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Abstract

We establish exponential stability of nonlinear time-varying impulsive systems by employing Lyapunov functions with discontinuity at the
impulse times. Our stability conditions have the property that when specialized to linear impulsive systems, the stability tests can be formulated
as Linear Matrix Inequalities (LMIs). Then we consider LTI uncertain sampled-data systems in which there are two sources of uncertainty: the
values of the process parameters can be unknown while satisfying a polytopic condition and the sampling intervals can be uncertain and variable.
We model such systems as linear impulsive systems and we apply our theorem to the analysis and state-feedback stabilization. We find a positive
constant which determines an upper bound on the sampling intervals for which the stability of the closed loop is guaranteed. The control design
LMIs also provide controller gains that can be used to stabilize the process. We also consider sampled-data systems with constant sampling
intervals and provide results that are less conservative than the ones obtained for variable sampling intervals.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Impulsive dynamical systems exhibit continuous evolutions
typically described by Ordinary Differential Equations (ODEs)
and instantaneous state jumps or impulses. We establish
exponential stability of nonlinear time-varying impulsive
systems. Then we consider sampled-data systems where an LTI
process connected to a digital state-feedback controller through
sampling and hold. We consider two sources of uncertainty:
the values of the process parameters can be unknown while
satisfying a polytopic condition and the sampling intervals can
be uncertain and variable. We model uncertain LTI sampled-
data systems as impulsive systems and we apply our theorem
to the analysis and state-feedback stabilization of such systems.
This framework is general enough to capture networked control
systems (NCSs) with packet dropouts [1].

The sampled-data system stability conditions are presented
as LMIs which can be solved numerically using software
packages such as MATLAB. By solving these LMIs, one
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can find a positive constant which determines the maximum
sampling interval. In the NCSs literature this maximum
sampling interval is often called τMATI, e.g., in [2]. We show
that our conditions improve upon previous results in the sense
that the closed-loop system remains stable for larger sampling
intervals. We also consider the control design problem, in
which a static controller gain becomes a parameter to be
selected. When this gain is viewed as an unknown, the
stability conditions mentioned above become Bilinear Matrix
Inequalities (BMIs). For numerical efficiency, these BMIs are
converted back into an LMI feasibility problem which provides
not only the controller gain, but also the largest τMATI for which
the stability can be assured.

Sampled-data systems have been studied extensively over
the past decades and three main approaches have been
used for robust sampled-data stabilization. The first one is
based on lifting [3,4], in which the problem is transformed
into an equivalent finite-dimensional discrete-time problem
while maintaining the inter-sampling information of the
system. This approach is generally not appropriate for
uncertain sampling intervals. Also, in the lifting approach,
stability of sampled-data systems with polytopic parametric
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uncertainty is formulated as an H∞ problem of the equivalent
lifted system where the polytopic uncertainty is treated
as a norm bounded uncertainty which may result in
conservativeness. The second approach is based on modeling
the sampled-data system as a continuous-time system with
a delayed control input [5,6]. In this case, the closed-loop
becomes an infinite-dimensional Delay Differential Equation
(DDE) and the stability is established using Razumikin or
Lyapunov–Krasovskii Theorems. The third approach is based
on the impulsive modeling of sampled-data systems in which
a time-varying periodic Lyapunov function is used [7,8]. The
downside of this approach is that the sampling interval of the
process’s output must be constant and the sampling interval
of the controller’s output is `-times (` ∈ N) smaller than the
process’s output sampling interval.

Our approach is also based on impulsive modeling of
sampled-data systems but we use a Lyapunov function with
discontinuities at the impulse times. This Lyapunov function
is inspired by the Lyapunov functionals that appear in the DDE
literature (cf. [6,9]). Sampled-data systems whose continuous
state evolves according to an ordinary differential equation
(ODE) are finite-dimensional because the future evolution of
the system can be completely determined from the current value
of the ODE’s state and the last received sample (given that the
sampling sequence is known). In [6] these systems are modeled
as infinite-dimensional DDEs and Lyapunov functionals are
used to prove their stability. We show that our sufficient
conditions for stability of sampled-data systems are always
less (or equally) conservative than the ones in [6,9]. From this
perspective, considering infinite-dimensional DDE models and
using Lyapunov functionals to prove the stability do not seem to
offer any advantage for this class of finite-dimensional systems.

