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Stabilization of stochastic approximation by

step size adaptation

Sameer Kamal∗

Abstract: A scheme for stabilizing stochastic approximation iterates by
adaptively scaling the step sizes is proposed and analyzed. This scheme leads
to the same limiting differential equation as the original scheme and therefore
has the same limiting behavior, while avoiding the difficulties associated with
projection schemes. The proof technique requires only that the limiting o.d.e.
descend a certain Lyapunov function outside an arbitrarily large bounded set.

Key words: stochastic approximation, almost sure boundedness, step size
adaptation, limiting o.d.e.

1 Introduction

Stochastic approximation was originally introduced in [15] as a scheme for
finding zeros of a nonlinear function under noisy measurements. It has since
become one of the main workhorses of statistical computation, signal pro-
cessing, adaptive schemes in control engineering and artificial intelligence,
economic models, and so on. See [4], [7], [9], [11], [13] for some recent texts
that give an extensive account. One of the successful approaches for its con-
vergence analysis has been the ‘o.d.e. approach’ of [10], [14] which treats it as
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a noisy discretization of an ordinary differential equation (o.d.e.) with slowly
decreasing step sizes. The convergence analysis is usually of the form: if the
iterates remain stable, i.e., a.s. bounded, then they converge a.s. to a set pre-
dicted by the o.d.e. analysis. Stability tests that establish a.s. boundedness
are typically geared for specific applications and require stringent assump-
tions on the ‘drift’ term. See, e.g., [1], [8], [16] for some recent stability tests
motivated by reinforcement learning applications, that crucially use resp.
long term stability w.r.t. initial data, exact linear growth, or contraction-like
properties for the drift. There does not seem to be a broad enough test to
cover a reasonably generic class of stochastic approximation algorithms.

An alternative to establishing a priori stability is to force it by suitably
modifying the algorithm, the most popular modification being to project it
onto a bounded set every time it exits from the same [12], [9]. This, how-
ever, is not without its pitfalls. One major problem is that the projection
operation can introduce spurious equilibria. Another is that the choice of the
bounded set in question needs to be carefully done, in particular it should
include the desired asymptotic limit (point or set) which is usually not known
a priori.

Motivated by this, we propose and analyze a different scheme for stabi-
lizing the iterates, viz., an adaptation of step sizes that controls the growth
of the iterates without affecting their asymptotic behavior. This amounts to
scaling the step sizes appropriately when the iterates are sufficiently far away
from the origin. In fact, one can argue that at most a finite random number
of steps differ from the original scheme.

Another offshoot of our analysis is that instead of requiring the o.d.e. to
descend the Lyapunov function everywhere where the function isn’t at its
minimum, we only require it to do so outside a sphere of arbitrarily large
radius. While this is hardly surprising, the fact does not seem to have been
formally recorded in literature.

2 Preliminaries

Throughout this article we allow the letter c to denote a possibly different
constant in different places.
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Consider the R
d-valued stochastic approximation iterates

xn+1 = xn + a(n)[h(xn) +Mn+1], (1)

and their ‘o.d.e.’ limit
ẋ(t) = h(x(t)). (2)

Let W (·) : Rd → [0,∞) be a continuously differentiable Lyapunov function.
We make the following assumptions regarding h(·), a(n), Mn+1, and W (·)

(A1) h(·) is locally Lipschitz.

(A2) Step size assumptions.

(i)
∑

n an = ∞.

(ii)
∑

n a
2
n < ∞.

(A3) Martingale difference assumptions.

(i) (Mn) is a martingale difference sequence w.r.t. the filtration (Fn)
where Fn = σ(x0,M1, . . . ,Mn). Thus, E[Mn+1|Fn] = 0 a.s. for
all n ≥ 0.

(ii) Mn is square integrable for all n ≥ 0 and there exists a locally
bounded and measurable function f(·) : Rd → [0,∞) such that

E[‖Mn+1‖
2|Fn] ≤ f(xn) a.s.

(A4) Lyapunov function assumptions.

(i) W (x) ≥ 0 for all x ∈ R
d and W (x) → ∞ as ‖x‖ → ∞.

(ii) There exists a positive integer, say M , such that

h(x) · ∇W (x) < 0 whenever W (x) ≥ M.

We next define a generalization of the iteration scheme (1). First, choose
a positive integer N , with M < N ≤ ∞, such that there is a finite positive
constant cN satisfying

cN > 1
∨

(

sup
y∈H̄N\HM

‖h(y)‖2 + f(y)

W (y)

)

. (3)
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At least for finite N , assumptions (A1) and (A3)(ii) guarantee such a choice
for cN . Having chosen a suitable N , choose a locally bounded measurable
function g(·) : Rd → R such that

g(y) > 1
∨

(

I {W (y) > N}

√

‖h(y)‖2 + f(y)

W (y)

)

. (4)

Again, assumptions (A1) and (A3)(ii) guarantee such a choice for g(·). We
thus have, for some suitable N , possibly infinite, the following inequality

cNW (y) >
‖h(y)‖2 + f(y)

g(y)2
if W (y) ≥ M. (5)

Having chosen g(·), consider the iterates {yn} generated by

yn+1 = yn + aω(n)[h(yn) +Mn+1], (6)

where
aω(n) := a(n)/g(yn). (7)

This is a generalization of the original iteration scheme (1) since the step
size aω(n) is now an Fn-measurable random step size. We note that by our
choice

• g(·) is a locally bounded function, and

• g(y) ≥ 1 for all y ∈ R
d.

