B(K)
C(K) D(K)

]

:=

[

A B1

C1 D11

]

+

[

B2

D12

]

K [C2 D21 ] . (4)

Structural constraints on the controller will be defined by a matrix-valued mapping K(.) from
R

q to R
(k+m2)×(k+p2), that is K = K(κ), where vector κ ∈ R

q denotes the independent variables in
the controller parameter space R

q. For the time being we will consider free variation κ ∈ R
q, but

the reader will be easily convinced that adding parameter restriction by means of mathematical
programming constraints gI(κ) ≤ 0, gE(κ) = 0 could be added if need be. We will assume
throughout that the mapping K(.) is continuously differentiable, but otherwise arbitrary. As a
typical example, consider MIMO PID controllers, given as

K(s) = Kp +
Ki

s
+

Kds

1 + εs
, (5)

where Kp, Ki and Kd are the proportional, the integral and the derivative gains, respectively, are
alternatively represented in the form

K(s) = DK +
Ri

s
+

Rd

s + τ
, (6)

with the relations

DK := Kp +
Kd

ε
, Ri := Ki, Rd := −

Kd

ε2
, τ :=

1

ε
, (7)

and a linearly parameterized state-space representation is readily derived as

K(κ) =

[

AK BK

CK DK

]

=





0 0 Ri

0 −τI Rd

I I DK



 , AK ∈ R
2m2×2m2 . (8)

Free parameters in this representation can be gathered in the vector κ obtained as

κ :=









τ
vec Ri

vec Rd

vec DK









∈ R
3m2

2+1 .

We stress that the above construction is general and encompasses most controller structures of
practical interest. We shall see later that interesting control problems such as reliable control are
also special cases of the general structured design problem.

With the introduced notation, time-domain design is the optimization program

minimize
κ∈Rq

f∞(κ) := max
t∈[0,T ]

f(κ, t)

where the case T = ∞ is allowed. See section 3.1.2 for further details and other practical options.
Frequency-domain design is the standard H∞ problem

minimize
κ∈Rq

f∞(κ) := sup
ω∈[0,∞]

σ̄(Tw→z(K(κ), jω)) = ||Tw→z(K(κ))||∞ .
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3 Nonsmooth descent method

In this section we briefly present our nonsmooth optimization technique for time- and frequency-
domain max functions. For a detailed discussion of the H∞ norm, we refer the reader to [4, 5].
The setting under investigation is

minimize
κ

max
x∈X

f(κ, x) , (9)

where the semi-infinite variable x = t or x = ω is restricted to a one-dimensional set X. Here X
may be the halfline [0,∞], or a limited band [ω1, ω2], or a union of such bands in the frequency
domain, and similarly in the time domain. The symbol κ denotes the design variable involved in
the controller parametrization K(·), and we introduce the objective or cost function

f∞(κ) := max
x∈X

f(κ, x) .

At a given parameter κ, we assume that we can compute the set Ω(κ) of active times or
frequencies, which we assume finite for the time being:

Ω(κ) := {x ∈ X : f(κ, x) = f∞(κ)} . (10)

For future use we construct a finite extension Ωe(κ) of Ω(κ) by adding times or frequencies to the
finite active set Ω(κ). An efficient strategy to construct this set for x = ω has been discussed in
[4, 5]. For x = t some ideas will be given in section 4.3.

For the ease of presentation we assume that the cost function f is differentiable with respect
to κ for fixed x ∈ Ωe(κ), so that gradients φx = ∇κf(κ, x) are available. Extensions to the general
case are easily obtained by passing to subgradients, since f(., x) has a Clarke gradient with respect
to κ for every x ∈ X [12]. Following the line in Polak [23], see also [4], we introduce the optimality
function

θe(κ) := min
h∈Rq

max
x∈Ωe(κ)

−f∞(κ) + f(κ, x) + hT φx + 1
2
hT Qh, (11)

Notice that θe is a first-order model of the objective function f∞(κ) in (9) in a neighborhood of
the current iterate κ. The model offers the possibility to include second-order information [2] via
the term hT Qh, but Q ≻ 0 has to be assured. For simplicity, we will assume Q = δ I with δ > 0
in our tests.