Slack matrices introduce degrees of freedom that can be
exploited to minimize conservativeness and they have been
used extensively for analyzing the stability of sampled-data
systems and DDEs (cf. [6,9,10]). We also use slack matrices;
however, we use a smaller number of slack matrices, without
making the results more conservative. Decreasing the number
of slack matrices reduces the number of scalar variables
in the LMIs and enables us to study larger dimensional
systems. Developing matrix inequalities for the controller
design problem also becomes simpler.

When it is known that the sampling intervals are constant,
the work reported in [6,9,10] is unable to take advantage of this
information. It therefore arrives at the same value for τMATI that
would be obtained for variable sampling intervals ([9,10] allow
delays in the control loop; however, we assume that the delay
is zero). The conditions in our paper distinguish between the
cases of constant vs. variable sampling intervals and provide
less conservative results when the sampling interval is fixed.
Although the classical time domain, frequency domain, and
lifting approaches provide necessary and sufficient conditions
for stability (and stabilization) of sampled-data systems with
constant sampling intervals, they are not readily applicable (or
lead to very conservative results) when there is a polytopic
uncertainty in the parameters of the continuous-time process
model.

In Section 2 we provide an exponential stability theorem for
nonlinear, time-varying impulsive systems. Then in Sections 3
and 4 we apply our theorems to analyze LTI uncertain sampled-
data systems with variable sampling intervals and constant
sampling intervals respectively. In Section 5 we consider the
problem of finding a stabilizing state-feedback controller based
on the results in Section 3. The last section is dedicated to
conclusions and future work.
Notation. When there is no confusion we write x(t) as x .
We denote the limit from below of a signal x(t) by x(t−),
i.e., x(t−) := limτ↑t x(τ ). The left-hand side derivative of x
with respect to t , i.e., ẋ(t) := limτ↑t

x(τ )−x(t)
τ−t is denoted by

ẋ(t). We denote the transpose of a matrix P by P ′ and the
smallest and the largest eigenvalue of a matrix P by λmin(P)

and λmax(P). We write P > 0 (or P < 0) when P is a
symmetric positive (or negative) definite matrix and we write

a symmetric matrix
[

A B
B′ C

]
as
[

A B
∗ C

]
.

2. Exponential stability of impulsive systems

Consider the following impulsive system

ẋ(t) = fk(x(t), t), t 6= sk, ∀k ∈ N, (1a)

x(sk) = gk(x(s−

k ), sk), t = sk, ∀k ∈ N, (1b)

where fk and gk are locally Lipschitz functions [11] from
Rn

×R to Rn such that fk(0, t) = 0, gk(0, t) = 0, ∀t ≥ 0. The
impulse time sequence {sk} forms a strictly increasing sequence
in [s0, ∞) for some initial time s0 ≥ 0.

Suppose that a sequence of impulse times {sk} is given. We
say that the impulsive system (1) is Globally Exponentially
Stable (GES) if

|x(t)| ≤ c|x(s0)|e−λ(t−s0), ∀t ≥ s0, (2)

for some c, λ > 0. The constant λ provides an estimate for the
decay rate and c an estimate for the overshoot of the solution.
This definition depends on the choice of the sequence; however,
it is often of interest to characterize GES over classes of impulse
sequence. We say that the system (1) is Globally Uniformly
Exponentially Stable (GUES) over the class S (of impulse
times) if for any {sk} ∈ S the condition (2) is satisfied with
the same c, λ for every {sk} ∈ S. We characterize the class S as

S := {sk |ε ≤ sk − sk−1 ≤ τMATI},

for some 0 ≤ ε ≤ τMATI and we define

ρ(t) := t − sk, t ∈ [sk, sk+1), ∀k ∈ N, (3)

which indicates the amount of time that has passed since the
last impulse time. As a result ρ(sk) = 0, ∀k ∈ N, ρ(s−

k ) =

sk − sk−1, ∀k ∈ N, and 0 ≤ ρ(t) ≤ τMATI, ∀t ≥ s0.
Lyapunov Theory provides the main tool to test the stability

of impulsive systems by employing a Lyapunov function (or
a family of Lyapunov functions) [12,13]. We state a theorem
to guarantee that the system (1) is GUES over the class S
by employing a Lyapunov function with discontinuities at the
impulse times.
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Theorem 1. Assume that there exist positive scalars c1, c2, c3,
b and a Lyapunov function V : Rn

