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1 Introduction

The matrix differential Riccati equation is uniquitous irsgsms and optimal control/filtering
theory and, for this reason, it has always received a gredtadi@attention, see e.g. [2] and the
bibliography therein. For example, the solution of the siea finite-horizon linear-quadratic
(LQ) optimal control problem is traditionally expressedtérms of the solution of a matrix
Riccati differential equation with a terminal condition éstor example the classic textbooks
[1, 23]).

From the Seventies, a significant stream of literature eetkrggarding the problem of de-
vising numerically reliable and efficient algorithms foetimtegration of the Riccati differential
equation, see e.g. [10, 18]. Some of these methods, thatusaksf the so-calleBernoulli sub-
stitutiontechnique, consist in exploiting the solution of a largeeér differential equation (the
so-calledHamiltonian differential equatiopwhose size is twice the size of the Riccati equation
to be solved. Another important class of algorithms is basethe so-called€Chandrasekhar
decompositiorj21, 18], whereby the solution of the Riccati differentialuatjon is obtained
by solving a pair of coupled matrix linear differential etjoas. Other important approaches
aimed at solving the so-called periodic differential Ricegfuation include the multi-shot and
iterative algorithms, see [31, 17, 30] and [11], respebtiv@ee also [2].

Another area of intense research activity, which origidatethe early Eighties and flour-
ished in the Nineties, was centered on the attempt to claisethe solutions of the differential
Riccati equation — particularly in the linear time-invatighTl) case — by using non-recursive
formulae. The first and most general formula introduced énliterature exploits the solution of
the Hamiltonian differential equation via a Bernoulli sutigton as described above. However,
this formula was soon found to be unsuitable for studyingartgmt properties of the solutions
of the Riccati differential equation, such as finite escape$, convergence and mechanisms
of attraction. Another drawback associated with Bernoulbstitutions is the difficulty that
arises in determining an expression for the variations efstblution of the Riccati differential
equation as an explicit function of variations of some patars of the problem. Therefore,
over the last twenty years, many researchers have focusedttention to finding alternative
closed-form representations of the solution of the Ricaéferential equation, [6, 5, 25]. Most
of the representations proposed so far in the literaturéo@xpe extreme (i.e., stabilising and
anti-stabilising) solutions of the associat@debraicRiccati equation. These representations
can be used to study the dependence of the solution of thetRidtarential equation on cer-
tain parameters of the problem in the cases when the furadtd@pendence of the solution of
the associatedlgebraicRiccati equation on such parameters is computable (as itemspor
example, in [7, 8]). The problem associated with these radtidre representations is that the



extreme solutions of the algebraic Riccati equation bothkteqly if the underlying system (in
the case of the Riccati equation arising from the finite-tmrizQ problem) is controllable.

The aim of this paper is to obtain more general representfmr the solution of the Riccati
differential equation, by progressively removing the aggtions on the problem data. We be-
gin by considering a formula that is valid under the very nagdumption of sign-controllability,
[29, 28]: this is the weakest form of controllability intnaced so far in the literature, as it en-
compasses controllability, stabilisability and antiksligability. Moreover, sign-controllability
is also the weakest known assumption for which the assacaltgebraic Riccati equation is
guaranteed to admit a symmetric solution. Under this assampa formula parameterising
in finite terms all the trajectories originating from the Héomian differential equation, intro-
duced by the same authors in [14], is exploited to derive areoarsive formula for the solution
of the Riccati differential equation. This parameterisatd the trajectories of the Hamiltonian
differential equation generalises those proposed in [b8][@27] for controllable and stabilis-
able systems, respectively; see also [13, 12] for the des¢m@e counterpart. In the particular
case of stabilisability, it is also shown that using the Kancontrollability decomposition it is
possible to reduce the size of the algebraic Riccati equétibe solved. Furthermore, particu-
lar cases are also identified where a solution of the algeBRiaicati equation exists even when
the sign-controllability assumption does not hold. Thektes accomplished by introducing a
first new sign-controllability form, that gives a sign-casitable part whose dimension is the
largest that can be obtained. In the second part of the pidygesign-controllability assumption
is relaxed further, and a second sign-controllability fasnexplioted to the end of employing
a solution of an algebraic Riccati equation to parametehsetriajectories of the sole sign-
controllable part of the Hamiltonian differential equatjovhile the nonsign-controllable part is
handled using the aforementioned Bernoulli substitutiothoe In this way, it is proven that
if the nonsign-controllable part of the system has no commodes with the sign-controllable
part of the Hamiltonian matrix, and such sign-controllgtéet has no modes on the imaginary
axis, the solution of the Riccati differential equation céith se represented in a non-recursive
fashion. In the last part of the paper, the applications e$é¢hresults to optimal control prob-
lems are discussed. In particular, we show that using aroapprthat is similar in spirit to that
proposed in [15, 24, 27, 14] very general linear-quadrgtinaal control problems with affine
constraints on the state vector at the end-points and wihrtbst general type of quadratic
performance index can be solved in closed form.



