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1 Introduction

The matrix differential Riccati equation is uniquitous in systems and optimal control/filtering

theory and, for this reason, it has always received a great deal of attention, see e.g. [2] and the

bibliography therein. For example, the solution of the classical finite-horizon linear-quadratic

(LQ) optimal control problem is traditionally expressed interms of the solution of a matrix

Riccati differential equation with a terminal condition (see for example the classic textbooks

[1, 23]).

From the Seventies, a significant stream of literature emerged regarding the problem of de-

vising numerically reliable and efficient algorithms for the integration of the Riccati differential

equation, see e.g. [10, 18]. Some of these methods, that makeuse of the so-calledBernoulli sub-

stitutiontechnique, consist in exploiting the solution of a larger linear differential equation (the

so-calledHamiltonian differential equation), whose size is twice the size of the Riccati equation

to be solved. Another important class of algorithms is basedon the so-calledChandrasekhar

decomposition[21, 18], whereby the solution of the Riccati differential equation is obtained

by solving a pair of coupled matrix linear differential equations. Other important approaches

aimed at solving the so-called periodic differential Riccati equation include the multi-shot and

iterative algorithms, see [31, 17, 30] and [11], respectively. See also [2].

Another area of intense research activity, which originated in the early Eighties and flour-

ished in the Nineties, was centered on the attempt to characterise the solutions of the differential

Riccati equation – particularly in the linear time-invariant (LTI) case – by using non-recursive

formulae. The first and most general formula introduced in the literature exploits the solution of

the Hamiltonian differential equation via a Bernoulli substitution as described above. However,

this formula was soon found to be unsuitable for studying important properties of the solutions

of the Riccati differential equation, such as finite escape times, convergence and mechanisms

of attraction. Another drawback associated with Bernoulli substitutions is the difficulty that

arises in determining an expression for the variations of the solution of the Riccati differential

equation as an explicit function of variations of some parameters of the problem. Therefore,

over the last twenty years, many researchers have focused their attention to finding alternative

closed-form representations of the solution of the Riccati differential equation, [6, 5, 25]. Most

of the representations proposed so far in the literature exploit the extreme (i.e., stabilising and

anti-stabilising) solutions of the associatedalgebraicRiccati equation. These representations

can be used to study the dependence of the solution of the Riccati differential equation on cer-

tain parameters of the problem in the cases when the functional dependence of the solution of

the associatedalgebraicRiccati equation on such parameters is computable (as it happens, for

example, in [7, 8]). The problem associated with these alternative representations is that the
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extreme solutions of the algebraic Riccati equation both exist only if the underlying system (in

the case of the Riccati equation arising from the finite-horizon LQ problem) is controllable.

The aim of this paper is to obtain more general representations for the solution of the Riccati

differential equation, by progressively removing the assumptions on the problem data. We be-

gin by considering a formula that is valid under the very mildassumption of sign-controllability,

[29, 28]: this is the weakest form of controllability introduced so far in the literature, as it en-

compasses controllability, stabilisability and anti-stabilisability. Moreover, sign-controllability

is also the weakest known assumption for which the associated algebraic Riccati equation is

guaranteed to admit a symmetric solution. Under this assumption, a formula parameterising

in finite terms all the trajectories originating from the Hamiltonian differential equation, intro-

duced by the same authors in [14], is exploited to derive a non-recursive formula for the solution

of the Riccati differential equation. This parameterisation of the trajectories of the Hamiltonian

differential equation generalises those proposed in [15] and [27] for controllable and stabilis-

able systems, respectively; see also [13, 12] for the discrete-time counterpart. In the particular

case of stabilisability, it is also shown that using the Kalman controllability decomposition it is

possible to reduce the size of the algebraic Riccati equationto be solved. Furthermore, particu-

lar cases are also identified where a solution of the algebraic Riccati equation exists even when

the sign-controllability assumption does not hold. This task is accomplished by introducing a

first new sign-controllability form, that gives a sign-controllable part whose dimension is the

largest that can be obtained. In the second part of the paper,the sign-controllability assumption

is relaxed further, and a second sign-controllability formis explioted to the end of employing

a solution of an algebraic Riccati equation to parameterise the trajectories of the sole sign-

controllable part of the Hamiltonian differential equation, while the nonsign-controllable part is

handled using the aforementioned Bernoulli substitution method. In this way, it is proven that

if the nonsign-controllable part of the system has no commonmodes with the sign-controllable

part of the Hamiltonian matrix, and such sign-controllablepart has no modes on the imaginary

axis, the solution of the Riccati differential equation can still be represented in a non-recursive

fashion. In the last part of the paper, the applications of these results to optimal control prob-

lems are discussed. In particular, we show that using an approach that is similar in spirit to that

proposed in [15, 24, 27, 14] very general linear-quadratic optimal control problems with affine

constraints on the state vector at the end-points and with the most general type of quadratic

performance index can be solved in closed form.
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2 Problem formulation

In this paper we consider the problem of finding closed-form representations for the solutions

P (t), t ∈ [0, T ] of the matrix Riccati differential equation

Ṗ (t) + A⊤ P (t) + P (t)A− (P (t)B + S ) R−1 (P (t)B + S )⊤ +Q = 0 (1)

with terminal condition

P (T ) = PT , (2)

whereT > 0, A∈ℝ
n×n, B ∈ℝ

n×m, with m ≤ n; the matricesQ ∈ ℝ
n×n, S ∈ ℝ

n×m and

R ∈ ℝ
m×m are such that the so-calledPopov matrix

Π :=

[

Q S

S⊤ R

]

is symmetric and positive semidefinite, andR is positive definite; finally, the terminal condition

PT ∈ℝ
n×n is symmetric and positive semidefinite.

We recall that thePopov tripleis defined as the tripleΣ := (A,B,Π), see e.g. [16].