× R → R, such that for any
impulse sequence {sk} ∈ S and any t ≥ s0 the corresponding
solution x(.) to (1) satisfies:

c1|x |
b

≤ V (x, ρ) ≤ c2|x |
b, ∀x, ∀ρ ∈ [0, τMATI], (4)

dV (x(t), ρ(t))

dt
≤ −c3V (x(t), ρ(t)), ∀t 6= sk, ∀k ∈ N, (5)

and that

V (x(sk), 0) ≤ lim
t↑sk

V (x(t), ρ(t)), ∀k ∈ N. (6)

Then the system (1) is GUES over the class S of impulse times
with the following estimates for the overshoot and the decay
rate

c :=

(
c2

c1

) 1
b

, λ :=
c3

b
. (7)

Moreover if we assume that every fk, k ∈ N is globally
Lipschitz with the Lipschitz constant L > 0 and instead of (4)
the following condition holds

c1|x(sk)|
b

≤ V (x(sk), 0) ≤ c2|x(sk)|
b, ∀k ∈ N, (8)

then the overshoot can be estimated as

c :=

(
c2

c1

) 1
b

e(L+
c3
b )τMATI . �

Proof of Theorem 1. By the Comparison Lemma [11] and
inequalities (5) and (6) we have

V (x(t), ρ(t)) ≤ V (x(s0), 0)e−c3(t−s0), ∀t ≥ s0. (9)

Also from the condition (4) and the Eq. (9) we have

|x(t)| ≤

(
V (x(t), ρ(t))

c1

) 1
b

≤

(
V (x(s0), 0)e−c3(t−s0)

c1

) 1
b

≤

(
c2|x(s0)|

be−c3(t−s0)

c1

)1/b

=

(
c2

c1

) 1
b

|x(s0)|e−
c3
b (t−s0).

Thus the system (1) is GUES over the class S of impulse
sequences with the decay rate and the overshoot estimate given
by (7). Moreover from the equation (9) and the condition (8) we
conclude that for any {sk} ∈ S

|x(sk)| ≤

(
V (x(sk), 0)

c1

) 1
b

≤

(
V (x(s0), 0)e−c3(sk−s0)

c1

) 1
b

≤

(
c2|x(s0)|

be−c3(sk−s0)

c1

)1/b

=

(
c2

c1

) 1
b

e−
c3
b (sk−s0)|x(s0)|. (10)

Since every fk, k ∈ N is globally Lipschitz with the
Lipschitz constant L > 0, we have that

|x(t)| ≤ eL(t−sk )|x(sk)|, t ∈ [sk, sk+1), (11)

[11] and from (10) and (11) we have that

|x(t)| ≤ eL(t−sk )

(
c2

c1

) 1
b

e−
c3
b (sk−s0)|x(s0)|

≤

(
c2

c1

) 1
b

e(L+
c3
b )τMATIe−

c3
b (t−s0)|x(s0)|.

So the system is GUES over the class S with the decay
rate given by (7) and the overshoot estimate given by c :=(

c2
c1

) 1
b

e(L+
c3
b )τMATI . �

The condition (4) requires that the candidate Lyapunov
function to be positive for all times. This condition is relaxed
in (8) by requiring the Lyapunov function to be positive only at
the impulse times with the expense that we get a worse estimate
for the overshoot of the system.

In the next section we apply Theorem 1 to analyze linear
(uncertain) sampled-data systems with variable sampling. We
will not focus on finding the overshoot and the decay rate, but
instead we will find the largest sampling interval τMATI that the
system is GUES over the class S.

3. Stability of sampled-data system with variable sampling

Consider a sampled-data system consisting of an LTI process
and a state-feedback controller with constant gain K connected
through sample and hold blocks. The LTI process has a state
space model of the form

ẋ(t) = Ax(t) + Buu(t), (12)

where x, u are the state and input of the process respectively.
At the sampling time sk , k ∈ N the process’s state, x(sk),
is sent to the controller and the control command K x(sk)

is sent back to the process to be used as soon as it arrives
until the next control command update. The resulting closed-
loop system can be written as an impulsive system with state
ξ(t) :=

[
x ′(t) z′(t)

]′ where x(t) is the solution to (12) with
u(t) = K x(sk), and z(t) := x(sk), t ∈ [sk, sk+1). The
dynamics of this system can be written as

ξ̇ (t) = Fξ(t), t 6= sk, ∀k ∈ N (13a)

ξ(sk) =

[
x(s−

k )

x(s−

k )

]
, t = sk, ∀k ∈ N, (13b)

where

F :=

[
A B
0 0

]
, B := Bu K .