Notice that independently of the choices of Q ≻ 0 and the finite extension Ωe(κ) of Ω(κ)
used, the optimality function has the following property: θe(κ) ≤ 0, and θe(κ) = 0 if and only if
0 ∈ ∂f∞(κ), that is, κ is a critical point of f∞. In order to use θe to compute descent steps, it is
convenient to obtain a dual representation of θe. To this aim, we first replace the inner maximum
over Ωe(κ) in (11) by a maximum over its convex hull and we use Fenchel duality to swap the max
and min operators. This leads to

θe(κ) := max
P

x∈Ωe(κ) τx=1, τx≥0
min
h∈Rq

∑

x∈Ωe(κ)

τx(f(κ, x) − f∞(κ) + hT φx) + 1
2
hT Qh .

These operations do not alter the value of θe. The now inner infimum over h ∈ R
q is now

unconstrained and can be computed explicitly. Namely, for fixed τx in the outer program, we
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obtain the solution of the form

h(τ) = −Q−1





∑

x∈Ωe(κ)

τxφx



 . (12)

Substituting this back in the primal program (11) we obtain the dual expression

θe(κ) = max
τx≥0,

P

x∈Ωe(κ)

τx=1

∑

x∈Ωe(κ)

τx (f(κ, x) − f∞(κ)) − 1
2

(

∑

x∈Ωe(κ)

τxφx

)T

Q−1

(

∑

x∈Ωe(κ)

τxφx

)

. (13)

Notice that in its dual form, computing θe(κ) is a convex quadratic program (QP). As a byproduct
we see that θe(κ) ≤ 0 and that θe(κ) = 0 implies κ is critical that is, 0 ∈ ∂f∞(κ).

What is important is that as long as θe(κ) < 0, the direction h(τ) in (12) is a descent direction
of f∞ at κ in the sense that the directional derivative satisfies the decrease condition

f ′
∞ (κ; h(τ)) ≤ θe(κ) − 1

2

(

∑

x∈Ωe(κ)

τxφx

)T

Q−1

(

∑

x∈Ωe(κ)

τxφx

)

≤ θe(κ) < 0,

where τ is the dual optimal solution of program (13). See [5, Lemma 4.3] for a proof. In conclusion,
we obtain the following algorithmic scheme:

Nonsmooth descent method for minκ f∞(κ)

Parameters 0 < α < 1, 0 < β < 1.
1. Initialize. Find a structured closed-loop stabilizing controller K(κ).
2. Active times or frequencies. Compute f∞(κ) and obtain the set of active

times or frequencies Ω(κ).
3. Add times or frequencies. Build finite extension Ωe(κ) of Ω(κ).
4. Compute step. Calculate θe(κ) by the dual QP (13) and thereby

obtain direction h(τ) in (12). If θe(κ) = 0 stop. Otherwise:
5. Line search. Find largest b = βk such that f∞(κ + bh(τ)) < f∞(κ) − αbθe(κ)

and such that K(κ + b h(τ)) remains closed-loop stabilizing.
6. Step. Replace κ by κ + b h(τ) and go back to step 2.

Finally, we mention that the above algorithm is guaranteed to converge to a critical point
[4, 5], a local minimum in practice.

3.1 Nonsmooth properties

In order to make our conceptual algorithm more concrete, we need to clarify how (sub)differential
information can be obtained for both time- and frequency-domain design.

3.1.1 Frequency-domain design

In the frequency domain we have x = ω. The function f∞(κ) becomes f∞(κ) = ||.||∞ ◦ Tw→z(.) ◦
K(κ), which maps R

q into R
+, and is Clarke subdifferentiable as a composite function [21, 4, 3].
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Its Clarke gradient is obtained as K′(κ)∗∂g∞(K), where K ′(κ) is the derivative of K(.) at κ, K ′(κ)∗

its adjoint, and where g∞ is defined as g∞ := ||.||∞ ◦Tw→z(.) and maps the set D ⊂ R
(m2+k)×(p2+k)

of closed-loop stabilizing controllers into R
+. Introducing the notation

[

Tw→z(K, s) G12(K, s)
G21(K, s) ⋆

]

:=

[

C(K)
C2

]

(sI −A(K))−1 [B(K) B2 ] +

[

D(K) D12

D21 ⋆

]

. (14)

the Clarke subdifferential of g∞ at K is the compact and convex set of subgradients ∂g∞(K) :=
{ΦY : Y ∈ S(K)} where

ΦY = g∞(K)−1
∑

ω∈Ω(K)

Re
{

G21(K, jω) Tw→z(K, jω)HQωYω(Qω)HG12(K, jω)
}T

, (15)

and where S(K) is the spectraplex

S(K) = {Y = (Yω)ω∈Ω(K) : Yω = (Yω)H � 0,
∑

ω∈Ω(K)

Tr (Yω) = 1, Yω ∈ H
rω}.