The matrix Riccati differential equation (1) is concisely denoted by RDE(Σ), while the

differential problem (1-2) is referred to as the Riccati differential problem and denoted by

RDP(Σ, PT ). The solution of RDE(Σ) and RDP(Σ, PT ) are related to the solutionX, Λ :

(−∞, T ] −→ ℝ
n×n of the Hamiltonian differential equation HDE(Σ)

[

Ẋ(t)

Λ̇(t)

]

= H

[

X(t)

Λ(t)

]

, where H =

[

A−BR−1 S⊤ −BR−1 B⊤

−Q+ S R−1 S⊤ −A⊤ + S R−1 B⊤

]

, (3)

and to the solution of the Hamiltonian differential problemHDP(Σ, PT ), i.e., a solution

X(t),Λ(t) of HDE(Σ) that also satisfies the boundary condition
[

X(T )

Λ(T )

]

=

[

In

PT

]

. (4)

The relation between the solutions of RDE(Σ) and RDP(Σ, PT ) with those of HDE(Σ) and

HDP(Σ, PT ) is stated in precise terms as follows.

Theorem 1 ([9], pp. 274-275)LetX, Λ : (−∞, T ] −→ ℝ
n×n be the solutions of the Hamilto-

nian differential problem HDP(Σ, PT ). Then

1. X(t) is non-singular for allt ∈ (−∞, T ];

2. the solutionP (t) of the RDP(Σ, PT ) is

P (t) = Λ(t)X−1(t), t ∈ (−∞, T ]. (5)
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Moreover, ifP (t) is a solution of the RDE(Σ) on (−∞, T ] andX(t) : (−∞, T ] −→ ℝ
n×n is a

solution of the matrix differential equation

Ẋ(t) =
(

A−BR−1 (B⊤ P (t) + S⊤)
)

X(t),

thenX(t) andΛ(t)=P (t)X(t) are a solution of HDE(Σ).

Theorem 1 provides a first general way to characterise the solution of both RDE(Σ) and

RDP(Σ, PT ). Indeed, linearity of HDE(Σ) yields

[

X(t)

Λ(t)

]

= eH t C, (6)

whereC ∈ ℝ
2n×n is an integration constant that can be found by imposing the boundary

condition (4) on (6). As such, the solution of HDP(Σ, PT ) is given by

[

X(t)

Λ(t)

]

= eH (t−T )

[

I

PT

]

.

If we partition the exponential matrixeH (t−T ) as
[

E1(t) E2(t)
E3(t) E4(t)

]

, where eachEi(t) is ann × n

time varying matrix, we can expressX(t) andΛ(t) asX(t) = E1(t) + E2(t)PT andΛ(t) =

E3(t) + E4(t)PT , which enable the solution of RDP(Σ, PT ) to be written as

P (t) = Λ(t)X−1(t) = (E3(t) + E4(t)PT ) (E1(t) + E1(t)PT )
−1 . (7)

This approach for solving the Riccati differential equationis known in the literature asBernoulli

substitution, [18, 25], and constitutes the basis of the so-calledDavison-Maki numerical

method, [10]. Expression (7) has the advantage of being very general. On the other hand,

since there is no explicit way to express the submatricesEi(t) as a function of the problem

dataΣ, this formula is not suitable for studying properties like convergence, limiting behaviour

of the solution and mechanisms of attraction, [6, 5]. Moreover, (7) does not allow to analyse

how the solution varies in terms of perturbation ofΣ or PT , which is a fundamental question in

many practical and theoretical problems. For this reason, remarkable efforts have been devoted

to finding more explicit representations for the solutions of the Riccati differential equation, see

e.g. [5] and the references therein. In this paper, we present new ways to represent the solution

of the Riccati differential problem under mild assumptions that are progressively weakened, and

generalise the ones previously introduced in the literature in several directions.
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3 Closed-form solutions under Sign-Controllability assump-

tion

3.1 Background material

Consider the continuous-time algebraic Riccati equation CARE(Σ)

P A+ A⊤ P − (S + P B)R−1 (S⊤ + B⊤ P ) +Q = 0. (8)

To any solutionP =P⊤ ∈ℝ
n×n of CARE(Σ) corresponds the closed-loop matrix

AP := A−BR−1 (S⊤ +B⊤ P ). (9)

The set of eigenvalues�(AP ) of AP is a subset of the spectrum of the Hamiltonian matrixH,

[26, Theorem 6]. The following esistence properties of solutions to algebraic Riccati equations

will be used in the sequel, [26, Lemma 7 and Theorem 6] and [32,Lemma 8 p. 629].

∙ If the pair(A,B) is stabilizable andH has no purely imaginary eigenvalues, CARE(Σ) has

a unique solutionP+ = (P+)⊤ ≥ 0 which is stabilising, i.e., all the eigenvalues ofAP have

strictly negative real part, andP+ is maximal among the solutions of CARE(Σ).1

∙ If (A,B) is anti-stabilizable andH has no eigenvalues on the imaginary axis, CARE(Σ) has

a unique solutionP− = (P−)⊤ ≤ 0 which is anti-stabilising, i.e., all the eigenvalues ofAP

have strictly positive real part, andP− is minimal among the solutions of the CARE(Σ).

∙ If (A,B) is controllable andH has no eigenvalues on the imaginary axis, the extreme

solutions of CARE(Σ), P+ andP−, both exist. Thegap matrixΔ :=P+ −P− > 0 satisfies the

identityAP+ = −Δ−1 A⊤
P− Δ.

∙ If the pair (A,B) is sign-controllable, i.e., if the set of uncontrollable eigenvalues ofA

does not contain pairs of elements in the form(�,−�̄), [29, 19], CARE(Σ) admits an unmixed

solutionP , i.e., a solution such that if�,−�̄∈ �(AP ) impliesℜe(�)= 0, [29, 28]. Moreover,

given a solutionP =P⊤ of CARE(Σ) and the corresponding closed-loop matrixAP defined in

(9), the Lyapunov equation

AP Y + Y A⊤
P
+ BR−1B⊤ = 0 (10)

has a unique solutionY =Y ⊤ ∈ℝ
n×n if and only if P is strongly unmixed, which means that

AP does not contain mirrored pairs, i.e.,�∈ �(AP ) implies−�̄ /∈ �(AP ), [14].2

1Maximal and minimal are here referred to the standard ordering of symmetric matrices, i.e.,M1 ≥ M2 if and

only if M1 −M2 ≥ 0.
2SinceAP is real, this is equivalent to the fact that�(AP ) does not contain opposite pairs(�,−�). Clearly, if

P is unmixed and none of the eigenvalues ofAP lay on the imaginary axis, thenP is also strongly unmixed. [22,

Theorem 5.2.2].
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Remark 1 Sign-controllability is the weakest form of controllability: It is weaker than the

assumption of reachability, and even than that of stabilisability or anti-stabilisability of the pair

(A,B). Indeed, it generically holds even in the extreme case ofB=0.