Between the impulses x, z evolve according to (13a) and at the
impulse times sk , the value of x before and after sk remains
unchanged (since x(t) is continuous) but the value of z is
updated by x(s−

k ) (or x(sk) since x is continuous).
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We now construct a finite-dimensional Lyapunov function
for the sampled-data system (13). Consider the candidate
Lyapunov function

V (ξ, ρ) := V1(x) + V2(ξ, ρ) + V3(ξ, ρ), (14)

where

V1(x) := x ′ Px,

V2(ξ, ρ) := ξ ′

(∫ 0

−ρ

(s + τMATI)(F exp(Fs))′ R̃ F

× exp(Fs)ds

)
ξ,

V3(ξ, ρ) := (τMATI − ρ)(x − z)′ X1(x − z),

and R̃ :=

[
R 0
0 0

]
with R, P, X symmetric positive definite

matrices and ρ is defined in (3). The requirements P, R, X1 >

0, guarantee the existence of positive c1, c2 such that (8) holds.
Along jumps this Lyapunov function does not increase since
V2(ξ, ρ) and V3(ξ, ρ) are nonnegative before the jumps and
they become zero right after the jumps so the condition (6) of
Theorem 1 also hold. The next theorem provides a sufficient
condition for (5) to hold. Consequently, if the conditions in the
next theorem hold, based on Theorem 1 we conclude that the
system (13) is GUES over the class S of impulse times.

Remark 1. Note that the second term of the Lyapunov function
(14) can be written as

V2(ξ, ρ) =

∫ t

t−ρ

(τMATI − t + s)ẋ ′(s)Rẋ(s)ds. (15)

This term is motivated by the Lyapunov functional∫ 0

−τMATI

∫ t

t+θ

ẋ ′(s)Rẋ(s)dsdθ

appeared in the DDE and NCS literature extensively, e.g., in [6,
14].

Theorem 2. The system (13) is GUES over the class S of
impulse sequences, if there exist symmetric positive definite
matrices P, R, X1 and a (not necessarily symmetric) matrix N
that satisfy the following LMIs:

M1 + τMATI M2 < 0, (16a)[
M1 τMATI N
∗ −τMATI R

]
< 0, (16b)

where

F̄ :=
[
A B

]
,

M1 :=

[
P
0

]
F̄ + F̄ ′

[
P 0

]
−

[
I

−I

]
X1
[
I −I

]
− N

[
I −I

]
−

[
I

−I

]
N ′

+ τMATI F̄ ′ RF̄,

M2 :=

[
I

−I

]
X1 F̄ + F̄ ′ X ′

1

[
I −I

]
. � (17)

See Appendix for the proof of Theorem 2. When the
sampling intervals approach zero (guarantee that τMATI → 0)
the conditions (16a) and (16b) reduce to[

P
0

]
F̄ + F̄ ′

[
P 0

]
− N

[
I −I

]
−

[
I

−I

]
N ′ < 0 (18)

(since M2 does not appear and the only remaining term in
equation (16) that contains X1 is negative semi-definite, one
may simply take X1 = 0). A sufficient condition for (18) to be
satisfied is

(A + B)′ P + P(A + B) < 0, P = P ′ > 0, (19)

because if (19) holds, then (18) holds with the choice N =

[
−P B + I

−I ]. The condition (19) is the necessary and sufficient
condition for the stability of the closed-loop system ẋ = (A +

B)x . Hence the sampled-data system is stable for small enough
sampling intervals if the corresponding closed-loop continuous
system is stable. By the Matrix Elimination Lemma it turns
out that (19) is also a necessary condition for (18). Therefore
as the sampling intervals approach zero, Theorem 2 recovers
exactly the continuous-time stability condition. This does not
happen for the conditions that appeared in [7]. Moreover using a
Lyapunov function instead of a Lyapunov functional facilitates
proving the exponential stability (instead of just asymptotic
stability) of the system (13).

Remark 2. Suppose that there exist matrices P1 f > 0, P2 f ,
P3 f , Z f and R f > 0 satisfying the following stability
conditions from Lemma 1 of [6]:

Ψ1 f < 0, −Z f + P ′

f

[
0
B

]
R−1

f

[
0
B

]′

P f < 0,

where

P f :=

[
P1 f 0
P2 f P3 f

]
,

Ψ1 f := Ψ0 f + τMATI Z f + τMATI

[
0 0
0 R f

]
,

Ψ0 f := P ′

[
0 I

A + B −I

]
+

[
0 I

A + B −I

]′

P.