In the above expressions, Qω is a matrix whose columns span the eigenspace of Tw→z(K, jω)Tw→z(K, jω)H

associated with its largest eigenvalue λ1

(

Tw→z(K, jω)Tw→z(K, jω)H
)

of multiplicity rω. We also
deduce from expression (15) the form of the subgradients of f(κ, ω) := σ̄(Tw→z(K(κ), jω)) at κ
with fixed ω, which are used in the primal and dual programs (11) and (13), respectively

φx = ΦYω
= K′(κ)∗f(κ, ω)−1Re

{

G21(K, jω) Tw→z(K, jω)HQωYω(Qω)HG12(K, jω)
}T

where Qω is as before and Yω ∈ H
rω , Yω � 0, Tr (Yω) = 1. Finally, we note that all subgradient

formulas are made implementable by expliciting the action of the adjoint operator K′(κ)∗ on
elements F ∈ R

(m2+k)×(p2+k). Namely, we have

K′(κ)∗F =
[

Tr (∂K(κ)
∂κ1

T
F ), . . . , Tr (∂K(κ)

∂κq

T
F )
]T

.

In the general case, where some of the maximum eigenvalues at some of the frequencies in the
extended set Ωe(κ) has multiplicity > 1, the formulas above should be used, and the dual program
in (13) becomes a linear SDP [4, 5]. This is more expensive than a QP, but the size of the SDP
remains small, so that the method is functional even for large systems. When max eigenvalues
are simple, which seems to be the rule in practice, matrices Yω are scalars, and the primal and
dual subproblems become much faster convex QPs. This feature, taken together with the fact
that Lyapunov variables are never used, explains the efficiency of the proposed technique.

3.1.2 Time-domain design

We now specialize the objective function f∞ to time-domain specifications. For simplicity of the
exposition, we assume the performance channel w → z is SISO, that is m1 = p1 = 1, while the
controller channel y → u remains unrestricted.

As noted in [9], most specifications are in fact envelope constraints:

zmin(t) ≤ z(κ, t) ≤ zmax(t) for all t ≥ 0 (16)
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where z(κ, .) is the closed-loop time response to the input signal w (typically a unit step command),
when controller K = K(κ) is used, and where −∞ ≤ zmin(t) ≤ zmax(t) ≤ +∞ for all t ≥ 0. This
formulation offers sufficient flexibility to cover basic step response specifications such as rise and
settling times, overshoot and undershoot, or steady-state tracking. Several constraints of this type
can be combined using piecewise constant envelope functions zmin and zmax. A model following
specification is easily incorporated by setting zmin = zmax = zref , where zref is the desired closed-
loop response.

For a stabilizing controller K = K(κ), the maximum constraint violation

f∞(κ) = max
t≥0

max
{

[z(κ, t) − zmax(t)]
+, [zmin(t) − z(κ, t)]+

}

(17)

is well defined, f∞(κ) ≥ 0, and f∞(κ) = 0 if and only if z(κ, .) satisfies the constraint (16).
Minimizing f∞ is therefore equivalent to reducing constraint violation, and will as a rule lead
to a controller K(κ̄) achieving the stated time-domain specifications. In the case of failure, this
approach converges at least to a local minimum of constraint violation.

The objective function f∞ is a composite function with a double max operator. The outer
max on t ≥ 0 makes the program in (17) semi-infinite, while the inner max, for all t ≥ 0, is taken
over f1(κ, t) = z(κ, t) − zmax(t), f2(κ, t) = zmin(t) − z(κ, t) and f3(κ, t) = 0.