3.2 Solution of sign-controllable RDE

The following theorem establishes an explicit expression for the solution of the Riccati differ-

ential equation with terminal condition under sign-controllability assumption.

Theorem 2 Assume that(A,B) is sign-controllable andH has no eigenvalues on the imagi-

nary axis. LetP be a strongly unmixed solution of CARE(Σ), letAP be given by (9) andY be

the corresponding solution of (10). The matrixP (t)=Λ(t)X−1(t), with

X(t) = e−AP (T − t)
(

In − Y (P − PT )
)

+ Y eA
⊤

P
(T − t)(P − PT ), (11)

Λ(t) = Pe−AP (T − t)
(

In − Y (P − PT )
)

+ (P Y − In) e
A⊤

P
(T − t)(P − PT ), (12)

is the solution of RDP(Σ, PT ).

Proof: First, recall that sign-controllability of(A,B) guarantees that an unmixed solutionP

of CARE(Σ) exists. Moreover, in view of the absence of purely imaginary eigenvalues ofH,

P is also strongly unmixed, since�(AP )⊂ �(H). Let P be a strongly unmixed solution of

CARE(Σ), letAP be the corresponding closed-loop system matrix andY be the corresponding

solution of (10). By adapting the proof of Theorem 1 in [14], itis easy to see that the set of

trajectories of HDE(Σ) is parameterised inΦ,Ψ∈ℝ
n×n as

[

X(t)

Λ(t)

]

=

[

In

P

]

eAP t Φ +

[

Y

P Y − In

]

eA
⊤

P
(T−t)Ψ. (13)

By imposing the boundary conditionsX(T )= In and Λ(T )=PT on (13), we find

Φ= e−AP T (Y PT −Y P + In) andΨ=P −PT . Thus, the correspondingX(t) andΛ(t) are

given by (11) and (12). Hence, in view of Theorem 1,X(t) is invertible for allt∈ (−∞, T ],

andP (t)=Λ(t)X−1(t) is the solution of RDP(Σ, PT ).

Remark 2 Using the technique described in the proof of Theorem 2, it isalso possible to solve

the Riccati differential equation with an initial condition

P (0) = P0 = P⊤
0 ≥ 0 (14)

instead of the terminal condition (2). In this case it suffices to impose the boundary conditions

X(0)= In andΛ(0)=P0 on (13). This yieldsΦ = In − Y (P − P0) andΨ = e−A⊤

P
T (P − P0).
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The matrixP (t)=Λ(t)X−1(t), with

X(t) = eAP t

(

In − Y (P − P0)
)

+ Y e−A⊤

P
t(P − P0),

Λ(t) = P eAP t

(

In − Y (P − P0)
)

+ (P Y − In)e
−A⊤

P
t(P − P0)

is the solution of the Riccati differential equation (1) withthe initial condition (14). All the

other results that are presented in this paper on the solution of the Riccati differential equation

with terminal condition can be adapted in a similar way to thecase of an initial condition.

3.3 A sign-controllability form

When(A,B) is not sign-controllable, two important sign-controllability forms can be defined.

The first has the largest possible sign-controllable part. Let (A,B) be in the Kalman controlla-

bility form

A =

[

Au 0

Auc Ac

]

and B =

[

0

Bc

]

, (15)

where(Ac, Bc) is controllable. Consider a non-singular matrixT such thatT−1AuT is in Jor-

dan form, partitioned asT−1AuT = diag(A′
u
, A′′

u
). The Jordan blocks corresponding to the

eigenvalues ofAu are divided betweenA′
u

andA′′
u

according to the following rule:

i) the Jordan blocks corresponding to eigenvalues on the imaginary axis are placed inA′
u
;

ii) every Jordan blockB� corresponding to an eigenvalue� of Au such that−� is not an eigen-

value ofAu is included inA′′
u
;

iii) for each pair of eigenvalues(�,−�) of Au, we denote the corresponding Jordan blocks by

B� andB−�. If dim(B�) ≤ dim(B−�), we includeB� in A′
u

andB−� in A′′
u
; Otherwise,

we includeB−� in A′
u

andB� in A′′
u
.

In this way,A′′
u

has no pairs of eigenvalues in the form(�,−�), nor eigenvalues with zero real

part. Now, changing coordinates withU := diag(T, I) gives

U−1AU =

[

T−1AuT 0

AucT + Ac Ac

]

=

⎡

⎢

⎢

⎣

A′
u

0 0

0 A′′
u

0

A′
uc

A′′
uc

Ac

⎤

⎥

⎥

⎦

, U−1B =

⎡

⎢

⎢

⎣

0

0

Bc

⎤

⎥

⎥

⎦

, (16)

where[A′
uc

A′′
uc
] := AucT + Ac. The pair

([

A′′
u 0

A′′
uc Ac

]

,
[

0
Bc

])

is sign-controllable, since

(Ac, Bc) is controllable andA′′
u

has no mirrored pairs of eigenvalues with respect to the

imaginary axis, nor eigenvalues on the imaginary axis. Notice that this definition of sign-

controllability form provides a sign-controllable part with the largest possible size.
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Remark 3 Consider the matrix differential Riccati equation (1). Consider the change of co-

ordinate matrixTs that transforms the pair(A,B) into the sign-controllability form (or in the

controllability form). Define the new Popov tripleΣs characterised by the matricesT−1
s

ATs,

T−1
s

B, T⊤
s
QT , T⊤ S andR. It is easy to establish that, given a solutionPs(t) of RDE(Σs),

the matrixT−⊤
s

Ps(t)T
−1
s

is a solution of RDE(Σ), andvice-versa. Moreover, in order to obtain

the solutionP (t) of RDP(Σ) with boundary conditionP (T ) = PT , one can solve RDP(Σs) in

Ps(t), with boundary conditionPs(T ) = T⊤
s
PT Ts, and then setP (t) = T−⊤

s
Ps(t)T

−1
s

.

