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Abstract 
This paper studies the reduced-order or full-order, dead-beat observer problem 
for a class of nonlinear systems, linear in the unmeasured states. A novel hybrid 
observer design strategy is proposed, with the help of the notion of strong 
observability in finite time. The proposed methodology is applied to a batch 
reactor, for which a hybrid dead-beat observer is obtained in the absence of the 
precise measurements of the concentration variables. Moreover, the observer is 
used for the estimation of the frequency of a sinusoidal signal. The results show 
that accurate estimations can be provided even if the signal is corrupted by high 
frequency noise.  
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1. Introduction 
 
The observer problem occupies an important place in mathematical control theory. It is concerned with the estimation 
of unmeasured states of a dynamic control system using the information of inputs and outputs. There is a vast 
literature on the problems of existence and design of observers (see for instance 
[1,2,4,5,6,7,10,11,13,16,17,20,27,28,31,32] and references therein). In this work we focus on nonlinear systems of the 
form: 
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where knO +ℜ⊆  is an open set, mU ℜ⊆  is a non-empty closed set, },...,1,,),({),( , njiuyauyA ji ==  and all 

mappings ℜ→×Ω Ua ji :,  ( nji ,...,1, = ), nUb ℜ→×Ω: , ℜ→Ω:, jic   ( njki ,...,1,,...,1 == ) and 

ℜ→×Ω Ufi :  ( ki ,...,1= ) are locally Lipschitz, where }),(:{ Oyxthatsuchxy k ∈∃ℜ∈=Ω . It is assumed that 
the component of the state vector y , also known as the output, is available for the feedback design and that the 
remaining state component x  is unmeasured and is to be estimated.  
 
      Systems of the form (1.1) are termed as “systems linear in the unmeasured state components” in the literature (see 
[3,8,9,22,23,24]). The dynamic output feedback stabilization problem has been studied extensively in the past for this 
class of systems in [3,8,9,22,23,24]. Exponential observers for systems linear in the unmeasured state components 
were provided in [4], under a persistency of excitation condition. It should be noted that systems of the form (1.1) are 
related to systems with output dependent incremental rate. For systems with output dependent incremental rate the 
dynamic high-gain approach was exploited in [25] for the solution of the output feedback stabilization problem.  
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       The purpose of the present work is to study the observability properties of systems linear in the unmeasured state 
components and to propose a novel observer design procedure that guarantees features which cannot be provided by 
conventional observers: we propose hybrid observers which provide exact estimation of the unmeasured state 
components in finite time (dead-beat observers). Moreover, we consider the general case where the system evolves in 
an open set O  and not in kn+ℜ : this generality allows us to study interesting applications (see Section 3). It should 
be noted that hybrid observers were recently proposed in [5] as well. Moreover, dead-beat observers have been 
proposed in the literature for linear systems:  
 

• by means of sliding modes (see [11,17,18]), 
 
• by means of delays (see [7]). 

 
The approach of using delays for the observer design was exploited in [20] for a special class of nonlinear systems 
(with nonlinear output injection terms). High-gain techniques were utilized in [6,28] for the design of semi-global 
finite-time observers for a class of nonlinear systems.  
 
     In Section 2 of the present work, we study the observability properties of system (1.1). The notion of strong 
observability is introduced for general nonlinear systems. Conditions for the construction of inputs which do not 
distinguish between events in finite time (see [30]) for system (1.1) are proposed. Then, it is shown that under strong 
observability in time 0>r  for system (1.1), it is possible to construct a deterministic system )(Σ  with states 

Otz ∈)(  and inputs Ω→ℜ+:y , Uu →ℜ+:  so that  
 

))(),(()( tytxtz = , for all rt ≥                                                            (1.2) 
 
The proposed observer )(Σ  is a hybrid system which uses delays: the history of the output is utilized in order to 
estimate the state component x  of system (1.1). For the overall system (1.1) with )(Σ  the classical semigroup 
property does not hold: however, the weak semigroup property holds (see [14,15]). Also, the overall system (1.1) with 

)(Σ  is autonomous in the sense described in [14,15]. The proposed hybrid observer relies on the minimization of an 

appropriate 2L  norm and is methodologically close to the procedure used for optimization-based observers (see [1] 
and references therein). 
 
    Finally, in Section 3 of the present work applications are presented for the proposed hybrid, dead-beat observer: 
 

1. The first application was inspired by the example presented in [27]. The application deals with the operation 
of a batch reactor, where the temperature is continuously measured. However, in practice it is often very 
difficult to obtain accurate measurements of the concentrations of the reactants. Moreover, accurate 
estimates of the concentrations of the reactants are needed in short time, because such systems are not left to 
operate for large times (see [19]). The application of the proposed hybrid, dead-beat observer can provide 
exact estimates of the concentrations of the reactants in finite time.  

 
2. The second application deals with the estimation of the frequency of a sinusoidal signal. The problem was 

recently studied in [26] (see also [12,21]). It is shown that the proposed hybrid, dead-beat observer provides 
robust estimation of the frequency of the measured signal. Indeed, the observer is tested in the presence of 
high frequency noise and exactly the same test of robustness with the one in [26] is performed. The results 
show that the sensitivity to measurement noise decreases as the time horizon of the minimized 2L  norm 
increases, i.e., as the length of the history of the output which is utilized for the state estimation increases. 
This feature is expected and it is common to optimization-based observers (see [1] and references therein). 

 
 
Notations Throughout this paper we adopt the following notations:  
∗  Let ),0[: +∞=ℜ⊆ +I  be an interval. By  );( UI∞L  ( );( UIloc

∞L ) we denote the space of measurable and (locally) 

essentially bounded functions )( ⋅u  defined on I  and taking values in mU ℜ⊆ . 

∗  By  );(0 ΩAC , we denote the class of continuous functions on A , which take values in Ω . 