Assuming that the time response κ 7→ z(., t) is continuously differentiable, f∞ is Clarke regular
and its subdifferential is

∂f∞(κ) = co
t∈Ω(κ)

{

co
i∈I(κ,t)

∇κfi(κ, t)

}

, (18)

where Ω(κ) is the set of active times defined by (10), and I(κ, t) = {i ∈ {1, 2, 3} : f(κ, t) = fi(κ, t)}.
More precisely, for all t ∈ Ω(κ),

co
i∈I(κ,t)

∇κfi(κ, t) =































{∇κz(κ, t)} if z(κ, t) > zmax(t)
{−∇κz(κ, t)} if z(κ, t) > zmin(t)
{0} if zmin(t) < z(κ, t) < zmax(t)
[∇κz(κ, t), 0] if z(κ, t) = zmax(t) > zmin(t)
[−∇κz(κ, t), 0] if z(κ, t) = zmin(t) < zmax(t)
[−∇κz(κ, t),∇κz(κ, t)] if z(κ, t) = zmin(t) = zmax(t)

(19)

Clearly, as soon as the envelope constraint is satisfied for one active time t ∈ Ω(κ), either one of
the last four alternatives in (19) is met, we have f∞(κ) = 0 for all t ≥ 0 so that 0 ∈ ∂f∞(κ) and
κ is a global minimum of program (9). The computation of the descent step only makes sense
in the first two cases, i.e., when f∞(κ) > 0. Notice then that the active times set Ω(κ) can be
partitioned into

Ω1(κ) := {t : t ∈ Ω(κ), f(κ, t) = f1(κ)}
Ω2(κ) := {t : t ∈ Ω(κ), f(κ, t) = f2(κ)}

(20)

and the Clarke subdifferential ∂g∞(K) is completely described by the subgradients

ΦY (K) =
∑

t∈Ω1(K)

Yt∇Kz(K, t) −
∑

t∈Ω2(K)

Yt∇Kz(K, t) (21)

where Yt ≥ 0 for all t ∈ Ω(K), and
∑

t∈Ω(K) Yt = 1.

Remark. The hypothesis of a finite set Ω(κ) may be unrealistic in the time domain case,
because the step response trajectory z(·, t) is not necessarily analytic or piecewise analytic, and
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may therefore attain the maximum value on one or several contact intervals [t−, t+], where t− is
the entry time, t+ the exit time, and where it is reasonable to assume that there are only finitely
many such contact intervals. In that case, our method is easily adapted, and (11) remains correct
in so far as the full contact interval can be represented by three pieces of information: the gradients
φx of the trajectory at x = t−, x = t+, and one additional element φx = 0 for say x = (t− + t+)/2
on the interior of the contact interval. (This is a difference with the frequency domain case, where
the functions ω 7→ f(κ, ω) are analytic, so that the phenomenon of a contact interval could not
occur).

A more systematic approach to problems of this form with infinite active sets would consist
in allowing choices of finite sets Ωe(κ), where Ω(κ) 6⊂ Ωe(κ) is allowed. This leads to a variation
of the present algorithm discussed in [6, 24, 7], where a trust region strategy replaces the present
line search method.

Gradient computation By differentiating the state-space equations (1) with respect to Kij ,
we get











∂̇x
∂Kij

(K, t) = A ∂x
∂Kij

(K, t) + B2
∂u

∂Kij
(K, t)

∂z
∂Kij

(K, t) = C1
∂x

∂Kij
(K, t) + D12

∂u
∂Kij

(K, t)
∂y

∂Kij
(K, t) = C2

∂x
∂Kij

(K, t)

(22)

controlled by
∂u

∂Kij
(K, t) = ∂K

∂Kij
(K, t)y(K, t) + K ∂y

∂Kij
(K, t)

= yj(K, t)ei + K ∂y

∂Kij
(K, t)

(23)

where ei stands for the i-th vector of the canonical basis of R
m2 . It follows that the partial

derivative of the output signal ∂z
∂Kij

(K, t) is the simulated output of the interconnection in figure

2, where the exogenous input w is held at 0, and the vector yj(K, t)ei is added to the controller
output signal. We readily infer that nu × ny simulations are required in order to form the sought
gradients.