When(A,B) is not sign-controllable, but the nonsign-controllable part is unobservable from

the Popov matrix, a parameterisation of the solutions of HDE(Σ) based on the solutions of

standard algebraic equations can still be established. Let(A,B) be in the sign-controllability

form as constructed above, i.e.,

A =

[

Ar 0

Ars As

]

and B =

[

0

Bs

]

, (17)

where (As, Bs) is sign-controllable; letns be the order ofAs, and letnr := n − ns be

the dimension of the residual (i.e., nonsign-controllable) part. Let the nonsign-controllable

subsystem be unobservable from the Popov matrix, i.e.,Q andS are partitioned accordingly to

this basis asQ = diag(0nr×nr
, Qs) andS = [ 0nr×m S⊤

s
]⊤ andArs = 0. If the Hamiltonian

matrix referred to the sole sign-controllable part

Hs :=

[

As − BsR
−1 S⊤

s
−Bs R

−1 B⊤
s

−Qs + Ss R
−1 S⊤

s
−A⊤

s
+ Ss R

−1 B⊤
s

]

has no eigenvalues on the imaginary axis, a matrixPs and a matrixYs exist satisfying the

algebraic Riccati equation referred to the sole sign-controllable part

Ps As + A⊤
s
Ps − (Ss + Ps Bs)R

−1 (S⊤
s
+B⊤

s
Ps) +Qs = 0

and the corresponding closed-loop Lyapunov equation

APs
Ys + YsA

⊤
Ps

+ Bs R
−1B⊤

s
= 0, (18)

respectively, whereAPs
:= As − Bs R

−1 (S⊤
s
+B⊤

s
Ps). As such,P = diag(0nr×nr

, Ps) and

Y = diag(0nr×nr
, Ys) are the solutions of CARE(Σ) and of the corresponding closed-loop

Lyapunov equation referred to the complete system, respectively, as can be proved by means of

a simple substitution. By using these matrices in (13), we obtain a parameterisation of the set of

trajectories of HDE(Σ), and therefore the result established in Theorem 2 can still be applied in

this case usingP andY obtained above. The fact thatHs has no eigenvalues on the imaginary

axis is necessary to ensure that a solutionYs of (18) exists. Indeed, suppose by contradiction
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thatHs has an eigenvalue ati !, with ! ∈ ℝ. It follows thati ! is an eigenvalue ofAPs
, and,

as a consequence, it is an eigenvalue ofA⊤
Ps

, as well. Letv ∈ ℂ
n denote the eigenvector of

A⊤
Ps

corresponding to such eigenvalue, i.e.,APs
v = i ! v. Let Ys be a solution of (18). By

premultiplying and postmultiplying (18) byv∗ andv, respectively, we get

−i ! v∗ Ys v + v∗ Ys i ! v + v∗ Bs R
−1 B⊤

s
v = v∗ Bs R

−1 B⊤
s
v = 0,

which implies thatv lies in the null-space ofBs. Therefore,v lies in the null-space ofA⊤
s

,

as well, and this means thati ! is an uncontrollable eigenvalue of the pair(As, Bs). This is a

contradiction, since the pair(As, Bs) is sign-controllable.

3.4 Stabilisability

The case where the pair(A,B) is stabilisable is clearly included, as a particular case, under the

sign-controllability assumption. In this case, one can choose as strongly unmixed solution of

CARE(Σ) the stabilising solutionP+, and the result in Theorem 2 still applies withP = P+ and

AP = AP+. In the case where(A,B) is stabilisable, an alternative expression for the solution

of the RDE(Σ) and RDP(Σ, PT ) can be found by resorting to two elements of the lattice of all

symmetric solutions of the algebraic Riccati equation restricted to the sole controllable part.

This method has the remarkable computational advantage of reducing the order of the involved

algebraic Riccati equation, which, being the sole nonlinearmatrix equation to be solved in this

procedure, is the sole critical element in terms of numerical robustness, see e.g. [3].

Let ℛ be the reachable subspace from the origin, whose dimension is here denoted bync;

let nu :=n−nc. Consider a change of coordinate basis matrixTs such that its firstnc columns

spanℛ. In the new basis, matricesA,B are partitioned as in (15), whileQ andS are partitioned

as

Q =

[

Qu Quc

Q⊤
uc

Qc

]

and S =

[

Su

Sc

]

. (19)

The strongly unmixed solutionP+ of CARE(Σ) can be partitioned correspondingly as

P+ =

[

P+
u

P+
uc

(P+
uc
)⊤ P+

c

]

,

and it is easily seen thatP+
c

is a solution of the algebraic Riccati equation of the sole controllable

part

P+
c
Ac + A⊤

c
P+
c
− (Sc + P+

c
Bc)R

−1 (Sc + P+
c
Bc)

⊤ +Qc = 0. (20)
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On the other hand, since the pair(Ac, Bc) appearing in (20) is controllable, the ARE (20)

admits an anti-stabilising solutionP−
c

, such that�(A
P

+
c
) = −�(A

P
−
c
). Moreover, the gap

matrixΔc := P+
c
− P−

c
is positive definite, and therefore invertible.

Define also the twon×n matricesA★ andP ★ as

A★ :=

[

−A⊤
u

−Q⊤
uc
+ Su R

−1S⊤
c
− A⊤

uc
P−
c
+ SuR

−1B⊤
c
P−
c

0 Ac −Bc R
−1 (B⊤

c
P−
c
+ S⊤

c
)

]

(21)

andP ★ := diag(Inu
, P−

c
). Finally, letJ := diag(0nu×nu

, Inc
).