Then we have

Ψ0 f + τMATI

[
0 0
0 R f

]
+ τMATI P ′

f

[
0
B

]
R−1

f

[
0
B

]′

P f < 0.

(20)

Multiplying (20) from the right and left by
[

I 0
A B

]
and its

transpose we obtain (A.3) with

ρ = τMATI = h f , P = P1 f ,

R = R f , N ′
= −

[
B ′ P2 f + B ′ P3 f A B ′ P3 f B

]
.

This means that if there are matrix variables satisfying the
conditions of Lemma 1 in [6] then the conditions in Theorem 2
will necessarily also be satisfied. It is also possible to show that
when the stability condition in [9] holds (given by (12) in [9],
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then the condition in Theorem 2 must also necessarily hold with

ρ = τMATI = ηy R = Ty,

P = Py, N =
[
N ′

1y + N ′

3y A N ′

2y + N ′

3y B
]
.

Hence our Lyapunov function leads to conditions in Theorem 2
that are less conservative than the stability conditions in [6,
9] using a Lyapunov functional. From this perspective,
considering an infinite-dimensional DDE model and using a
Lyapunov functional to prove its stability offers no advantage
for this class of finite-dimensional systems. �

Remark 3. Suppose that the system matrices Ω :=
[
A B

]
are not exactly known and instead they are specified through
the following polytopic condition:

Ω ∈

{
κ∑

j=1

f jΩ j , 0 ≤ f j ≤ 1,

κ∑
j=1

f j = 1

}
,

where the κ vertices of the polytope are described by Ω j :=[
A j B j

]
. Stability of the system can be checked by solving

the LMIs in Theorem 2 for each of the individual vertices with
the same matrix variables P, X1, R, N . �

4. Stability of sampled-data systems with constant sam-
pling

Now we consider the case where the sampling intervals
are constant. This case may appear uninteresting since
there are classical results giving necessary and sufficient
conditions for stability and stabilization of such sampled-data
systems. However, the LMI conditions presented are useful
to establish stability and stabilization of sampled-data system
with polytopic uncertainty in the system matrices (Remark 3
and Example 5). In this case the classical results based on
exact discretization method or lifting approach, often lead to
a conservative results. Also following the same steps as in
[6], we can consider the stability and stabilization of sampled-
data system with input saturation. Since our LMIs are less
conservative than the ones in [6], (Remark 2 and that the results
for constant sampling are less conservative than the variable
sampling) we get a larger region of attraction.

For constant sampling instead of (14) we use

V (ξ, ρ) := V1(x) + V2(ξ, ρ) + V̄3(ξ, ρ) (21)

where V1(x) and V2(ξ, ρ) are as in (14) and

V̄3(ξ, ρ) := (τMATI − ρ)
(
(x − z)′ X1(x − z) + 2z′ X2(x − z)

)
.

Note that V̄3(ξ, ρ) is not necessarily a positive function.
However, right after the jumps this Lyapunov function is
positive (V (ξ, 0) = x ′ Px) and it satisfies (4). At the jumps
this Lyapunov function does not increase since V1(x) does
not change at the sampling instances, V2(ξ, ρ) is nonnegative
before the jumps and it becomes zero right after the jumps,
and V̄3(ξ, ρ) is zero before and after the jumps. Note that
V̄3(ξ(s−

k ), ρ(s−

k )) is zero before the jumps because ρ = τMATI
and after the jumps it is zero because x = z and consequently
the condition (6) is satisfied. The next theorem provides a

Table 1
The second row shows the number of variables in the LMIs used to test stability
and the third row shows the value of τMATI for Example 4

Theorem 2 Theorem 3 [6] [9] [10]

3.5n2
+ 1.5n 5n2

+ n 5n2
+ 2n 7n2

+ n 16n2
+ 3n

1.1137 1.3277 0.8696 0.8696 0.8871

sufficient condition for (5) to hold. In conclusion, if the LMIs in
the next theorem are feasible, all the conditions of Theorem 1
hold and the system (13) is GUES over the class S with ε =

τMATI.