∗  For a vector nx ℜ∈  we denote by x′  its transpose and by x  its Euclidean norm. The determinant of a square 

matrix nnA ×ℜ∈  is denoted by )det(A . mnA ×ℜ∈′  denotes the transpose of the matrix nmA ×ℜ∈ .  
∗  By ),...,,( 21 nllldiagA =  we mean a diagonal matrix with nlll ,...,, 21  on its diagonal.  
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2. Hybrid Dead-Beat Observer Design 
 
Consider an autonomous system described by ordinary differential equations of the form: 
 

mn UtuDtx
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))(),(()(&
                                                             (2.1) 

 
where nD ℜ⊆  is an open set, mU ℜ⊆  is a non-empty closed set and the mapping nUDF ℜ→×:  is locally 
Lipschitz. The output of system (2.1) is given by 
 

))(()( txhty =                                                                                   (2.2) 
 
where the mapping kDh ℜ→:  is continuous. For system (2.1) we adopt the following notion of observability. We 
assume that for every Dx ∈0  and );( Uu loc +

∞ ℜ∈L  there exists a unique solution Duxtxtxt ∈=→∋+∞ );,()(),0[ 0  
for (2.1) satisfying (2.1) for almost every 0≥t  and 00 );,0()0( xuxxx == . 
 
Definition 2.1: Consider system (2.1) with output (2.2). We say that the input )];,0([ Uru ∞∈L  strongly distinguishes 
the state Dx ∈0  in time 0>r , if the following condition holds  
 

0));,(());,((max 0
],0[

>−
∈

utxhuxtxh
rt

ξ , for all D∈ξ  with ξ≠0x                                     (2.3) 

 
Remark 2.2: It is clear that Definition 2.1 implies that if the input )];,0([ Uru ∞∈L  strongly distinguishes the state 

Dx ∈0  in time 0>r  then for every D∈ξ  with ξ≠0x  the input )];,0([ Uru ∞∈L  distinguishes between the 
events )0,( 0x  and )0,(ξ  (see [30]).  
 
For system (1.1) we assume that for every Oyx ∈),( 00  and );( Uu loc +

∞ ℜ∈L  there exists a unique solution 
Ouyxtyuyxtxtytxt ∈=→∋+∞ ));,,(),;,,(())(),((),0[ 0000  for (1.1) satisfying (1.1) for almost every 0≥t  and 

),());,,0(),;,,0(())0(),0(( 000000 yxuyxyuyxxyx == .  
 
Denote by );,,( 00 uyxtΦ  the transition matrix of the linear time-varying system )())(),(()( txtutyAtx =&  

corresponding to given inputs );( Uu loc +
∞ ℜ∈L  and );,,()( 00 uyxtyty =  for 0≥t . Then the following fact holds for 

the solutions of system (1.1). It follows directly from integration of the differential equations (1.1). 
 
Fact I: For every Oyx ∈),( 00  and )];,0([ Uru ∞∈L  the following equations hold for all 0≥t : 
 

);,,();,,();,,( 0000000 uyxtxuyxtuyxtx θ+Φ=                                                (2.4) 
 

00000 );,,();,,( xuyxtquyxtp ′=                                                              (2.5) 
 
where 

∫Φ′=
t

dsuyxsCuyxsuyxtq
0

000000 );,,();,,(:);,,(                                              (2.6) 

 

∫ −ΦΦ=
t

duuyxybuyxuyxtuyxt
0

0000
1

0000 ))(),;,,(();,,();,,(:);,,( ττττθ                          (2.7) 
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It is important to note at this point that all expressions involved in (2.4)-(2.9) can be evaluated by means of the output 
trajectory );,,()( 00 uyxyy ττ =  for ],0[ t∈τ  and the input )(τu  for ],0[ t∈τ . For example, the transition matrix 

);,,( 00 uyxtΦ  can be evaluated by solving the linear matrix differential equation )())(),(()( ττττ
τ

Φ=Φ uyA
d
d  for 

],0[ t∈τ  with initial condition I=Φ )0( , where I  denotes the identity matrix. Similarly, );,,(:)( 00 uyxCC ττ =  is 
simply },...,1,,...,1,))(({:)( , njkiycC ji ===′ ττ  for ],0[ t∈τ  and );,,()( 00 uyxtt θθ =  can be computed by 

solving the linear system of differential equations ))(),(()())(),(()( τττθτττθ
τ

uybuyA
d
d

+=  for ],0[ t∈τ  with 

initial condition nℜ∈= 0)0(θ . Finally, the differential equations )()()( τττ
τ

Cq
d
d

Φ′=  and 

( ) )()())(),((,,))(),(()( 1 τθττττττξ
τ

Cuyfuyf
d
d

k ′+′= K , for ],0[ t∈τ  can be utilized to provide the quantities 

);,,()( 00 uyxtqtq =  and )()0()();,,( 00 tytyuyxtp ξ−−= . 
 
     The following proposition provides characterizations of the class of inputs )];,0([ Uru ∞∈L  which strongly 
distinguish the state Oyx ∈),( 00  in time 0>r  for system (1.1). The basic idea of Proposition 2.3 is the conversion 

of the observability property to the minimization of an appropriate 2L  norm. Therefore our approach is close to the 
procedure used for optimization-based observers (see [1] and references therein). The proof of the following 
proposition is postponed to the Appendix. 
 
 
Proposition 2.3: Consider system (1.1). The following statements are equivalent: 
 
(a)  The input )];,0([ Uru ∞∈L  strongly distinguishes the state Oyx ∈),( 00  in time 0>r .  
 
(b) The problem 

∫ ′−
∈

r

yB
dtuyxtquyxtp

0

2
0000)(

);,,();,,(min
0

ξ
ξ

                                                        (2.10) 

 
where { }OyyB n ∈ℜ∈= ),(::)( 00 ξξ , admits the unique solution 0x=ξ . 