Theorem 3 Assume that(A,B) is stabilisable andH has no eigenvalues on the imaginary

axis. The matrixP (t)=T−⊤
s

Λ(t)X−1(t)T−1
s

, with

X(t) = eAP+ t Φ̂ + J eA
★ (t−T ) Ψ̂ (22)

Λ(t) = P+ eAP+ t Φ̂ + P ★ eA
★ (t−T ) Ψ̂ (23)

where

Φ̂ := e−A
P+ T

(

In +

[

0 0

0 Δ−1
c

]

(T⊤
s
PT Ts − P+)

)

(24)

and

Ψ̂ :=

[

Inu
−P+

uc
Δ−1

c

0 −Δ−1
c

]

(T⊤
s
PT Ts − P+) (25)

is the solution of RDP(Σ, PT ).

Proof: The functionsX, Λ : (−∞, T ] −→ ℝ
n×n defined by

[

X(t)

Λ(t)

]

=

[

In

P+

]

eAP+ t Φ +

[

J

P ★

]

eA
★ (t−T )Ψ (26)

represent a parameterisation of all the solutions of the Hamiltonian differential equation (3) in

Φ andΨ. This fact can be proved by direct substitution of (26) into HDE(Σ) written with all

submatrices ofH partitioned as in (15) and (19). Moreover, all the solutionsof the Hamiltonian

differential equation (3) can be expressed through (26) fora suitable choice ofΦ andΨ. In fact,

the images ofS1 := [ In P+ ]⊤ andS2 := [ J P ★ ]⊤ areH-invariant subspaces, since it can

be proved by direct substitution thatH S1 = S1 AP+ andH S2 = S2A
★. The eigenvalues ofH

restricted toimS1 coincide with the eigenvalues ofAP+, while the eigenvalues ofH restricted

to imS2 are the eigenvalues ofA★. However, from the discussion above it follows that the

eigenvalues ofAP+ and those ofA★ are opposite, i.e.,�(AP+) = −�(A★). As a result of this,

imS1 ∩ imS2 = {0}, which implies that (26) represents a set of2n2 linearly independent

10



trajectories of HDE(Σ). To find the solution of RDP(Σ, PT ), we need to find the matricesΦ

andΨ to be used in (26) so that (26) represents the solution of HDP(Σ, PT ). By imposing

the boundary conditions in (26) as indicated in Remark 3, we get eAP+ T Φ + J Ψ = In and

P+ eAP+ T Φ+P ★Ψ = T⊤
s
PT Ts. Matrix Φ can be computed from the first and substituted into

the second, to get

(P ★ − P J)Ψ = T⊤
s
PT Ts − P+. (27)

Matrix P ★ − P+ J can be written as

P ★ − P+ J =

[

Inu
−P+

uc

0 P−
c
− P+

c

]

,

and is easily seen to be invertible, and yields

Ψ =

[

Inu
−P+

uc
Δ−1

c

0 −Δ−1
c

]

(T⊤
s
PT Ts − P+).

By substition of this value ofΨ intoΦ = e−A
P+ T (In − J Ψ), we get (24).

4 Dropping the sign-controllablity assumption

As already observed, sign-controllability is a very weak and general system-theoretic assump-

tion. Nevertheless, this assumption could still result to be restrictive in some situations.

Therefore, in this section we show that some results can be extended even when the sign-

controllability assumption does not hold. In other terms, we investigate a further generalisation

of the results obtained for sign-controllable pairs can be achieved under milder assumptions, that

do not guarantee the existence of a solution of CARE(Σ) and of the corresponding Lyapunov

equation. To the best of the authors’ knowledge, sign-controllability is the weakest assumption

on the pair(A,B) for which CARE(Σ) is guaranteed to admit a symmetric solution. Therefore,

without the sign-controllability assumptions, CARE(Σ) might not admit a symmetric solution.

The parameterisation of the trajectories of HDE(Σ) involves the (strongly unmixed) solution of

the algebraic Riccati equation restricted to the sole sign-controllable part of the system. How-

ever, the sign-controllability form needed here must be constructed in a different way than that

presented in Section 3.3, as will become clear in Theorem 4.

Let (A,B) be in the Kalman controllability canonical form (15). DefineΛ := �(Au)∩�(−Au).

There existsT ∈ ℝ
n×n such thatT−1AuT = diag(A′

u
, A′′

u
) with �(A′

u
) = Λ. Changing coor-

dinates withU := diag(T, I) gives (16) where, again, the pair
([

A′′
u 0

A′′
uc Ac

]

,
[

0
Bc

])

is sign-

controllable. Notice that, differently from the sign-controllability form introduced in Section

11



3.3, in this case for each pair of uncontrollable eigenvalues the corresponding Jordan blocks

B� andB−� are both placed in the nonsign-controllable part. Hence, the size of the resulting

sign-controllable part is smaller than that obtained usingthe sign-controllability form as defined

in Section 3.3. Now, let the pair(A,B) be in this second sign-controllability form,

A =

[

Ar 0

Ars As

]

and B =

[

0

Bs

]

,

where the pair(As, Bs) is sign-controllable, and letQ andS be partitioned accordingly, i.e.,

Q =

[

Qr Qrs

Q⊤
rs

Qs

]

and S =

[

Sr

Ss

]

. (28)

Moreover, defineFsr := Ars − BsR
−1S⊤

r
, Fss := As − BsR

−1S⊤
s

, Gr := −Qr + SrR
−1S⊤

r
,

Gs := −Qs + SrR
−1S⊤

s
, Grs = −Qrs + SsR

−1S⊤
s

andV := −Bs R
−1 B⊤

s
. With respect to

this basis, the Hamiltonian differential equation can be written as
⎡

⎢

⎢

⎢

⎢

⎣

Ẋr(t)

Ẋs(t)

Λ̇r(t)

Λ̇s(t)

⎤

⎥

⎥

⎥

⎥

⎦

= H̄

⎡

⎢

⎢

⎢

⎢

⎣

Xr(t)

Xs(t)

Λr(t)

Λs(t)

⎤

⎥

⎥

⎥

⎥

⎦

, where H̄ =

⎡

⎢

⎢

⎢

⎢

⎣

Ar 0 0 0

Fsr Fss 0 V

Gr Gs −A⊤
r

−F⊤
sr

G⊤
s

Grs 0 −F⊤
ss

⎤

⎥

⎥

⎥

⎥

⎦

.