K

yjei

0

+

+

∂y
∂Kij

∂u
∂Kij

∂z
∂Kij

P

Figure 2: interconnection for gradient computation

This way of computing output signal gradients by performing closed-loop simulations is at the
root of the Iterative Feedback Tuning (IFT) method, intially proposed in [17] for SISO systems
and controllers. This optimization technique has originated an extensive bibliography (see [16,
15, 13] and references therein) and was extended to multivariable controllers [14]. Most of these
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papers illustrate the IFT with a smooth quadratic objective function, minimized with the Gauss-
Newton algorithm. In [18], the nonsmooth absolute error is used, but a differentiable optimization
algorithm (DFP) is applied. Our approach here differs both in the choice of the nonsmooth
optimization criterion f∞, and in the design of a tailored nonsmooth algorithm as outlined in
section 3.

Practical aspects The active time sets Ω1(K) and Ω2(K) are computed via numerical simula-
tion of the closed-loop system in response to the input signal w, see figure 1. This first simulation
determines the time samples (tl)0≤l≤N that will be used throughout the optimization phase. Mea-
sured output values

(

y(tl)
)

must be stored for subsequent gradient computation. The extension
Ωe(K) is built from Ω(K) by adding time samples with largest envelope constraint violation (16),
up to nΩ elements in all are retained. According to our experiments the set extension generally
provides a better model of the original problem as captured by the optimality function θe (11)
and thus descent directions (12) with better quality are obtained. The gradients ∇Kz(K, tl) (for
t ∈ Ωe(K)) result from nu × ny additional simulations of the closed-loop (figure 2) at the same
time samples (tl)0≤l≤N .

4 Applications

In this section, we illustrate our nonsmooth technique on a variety of examples including structured
H∞ control, reliable control and time response shaping. We insist on the high flexibility of the
proposed nonsmooth techniques and its excellent success in solving hard practical problems.

4.1 Application to observer-based controller design

Observer-based controllers suit many realistic control problems, whenever the system state vari-
ables are not directly available for feedback synthesis. Unlike unstructured dynamic controllers,
they have a straightforward physical interpretation, since controller states are simply estimates of
the plant states. In addition, observer-based controllers are easier to implement and to re-tune.

Let x̂ be an asymptotic estimate of the state vector x of the plant P (1). We assume that
(C2, A) is detectable, and that (A, B2) is stabilizable. As is well known, the estimate x̂ is obtained
through the full-order Luenberger observer:

˙̂x = Ax̂ + B2u + Kf(y − C2x̂), (24)

where Kf ∈ R
n×p2 is the state estimator gain. The controlled input is u = −Kcx̂, where Kc ∈

R
m2×n is the state feedback gain. With the notations in (3), we get

K(κ) =

[

AK BK

CK DK

]

=

[

A − B2Kc − KfC2 Kf

−Kc 0

]

(25)

where the controller parameters are described as

κ :=

[

vec Kf

vec Kc

]

∈ R
n(p2+m2) .

This state-space realization of the standard full-order observer-based controller is linear in κ. It
follows that the Jacobian matrix K′(κ) only depends on the plant data A, B2 and C2.
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Nonsmooth H∞ synthesis with observer-based controllers has been tested on the following
problem discussed in [1], taken from the Matlab library of mu-synthesis examples for Simulink.
The state-space equations of the controlled plant are:

G(s) :

[

ẋG

yG

]

=





−36.6 −18.923 −0.414
−1.9 0.983 −77.8

0 57.3 0





[

xG

uG

]

(26)

The exogenous inputs are the disturbances w1 (on the actuator signal) and w2 (on the measure-
ment). Two frequency domain weights Wu(s) and Wy(s) are applied to u = uG − w1 respectively
to y = y + w1, defining the regulated outputs z1 and z2. They are

Wu(s) =
50s + 5000

s + 10000
, and Wy(s) =

0.5s + 1.5

s + 10000
. (27)

The resulting augmented model (figure 3) has order 4, with state vector x = [xG, xu, xy]
T , and the

realization used in our computations is the following:

P (s) :





ẋ
z
y



 =





















−36.6 −18.923 0 0 −0.414 0 −0.414
−1.9 0.983 0 0 −77.8 0 −77.8

0 0 −10000 0 0 0 512
0 3667.2 0 −10000 0 64 0
0 0 −966.8 0 0 0 50
0 28.65 0 −78.102 0 0.5 0
0 57.3 0 0 0 1 0

























x
w
u



 (28)