2 Problem formulation

In this paper we consider the problem of finding closed-foepresentations for the solutions
P(t),t € [0,T] of the matrix Riccati differential equation

P@t)+ AT Pt)+ Pt)A— (P(t)B+S) R (P)B+S) +Q=0 (1)
with terminal condition
P(T) = Pr, (2)

whereT > 0, Ae R™", BeR™™, with m < n; the matrices) € R*"*", S € R™™ and
R € R™ are such that the so-call@bpov matrix

Q S
ST R

II .=

is symmetric and positive semidefinite, aRds positive definite; finally, the terminal condition
Pr e R™" is symmetric and positive semidefinite.

We recall that thé’opov tripleis defined as the tripl& := (A, B, II), see e.g. [16].

The matrix Riccati differential equation (1) is conciselyndeed by RDEX), while the
differential problem (1-2) is referred to as the Riccati eliéfintial problem and denoted by
RDP(®, Pr). The solution of RDE(C) and RDPE, Pr) are related to the solutioX, A :
(—o0, T| — R™*" of the Hamiltonian differential equation HDEJ

o [X@)
A(t)

A—BR'ST ~BR'BT
—Q+SR'ST —AT+SR'BT

X(t)

A(t) -G

], where H =

and to the solution of the Hamiltonian differential problédDP(:, Pr), i.e., a solution
X(t), A(t) of HDE(X) that also satisfies the boundary condition

X(T)
A(T)

I
Pr

: (4)

The relation between the solutions of RDE(and RDPE, Pr) with those of HDEE) and
HDP(Z, Pr) is stated in precise terms as follows.

Theorem 1 ([9], pp. 274-275) et X, A : (—oo, T| — R™*" be the solutions of the Hamilto-
nian differential problem HDPX, Pr). Then

1. X(¢) is non-singular for allt € (—oo, T;
2. the solutionP(t) of the RDPE, Pr) is

P(t)=A() X7'(t),  te(—o0,T). (5)



Moreover, if P(t) is a solution of the RDE{) on (—oo, 7] and X (¢) : (—o0, 7] — R™™is a
solution of the matrix differential equation

X(t) = (A ~BRY(BTP(t)+S7) ) X(t),
thenX (t) and A(t) = P(t) X (¢) are a solution of HDEX).

Theorem 1 provides a first general way to characterise thdisolof both RDEE) and
RDP(®, Pr). Indeed, linearity of HDEX) yields

=eftC, (6)

whereC € R?™*" is an integration constant that can be found by imposing thenfary
condition (4) on (6). As such, the solution of HDR(Pr) is given by

X(t) _ H(-T) I .
A) Py
If we partition the exponential matrix” *-7) as [5;8 gzg” where each,(t) is ann x n

time varying matrix, we can expres§(t) andA(t) as X (t) = Ei(t) + Ex(t) Pr andA(t) =
E3(t) + E4(t) Pr, which enable the solution of RDB( Pr) to be written as

P(t) = A(t) XH(t) = (Ba(t) + Ba(t) Pr) (Bx(t) + Bu(t) Pr) " (7)

This approach for solving the Riccati differential equat®known in the literature a@ernoulli
substitution [18, 25], and constitutes the basis of the so-calalison-Maki numerical
method [10]. Expression (7) has the advantage of being very gén&a the other hand,
since there is no explicit way to express the submatricgs) as a function of the problem
data>;, this formula is not suitable for studying properties likeweergence, limiting behaviour
of the solution and mechanisms of attraction, [6, 5]. Moe¥py7) does not allow to analyse
how the solution varies in terms of perturbation’ddr Py, which is a fundamental question in
many practical and theoretical problems. For this reasamarkable efforts have been devoted
to finding more explicit representations for the solutiohthe Riccati differential equation, see
e.g. [5] and the references therein. In this paper, we ptesemways to represent the solution
of the Riccati differential problem under mild assumptidmattare progressively weakened, and
generalise the ones previously introduced in the liteesituseveral directions.