Theorem 3. The system (13) is GUES over the class S with
ε = τMATI (i.e., constant sampling) if there exist symmetric
positive definite matrices P, R and (not necessarily symmetric)
matrices N , X1, X2 that satisfy the following LMIs:

M̄1 + τMATI M̄2 < 0,[
M̄1 τMATI N
∗ −τMATI R

]
< 0,

where

M̄1 := M1 −

[
0
I

]
X2
[
I −I

]
−

[
I

−I

]
X ′

2

[
0 I

]
,

M̄2 := M2 +

[
0
I

]
X2 F̄ + F̄ ′ X ′

2

[
0 I

]
,

and M1, M2 are defined in (17). �

See Appendix for the proof of Theorem 3. In Table 1 we
compare the number of scalar unknowns that appear in the
LMIs of the different papers assuming that the dimension of
the process is n. Notice that for an n × n symmetric matrix
variable n(n+1)

2 scalar variables are needed whereas for an
m × n matrix variable mn scalar variables are required. We
can see that our results use fewer variables, but this is not at
the expense of degrading the value obtained for τMATI. It is not
fair to compare the number of variables in [10] to the others
in Table 1 because this paper considered sampled-data system
with delays (although we presented the number of variables in
[10] in Table 1).

Example 4. Consider the process model from [15][
ẋ1
ẋ2

]
=

[
0 1
0 −0.1

] [
x1
x2

]
+

[
0

0.1

]
u, (22)

with the state-feedback gain K = −
[
3.75 11.5

]
. In our

notation, this corresponds to

A =

[
0 1
0 −0.1

]
, B = −

[
0

0.1

]
×
[
3.75 11.5

]
.

Constant sampling. Using standard techniques from digital
control one can show that the maximum constant sampling
interval for which the closed-loop system remains stable is
1.7 s. The maximum constant sampling interval given by
Theorem 3 is 1.3277.
Variable sampling. The stability results in [6,9,1] provide an
upper bound on the sampling interval for which the stability
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is guaranteed equal to 0.8696. This bound is improved to
0.8871 in [10]. Theorem 2 gives the upper bound equal to
1.1137. When compared to the constant-sampling bound given
by Theorem 3, we now obtain a more conservative value, which
is reasonable because we are now guaranteeing stability for
every sequence of sampling times, with consecutive samples
separated by no more than 1.1137, but potentially with different
sampling intervals from one sample to the next. �

Example 5. Consider the process model from [6] with

A =

[
1 0.5
g1 −1

]
, Bu =

[
1 + g2

−1

]
,

where |g1| ≤ 0.1, |g2| ≤ 0.3. With the state-feedback gain
K = −

[
2.6884 0.6649

]
, Fridman et al. [6] verified that the

system is stable for any sampling interval smaller than 0.35.
By solving the LMIs in Theorem 2 (see Remark 3) for each
combination of A j and B j , 1 ≤ j ≤ 2 defined by

A1 :=

[
1 0.5

−0.1 −1

]
, A2 :=

[
1 0.5

0.1 −1

]
,

B1 :=

[
0.7
−1

]
, B2 :=

[
1.3
−1

]
,

we can verify that the system is stable for any variable sampling
interval up to 0.4476. Applying Theorem 3 the system is stable
for constant sampling up to 0.4610. �

5. Stabilization of sampled-data systems

In the design problem, when we want to find a feedback gain
K that stabilizes the closed-loop system, the LMIs presented
in the previous section become Bilinear Matrix Inequalities
(BMIs) since there are cross terms between B = K Bu and P .
The next theorem provides LMI conditions that enable us to
find stabilizing feedback gains for variable sampling intervals.
Following the same steps, one could find the state feedback for
the constant sampling case.

Theorem 6. There exists a state-feedback gain K that makes
the system (13) GUES over the class S if there exist
positive scalars ε1, ε2, a symmetric positive definite matrix Q,
(not necessarily symmetric) matrices Nd , Y , that satisfy the
following LMIs:[

M1d + τMATI M2d τMATI F ′

d
∗ −τMATIε

−1
1 Q

]
< 0, (23a)M1d τMATI F ′

d τMATI Nd

∗ −τMATIε
−1
1 Q 0

∗ ∗ −τMATIε1 Q

 < 0, (23b)

where

Fd :=
[
AQ BuY

]
,

M1d :=

[
I
0

]
Fd + F ′

d

[
I 0

]
− ε2

[
I

−I

]
Q
[
I −I

]
− Nd

[
I −I

]
−

[
I

−I

]
N ′

d ,

M2d := ε2

[
I

−I

]
Fd + ε2 F ′

d

[
I −I

]
.