Notice that the static gains Kf and Kc depend on the state-space realization chosen for P , since
the controller state variable x̂ estimates x.

z1

z2

y+ +

w1

++

Wu

Wy

G

u

K(κ)

w2

Figure 3: observer-based feedback with augmented model

Running our nonsmooth algorithm to minimize ‖Tw→z(K(κ))‖∞, yields the gains

Kf = [3886, 7203, 163.3, 29.22]T

Kc = [−484, 219.2, 1876, −152.9]
. (29)

Correspondingly, the achieved H∞ norm is 0.5168, which is about the same as the H∞ performance
of the standard full-order H∞ controller γ = 0.5109.
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4.2 Application to reliable control

Reliable or fault-tolerant control has to guarantee satisfactory stability and performance in nominal
conditions as well as in scenarios, where some system components turn faulty or deviate from
nominal conditions. The active approach uses a fault detection scheme or identification procedure
to adjust the controller in real-time to ensure safe operation. Here the focus is on the passive
approach, where a single controller is required to handle most plausible default scenarios. See
[25] and the survey [22] for a comprehensive view. We reformulate this problem as a doubly
structured design problem and use our nonsmooth method to derive a local solution. In figure
(4) we show on the left side various synthesis scenarios, where a single (unstructured or already
structured) controller K(κ) must simultaneously minimize the closed-loop performance channels
||Twi→zi

(K(κ))||∞ for i = 1, . . . , N . This is readily formulated as a single structured H∞ synthesis
problem, where the sought controller K(κ) has a repeated block-diagonal structure K(κ) = R ◦
K(κ). See the right-hand side of figure 4. A state-space representation of the plant P (s) is readily
derived as





A B1 B2

C1 D11 D11

C2 D21 D22



 =











diag
i=1,...,N

Ai diag
i=1,...,N

Bi
1 diag

i=1,...,N

Bi
2

diag
i=1,...,N

Ci
1 diag

i=1,...,N

Di
11 diag

i=1,...,N

Di
12

diag
i=1,...,N

Ci
2 diag

i=1,...,N

Di
21 diag

i=1,...,N

Di
22











.

where the superscript i refers to the ith scenario and where appropriate dynamic augmentations
have been performed beforehand for dynamic controllers. Note that the controller is now doubly-
structured in the sense that the already structured data K(κ) are repeated in the block-diagonal
structure IN ⊗ K(κ), which we describe by the diagonal block repetition operator R above (see
figure 4). This fits nicely into the general framework presented in sections 2 and 3, because
the chain rule can obviously be used to cope with a diagonal augmentation R ◦ K of controller
parameterizations.
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P

wN
zN

yN

PN

w1
z1

y1

P1

w z

y

uN

u1

u⇔

. . .

...

K(κ)

TwN→zN
(K(κ))

Tw1→z1
(K(κ))

K(κ)

K(κ)

Tw→z(K(κ))

K(κ)

Figure 4: reliable control based on N scenarios

We illustrate the synthesis technique by means of the following example from [27]. It consists
of 10 plants G0 to G9 with G0(s) = 1

s−1
, the nominal model and

G1(s) = 6.1
s2+5.1s−6.1

, G2(s) = 1.425
s−1.425

G3(s) = 0.67
s−0.67

,

G4(s) = −(s−14.29)
(s+14.29)(s−1)

, G5(s) = 4900
(s−1)(s2+21s+4900)

, G6(s) = 4900
(s+777.7)(s+6.301)(s−1)

,

G7(s) = 15625106

(s+50)6(s−1)
, G8(s) = −2.9621(s−9.837)(s+0.7689)

(s+32)(s−1)(s+0.5612)
, G9(s) = 4.991(s2+3.672s+34.85)

(s+32)(s+7.241)(s−1)
,

as faulty modes. The design objective is to minimize

max
i=0,...,9

||W (s)Twi→zi(K)||∞, where Twi→zi := (I + Gi(s)K(s))−1 (30)

and W (s) = 0.25s+0.6
s+0.006

is a weighting function penalizing the low frequency range to achieve good
tracking properties in response to a step command. Different controller structures K(κ) will be
considered in the sequel. The author in [27] investigated various options including a controller with

good nominal performance K1(s) = 10(0.9s+1)
s

, a robust controller K2(s) = 2.8s+1
s

, and a generalized
internal model control (GIMC) implementation based on both K1(s) and K2(s), which we shall
denote Kgimc(s). The latter is a 6th order controller with Youla parameter