In the former, the time varying matricesX(t) andΛ(t) have been partitioned according to the

sign-controllability form. The Hamiltonian matrixHs referred to the sole sign-controllable part

is

Hs =

[

Fss V

Grs −F⊤
ss

]

.

In the next theorem, it is shown that ifAr andHs have no common eigenvalues, and ifHs

has no eigenvalues on the imaginary axis, a characterisation of the solutions of HDE(Σ) is

still possible. Notice that if instead of the sign-controllability form defined in this section we

used that presented in Section 3.3, for each pair(�,−�) of uncontrollable eigenvalues, the

corresponding Jordan blocksB� andB−� would be divided between the sign-controllable and

the nonsign-controllable part. As a result, the sign-controllable part would have uncontrollable

eigenvalues that are opposite in sign to some nonsign-controllable eigenvalues. However, since

uncontrollable eigenvalues and their opposites are also eigenvalues of the Hamiltonian matrix,

it follows that the spectrum of the Hamiltonian matrix of thesign-controllable partHs would

include the pair(�,−�), and therefore it would end up having eigenvalues in common with the

nonsign-controllable partAr. As a result, the Sylvester equations used in the next theorem to

construct the parameterisation of the trajectories of HDE(Σ) would not be guaranteed to admit

solutions.
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Theorem 4 Let the Popov triple be in the second sign-controllability form, as defined in this

section. Assume�(Ar)∩ �(Hs) = ∅ and thatHs has no eigenvalues on the imaginary axis. Let

U1, U2 ∈ ℝ
nr×ns be given by the solution of the Sylvester equation

A⊤
r

[

U1 U2

]

+
[

U1 U2

]

Hs =
[

Gs −F⊤
sr

]

, (29)

and letU3, U4 ∈ ℝ
nr×ns be given by the solution of the Sylvester equation

−A⊤
r

[

U3 U4

]

+
[

U3 U4

]

H⊤
s
= −

[

F⊤
sr

Gs

]

. (30)

The set of trajectories originating from HDE(Σ) is parameterised inΓ ∈ ℝ
2nr×n, Φ ∈ ℝ

ns×n

andΨ ∈ ℝ
ns×n as

⎡

⎢

⎢

⎢

⎢

⎣

Xr(t)

Xs(t)

Λr(t)

Λs(t)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

0 Inr

0 U⊤
3

Inr
U

0 U⊤
4

⎤

⎥

⎥

⎥

⎥

⎦

e

[

−A⊤
r Ξ

0 Ar

]

t

Γ+

⎡

⎢

⎢

⎢

⎢

⎣

0

Ins

U1+U2 P

P

⎤

⎥

⎥

⎥

⎥

⎦

eAP tΦ+

⎡

⎢

⎢

⎢

⎢

⎣

0

Y

U1Y +U2(PY −Ins
)

PY −Ins

⎤

⎥

⎥

⎥

⎥

⎦

eA
⊤

P
(T−t)Ψ

(31)

whereΞ := −U1 Fsr +Gr − U2 G
⊤
s

andU := U1 U
⊤
3 + U2 U

⊤
4 .

Proof: We construct three changes of coordinates for the Hamiltonian differential equation,

in order to obtain a block-diagonal structure forH. Since�(Ar) ∩ �(Hs) = ∅, the Sylvester

equation (29) admits a unique solution
[

U1 U2

]

. Consider the non-singular matrix

T1 =

⎡

⎢

⎢

⎢

⎢

⎣

Inr
0 0 0

0 0 Ins
0

0 Inr
U1 U2

0 0 0 Ins

⎤

⎥

⎥

⎥

⎥

⎦

, so that T−1
1 =

⎡

⎢

⎢

⎢

⎢

⎣

Inr
0 0 0

0 −U1 Ins
−U2

0 Inr
0 0

0 0 0 Ins

⎤

⎥

⎥

⎥

⎥

⎦

.

By taking (29) into account, we get

H1 := T−1
1 H̄ T1 =

⎡

⎢

⎢

⎢

⎢

⎣

Ar 0 0 0

Ξ −A⊤
r

0 0

Fsr 0 Fss V

G⊤
s

0 Grs −F⊤
ss

⎤

⎥

⎥

⎥

⎥

⎦

,

whereΞ := −U1 Fsr + Gr − U2 G
⊤
s

. Since�(Ar) ∩ �(Hs) = ∅, the Sylvester equation (30)

admits a unique solution
[

U3 U4

]

. Consider the non-singular matrix

T2 =

⎡

⎢

⎢

⎢

⎢

⎣

0 Inr
0 0

Inr
0 0 0

0 U⊤
3 Ins

0

0 U⊤
4 0 Ins

⎤

⎥

⎥

⎥

⎥

⎦

, so that T−1
2 =

⎡

⎢

⎢

⎢

⎢

⎣

0 Inr
0 0

Inr
0 0 0

−U⊤
3 0 Ins

0

−U⊤
4 0 0 Ins

⎤

⎥

⎥

⎥

⎥

⎦

.
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The new change of coordinates overH1 yields

H2 = T−1
2 H1 T2 =

⎡

⎢

⎢

⎢

⎢

⎣

−A⊤
r

Ξ 0 0

0 Ar 0 0

0 0 Fss V

0 0 Grs −F⊤
ss

⎤

⎥

⎥

⎥

⎥

⎦

,

which is block-diagonal. A further change of coordinates isperformed using

T3 =

⎡

⎢

⎢

⎢

⎢

⎣

0 Inr
0 0

Inr
0 0 0

0 0 Ins
0

0 0 0 Ins

⎤

⎥

⎥

⎥

⎥

⎦

, so that H3 = T−1
3 H2 T3 =

⎡

⎢

⎢

⎢

⎢

⎣

Ar 0 0 0

Ξ −A⊤
r

0 0

0 0 Fss V

0 0 Grs −F⊤
ss

⎤

⎥

⎥

⎥

⎥

⎦

,

The submatrix in the right-bottom ofH3 is exactlyHs. Now, consider the Hamiltonian differ-

ential equation in this new basis:
⎡

⎢

⎢

⎢

⎢

⎣

Ẋ1(t)