Remark 1. By choosing N large enough we can ensure g(y) = 1 for y in
an arbitrarily large sphere around the origin. If c∞ < ∞, we can choose
N = ∞, in which case g(y) = 1 for all y ∈ R

d and we recover the original
scheme (1).

Remark 2. Since g(y) ≥ 1 for all y ∈ R
d, it follows from assumption

(A2)(ii) that the random step sizes satisfy

∑

n

aω(n)2 < ∞ a.s.
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3 A test for stability

Let m be an arbitrary positive integer, m > M . Define the level set

Hm := {x : W (x) < m},

and let H̄m denote the closure of Hm. Since h(x) · ∇W (x) < 0 whenever
W (x) ≥ M , we get

Ẇ (x) := h(x) · ∇W (x) < 0 for x ∈ H̄m\HM .

As H̄m\HM is a compact set, and Ẇ (·) is a continuous function, there
must exist a negative constant c such that

sup
x∈H̄m\HM

Ẇ (x) ≤ c < 0. (8)

Fix some T > 0. Note that (A1) and (A4) ensure the well-posedness of
the o.d.e. given by (2) for t ≥ 0. Let yu(t) be the o.d.e. trajectory starting
from u. Thus, ẏu(t) = h(yu(t)) for t ≥ 0, and yu(0) = u. Choose a positive
but arbitrarily small ǫm satisfying

ǫm ≤ 1 ∧ inf
{

|W (u)−W (v)| : u, v ∈ H̄m\HM and v = xu(T )
}

.

Note that ǫm > 0 is possible because of (8). Given ǫm, choose a positive but
arbitrarily small δm such that:

if u, v ∈ H̄m and ‖u− v‖ < δm, then |W (u)−W (v)| < ǫm/2.

Note that δm > 0 is possible because W (·) is a continuous function and H̄m

is a compact set.

Remark 3. The fact that both ǫm and δm can be chosen positive but arbi-
trarily small will prove crucial later.

Let n0 ≥ 0. Given ni(ω), define ni+1(ω) as

ni+1(ω) := inf







n > ni(ω) :
n
∑

ni(ω)

aω(i) ≥ T







.
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Consider the δm-neighbourhood of Hm,

N δm(Hm) :=

{

x : inf
y∈Hm

‖x− y‖ < δm

}

.

Note that I
{

yn ∈ N δm (Hm)
}

aω(n)Mn+1 is a martingale difference term.
Since N δm (Hm) is a bounded set, and f(·) is locally bounded, it follows
from assumption (A3)(ii) and Remark 2 that

∑

n

E

[

(

‖I
{

yn ∈ N δm (Hm)
}

aω(n)Mn+1‖
)2

|Fn

]

≤

(

sup
y∈Nδm (Hm)

f(‖y‖)

)

×
∑

n

aω(n)2

< ∞ a.s.

(9)

This leads to:

Lemma 4. Assume (A2)–(A4). For any positive integer m > M we have:

∑

i

I
{

yn ∈ N δm (Hm)
}

aω(n)Mn+1 converges a.s.

Proof. This is immediate from (9) and the convergence theorem for square-
integrable martingales, Theorem 3.3.4, p. 53, of [5].

From Lemma 4 it follows that almost surely there exists an N(ω,m) such
that if n0(ω) ≥ N(ω,m) then

sup
q

∥

∥

∥

∥

∥

∥

q
∑

n0(ω)

I
{

yn ∈ N δm (Hm)
}

aω(n)Mn+1

∥

∥

∥

∥

∥

∥

<
δm

2 exp (KT )
. (10)

Remark 5. Note that Lemma 4 guarantees the convergence of the martingale
∑

i I{· · · }a
ω(n)Mn+1 while not saying anything about

∑

n a
ω(n). Since the

martingale converges, there must exist an N(ω,m) satisfying (10) even if
∑

n a
ω(n) < ∞. That

∑

n a
ω(n) = ∞ a.s. needs a proof. In what follows, we

give a sufficient condition for stability and show that it is also sufficient for
∑

n a
ω(n) = ∞ a.s.
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Let K be the Lipschitz constant of h(·) on N δm (Hm). Without loss of
generality we assume that N(ω,m) is large enough that if n0(ω) ≥ N(ω,m).
Then

K

(

sup
y∈Nδm (Hm)

‖h(y)‖

)





∞
∑

n0(ω)

aω(n)2



 <
δm

2 exp (KT )
. (11)

Lemma 6. Assume (A1)–(A4). Let m be a positive integer with m > M .
Let n0(ω) satisfy n0(ω) ≥ N(ω,m). Under this base condition, the following
inductive step holds: if ni(ω) < ∞ and yni

(ω) ∈ Hm, then

1. yj(ω) ∈ N δm (Hm) a.s. for ni(ω) ≤ j ≤ ni+1(ω),

2. ni+1(ω) < ∞ a.s., and

3. Almost surely, either

• W
(

yn(i+1)
(ω)
)

< W (yni
(ω))− ǫm

2
, or

• yn(i+1)
(ω) ∈ N δm(HM).