3 Closed-form solutions under Sign-Controllability assump-
tion

3.1 Background material
Consider the continuous-time algebraic Riccati equation CARE(
PA+A"P—(S+PB)R'(ST+B"P)+Q=0. (8)
To any solutionP = PT ¢ R**" of CARE(X) corresponds the closed-loop matrix
Ap:=A—-BR ' (S"T+B"P). (9)

The set of eigenvalues(Ap) of Ap is a subset of the spectrum of the Hamiltonian ma#fix
[26, Theorem 6]. The following esistence properties of 8ohs to algebraic Riccati equations
will be used in the sequel, [26, Lemma 7 and Theorem 6] and8&yma 8 p. 629].

e If the pair(A, B) is stabilizable and? has no purely imaginary eigenvalues, CAREpas
a unigue solutionP* = (PT)" > 0 which is stabilising, i.e., all the eigenvalues 4f have
strictly negative real part, anfl* is maximal among the solutions of CAREX!

e If (A, B) is anti-stabilizable and{ has no eigenvalues on the imaginary axis, CARH{as
a unique solution”~ = (P~)" < 0 which is anti-stabilising, i.e., all the eigenvalues .o
have strictly positive real part, arfé~ is minimal among the solutions of the CARE)(

e If (A, B) is controllable andH has no eigenvalues on the imaginary axis, the extreme
solutions of CAREX), P+ and P, both exist. Thegap matrixA := Pt — P~ > 0 satisfies the
identity Ap+ = —A~1 AL A,

e |If the pair (A, B) is sign-controllable, i.e., if the set of uncontrollablgeivalues ofA
does not contain pairs of elements in the fam—\), [29, 19], CAREE) admits an unmixed
solution P, i.e., a solution such that ¥, —\ € o(Ap) impliesRe(\) =0, [29, 28]. Moreover,
given a solution® = P of CARE(X) and the corresponding closed-loop mattix defined in

(9), the Lyapunov equation

ApY +Y AL+ BR'B" =0 (10)

has a unique solutiolr =Y " € R**" if and only if P is strongly unmixed, which means that
Ap does not contain mirrored pairs, i.8.¢€ o(Ap) implies—\ ¢ o(Ap), [14]2

IMaximal and minimal are here referred to the standard andesf symmetric matrices, i.el/; > M, if and
only if My — My > 0.

2SinceAp is real, this is equivalent to the fact thatA ) does not contain opposite paits, —\). Clearly, if
P is unmixed and none of the eigenvaluesAyf lay on the imaginary axis, theR is also strongly unmixed. [22,
Theorem 5.2.2].



Remark 1 Sign-controllability is the weakest form of controllalbyi It is weaker than the
assumption of reachability, and even than that of stabiliy or anti-stabilisability of the pair
(A, B). Indeed, it generically holds even in the extreme casg of0.

3.2 Solution of sign-controllable RDE

The following theorem establishes an explicit expressarttie solution of the Riccati differ-
ential equation with terminal condition under sign-cofiaoility assumption.

Theorem 2 Assume thatA, B) is sign-controllable and? has no eigenvalues on the imagi-
nary axis. LetP be a strongly unmixed solution of CARB( let Ap be given by (9) and” be
the corresponding solution of (10). The matfixt) = A(¢) X ~*(¢), with

X(t) = e AP0 ([n Y (P- PT)) LY APT0(p — Py, (11)

A(t) = Pe~4rT=1) <In —-Y (P- PT)) +(PY = L) TP P,  (12)
is the solution of RDRY, Pr).

Proof: First, recall that sign-controllability ofA, B) guarantees that an unmixed solutiBn
of CARE() exists. Moreover, in view of the absence of purely imagmeigenvalues of,

P is also strongly unmixed, sinc&(Ap) Co(H). Let P be a strongly unmixed solution of
CARE(), let Ap be the corresponding closed-loop system matrix ek the corresponding
solution of (10). By adapting the proof of Theorem 1 in [14]isiteasy to see that the set of
trajectories of HDEX) is parameterised i, ¥ € R"*"™ as

[X<t> _ H rtg
P

A(t)
By imposing the boundary condition(T)=1, and A(T)=FPr on (13), we find
O=e 4T (Y Pr—Y P+ 1,) and¥ = P — Pr. Thus, the corresponding (¢) andA(t) are
given by (11) and (12). Hence, in view of TheoremXL(t) is invertible for allt € (—o0, T,
andP(t) = A(t) X~1(t) is the solution of RDPY, Pr). |

etr Ty, (13)

PY -1,

Remark 2 Using the technique described in the proof of Theorem 2 dtse possible to solve
the Riccati differential equation with an initial condition

P0)=P =P >0 (14)

instead of the terminal condition (2). In this case it suBlit@ impose the boundary conditions
X(0) =1, andA(0) = P, on (13). This yieldsb = I, — Y (P — Py) and¥ = ¢ 4+ T (P — P,).
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The matrixP(t) = A(t) X ~1(¢), with

X(t) = et (I =Y (P = R)) + Ye (P = Ry),
A = Pt (1= Y (P = R)) + (PY = L)e (P — B)
is the solution of the Riccati differential equation (1) witie initial condition (14). All the

other results that are presented in this paper on the solafithe Riccati differential equation
with terminal condition can be adapted in a similar way todase of an initial condition.