 
(c) The symmetric matrix 

∫ ′=
r

dtuyxtquyxtquyxrQ
0

000000 );,,();,,(:);,,(                                                     (2.11) 

 
is positive definite. Moreover, it holds that 

 

 ∫−=
r

dtuyxtpuyxtquyxrQx
0

000000
1

0 );,,();,,();,,(                                                 (2.12) 

 
(d) The following implication holds: 
 

nrtuyxtq ℜ∈=⇒∈∀=′ 0],0[,0);,,( 00 ξξ                                                      (2.13) 
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Remark 2.4: Suppose that 1=k  and that the input )];,0([ Uru ∞∈L  does not strongly distinguish the state 

Oyx ∈),( 00  in time 0>r  for system (1.1). The equivalence (a)⇔ (d) shows that there exists nℜ∈ξ , 0≠ξ   such 

that 0);,,( 00 =′ ξuyxtq  for all ],0[ rt∈ . It follows that 0);,,();,,();,,( 000000 =Φ′=′ ξξ uyxtuyxtCuyxtq
dt
d , for 

all ],0[ rt∈ . Consequently, we obtain:  
 

0

);,,();,,(

);,,();,,(
);,,();,,(

det

001001

001001

0000

=

⎟
⎟
⎟
⎟
⎟
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⎥
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⎢
⎢
⎢

⎣
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−− uyxtuyxtC

uyxtuyxtC
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nn

M
, for all ],0[,...,, 11 rttt n ∈−                            (2.14) 

 
Thus, we obtain the following corollary. 
 
Corollary 2.5: Consider system (1.1) with 1=k  and let Oyx ∈),( 00 , )];,0([ Uru ∞∈L  for which there exist 

],0[,...,, 11 rttt n ∈−  such that:  

0

);,,();,,(

);,,();,,(
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001001

001001
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⎟
⎟
⎟
⎟
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⎥
⎥
⎥

⎦

⎤
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⎢
⎢
⎢

⎣

⎡

Φ′

Φ′
Φ′

−− uyxtuyxtC

uyxtuyxtC
uyxtuyxtC

nn

M
                                           (2.15) 

 
Then the input )];,0([ Uru ∞∈L  strongly distinguishes the state Oyx ∈),( 00  in time 0>r . Moreover, the 
symmetric matrix );,,( 00 uyxrQ  defined by (2.11) is positive definite and (2.12) holds.  
 
It is convenient to exploit condition (2.14) in order to inputs which do not strongly distinguish the state Oyx ∈),( 00  
in time 0>r . The following example illustrates the use of (2.14). 
 
Example 2.6: Consider the system  
 

ℜ∈ℜ∈ℜ∈=

++=
=
=

)(,)(,))(),(()(

)())(()())(()()(
)())(()(

)())(()(

2
21

2211

222

111
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txtyctxtyctuty
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&

&

                                               (2.16) 

 
where ),0(: +∞→ℜic , ℜ→ℜ:ia , 2,1=i  are continuously differentiable functions. For system (2.16) we assume 

forward completeness for all );( ℜℜ∈ +
∞
locu L : for example, forward completeness can be guaranteed if the functions 

ℜ→ℜ:ia , 2,1=i  are bounded from above and the functions ),0(: +∞→ℜic , 2,1=i  satisfy a linear growth 
condition, i.e., ByAyci +≤)( , 2,1=i  for all ℜ∈y  and for certain constants 0, ≥BA . By virtue of Remark 2.4, if 

the input )];,0([ ℜ∈ ∞ ru L   does not strongly distinguish the state 3
00 ),( ℜ∈yx  in time 0>r  then the following 

condition must hold: 
 

( ) ));,,(()());,,(());,,((exp));,,(()( 00201
0

00200100102 uyxtycycdsuyxsyauyxsyauyxtycyc
t

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−∫ , 

for all ],0[ rt∈                                                                         (2.17) 
 
The reader should notice that in this case we have 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
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⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=Φ ∫∫

tt

dsuyxsyadsuyxsyadiaguyxt
0

002
0

00100 ));,,((exp,));,,((exp);,,( . Condition (2.17) coincides with 

condition (2.14) for 2=n , 01 =t . By differentiating (2.17) we obtain:  
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( ) 0));,,(());,,(();,,());,,(( 0020010000 =−+ uyxtyauyxtyauyxtyuyxty &κ , for almost all ],0[ rt∈      (2.18) 

 
where  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)(
)(

ln)(
2

1

yc
yc

dy
dyκ                                                                               (2.19) 

 
Moreover, using (2.16) and (2.17) with 2

0,20,10 ),( ℜ∈′= xxx , we obtain: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= ∫ )(

)(
));,,((exp));,,(()();,,(

02

01
0,10,2

0
00200200 yc

yc
xxdsuyxsyauyxtyctuuyxty

t

& , 

for almost all ],0[ rt∈                                                                             (2.20) 
 
If we further assume that 0)( ≠yκ , for all ℜ∈y , then we conclude from (2.18), (2.20) that: 
 

“If the input )];,0([ ℜ∈ ∞ ru L  does not strongly distinguish the state ℜ×ℜ∈ 2
00 ),( yx  in time 

0>r  with 2
0,20,10 ),( ℜ∈′= xxx  for system (2.16), then the input )];,0([ ℜ∈ ∞ ru L  satisfies 

for almost all ],0[ rt∈ : 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
= ∫ )(

)(
))((exp))((

))((
))(())((

)(
02

01
0,10,2

0
22

12

yc
yc

xxdssyatyc
ty

tyatya
tu

t

κ
                           (2.21) 

 
where ℜ→],0[: ry  is the solution of the initial value problem  

 

))((
))(())((

)( 12

ty
tyatya

ty
κ

−
=& , with 0)0( yy = ”                                                 (2.22) 

 
Therefore, condition (2.14) allowed us to construct inputs which do not strongly distinguish the state 3

00 ),( ℜ∈yx  

in time 0>r . Indeed, without additional hypotheses we cannot be sure that every input )];,0([ ℜ∈ ∞ ru L  will 

strongly distinguish every state 3
00 ),( ℜ∈yx  in time 0>r . For example, if there exists ℜ∈∗y  such that 

0)()( 21 == ∗∗ yaya  then the input 0,110,22 )()()( xycxycutu ∗∗∗ −−=≡  cannot distinguish between the state  

ℜ×ℜ∈= ∗∗ 2
0,20,10 ),,(),( yxxyx  and the state ℜ×ℜ∈= ∗∗ 2

21 ),,(),( yy ξξξ  with ( )10,1
2

1
0,22

)(
)(

ξξ −+=
∗

∗

x
yc
yc

x  : 

both states produce the same output response ∗≡ yty )(  when the constant input 

0,110,22 )()()( xycxycutu ∗∗∗ −−=≡  is applied.        <  
 
 
We next define the notion of strongly observable systems in time 0>r .  
 