Λ̇1(t)

Ẋ2(t)

Λ̇2(t)

⎤

⎥

⎥

⎥

⎥

⎦

= H3

⎡

⎢

⎢

⎢

⎢

⎣

X1(t)

Λ1(t)

X2(t)

Λ2(t)

⎤

⎥

⎥

⎥

⎥

⎦

,

where
⎡

⎢

⎢

⎢

⎢

⎣

Xr(t)

Xs(t)

Λr(t)

Λs(t)

⎤

⎥

⎥

⎥

⎥

⎦

= T1 T2 T3

⎡

⎢

⎢

⎢

⎢

⎣

X1(t)

Λ1(t)

X2(t)

Λ2(t)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

X1(t)

U⊤
3 X1(t) +X2(t)

U X1(t) + Λ1(t) + U1 X2(t) + U2 Λ2(t)

U⊤
4 X1(t) + Λ2(t)

⎤

⎥

⎥

⎥

⎥

⎦

.

Since the pair(As, Bs) is sign-controllable andHs has no eigenvalues on the imaginary axis,

we can compute the strongly unmixed solution of the sole sign-controllable partP , the closed-

loop matrix and the solution of the corresponding closed-loop Lyapunov equationAP andY ,

respectively. Hence, due to the block-diagonal structure of H3, the parameterisation of the

solutions of the Hamiltonian differential equation in the new basis is decoupled as
⎡

⎢

⎢

⎢

⎢

⎣

X1(t)

Λ1(t)

X2(t)

Λ2(t)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

Inr
0

0 Inr

0 0

0 0

⎤

⎥

⎥

⎥

⎥

⎦

e

[

−A
⊤

r
Ξ

0 Ar

]

t

Γ +

⎡

⎢

⎢

⎢

⎢

⎣

0

0

Ins

P

⎤

⎥

⎥

⎥

⎥

⎦

eAP t Φ +

⎡

⎢

⎢

⎢

⎢

⎣

0

0

Y

PY − Ins

⎤

⎥

⎥

⎥

⎥

⎦

eA
⊤

P
(T−t)Ψ.

Writing this equation with respect to the original basis gives (31).

Our aim is now to show how the result established in Theorem 4 can be exploited to find

a representation of the solution of the Riccati differentialequation with terminal condition

RDP(Σ, PT ). The solution to this problem is given in the following theorem.
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Theorem 5 LetTs be a change of basis matrix that transforms the pair(A,B) into the second

sign-controllability form as defined in Section 4, and let matricesQ andS be partitioned as in

(28). Assume�(Ar) ∩ �(Hs) = ∅ and thatHs has no eigenvalues on the imaginary axis. Let

U1, U2, U3, U4 ∈ ℝ
nr×ns, be the solutions of (29) and (30), respectively. Let

⎡

⎢

⎢

⎢

⎢

⎣

Xr(T )

Xs(T )

Λr(T )

Λs(T )

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

Mr

Ms

Nr

Ns

⎤

⎥

⎥

⎥

⎥

⎦

, where

[

Mr

Ms

]

= In and

[

Nr

Ns

]

= T⊤
s
Ps Ts. (32)

The solutionP (t) of RDP(Σ) is given by

P (t) = T−⊤
s

[

Λr(t)

Λs(t)

][

Xr(t)

Xs(t)

]−1

T−1
s

,

whereXs(t), Xr(t), Λs(t) andΛr(t) are given by (31) with
⎡

⎢

⎢

⎢

⎢

⎣

Φ

Ψ

Γ1

Γ2

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

e−AP T (I − Y P ) e−AP T Y 0 0

P −I 0 0

U1 (U1+U2 P )(I−Y )+U2 −Ω− eAr T U eAr T

0 0 e−Ar T 0

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

Ms − U⊤
3 Mr

Ns − U⊤
4 Mr

Mr

Nr

⎤

⎥

⎥

⎥

⎥

⎦

.

Proof: Consider HDP(Σ, PT ), and consider the change of coordinate matrixTs that takes the

original Popov triple into the second sign-controllability form. By imposing (32) onXr andXs

in (31) we obtain
[

Xr(T )

Xs(T )

]

=

[

0 I

0 U⊤
3

]

e

[

−A⊤
r Ξ

0 Ar

]

T

[

Γ1

Γ2

]

+

[

0

Ins

]

eAP T Φ +

[

0

Y

]

Ψ =

[

Mr

Ms

]

.

By partitioninge

[

−A⊤
r Ξ

0 Ar

]

T

as

[

e−A⊤
r T Ω

0 eAr T

]

we obtain the two equations

[

eAr TΓ2

U⊤
3 e

Ar TΓ2 + eAP T Φ + Y Ψ

]

=

[

Mr

Ms

]

,

which lead toΓ2 = e−Ar TMr and

[

eAP T Y
]

[

Φ

Ψ

]

= Ms − U⊤
3 Mr. (33)

By imposing the boundary condition onΛr andΛs in (31) we obtain
[

Λr(T )

Λs(T )

]

=

[

I U

0 U⊤
4

][

e−A⊤
r T Ω

0 eAr T

][

Γ1

Γ2

]

+

[

U1 + U2 P

P

]

eAP TΦ

+

[

U1 Y + U2(P Y − I)

P Y − I

]

Ψ =

[

Nr

Ns

]
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which leads to
[

e−Ar TΓ1 + (Ω + U eAr T )Γ2 + (U1 + U2 P )eAP TΦ + [U1 Y + U2(P Y − I)]Ψ

U⊤
4 e

Ar TΓ2 + P eAP TΦ + (PY − I)Ψ

]

=

[

Nr

Ns

]

The first block-equation enablesΓ1 to be computed given the values ofΦ,Ψ andΓ2. The second

gives

P eAP T Φ + (P Y − I)Ψ = Ns − U⊤
4 Mr. (34)

From (33) and (34) we obtain
[

eAP T Y

P eAP T P Y − I

][

Φ

Ψ

]

=

[

Ms − U⊤
3 Mr

Ns − U⊤
4 Mr

]

. (35)