3.3 A sign-controllability form

When (A, B) is not sign-controllable, two important sign-controlliéyiforms can be defined.
The first has the largest possible sign-controllable paet(H, B) be in the Kalman controlla-
bility form

A, 0
AUC AC

0
B,

and B =

, (15)

where(A,, B,.) is controllable. Consider a non-singular matfixsuch that'~* A, T is in Jor-
dan form, partitioned ag ' A, T = diag A/, A”). The Jordan blocks corresponding to the
eigenvalues of}, are divided betweer! and A/ according to the following rule:

i) the Jordan blocks corresponding to eigenvalues on the magagaxis are placed iA!;

i) every Jordan bloclB, corresponding to an eigenvali®f A, such that-\ is not an eigen-
value of A, is included inA”;
iif) for each pair of eigenvaluds, —\) of A,, we denote the corresponding Jordan blocks by
B, andB_,. If dim(B,) < dim(B_,), we includeB, in A/, andB_, in A”; Otherwise,
we includeB_, in A], and B, in A7
In this way, A” has no pairs of eigenvalues in the fofr —\), nor eigenvalues with zero real
part. Now, changing coordinates with:= diag(7’, I) gives

A0 0 0
T-'AT 0 .
U AU = P 0o A" | 0 |, U'B=1|0 |, (16)
uc + (& C
Al A | A B,

where[A! . Al ] .= A, T + A.. The pair([j,%‘/ j } , [BO]) IS sign-controllable, since
(A., B.) is controllable andA” has no mirrored pairs of eigenvalues with respect to the
imaginary axis, nor eigenvalues on the imaginary axis. é¢othat this definition of sign-

controllability form provides a sign-controllable parttivihe largest possible size.



Remark 3 Consider the matrix differential Riccati equation (1). Comsithe change of co-
ordinate matrixl; that transforms the pait4, B) into the sign-controllability form (or in the
controllability form). Define the new Popov triple, characterised by the matricgés! AT,
T-'B, T QT,T" S andR. Itis easy to establish that, given a solutiBy(t) of RDE(Z,),
the matrix7, " P,(¢) T ! is a solution of RDEL), andvice-versa Moreover, in order to obtain
the solutionP(t) of RDP(X) with boundary conditionP(7") = Pr, one can solve RDPJ;) in
P,(t), with boundary conditior?,(T') = T,/ PrT,, and then seP(t) = T, " P,(t) T, L.

When(A, B) is not sign-controllable, but the nonsign-controllablet paunobservable from
the Popov matrix, a parameterisation of the solutions of BD)Bbased on the solutions of
standard algebraic equations can still be established(A&B) be in the sign-controllability
form as constructed above, i.e.,

A 0 0
_ and B= , (17)
Ars As Bs
where (A;, B;) is sign-controllable; let:, be the order ofA,, and letn, := n — n, be

the dimension of the residual (i.e., nonsign-controllalgart. Let the nonsign-controllable
subsystem be unobservable from the Popov matrix,@.@nd.S are partitioned accordingly to
this basis as) = diag(0,, xn,, Q) andsS = [0,.xm SJ|" andA,, = 0. If the Hamiltonian
matrix referred to the sole sign-controllable part

A,—B,R'ST  —B,R'BJ

H, =
—Qs+ S, RS —Al +S,R'B]

has no eigenvalues on the imaginary axis, a maktixand a matrixY, exist satisfying the
algebraic Riccati equation referred to the sole sign-cdatle part

P,A,+ AP, — (S, +P.B)R(S] + B/ P)+Q.=0
and the corresponding closed-loop Lyapunov equation
Ap Y+ Y, A}, + BiR'B] =0, (18)

respectively, wherelp, := A, — B, R™' (S] + B! P,). As such,P = diag0,, «.,, P.) and

Y = diag0,,«n,,Ys) are the solutions of CARE]) and of the corresponding closed-loop
Lyapunov equation referred to the complete system, reispégtas can be proved by means of
a simple substitution. By using these matrices in (13), waiaka parameterisation of the set of
trajectories of HDEX), and therefore the result established in Theorem 2 cdmstdpplied in

this case using® andY obtained above. The fact that, has no eigenvalues on the imaginary
axis is necessary to ensure that a solutigrof (18) exists. Indeed, suppose by contradiction
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that H; has an eigenvalue atv, with w € R. It follows that: w is an eigenvalue ofip,, and,
as a consequence, it is an eigenvalueigf, as well. Letv € C" denote the eigenvector of
A}, corresponding to such eigenvalue, id; v = iwv. LetY; be a solution of (18). By
premultiplying and postmultiplying (18) by* andv, respectively, we get

—iwv*YSv—|—U*Y8iwv+v*BsR_lev:U*BSR_IBSTv:(),

which implies thatv lies in the null-space of3,. Therefore lies in the null-space ofl],
as well, and this means that is an uncontrollable eigenvalue of the péit,, B;). This is a
contradiction, since the paifi;, B;) is sign-controllable.