 
Definition 2.7: Consider system (2.1) with output (2.2). We say that (2.1) is strongly observable in time 0>r  if every 
input )];,0([ Uru ∞∈L  strongly distinguishes every state Dx ∈0  in time 0>r .  
 
 
Remark 2.8: Proposition 2.3 guarantees that system (1.1) is strongly observable in time 0>r , if the symmetric 
matrix );,,( 00 uyxrQ  defined by (2.11) is positive definite for all Oyx ∈),( 00  and )];,0([ Uru ∞∈L . It is clear that 

observability for the linear time-invariant system BuAxx +=& , xcy ′= , where nx ℜ∈ , ky ℜ∈ , nnA ×ℜ∈ , 
mnB ×ℜ∈ , nkc ×ℜ∈  is equivalent to strong observability in time 0>r  for every 0>r . In general, strong 

observability in time 0>r  implies observability in time 0>r  in the sense of [30]. However, for nonlinear systems 
the converse statement does not hold. Notice that system (2.16) of Example 2.6 is not strongly observable in time 
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0>r ; however, it is observable in time 0>r  in the sense described in [30]: every input )];,0([ ℜ∈ ∞ ru L  which 
does not satisfy (2.21) for almost all ],0[ rt∈  is an input which distinguishes between the events )0,,( 00 yx and 

)0,,( 0yξ  in time 0>r , where 3
00,20,100 ),,(),( ℜ∈= yxxyx , 3

1211 ),,(),( ℜ∈= yy ξξξ . 
 
      Proposition 2.3 shows that, under the following hypotheses for system (1.1): 
 
(H1) System (1.1) is strongly observable in time 0>r .  
 
then we are in a position to define the operator: 
 

nUrrCP ℜ→×Ω ∞ )];,0([)];,0([: 0 L  
 
where }),(:{ Oyxthatsuchxy k ∈∃ℜ∈=Ω . For each )];,0([)];,0([),( 0 UrrCuy ∞×Ω∈ L , ),( uyP  is defined by  
 

)()()();,(),(
0

1 rdpqQuyruyP
r

θτττ +Φ= ∫−                                                          (2.23) 

 

where  );,( uytΦ  is the transition matrix of the linear system )())(),(()( tztutyAtz =& , ∫ ′=
r

dqqQ
0

)()( τττ , 

∫Φ′=
τ

τ
0

)();,()( dssCuysq , },...,1,,...,1,))(({:)( , njkiycC ji ===′ ττ , ∫∫ ′−−−=
ττ

θττ
00

)()())(),(()0()()( dsssCdssusyfyyp , 

)),(,...,),((:),( 1 ′= uyfuyfuyf k , ∫ −ΦΦ=
τ

ττθ
0

1 ))(),(();,();,(:)( dssusybuysuy  for all ],0[ r∈τ . Proposition 2.3 

guarantees that, if hypothesis (H1) holds for system (1.1), then for every Oyx ∈),( 00  and );( Uu loc +
∞ ℜ∈L  the 

following equality holds: 
 

),();,,( 00 uyPuyxtx rtrt −−= δδ , for all rt ≥                                           (2.24) 
 
where ( ) );,,()( 00 uyxsrtysyrt +−=−δ , ( ) )()( srtusurt +−=−δ  for ],0[ rs∈ . 
 
 
    Therefore, if hypothesis (H1) holds for system (1.1), then we are in a position to provide a hybrid, dead-beat 
observer for system (1.1). Given 00 ≥t , Owz ∈),( 00 , we calculate Otwtz ∈))(),((  by the following algorithm: 
 
Step i : Calculation of )(tz  for ])1(,[ 00 ritirtt +++∈  
 
1) Calculate )(tz  for ))1(,[ 00 ritirtt +++∈  as the solution of  ))(),(()())(),(()( tutwbtztutwAtz +=& , 

∑
=

+=
n

j
jjiii tztwctutwftw

1
, )())(())(),(()(&  ( ki ,...,1= ), with k

k twtwtw ℜ∈′= ))(),...,(()( 1 . 

 
2) Set ),())1((

000 uyPritz irtirt ++=++ δδ  and ))1(())1(( 00 rityritw ++=++ , where 
nUrrCP ℜ→×Ω ∞ )];,0([)];,0([: 0 L   is the operator defined by (2.23). 

 
For 0=i  we take ),())(),(( 0000 wztwtz =  (initial condition). 
 
The proposed observer can be represented by the following system of equations: 
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kn

k
k

n
n

ii

ii

i

ii

n

j
jjiii

ii

Otwtz

twtwtwtztztz

r
yw

uyPz

tkitxtwctutwftw

ttutwbtztutwAtz

ii

ℜ×ℜ⊆∈

ℜ∈′=ℜ∈′=

+=
=

=

∈=+=

∈+=

+

++

+

+
=

+

∑

))(),((

))(),...,(()(,))(),...,(()(

)()(

),()(

),[,,...,1,)())(())(),(()(

),[,))(),(()())(),(()(

11

1

11

1

1
1

,

1

ττ
ττ

δδτ

ττ

ττ

ττ

&

&

                        (2.25) 

 
 
Thus, from all the above results, we obtain the following corollary. 
 
Corollary 2.9: Consider system (1.1) and assume that hypothesis (H1) holds. Consider the unique solution 

OOtwtztytx ×∈))(),(),(),((  of (1.1), (2.25) with arbitrary initial condition OOwzyx ×∈),,,( 0000  corresponding 

to arbitrary input );( Uu loc +
∞ ℜ∈L . Then the solution OOtwtztytx ×∈))(),(),(),((  of (1.1), (2.25) satisfies: 

 
)()( txtz =  and )()( tytw = , for all rt ≥                                                   (2.26) 

 
 
Remark 2.10: The proposed observer (2.25) is a hybrid system which uses delays: the history of the output is utilized 
in order to estimate the state component x  of system (1.1). For the overall system (1.1) with (2.25) the classical 
semigroup property does not hold: however, the weak semigroup property holds (see [14,15]). Also, the overall 
system (1.1) with (2.25) is autonomous in the sense described in [14,15]. Finally, it should be noted that by virtue of 
Corollary 2.5 for the case 1=k  a sufficient condition for hypothesis (H1) is the following condition: 
 

“For every Ω×∈Dyx ),( 00 , )];,0([ Uru ∞∈L  there exists ],0[,...,, 11 rttt n ∈−  such that (2.15) holds” 
 
Next assume that the following hypothesis holds in addition to hypothesis (H1).  
 