Q :=
−0.68889s(s + 1.452)(s + 1)

(s + 1.111)(s2 + 1.8s + 1)
.
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Step responses of these controllers for nominal and faulty modes of the plant are displayed in
figures 6 to 8. Clearly, K1 has good nominal performance, but is not satisfactory on faulty modes.
On the other hand, controller K2 shows very robust performance, but responses are slower and the
controller performs poorly in the nominal case. The GIMC implementation dramatically improves
the situation, since good nominal performance is maintained and the controller also gives good
performance on faulty modes.

We have used the proposed nonsmooth technique to minimize the worst case objective in
(30) over the set of PID feedback controllers with parametrization given in (6). The following
parameter values were obtained:

τ = 0.0100, Ri = 1.1589, Rd = 0.4883, DK = 4.0263 .

The achieved max H∞ norm is 0.4886, and step responses with this controller are shown in figure
9. This controller shows clearly better performance than K1(s) or K2(s), but performs slightly
worse than Kgimc(s). Note that the GIMC controller can also be viewed as a two-degree of
freedom controller [26], which suggests using a two-degree of freedom architecture to improve the
PID feedback controller. We have used the model following synthesis interconnection shown in
figure 5, where Gref is a reference model to compute a second-order feedforward controller F (s)
with fixed feedback controller K(s) = KPID. As before, the feedforward controller is required to
minimize the worst-case tracking error from r to e over simultaneously the nominal model and
the faulty modes

minimize
F (s)

max
i=0,...,9

||T i
r→e(F (s))||∞ .

With a slow reference model

Gref =
11.11

s2 + 6s + 11.11
,

the following feedforward controller was obtained

F (s) =
−3.0642(s + 1.976)(s + 1.273)

(s + 3.796)(s + 1.049)
.

With a faster reference model

Gref =
28.7

s2 + 7.5s + 28.7
,

we have obtained

F (s) =
−1.1684(s2 + 1.46s + 18.51)

s2 + 5.015s + 18.39
.

Note that the overall controller has order 4 since it consists in a PID controller in the feedback
path and a second-order controller for feedforward action. Steps responses are given in figures
10 and 11, respectively, for slow and fast feedforward controllers. Note that the latter controller
appears to be the best obtained so far in terms of settling time and overshoot.
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+

Gref (s)

e−
K(s)

−
G(s)

+

+

+

F (s)

r

Figure 5: feedforward design with reference model
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Figure 6: step response with performance
controller
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Figure 7: step response with robust
controller
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Figure 8: step response with generalized in-
ternal model controller
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Figure 9: step response with nonsmooth PID
controller
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Figure 10: step response with PID + feedfor-
ward control, slow reference model
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Figure 11: step response with PID + feedfor-
ward control, fast reference model

4.3 Application to PID time response shaping

In order to illustrate the ability of the proposed nonsmooth technique to handle time-domain
constraints and controller structure, the following test examples from [19] have been used

G1(s) = 1
20s+1

e−5s, G2(s) = 1
20s+1

e−20s

G3(s) = 1
(10s+1)8

, G4(s) = −5s+1
(10s+1)(20s+1)

.
(31)

The time delays are replaced by a third-order Padé approximation, which generates nonminimum
phase zeros in the transfer functions G1 and G2. Each of these plants is regulated by a two-
degree-of-freedom (2-DOF) PID controller, as shown in figure 12, with Kr(s) = Kp + Ki

s
and

Kỹ(s) = Kp + Ki

s
+ Kds

1+εs
.
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Kr(s) G(s)

Kỹ(s)

−

u ỹ+r

Figure 12: 2-DOF with PID

K(κ) r

}

yP

G

w = r z = ỹ

ỹ

u

Figure 13: Equivalent standard form to 2-
DOF with PID

This 2-DOF controller structure is equivalent to the following state-space representation, in
the framework shown in figure 13, with the notations from (7):

K(κ) =









0 0 0 Ri 0
0 −τ 0 Rd 0
0 0 0 0 Ri

−1 −1 1 −DK DK + Rd

τ









, (32)

where the search space is κ = [τ, Ri, Rd, DK ]T ∈ R
4.