3.4 Stabilisability

The case where the pdif, B) is stabilisable is clearly included, as a particular casdeuthe
sign-controllability assumption. In this case, one canosigoas strongly unmixed solution of
CARE(®) the stabilising solutio®*, and the result in Theorem 2 still applies with= P+ and
Ap = Ap+. In the case wheréA, B) is stabilisable, an alternative expression for the satutio
of the RDEE) and RDPE, Pr) can be found by resorting to two elements of the lattice bf al
symmetric solutions of the algebraic Riccati equation retetl to the sole controllable part.
This method has the remarkable computational advantaglating the order of the involved
algebraic Riccati equation, which, being the sole nonlimeatrix equation to be solved in this
procedure, is the sole critical element in terms of numéraaustness, see e.g. [3].

Let R be the reachable subspace from the origin, whose dimersioare denoted by, ;
let n, :=n —n.. Consider a change of coordinate basis mattisuch that its first,. columns
spanR. In the new basis, matrice§ B are partitioned as in (15), whilg andS are partitioned
as

Q- Qi Q“:] and s;[i] (19)

The strongly unmixed solutio* of CARE(X) can be partitioned correspondingly as

LA
(P PF

Pt =

)

and itis easily seen th&t" is a solution of the algebraic Riccati equation of the soldradiable
part

PrA.+ Al PF—(S.+P'B)R ' (S.+ P B.)" +Q.=0. (20)



On the other hand, since the pdid., B.) appearing in (20) is controllable, the ARE (20)
admits an anti-stabilising solutioR”, such thato(A,+) = —o(Ap-). Moreover, the gap
matrix A. := P — P is positive definite, and therefore invertible.
Define also the twa x n matricesA* and P* as
~Al Q. +S,R'ST — Al P-4+ S,R'B] P~

A* = “ e (21)
0 Ac=B.R™ (B Py +5])
andP* := diag(1,,, P."). Finally, let.J := diag(0,,, xn,,, In.)-

Theorem 3 Assume thatA, B) is stabilisable andd has no eigenvalues on the imaginary
axis. The matrix(¢t) =T, " A(t) X 1(t) T, ", with

X(t) = etrttd 4 JeM g (22)
A(t) = PTeteetd 4 pret" 1 g (23)
where
R R RO s ) (24)
= n 0 Ac_l s T Ls
and
. I,, —PrA? T N
i | i (T P+ T, — P*) (25)

is the solution of RDRY, Pr).

Proof: The functionsX, A : (—oo, T| — R™*™ defined by

X)) |
o)
represent a parameterisation of all the solutions of theiltaman differential equation (3) in
® andW. This fact can be proved by direct substitution of (26) iniDE(>:) written with all
submatrices off partitioned as in (15) and (19). Moreover, all the solutiohthe Hamiltonian
differential equation (3) can be expressed through (263 fuitable choice ob and V. In fact,
the images of5; := [I, P*]" andS, := [J P*]" are H-invariant subspaces, since it can
be proved by direct substitution that.S; = S; Ap+ andH S, = S, A*. The eigenvalues aoff
restricted tam S; coincide with the eigenvalues afy+, while the eigenvalues af restricted

I

Pt ettt

J* ] AT g (26)

to im Sy are the eigenvalues of*. However, from the discussion above it follows that the
eigenvalues ofi p+ and those ofA* are opposite, i.eq(Ap+) = —o(A*). As a result of this,
im Sy N im Sy = {0}, which implies that (26) represents a set2of? linearly independent
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trajectories of HDEX)). To find the solution of RDB{, Pr), we need to find the matrices
and V¥ to be used in (26) so that (26) represents the solution of FIDP{). By imposing
the boundary conditions in (26) as indicated in Remark 3, we:tjer 7 ® + J ¥ = ], and
PteArt T O 4 PU = TsT Pr T,. Matrix ® can be computed from the first and substituted into
the second, to get

(P*—PU =T PrT, — P". (27)
Matrix P* — P* J can be written as

]nu _P’let)
0 P —PF

I

P —PtJ= [

and is easily seen to be invertible, and yields

I, —PiA!
=™ vewe (1) Pp T, — PT).
0 A7l
By substition of this value o¥ into ® = e=4r+ T (I, — J ¥), we get (24). [

4 Dropping the sign-controllablity assumption

As already observed, sign-controllability is a very weak general system-theoretic assump-
tion. Nevertheless, this assumption could still result &rbstrictive in some situations.
Therefore, in this section we show that some results can tended even when the sign-
controllability assumption does not hold. In other terms,imvestigate a further generalisation
of the results obtained for sign-controllable pairs candbeeved under milder assumptions, that
do not guarantee the existence of a solution of CAREgnd of the corresponding Lyapunov
equation. To the best of the authors’ knowledge, sign-otiatiility is the weakest assumption
on the pain( A, B) for which CARE) is guaranteed to admit a symmetric solution. Therefore,
without the sign-controllability assumptions, CARB(might not admit a symmetric solution.
The parameterisation of the trajectories of HRIE(nvolves the (strongly unmixed) solution of
the algebraic Riccati equation restricted to the sole sartrollable part of the system. How-
ever, the sign-controllability form needed here must bestoigted in a different way than that
presented in Section 3.3, as will become clear in Theorem 4.