(H2) There exist open sets nD ℜ⊆  and kℜ⊆Ω  such that Ω×= DO . Moreover, for every D∈ξ  and for every 

)];,0([)];,0([),( 0 UrrCuy ∞×Ω∈ L , the solution )(tz  of ))(),(()())(),(()( tutybtztutyAtz +=&  with ξ=)0(z  
satisfies Dtz ∈)(  for all ],0[ rt∈ . 
 
If hypothesis (H2) holds then we can design a reduced-order, hybrid, dead-beat observer for system (1.1) of the form: 
 

n
n

ii

i

ii

Dtztztz

r

uyPz
ttutybtztutyAtz

ii

ℜ⊆∈′=

+=

=
∈+=

+

+

+

))(),...,(()(

),()(
),[,))(),(()())(),(()(

1

1

1

1

ττ

δδτ
ττ

ττ

&

                                       (2.27) 

 
where nUrrCP ℜ→×Ω ∞ )];,0([)];,0([: 0 L   is the operator defined by (2.23). 
 
Corollary 2.11: Consider system (1.1) and assume that hypotheses (H1), (H2) hold. Consider the unique solution 

DDtztytx ×Ω×∈))(),(),((  of (1.1), (2.27) with arbitrary initial condition DDzyx ×Ω×∈),,( 000  corresponding 

to arbitrary input );( Uu loc +
∞ ℜ∈L . Then the solution DDtztytx ×Ω×∈))(),(),((  of (1.1), (2.27) satisfies: 

 
)()( txtz = , for all rt ≥                                                                         (2.28) 
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Example 2.12: Consider the system  
 

UtutyDtx
txtyctutyfty

txtutyatx

∈Ω∈∈
+=

=

)(,)(,)(
)())(())(),(()(

)())(),(()(
&

&

                                                            (2.27) 

 
where ℜ=D  or ),0( +∞=D , ℜ⊆Ω  is an open set, ℜ⊆U  is a closed non-empty set, ℜ→×Ω Ua : , 

ℜ→×Ω Uf : , ℜ→Ω:c  are continuously differentiable mappings satisfying the following hypothesis: 
 

(H3) 0),()( ≠uyfy
dy
dc , for all Uuy ×Ω∈),(  with 0)( =yc  

 
We also assume that for every Ω×∈Dyx ),( 00  and );( Uu loc +

∞ ℜ∈L  there exists a unique solution 
Ω×∈=→∋+∞ Duyxtyuyxtxtytxt ));,,(),;,,(())(),((),0[ 0000  for (2.27) satisfying (2.27) for almost every 0≥t . 

It is clear from (2.27), the fact that ℜ=D  or ),0( +∞=D  and the integral formula ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∫

t

dssusyaxtx
0

))(),((exp)0()(  

that hypothesis (H2) holds. Moreover, hypothesis (H3) and Corollary 2.4 guarantee that system (2.27) is strongly 

observable in time 0>r  (notice that [ ]( ) ( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=Φ′ ∫

t

dssuuyxsyauyxtycuyxtuyxtC
0

00000000 )(),;,,(exp));,,(();,,();,,(det ).  

 

Using the formulas ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=Φ ∫

t

dssusyauyt
0

))(),((exp),,( , ∫ ∫ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

τ

τ
0 0

))(),((exp))(()( dsdwwuwyasycq
s

, 

∫−−=
τ

ττ
0

))(),(()0()()( dssusyfyyp , ∫ ∫ ∫ ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

r s

ddsdwwuwyasycQ
0

2

0 0

))(),((exp))(( τ
τ

, we conclude that the 

system: 
 

r

uyPz
ttztutyatz

ii

i

ii

ii

+=

=
∈=

+

+

+

ττ

δδτ
ττ

ττ

1

1

1

),()(
),[,)())(),(()(&

                                                       (2.28) 

 
where 
 

∫ ∫ ∫

∫ ∫ ∫∫
∫

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

r s

r s

r

ddsdwwuwyasyc

ddsdwwuwyasycdssusyfyy

dssusyauyP

0

2

0 0

0 0 00

0
))(),((exp))((

))(),((exp))(())(),(()0()(

))(),((exp),(

τ

ττ

τ

ττ

 

 
is a dead-beat reduced order observer for system (2.27).         <  
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3. Applications 
 
This section is devoted to the study of two important applications: the operation of a batch chemical reactor and the 
robust estimation of the frequency of a sinusoidal signal. 
 
Application 1: Batch Reactor  
 
The system to be studied is similar to the system studied in [27]. We assume a batch reactor where the chemical 
reactions CBA →→  are taking place. The goal is the maximization of the concentration of the intermediate B . 
Both reactions are assumed to be exothermic and we also assume that the reactor is surrounded by jacket containing 
(heating or cooling) medium of constant temperature sT  (see [19]). Finally, assuming that the kinetics of the reactions 
are first order, then the system is described by the following system of differential equations (see [19]): 
 

)(expexp

expexp

exp

2
22

1
11

2
2

1
1

1
1

TThc
T
E

kJc
T
E

kJT

c
T
E

kc
T
E

kc

c
T
E

kc

sBA

BAB

AA

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

&

&

&

                                     (3.1) 

 
where BA cc ,  are the concentrations of BA, , respectively, T  is the temperature of the reactor, 

0,,,,,, 212121 >EEhkkJJ  are positive parameters.  The temperature is continuously measured. However, it is often 
very difficult to obtain accurate measurements of the concentrations of BA, . An observer for the estimation of 

BA cc ,  is needed because (ideally) the operation of the reactor will be stopped when )(tcB  is maximized, i.e., when 

)(
)(

exp)(
)(

exp 2
2

1
1 tc

tT
E

ktc
tT

E
k BA ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− . Therefore, an accurate estimation of BA cc ,  is needed. Furthermore, the 

observer must provide accurate estimations in short time. Indeed, if the system is left to operate for large times then 
the goal will not be achieved (because, we have 0)(lim)(lim ==

+∞→+∞→
tctc BtAt

).  