For each of the four systems (31), the envelope functions were chosen piecewise constant, in
order to constrain the overshoot zos and the settling time at ±2% of the steady state. Using the
indicatrix function 1[a,b[ to restrict to intervals, we define

zmax = (1 + zos)1[0,ts[ + 1.021[ts,+∞[

zmin =

{

−∞ on [0, ts[
0.98 on [ts, +∞[

(33)

The vector κ was initialized with the PID parameters obtained with the Ziegler-Nichols (ZN)
tuning rules in [19], a heuristic which gives unsatisfactory step responses for the plants (31), with
high overshoot and slow settling times. The results are summarized in table 1, where “NS” indi-
cates the controller parameters obtained from the nonsmooth optimization. They are compared
to those from [19], denoted by “IFT”. The corresponding step responses are drawn in figures 14
to 17.

Obviously, arbitrary low zos or ts are not necessarily achievable with the structured controller
K(κ). If the chosen time envelope is too restrictive, the algorithm will converge to a minimizer κ̄
of f∞ (i.e. θe(κ̄) ≈ 0) with f∞ > 0.

Conversely, as the algorithm returns a local minimizer κ̄, f∞(κ̄) > 0 does not necessary mean
that the time constraints could not be satisfied. A restart with another initial controller κ may
very well lead to f∞ = 0. This difficulty appeared for plant G2 (resp. G3): with the ZN controller
as starting point, we reached f∞ = 3.4033 · 10−2 (resp. f∞ = 1.3907 · 10−2) at convergence, which
was an unsatisfactory local minimum. We got around this difficulty by restarting the algorithm
from a new point, denoted by “NEW” in table 1.
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plant contr. ε Kp Ki Kd ts (s) zos (%)
G1 ZN (init) 10−3 4.0588 0.4388 9.3860 46 .22 46 .92
G1 IFT 10−3 3.6717 0.1324 7.7311 21 .34 5 .37
G1 NS 10−3 3.3315 0.1221 9.3874 20 .94 1 .95
G2 NEW (init) 10−3 0.5000 0.0500 5.0000 319 .45 45 .72
G2 IFT 10−3 0.9303 0.0309 5.6332 50 .15 0 .90
G2 NS 9.9992 · 10−4 0.9361 0.0305 4.9920 49 .35 1 .73
G3 NEW 10−3 0.5000 0.0100 10.0000 235 .54 0 .11
G3 IFT 10−3 0.6641 0.0123 12.0959 131 .99 1 .00
G3 NS 10−3 0.6590 0.0121 9.9997 129 .91 1 .97
G4 ZN 10−3 3.5294 0.2101 14.8235 69 .22 53 .82
G4 IFT 10−3 3.0279 0.0654 18.4075 28 .31 0 .53
G4 NS 10−3 2.8947 0.0615 14.8247 25 .58 1 .67

Table 1: PID parameters, settling time and overshoot
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Figure 14: G1 step responses with PIDs
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Figure 15: G2 step responses with PIDs
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Figure 16: G3 step responses with PIDs
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Figure 17: G4 step responses with PIDs
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Finally, we mention that we did not use any temporal mask as is classically done in the IFT
approach to avoid spurious solutions.

5 Conclusion

We have described a general and very flexible nonsmooth algorithm to compute locally optimal
solutions to synthesis problems subject to frequency- or time-domain constraints. Our method
offers the new and appealing possibility to integrate controller structures of practical interest in the
design. We have now several encouraging reports of successful experiments, which advocate the
use of nonsmooth mathematical programming techniques when it comes to solving difficult (often
NP-hard) design problems. The results obtained in this paper corroborate previous studies on
different problem classes. Extension of our nonsmooth technique to problems involving a mixture
of frequency- and time-domain constraints seems a natural next step, which is near at hand. For
time-domain design, we have noticed that the proposed technique assumes very little about the
system nature, except the access to simulated responses. A more ambitious goal would therefore
consider extensions to nonlinear systems.
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