Let (A, B) be in the Kalman controllability canonical form (15). Defite= o(A,)No(—A,).
There existd” € R"*" such thatl' ' A, T = diag A/,, A”) with o(A’)) = A. Changing coor-
dinates withU := diag(T, I) gives (16) where, again, the pa(r{j: j} , [E?D is sign-
controllable. Notice that, differently from the sign-cooitability form introduced in Section
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3.3, in this case for each pair of uncontrollable eigenalile corresponding Jordan blocks
B, and B_, are both placed in the nonsign-controllable part. Hence sthe of the resulting
sign-controllable part is smaller than that obtained usiregsign-controllability form as defined
in Section 3.3. Now, let the pafrd, B) be in this second sign-controllability form,

0
B,

A0
ATS AS

and B =

Y

where the paif A;, B;) is sign-controllable, and |&p andS be partitioned accordingly, i.e.,

Qz[Qi QT:] and 5 — g] (28)

Moreover, define,, .= A,, — B,R™'S!, F,, == A, — B,R7'S], G, .= -Q, + S,R7'S],
G, = —Q,+ S, R'S], G.s = —Q,s + S;R7IS] andV := —B, R~! B]. With respect to
this basis, the Hamiltonian differential equation can bitem as

X, () X, (1) A, 0 0 0
X, (t | XLt _ F, F, 0 vV
.() =H (®) , Where H = - -
A (1) A, (1) G. G, —Al —F!
Ay(t) Ay(t) Gl G, 0 —F]

In the former, the time varying matrices(t) andA(t) have been partitioned according to the
sign-controllability form. The Hamiltonian matri, referred to the sole sign-controllable part
is

Fee V

H, =
G’r’s _Fs—g

In the next theorem, it is shown that if, and H, have no common eigenvalues, andHf
has no eigenvalues on the imaginary axis, a charactemsafithe solutions of HDEX) is
still possible. Notice that if instead of the sign-contadlility form defined in this section we
used that presented in Section 3.3, for each pajr\) of uncontrollable eigenvalues, the
corresponding Jordan blocks, and B_, would be divided between the sign-controllable and
the nonsign-controllable part. As a result, the sign-adlatble part would have uncontrollable
eigenvalues that are opposite in sign to some nonsignatatite eigenvalues. However, since
uncontrollable eigenvalues and their opposites are atgnealues of the Hamiltonian matrix,
it follows that the spectrum of the Hamiltonian matrix of thign-controllable part/, would
include the paif\, —\), and therefore it would end up having eigenvalues in commitm tive
nonsign-controllable par,. As a result, the Sylvester equations used in the next thetwe
construct the parameterisation of the trajectories of DBvould not be guaranteed to admit
solutions.
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Theorem 4 Let the Popov triple be in the second sign-controllabiliyni, as defined in this
section. Assume(A,) No(H,) = () and thatH, has no eigenvalues on the imaginary axis. Let
Ui, Uy € R™*"s be given by the solution of the Sylvester equation

AI[Ul U2}+[U1 Uz}Hsz[Gs —FT} (29)
and letUs, Uy € R™*" be given by the solution of the Sylvester equation
—Al v o]+ [vs v |H == FL 6. (30)

The set of trajectories originating from HDEJ is parameterised i’ € R?"*", & ¢ R™*n
andV¥ € R™*™" as

X, (t) 0 I, 0 0
T —-Al =
%o o U T b gy | Y g
A (2) I, U Ui+U, P U Y +Us(PY —1,,.)
As(t) 0 U/ P PY -1, (31)
where= := —-U; F,+G,—U, GST andU = Uy []3T + Uy UI

Proof: We construct three changes of coordinates for the Hamdtodifferential equation,
in order to obtain a block-diagonal structure fdt Sincec(A,) N o(H,) = (), the Sylvester
equation (29) admits a unique soluti«%rU1 U, ] . Consider the non-singular matrix