 

     System (3.1) is of the form (1.1) with 2=n , Ty = , ),( BA ccx = , 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=

y
E

k
y

E
k

y
E

k
uyA

2
2

1
1

1
1

expexp

0exp
),( , 

)(),( yThuyf s −= , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

y
E

kJyc 1
111 exp)( , ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

y
E

kJyc 2
222 exp)( . Moreover, Ω×= DO , 

),0(),0( 21 ccD ×=  and ),( maxmin TT=Ω , where 01 >c , sTT ≤< min0 , 21
2

1 cc
k
k

<  if 21 EE ≥  and 

21
min

12

2

1 exp cc
T

EE
k
k

<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
 if 21 EE < , max

222111 TT
h

ckJckJ
s ≤+

+
 and u  and ℜ⊆U  are irrelevant (because there 

is no input). The reader can easily verify that Ω×D  is positively invariant for (3.1) and that for every 
Ω×∈Dyx ),( 00  there exists a unique solution Ω×∈=→∋+∞ Duyxtyuyxtxtytxt ));,,(),;,,(())(),((),0[ 0000  for 

(3.1) satisfying (3.1) for every 0≥t . Moreover, hypothesis (H2) holds with  
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=Φ

∫∫ ∫∫

∫
tt t

t

ds
sy

E
kdds

sy
E

kds
sy

E
k

y
E

k

ds
sy

E
k

yt

0

2
2

0 0

1
1

2
2

1
1

0

1
1

)(
expexp

)(
exp

)(
exp

)(
exp

0
)(

expexp

),(

τ
τ

τ

τ

 

 
 
Next assume that one of the following hypotheses holds: 
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(A1) If 21 EE =  then ( ) 11221 kJkJJ ≠+ . If 21 EE ≠  then there exists 0>a  such that for all ),( maxmin TTT ∈  with 

( ) ( ) sTT
T

EE
kJkJJ

T
E

hJEE
T

>+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−

12
11221

2

112

2
expexp  it holds that: 

 

( ) ( ) a
T

EE
kJkJJ

T
E

JEE
T

−≤⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−

12
11221

2

112

2
expexp                                   (3.2) 

 
or 
 
(A2) If 21 EE =  then ( ) 11221 kJkJJ ≠+ . If 21 EE ≠  then there exists 0>a  such that for all ),( maxmin TTT ∈  with 

( ) ( ) sTT
T

EE
kJkJJ

T
E

hJEE
T

>+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−

12
11221

2
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2
expexp  it holds that: 

 

( ) ( ) a
T

EE
kJkJJ

T
E

JEE
T

≥⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−

12
11221

2

112

2
expexp                                       (3.3) 

 
We will show that system (3.1) under hypothesis (A1) or under hypothesis (A2) satisfies hypothesis (H1) as well for 

a
TT

r minmax −≥  if 21 EE ≠  and for every 0>r  if 21 EE = . Therefore the system: 

 

r

TGTrz

ttz
tT

E
ktz

tT
E

ktz

tz
tT

E
ktz
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i
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ii
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Φ=

∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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⎝
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⎠
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1
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1
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exp)(

&
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                  (3.4) 

 
where ))(),(()( 21 TGTGTG =  for all )),(];,0([ maxmin

0 TTrCT ∈  is defined by 
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( ) τ
τ

φ
τ

τ

dds
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E
kds
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E

k
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E
kJJt

t tt
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2
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will be a reduced-order dead-beat observer which satisfies ))(),(()( tctctz BA=  for all rt ≥ . 
 
Thus, we are left to show that hypothesis (H1) holds, i.e., that every input )];,0([ Uru ∞∈L  strongly distinguishes 
every state Ω×∈Dyx ),( 00  in time 0>r . We proceed by contradiction, i.e., we assume that there exists 

)];,0([ Uru ∞∈L , Ω×∈Dyx ),( 00  such that )];,0([ Uru ∞∈L  does not strongly distinguish the state 
Ω×∈Dyx ),( 00  in time 0>r . By virtue of Remark 2.4 and applying (2.14) with 2=n , 01 =t  in conjunction with 

the fact that  
[ ]

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

=Φ′

∫

∫ ∫∫

∫

ds
sT

E
k

tT
E

kJ

dds
sT

E
kds

sT
E

k
T
E

tT
E

kkJ

ds
sT

E
k

tT
E

Jk

uyxtuyxtC

t

t t

t

0

2
2

2
222

0 0

1
1

2
2

12
122

0

1
1

1
111

210000

)(
expexp

)(
exp

)(
exp

)(
exp

)(
exp

)(
exp

)(
expexp

)(
exp

);,,();,,(

μ

τ
τ

μ

μμ

τ

τ

 

 
where )(tT  is the component of the solution of (3.1) with initial condition Ω×∈Dyx ),( 00 , we obtain for all 

],0[ rt∈ : 
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By differentiating (3.5), we obtain for all ],0[ rt∈ : 
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We next distinguish the cases: 
 
Case 1: 21 EE =  
 
In this case (3.7) implies ( ) 11221 kJkJJ =+ , which leads to contradiction with hypothesis (A1) or hypothesis (A2). 
Thus, (3.5) cannot hold for all ],0[ rt∈ . Consequently, in this case we can conclude that hypothesis (H1) holds for 
every 0>r . 
 
 
Case 2: 21 EE ≠  
 
In this case (3.7) and (3.1) (which implies that )( TThT s −>& )  imply that the following inequality must hold for all 

],0[ rt∈ : 
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We next assume that hypothesis (A1) holds. The analysis is completely similar for the case where hypothesis (A2) 
holds. Inequality (3.2) implies that there exists 0>a  such that  
 

atT −≤)(& , for all ],0[ rt∈                                                                    (3.9) 
 
For every ),()0( maxmin0 TTyT =Ω∈=  the differential inequality (3.9) in conjunction with the fact that 

a
TT

r minmax −≥  leads to the contradiction min)( TrT ≤ , i.e., Ω∉)(rT . Thus, (3.5) cannot hold for all ],0[ rt∈ . 