When these LMIs are feasible, the stabilizing state-feedback
gain is given by K = Y Q−1. �

Proof of Theorem 6. Suppose the conditions (23a) and (23b)
hold. We define P := Q−1 and multiply (23a) by P̄ :=

diag (P, P) and (23b) by diag (P, P, P) from the right and the
left. We define

N := P̄ Nd P, B := Bu K = BuY P,

X1 := ε2 P, R := ε1 P, (24)

then by using Schur Lemma we can show that the conditions
(16a) and (16b) hold. Since all the conditions of Theorem 2
are satisfied, the system (12) with state-feedback gain K
(which results in the closed-loop system (13)) is GUES for any
sampling sequence belong to set S. �

The choice of R = ε1 P in (24) may lead to more
conservative results. This conservativeness could be reduced
by using the cone complementarity algorithm [16]. In this case
instead of (23) the matrix inequalities to be considered are[

M1d + τMATI M2d τMATI F ′

d
∗ −τMATI R−1

]
< 0, (25a)M1d τMATI F ′

d τMATI Nd

∗ −τMATI R−1 0
∗ ∗ −τMATI Z

 < 0, (25b)

[
R Q−1

Q−1 Z

]
> 0. (25c)

These inequalities are not LMIs because the inverses of the
matrix variables appear. However, the cone complementarity
algorithm transforms this problem into a sequence of linear
optimizations subject to a set of LMIs that can be solved
numerically. The improvement resulting from using the cone
complementarity algorithm has been investigated in [17]. If the
LMIs (25) are satisfied then Z > Q−1 R−1 Q−1 (by Schur
Lemma), so the inequality (25b) still holds when Z is replaced
by Q−1 R−1 Q−1. We define

N := P̄ Nd P, B := Bu K = BuY P,

X1 := ε2 P,

then by using Schur Lemma we can show that the conditions
(16a) and (16b) hold.

Example 7. Now we consider the state-feedback controller
design for the process (22). We would like to find a feedback
gain K that maximizes the upper bound of the variable
sampling intervals. Yue et al. [9] found a stabilizing controller
that guarantees stability up to a sampling interval equal to 402s.
Our results provide the controller K =

[
5 × 10−5

−0.0348
]
,

which improves this upper bound to 820s. This upper bound on
the variable sampling intervals is very large because the process
(22) is marginally stable and little control action is needed to
exponentially stabilize the process. In fact by choosing u =

−α(0.1x1 + x2) with a small α, we can obtain a relatively large
τMATI. For example with α = 0.001 we get τMATI = 106.
The reason why this input leads to very large τMATI is the
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following. Defining z := 0.1x1 + x2 then the system dynamics
are ż = 0.1u and ẋ2 = −0.1x2 + 0.1u. This system with
the input u = −αz is stable for large sampling intervals with
small enough α because we only need to stabilize the z state
and because of the cascade structure the state x2 would be
stable. Although our LMIs improve upon the previous results,
probably because of numerical errors they are unable to give
the controller that previous observation suggests. �

Example 8. Consider the system in Example 5. We would like
to find a feedback gain K that maximizes the upper bound
of the variable sampling intervals. Fridman et al. [6] found
K = −

[
2.6884 0.6649

]
which guarantees stability up to

a sampling interval equal to 0.35. Our results provide the
controller K = −

[
2.5824 0.6419

]
, which improves this

upper bound to 0.4550. �

6. Conclusion and future work

We derived an exponential stability theorem for nonlinear
time-varying impulsive systems by employing Lyapunov
functions with discontinuity at the impulse times. Then we
applied our theorems to the analysis and state-feedback
stabilization of LTI uncertain sampled-data systems. Our
stability and stabilization results were presented as LMIs. To
reduce the conservativeness we used slack matrices; however,
we used fewer slack matrices than the previous results without
making the results more conservative. As a special case we
considered sampled-data systems with fixed sampling intervals.

We will consider the H∞ design for uncertain sampled-data
system. We are also interested in studying the sampled-data
systems with delays in the control loop which can model NCSs
with variable sampling intervals, delays, and packet dropouts.
In the future we will extend our results to multi-rate sampled-
data systems.
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Appendix

Proof of Theorem 2. We use the equivalent expression of
V2(ξ, ρ) given in (15) to simplify the calculations (in
comparison to [18]). Along the trajectory of the system (13)
we have
dV (ξ, ρ)

dt
= 2x ′ Pẋ + 2(τMATI − ρ)(x − z)′ X1 ẋ

− (x − z)′ X1(x − z) + τMATI ẋ
′ Rẋ

−

∫ t

t−ρ

ẋ(s)′ Rẋ(s)ds. (A.1)