0 0 I, O o -U; I,. —U
T, = : , sothat 77! = b 2

0 I, U U 0 I, O 0

0 0 0 I, 0 0 0 I,

By taking (29) into account, we get

A, 0 0 0
- = -4 0 0
H1 = Tl HT1 = )
F, 0 F, V
Gl 0 G, —-F]
where= := —U, F,, + G, — U, G/ . Sincec(A,) N o(H,) = (), the Sylvester equation (30)

admits a unique solutioﬁ Us U, } . Consider the non-singular matrix

0 I, 0 0 0 I,
I, 0 0 0 . I, 0 0
T = , sothat T, " =
0 U/ I, 0 -Uj 0 I,
0 U/ 0 I, U/ 0 0 I,

13



The new change of coordinates ovéy yields

~AT 2 0 0
B 0 A 0 0
Hy =Ty HiTy = ;
0 0 F, V
0 0 G. —FI

which is block-diagonal. A further change of coordinategasformed using

0 I, 0 0 A0 0 0
I, 0 0 0 . E AT 00
T; = , SO that Hs = T3 HyT; = )
0 0 I, 0 0 Fo V
0 0 0 I, 0 0 Grs —F

The submatrix in the right-bottom df; is exactly H,. Now, consider the Hamiltonian differ-
ential equation in this new basis:

X1 () X (t)
Al(t) _ Aq(2)
Xo(t) Xo(t) |
As(t) As(2)
where
X, (t) Xu(t) Xu(t)
X0 | _ T, M) | U X1(t) + Xo(t)
A (t) Xo(t) UXy(t) + Ai(t) + Uy Xo(t) + Uy As(2)
A, (t) As(t) UL X,(t) + As(t)

Since the paif A;, B;) is sign-controllable and/, has no eigenvalues on the imaginary axis,
we can compute the strongly unmixed solution of the sole-smttrollable part?, the closed-
loop matrix and the solution of the corresponding closaxplbyapunov equationl, andY’,
respectively. Hence, due to the block-diagonal structdiré/g the parameterisation of the
solutions of the Hamiltonian differential equation in th@anbasis is decoupled as

X (t) I,, O
Al (t) — O Inr e |: —37‘ AET ]tr + 0 eApt @ + 0 eA}TD (T—-1) \I/
X,(1t) 0 0 I, Y
As(t) 0 0 P PY —1,,
Writing this equation with respect to the original basis giy@l1). |

Our aim is now to show how the result established in Theorerardbe exploited to find
a representation of the solution of the Riccati differengglation with terminal condition
RDP®, Pr). The solution to this problem is given in the following timem.
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Theorem 5 Let7} be a change of basis matrix that transforms the gair B) into the second
sign-controllability form as defined in Section 4, and letncas () and S be partitioned as in
(28). Assume(A,) No(H,) = () and thatH, has no eigenvalues on the imaginary axis. Let
Uy, Uy, Us, Uy € R be the solutions of (29) and (30), respectively. Let

X,(T) M,
X (T M, M, N,
(T) = . Where =1, and =T P, T,. (32)
AT(T) Nr S s
Ay(T) N,

The solutionP(¢) of RDRY) is given by

P(t) = TS_T Ar(t) [ X (1) ] 1 Ts_la
As(t) | | Xs(t)
whereX,(t), X,(t), As(t) and A, (t) are given by (31) with
P G*APT(]_YP) e~ ArTYy 0 0 M, — U;Mr
e F -1 0 o || N-urm,
. Uy (U4 Us PY(I—Y)+Us —Q — AT (AT .
Iy 0 0 o—ArT 0 N,

Proof: Consider HDPX, Pr), and consider the change of coordinate mdtiithat takes the
original Popov triple into the second sign-controllalyiibrm. By imposing (32) onX, and X
in (31) we obtain

X,(T o 1] [ME]e[r 0 M,
(7) — eloooa T + eArT P+ U= .
X,(T) 0 Uy Iy I, Y M,

[—AI = }T AT
By partitioningel 0 A-l as 0 o | we obtain the two equations
6 T
GAT TFQ B MT’
Uj et Ty +erTd+Y U M, |’
which lead tol's, = e~ 4T M, and
i T
[eAPT Y} — M, — UJ M,. (33)
v
By imposing the boundary condition dn. andA, in (31) we obtain
—AlT
A(T) _ I U e Q I' L U+ U P APTE
A (T) 0 U/ 0 eMT || 1y P
U0Y +Uy(PY — 1) v N,
PY —1 Ny

15



which leads to

e_A"‘TF1 + (Q + UGATT)FQ + (Ul + U2 P)eAPT(I) + [Ul Y + UQ(PY — I)]\Ij
UT e TTy + PeArTd + (PY — )0

The first block-equation enabl&s to be computed given the values®f¥ andl’,. The second
gives

Pet*T O+ (PY — 1)V =N, — U/ M,. (34)
From (33) and (34) we obtain

eArT Y

PeArT PY — T

o
v

(35)

M, — U] M,
N,—U M, |

The Schur complement of the first matrix on the left hand il — 1) — PeArT e~ 4rTYy =
—1 is invertible. As such, (35) can be inverted:

- -1
o] [ et Y M, — UJ M,
v | PerrT PY - N, — U] M,
erta -y Py ety | [ M- U] M,
i P —I N, — U] M,

and

Iy=e" (N, — (Qe T+ UM, + (Ui + U P) e @+ [U1 Y + Us(PY — 1) ¥)
= e (N, — (Qe T+ U)M, + Uy (My — Uy M,)
+(Ui + Us P = U Y = Us PY + Us) (N, — U, M,)) .