Consequently, in this case we can conclude that hypothesis (H1) holds for every 
a

TT
r minmax −≥ . 

 
Remark: It should be emphasized that if 21 EE =  then the condition for strong observability of system (3.1) is 
( ) 11221 kJkJJ ≠+ . Indeed, notice that if ( ) 11221 kJkJJ =+  then system (3.1) gives the observable subsystem 
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from which we can conclude that the measurement of the temperature can only give us estimates for the quantity 

BA cJcJJ 221 )( ++  and not for the components of the state vector BA cc , . Moreover, it should be noted that if 

21 EE <  and ( ) 11221 kJkJJ <+ , then there exists 0>a  such that hypothesis (A1) holds automatically. Similarly, if 

21 EE >  and ( ) 11221 kJkJJ >+ , then there exists 0>a  such that hypothesis (A2) holds automatically. 
 
 
 
Application 2: Estimation of Frequency of a Sinusoidal Signal 
 
The problem studied is to estimate the frequency 0>ω  of a sinusoidal signal ( )ϕω += tAty sin)( . The problem can 
be cast as an observer problem for the following system: 
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                                                                          (3.11) 

 
where { }0,0:),,(: 2

2
1

23
21 <>+ℜ∈= xxyyxxO  and 2

2 )( ω−=tx . It should be noticed that system (3.11) is 
forward complete and satisfies hypothesis (H1) for every 0>r . Indeed, only initial states on the manifold 01 == xy  
can give identical output responses. The results of the previous section can be applied in order to give the hybrid full-
order observer: 
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with ∫ ∫ ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

t s

i i

dsdllyt
τ τ

φ )()( . It should be noted that hypothesis (H2) does not hold for system (3.11). The frequency ω  

is estimated by means of the formula )(ˆ 2 tz−=ω . 
 
We assume next that the measured signal is corrupted by high frequency noise, i.e., we assume that  
 

( ) )sin(sin)( ftatAty ++= ϕω                                                                 (3.16) 
 
 
Exactly the same test of robustness as the one in [26] is performed: the parameters are chosen to be 2=A , 2.0=a , 

3=ω . Three cases are considered for the frequency of the noise: 10=f , 100=f  and 1000=f . 
 
The effectiveness of formula (3.14) with 1=r , 0=iτ  is shown in Figures 1,2,3 as a function of the phase angle ϕ  . 
It is shown that the greatest estimation error is %6.6 , %3.1  and %083.0  for the cases 10=f , 100=f  and 

1000=f , respectively. The accuracy of the estimation is similar to the one obtained in [26], where the steady state 
estimation error was %10 , %1  and %1.0  for the cases 10=f , 100=f  and 1000=f , respectively. It should be 
noted that the estimated frequency for the hybrid observer is provided only after sr 1= , while in [26] at least s5  are 
needed in order to obtain an accurate estimate for the frequency.  
 
However, if larger values for 0>r  are used then the accuracy of the estimation can be increased significantly. Figure 
4 shows the estimated frequency from formula (3.14) with 0=iτ  as a function of r  for the case 10=f . The phase 
angle was selected to be 9.1=ϕ : this is the value of the phase angle that the largest error of the estimation occurs 
(see also Figure 1). For 3=r  the estimation error is %066.0 , i.e., it is 100 times less than the error obtained for 

1=r . 
 
Finally, it should be noted that the full-order observer (3.12), (3.13), (3.14), (3.15) can be used for system (3.11) even 
if the open set O  is defined to be { }0:),,(: 2

1
23

21 >+ℜ∈= xyyxxO . This is the case studied in [33]. 
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Figure 1: Estimated frequency from formula (3.14) with 1=r , 0=iτ , 10=f  as a function of the phase angle ϕ . 
 
 

2,95
2,96
2,97
2,98
2,99

3
3,01
3,02
3,03
3,04
3,05

0 1 2 3 4 5 6

phase angle

es
tim

at
ed

 fr
eq

ue
nc

y

 
 

Figure 2: Estimated frequency from formula (3.14) with 1=r , 0=iτ , 100=f  as a function of the phase angle ϕ . 
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Figure 3: Estimated frequency from formula (3.14) with 1=r , 0=iτ , 1000=f  as a function of the phase angle ϕ . 
 



 16

2,9

3,1

3,3

3,5

3,7

3,9

4,1

0 5 10 15 20r

Es
tim

at
ed

 F
re

qu
en

cy

 
 

Figure 4: Estimated frequency from formula (3.14) with 9.1=ϕ , 0=iτ , 10=f  as a function of r . 
 
 
 
4. Concluding Remarks 
 
    In this work, a novel hybrid strategy has been developed for solving the dead-beat observer design problem for a 
class of nonlinear systems with unmeasured states appearing linearly in the differential equations. To this end, the 
notion of strong observability of a nonlinear control system is introduced and utilized. The proposed methodology is 
applied to yield a hybrid full-order or reduced-order dead-beat observer for a batch reactor without concentration 
measurements. Moreover, the observer is used for the estimation of the frequency of a sinusoidal signal. The results 
show that accurate estimations can be provided even if the signal is corrupted by high frequency noise.   
 
    Future work can shed new light to the problem of dynamic output feedback stabilization, already studied in 
[3,8,9,22,23,24]. The dead-beat feature of the proposed observer implies that any static feedback stabilizer for (1.1) 
can be used in conjunction with the hybrid dead-beat observer (2.25), provided that the inputs produced by the 
applied feedback can distinguish all states in finite time and that the solution does not blow up during the initial 
transient period. Another direction for future work is the application of the hybrid, dead-beat observer to systems of 
mathematical biology: the chemostat model (see [29]) takes the form of system (1.1), when the nutrient concentration 
is measured. 
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Appendix 
 
Proof of Proposition 2.3:  We prove the implications (a) ⇔  (b), (b) ⇔  (c) and (c) ⇔  (d) 
 
(a) ⇒  (b) The proof of this implication will be made by contradiction. Suppose that the input )];,0([ Uru ∞∈L  
strongly distinguishes the state Oyx ∈),( 00  in time 0>r . Notice that Fact I and definitions (2.6), (2.7), (2.8), (2.9) 
imply that problem (2.10) is always solvable and always admits the solution 0x=ξ  with 
 