Since x(t)− z(t) = x(t)− x(t −ρ), for any matrix N , we have

2ξ ′N (x − z) = 2ξ ′N
∫ t

t−ρ

ẋ(s)ds

≤

∫ t

t−ρ

(
ξ ′N R−1 N ′ξ + ẋ(s)Rẋ(s)

)
ds

≤ ρξ ′N R−1 N ′ξ +

∫ t

t−ρ

ẋ(s)Rẋ(s)ds. (A.2)

The matrix variable N represents a degree of freedom that can
be exploited to minimize conservativeness and we call it a slack
matrix. Combining (A.1) and (A.2) we get

dV (ξ, ρ)

dt
≤ 2x ′ Pẋ + 2(τMATI − ρ)(x − z)′ X1 ẋ

− (x − z)′ X1(x − z) + τMATI ẋ
′ Rẋ

− 2ξ ′N (x − z) + ρξ ′N R−1 N ′ξ.

We have dV (ξ,ρ)
dt < 0 if

M1 + (τMATI − ρ)M2 + ρM3 < 0,

∀ρ ∈ [0, τMATI] (A.3)

where M1, M2 are defined in (17) and M3 := N R−1 N ′. A
necessary and sufficient condition to satisfy (A.3) is

M1 + τMATI M2 < 0, (A.4)

M1 + τMATI M3 < 0. (A.5)

To see that these matrix inequalities are sufficient, consider
α ∈ [0, 1] and note that

α (M1 + τMATI M3) + (1 − α) (M1 + τMATI M2)

= M1 + (τMATI − ρ)M2 + ρM3.

Setting α = ρ/τMATI we conclude that (A.3) holds. Now
suppose that (A.3) holds for every ρ ≤ τMATI. Hence it
should hold when ρ = 0 and ρ = τMATI which gives
(A.4) and (A.5) respectively. By Schur complement, the matrix
inequalities in (A.4) and (A.5) can be written as the LMIs
given in Theorem 2. Finally, when the LMIs in Theorem 2 are
feasible, then dV (ξ,ρ)

dt ≤ −c̄3|ξ |
2 for some c̄3 ≥ 0 and (5) holds

for c3 := c̄3/c2 where

c2 := λmax(P) + τMATI(γ1 + γ2), (A.6)

γ1 := 1/2 max
−τMATI≤s≤0

λmax

(
(FeFs)′ R̃FeFs

)
,

γ2 := λmax

([
I

−I

]
X1
[
I −I

])
. (A.7)

We can apply Theorem 1 to prove exponential stability of the
system; however, finding c1 such that c1|ξ |

2
≤ V (ξ, ρ) is

not easy. Note that we have c1|x |
2

≤ V (ξ, ρ) whereas we
need c1|ξ |

2
≤ V (ξ, ρ). Instead, we follow the same steps

of the proof of Theorem 1 with some modifications. From
(5), V (ξ, ρ) decreases to zero exponentially fast according
to (9). Consequently V1(x) ≤ V (x(s0), 0)e−c3(t−s0). Given
that c1|x |

2
≤ V1(x) with c1 := λmin(P), the rest of the

proof follows exactly the proof of Theorem 1. Moreover the
system (13) is GUES over the class S with the decay rate and
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overshoot estimate defined in Theorem 1 with b = 2, and
c1, c2, c3 defined earlier. �

Proof of Theorem 3. Along the flow

dV̄3(ξ)

dt
= 2(τMATI − ρ)(x − z)′ X1 ẋ − (x − z)′ X1(x − z)

+ 2(τMATI − ρ)z′ X2 ẋ − 2z′ X2(x − z)

and rest of the LMIs derivation is the same as Theorem 2. When
the LMIs in Theorem 3 are feasible, then dV (ξ,ρ)

dt ≤ −c̄3|ξ |
2 for

some c̄3 ≥ 0 and (5) holds for

c̄2 := λmax(P) + τMATI(γ1 + γ2 + γ3),

γ3 := 2λmax

([
0
I

]
X2
[
I −I

])
,

and γ1, γ2 are defined by (A.7). The condition (4) holds with
c1 := λmin(P) and c2 := λmax(P). So based on Theorem 1 the
system (13) is GUES over the class S with the decay rate and
overshoot estimate defined in Theorem 1 with b = 2, L = |F |

and c1, c2, c3 defined earlier. �
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