5 Applicationsto LQ optimal control

In this section, we investigate how the material developethis paper, and in particular in
Section 4, can be utilised to solve very general LQ optimaiticd problems. In particular,
in [14] it was shown how to use parameterised expressionseafrajectories generated by the
Hamiltonian differential equation to solve the most gehfenam of LQ optimal control problem
with affine constraints on the state vector at the end poimtisveith a quadratic performance
index; in [14] this very general problem is tackled underassumption of sign-controllability.
Here we show how to use the results of Section 4 to cases whengair (A, B) might not
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be sign-controllable. For the sake of argument, howevee te restrict our attention to the
so-called fixed end-point LQ problem. Consider the LTI statfeintial equation
z(t) = Ax(t) + Bu(t), (36)
where, for alt > 0, z(t) € R" is the statey(t) € R™ is the control input. Moreover, it is required
that
z(0) = Zo € R™. (37)
x(T) = zp € R™. (38)

The problem here is to find a measurable), ¢t € [0, 7'), and an absolutely continuoust),
t € [0, T, minimising the quadratic performance index

s = [ Ty w1 ] dt, (39)

u(t)

under the constraints (36) and (37-38). We show how thetrasililheorem 4 can be utilised
to the end of constructing the optimal control law. For thkesaf simplicity, we consider the
system to be already in the sign-controllable form, so tlwpreliminary coordinate changes
are needed. li(t) andz(t) are optimal for the fixed end-point LQ problem, then a costate
function \(¢) € R™ exists such that(¢), A\(¢) andu(t) satisfy for allt € [0, T") the following set

of equations:

[ (1) ] [ A-BR'ST  —BR'BT (t) ] | (40)
A(t) —Q+SR1'S"T —AT+SR!'BT A(t)
u(t) = —R (ST 2(t) + BT A(t)) , (41)
x(0) = o, (42)
x(T) = Zr, (43)

These equations follow as a particular case of those in [&Mrha 1]. Equation (40) differs
from the Hamiltonian differential equation (3) only for tdemension of the unknown vector.
As such, the set of all the trajectories satisfying (40) \&giby (31), where now, ¥ andI’

are vectors. By partitioning, = [ Tl T }T andzy = [ Tl Tl }T conformably with

the sign-controllability form, by imposing (42-43) on (40 get

. er
jSO

- er
'%‘ST

Iy
UJTy + @ + Y eArTw

and

GAT TPQ

U eA Ty + AP T + Y U
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By eliminatingI', from these two equations we obtain the condition = e z,,, which
is not surprising. In fact, the fixed end-point problem cansbé/ed only if the nonsign-
controllable part of the state, which is obviously also urtodllable, reaches the target,
starting from the initial value,, by itself. The remaining equations lead to the linear refati

[ I vetT ][ @ _[xSO—UJaxro
(&

v (44)

ApT 7 T
P Y TsT — U3 Tr0

which cannot be inverted in general. In fact, within the sogmtrollable subsystem there are in
general uncontrollable modes. Therefore, the fact thatdinelitionz,» = e T z, is satisfied
does not guarantee that the fixed end-point LQ problem adbsuoltgions, because there are
other uncontrollable modes in the sign-controllable paherefore, th&n x 2n matrix in the
left-hand side of (44) is not invertible in general. Hendw bther condition that needs to be
satisfied for the LQ problem to be solvable is that

_ _ T
Tso — U;ZETQ im I Y€APT
T — U Ty etrT Y

If this condition holds true, the remaining parametérand ¥ can be determined by pseudo-
inversion of (44). These values & ¥, I'; (and with arbitraryl’;) can be used in (31), which
at that point provides the trajectory of (40) satisfying)(48d (43). Then, the state and costate
can be replaced in (41) to provide a control law which is optifor the LQ control problem
at hand, since(t), \(t) andu(t) satisfy all the necessary and sufficient conditions reguioe
guarantee optimality.

Concluding remarks

The formulae established in this paper for the solutioneftiatrix Riccati differential equation,
which generalise those proposed so far in the literature beaused to extend the analysis of
finite escape time of the solution of the Riccati differenéiglation carried out in [4, p.1240].
Moreover, important properties of the dynamic behaviouthef solution of RDEX), such as
convergence and mechanisms of attraction, which have ltedied in the literature under the
assumptions of controllability and stabilisability, casmdpeneralised using the results presented
here.
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