 ∫∫ ′−=′−=
∈

r

yB

r

dtuyxtquyxtpdtxuyxtquyxtp
0

2
0000)(

0

2
00000 );,,();,,(min);,,();,,(0

0

ξ
ξ

                (A1)   
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Consequently, the negation of (b) is the following statement: 
 

“Problem (2.10) admits the solution nx ℜ∈= 1ξ  with 01 xx ≠  and Oyx ∈),( 01 ” 
 
Therefore, we assume that the above statement holds. By virtue of (A1) we must have 

∫ ′−=
r

dtxuyxtquyxtp
0

2
10000 );,,();,,(0 . Continuity of the mappings );,,( 00 uyxtpt →  and );,,( 00 uyxtqt →  

implies that the following statement holds: 
 

“there exists 01 xx ≠  with Oyx ∈),( 01  such that 10000 );,,();,,( xuyxtquyxtp ′=  for all ],0[ rt∈ .” 
 
 
The above statement in conjunction with definitions (2.6), (2.7), (2.9) shows that (by direct differentiation): 
 

( ));,,();,,();,,())(),;,,(();,,( 00100000000 uyxtxuyxtuyxtCtuuyxtyfuyxty
dt
d θ+Φ′+=  

 
where )),(,...,),((:),( 1 ′= uyfuyfuyf k  and  
 

( )( )
( )( ) ))(),;,,(();,,();,,())(),;,,((

);,,();,,(

000010000

00100

tuuyxtybuyxtxuyxttuuyxtyA

uyxtxuyxt
dt
d

++Φ=

+Φ

θ

θ
 

 
 for almost all ],0[ rt∈ .  Consequently, uniqueness of solutions for (1.1) implies that 

10001 );,,();,,( xuyxtuyxtx Φ=  and );,,();,,( 0001 uyxtyuyxty =  for all ],0[ rt∈ . Hence, it holds that: 
 

“there exists 01 xx ≠  with Oyx ∈),( 01  such that );,,();,,( 0001 uyxtyuyxty = for all ],0[ rt∈ .” 
 
The above statement contradicts the assumption that the input )];,0([ Uru ∞∈L  strongly distinguishes the state 

Oyx ∈),( 00  in time 0>r .  
 
(b) ⇒  (a) Again the proof of this implication will be made by contradiction. Suppose that problem (2.10) admits the 
unique solution 0x=ξ .  
 
Assume that the input )];,0([ Uru ∞∈L  does not strongly distinguish the state Oyx ∈),( 00  in time 0>r . This 
implies that  
 

“there exists  nx ℜ∈1  with 01 xx ≠  and Oyx ∈),( 01  such that );,,();,,( 0001 uyxtyuyxty = for all ],0[ rt∈ .” 
 
The reader should notice that the −y components of the different initial states Oyx ∈),( 00  and Oyx ∈),( 01  which 
produce identical outputs for ],0[ rt∈ , necessarily coincide. By virtue of Fact I and definitions (2.6), (2.7), (2.8), 
(2.9) it follows that 10000 );,,();,,( xuyxtquyxtp ′=  for all ],0[ rt∈ .  Hence, we must have: 
 

∫ ′−=
r

dtxuyxtquyxtp
0

2
10000 );,,();,,(0  

 
The above equality shows that nx ℜ∈1  with 01 xx ≠  and Oyx ∈),( 01  is a solution of problem (2.10), which 
contradicts the uniqueness of the solution for problem (2.10).   
 
 
(b) ⇒  (c) Again the proof of this implication will be made by contradiction. Suppose that problem (2.10) admits the 
unique solution 0x=ξ . Notice that the objective function for problem (2.10) is the quadratic function: 
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∫
                (A2) 

 
where );,,( 00 uyxrQ  is defined by (2.11) and for which it holds that 

))(;,,()()();,,();,,();,,(2)()( 00000000
0

00000 xuyxrQxxxuyxrQdtuyxtpuyxtqxRR
r

−′−+−

′

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−+= ∫ ξξξξ    (A3) 

 
Since 0x=ξ  is a solution of problem (2.10) and since O  is open the above equality shows that we must necessarily 
have  

000
0

0000 );,,();,,();,,( xuyxrQdtuyxtpuyxtq
r

=∫                                               (A4)  

 
On the other hand assume that statement (c) does not hold, i.e., assume that the symmetric and positive semidefinite 

matrix ∫ ′=
r

dtuyxtquyxtquyxrQ
0

000000 );,,();,,(:);,,(  is not positive definite. Therefore there exists nℜ∈ζ , 

0≠ζ  such that ζζ );,,(0 00 uyxrQ′= . It follows from (A3), (A4) and for sufficiently small 0>λ  that the vector 
ζλξ += 0x  will satisfy Oy ∈),( 0ξ  (because O  is open) and )()( 0xRR =ξ , i.e., the vector ζλξ += 0x  is an 

additional solution of problem (2.10) with 0x≠ξ , a contradiction.   
 

Therefore ∫ ′=
r

dtuyxtquyxtquyxrQ
0

000000 );,,();,,(:);,,(  is positive definite.  Equation (2.12) is a direct 

consequence of equation (A4). 
 
 
(c) ⇒  (b) This implication is a direct consequence of (A2), (A3), (A4), which show that  
 

))(;,,()()( 0000 xuyxrQxR −′−= ξξξ , for all nℜ∈ξ  with Oy ∈),( 0ξ  
 
Notice that equality (2.5) guarantees that 0)( 0 =xR . 
 

(c) ⇒  (d) This implication follows from the fact that ∫ ′=′
r

dtuyxtquyxrQ
0

2
0000 );,,(:);,,( ξξξ , for all nℜ∈ξ . 

 

(d) ⇒  (c) Statement (c) follows from the fact that ∫ ′=′
r

dtuyxtquyxrQ
0

2
0000 );,,(:);,,( ξξξ , for all nℜ∈ξ  and 

the fact that the mapping );,,( 00 uyxtqt →  is continuous. Equality (2.12) is a direct consequence of Fact I and 
equality (2.5). 
 
The proof is complete.     <  
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