The Schur complement of the first matrix on the left hand side(PY − I)−P eAP T e−AP T Y =

−I is invertible. As such, (35) can be inverted:

[

Φ

Ψ

]

=

[

eAP T Y

P eAP T P Y − I

]−1 [

Ms − U⊤
3 Mr

Ns − U⊤
4 Mr

]

=

[

e−AP T (I − Y P ) e−AP T Y

P −I

][

Ms − U⊤
3 Mr

Ns − U⊤
4 Mr

]

and

Γ1 = eAr T
(

Nr − (Ω e−Ar T + U)Mr + (U1 + U2 P ) eAP TΦ + [U1 Y + U2(P Y − I)] Ψ
)

= eAr T
(

Nr − (Ω e−Ar T + U)Mr + U1 (Ms − U⊤
3 Mr)

+(U1 + U2 P − U1 Y − U2 P Y + U2)(Ns − U⊤
4 Mr)

)

.

5 Applications to LQ optimal control

In this section, we investigate how the material developed in this paper, and in particular in

Section 4, can be utilised to solve very general LQ optimal control problems. In particular,

in [14] it was shown how to use parameterised expressions of the trajectories generated by the

Hamiltonian differential equation to solve the most general form of LQ optimal control problem

with affine constraints on the state vector at the end points and with a quadratic performance

index; in [14] this very general problem is tackled under theassumption of sign-controllability.

Here we show how to use the results of Section 4 to cases where the pair(A,B) might not
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be sign-controllable. For the sake of argument, however, here we restrict our attention to the

so-called fixed end-point LQ problem. Consider the LTI state differential equation

ẋ(t) = Ax(t) + B u(t), (36)

where, for allt≥ 0, x(t)∈ℝ
n is the state,u(t)∈ℝ

m is the control input. Moreover, it is required

that

x(0) = x̄0 ∈ ℝ
n. (37)

x(T ) = x̄T ∈ ℝ
n. (38)

The problem here is to find a measurableu(t), t∈ [0, T ), and an absolutely continuousx(t),

t∈ [0, T ], minimising the quadratic performance index

J(x, u) :=

∫

T

0

[

x⊤(t) u⊤(t)
]

Π

[

x(t)

u(t)

]

dt, (39)

under the constraints (36) and (37-38). We show how the result in Theorem 4 can be utilised

to the end of constructing the optimal control law. For the sake of simplicity, we consider the

system to be already in the sign-controllable form, so that no preliminary coordinate changes

are needed. Ifu(t) andx(t) are optimal for the fixed end-point LQ problem, then a costate

function�(t)∈ℝ
n exists such thatx(t), �(t) andu(t) satisfy for allt∈ [0, T ) the following set

of equations:
[

ẋ(t)

�̇(t)

]

=

[

A−BR−1 S⊤ −BR−1 B⊤

−Q+ S R−1 S⊤ −A⊤ + S R−1B⊤

][

x(t)

�(t)

]

, (40)

u(t) = −R−1
(

S⊤ x(t) + B⊤ �(t)
)

, (41)

x(0) = x̄0, (42)

x(T ) = x̄T , (43)

These equations follow as a particular case of those in [14, Lemma 1]. Equation (40) differs

from the Hamiltonian differential equation (3) only for thedimension of the unknown vector.

As such, the set of all the trajectories satisfying (40) is given by (31), where nowΦ, Ψ andΓ

are vectors. By partitioninḡx0 =
[

x̄⊤
r0 x̄⊤

s0

]⊤

andx̄T =
[

x̄⊤
rT

x̄⊤
sT

]⊤

conformably with

the sign-controllability form, by imposing (42-43) on (40)we get
[

Γ2

U⊤
3 Γ2 + Φ+ Y eA

⊤

P
TΨ

]

=

[

x̄r0

x̄s0

]

and
[

eAr TΓ2

U⊤
3 e

Ar TΓ2 + eAP TΦ + Y Ψ

]

=

[

x̄rT

x̄sT

]
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By eliminatingΓ2 from these two equations we obtain the conditionx̄rT = eAr T x̄r0, which

is not surprising. In fact, the fixed end-point problem can besolved only if the nonsign-

controllable part of the state, which is obviously also uncontrollable, reaches the targetx̄rT

starting from the initial valuēxr0 by itself. The remaining equations lead to the linear relation
[

I Y eA
⊤

P
T

eAP T Y

][

Φ

Ψ

]

=

[

x̄s0 − U⊤
3 x̄r0

x̄sT − U⊤
3 x̄r0

]

(44)

which cannot be inverted in general. In fact, within the sign-controllable subsystem there are in

general uncontrollable modes. Therefore, the fact that theconditionx̄rT = eAr T x̄r0 is satisfied

does not guarantee that the fixed end-point LQ problem admitssolutions, because there are

other uncontrollable modes in the sign-controllable part.Therefore, the2n × 2n matrix in the

left-hand side of (44) is not invertible in general. Hence, the other condition that needs to be

satisfied for the LQ problem to be solvable is that
[

x̄s0 − U⊤
3 x̄r0

x̄sT − U⊤
3 x̄r0

]

∈ im

[

I Y eA
⊤

P
T

eAP T Y

]

.

If this condition holds true, the remaining parametersΦ andΨ can be determined by pseudo-

inversion of (44). These values ofΦ, Ψ, Γ2 (and with arbitraryΓ1) can be used in (31), which

at that point provides the trajectory of (40) satisfying (42) and (43). Then, the state and costate

can be replaced in (41) to provide a control law which is optimal for the LQ control problem

at hand, sincex(t), �(t) andu(t) satisfy all the necessary and sufficient conditions required to

guarantee optimality.

Concluding remarks

The formulae established in this paper for the solution of the matrix Riccati differential equation,

which generalise those proposed so far in the literature, can be used to extend the analysis of

finite escape time of the solution of the Riccati differentialequation carried out in [4, p.1240].

Moreover, important properties of the dynamic behaviour ofthe solution of RDE(Σ), such as

convergence and mechanisms of attraction, which have been studied in the literature under the

assumptions of controllability and stabilisability, can be generalised using the results presented

here.
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