In particular, in either case, yn(i+1)
(ω) ∈ Hm a.s.

Proof. We first show by induction that yj(ω) ∈ N δm (Hm) for ni(ω) ≤ j ≤
ni+1(ω). By assumption, yni

(ω) ∈ Hm ⊂ N δm (Hm). Fix j in the range
ni(ω) < j ≤ ni+1(ω). Assume yk(ω) ∈ N δm (Hm) for ni(ω) ≤ k ≤ j − 1. We
need to show that yj(ω) ∈ N δm (Hm). If

K

(

sup
ni≤k≤j−1

‖h(yk)‖

)





j−1
∑

ni(ω)

aω(n)2



 <
δm

2 exp (KT )
, (12)

and

sup
ni≤k≤j−1

∥

∥

∥

∥

∥

∥

k
∑

ni(ω)

aω(n)Mn+1

∥

∥

∥

∥

∥

∥

<
δm

2 exp (KT )
, (13)

then by a standard application of the Gronwall inequality (see, e.g., Lemma 2.1
in [7]) yj(ω) will satisfy

∥

∥

∥

∥

∥

∥

yj(ω)− yyni
(ω)





j−1
∑

ni(ω)

aω(n)





∥

∥

∥

∥

∥

∥

< δm. (14)
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From the assumption that ni(ω) ≥ N(ω,m) it follows that (10) and (11)
hold. These equations, coupled with the assumption that yk(ω) ∈ N δm (Hm)
for ni(ω) ≤ k ≤ j − 1, imply (12) and (13), which in turn imply (14). Since
the o.d.e. trajectory will always be in Hm if it starts there, (14) implies

yj(ω) ∈ N δm (Hm) .

Induction now proves the first claim.

For the second claim we give a proof by contradiction. Consequently,
assume that ni+1(ω) = ∞. The first claim, which has already been proved,
now gives yj(ω) ∈ N δm (Hm) a.s. for ni(ω) ≤ j ≤ ∞. Therefore, since g(·) is
a locally bounded function, we get supj≥ni(ω) g(yj(ω)) < ∞. By assumption
(A2)(i) this gives

∞
∑

j=ni(ω)

aω(j) ≥

∑∞
j=ni(ω)

a(j)

supj≥ni(ω)
g(yj(ω))

= ∞.

Since ni+1(ω) = ∞ requires
∑∞

j=ni(ω)
aω(j) ≤ T , we get the required contra-

diction. Thus ni+1(ω) < ∞ a.s.

We turn to the final claim. Let z = yyni
(ω)
(
∑n(i+1)−1

ni
aω(n)

)

, the o.d.e.
trajectory after time ≈ T starting from yni

(ω). Since the o.d.e. starts in
Hm, it remains in Hm. There are two cases to consider.

• If z ∈ Hm\HM , the definition of ǫm implies that W (z) ≤ W (yni
(ω))−

ǫm. Since (14) holds for j = n(i+1)(ω), we have ‖yn(i+1)
(ω)− z‖ < δm.

From the definition of δm it follows that W
(

yn(i+1)
(ω)
)

< W (z)+ǫm/2.

We get W
(

yn(i+1)
(ω)
)

< W (yni
(ω)) − ǫm

2
. In particular, yn(i+1)

(ω) ∈

Hm.

• If z ∈ HM , then, since ‖yn(i+1)
(ω) − z‖ < δm, we get yn(i+1)

(ω) ∈

N δm(HM). Since N δm(HM) ⊂ HM+ ǫm

2 and m > M + 1/2, we get
yn(i+1)

∈ Hm.

The proof is complete.

Define the stopping times

τmk (ω) := inf{n ≥ k : W (yn(ω)) < m}.
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The next result establishes the fact that if W (yn(ω)) < m for infinitely many
n, then almost surely the iterates converge to H̄M .

Proposition 7. Assume (A1)–(A4). For any arbitrarym > M , if τmk (ω) <
∞ for all k, then yn(ω) → H̄M a.s.

Proof. Assume τmk (ω) < ∞ for all k. From the definition of τmk this implies
that given any k there exists an n with n ≥ k such that yn(ω) ∈ Hm. In
other words, the iterates are in Hm infinitely often. By Remark 5 there
exists an N(ω,m) satisfying (10). Since the iterates are in Hm infinitely
often there exists an n0 > N(ω,m) such that yn0 ∈ Hm. From Lemma 6 we
know that if ni(ω) < ∞ then almost surely ni+1(ω) < ∞. By induction it
follows that ni(ω) < ∞ a.s. for all i ∈ Z

+. Invoking Lemma 6 again, we

get that either W
(

yn(i+1)
(ω)
)

< W (yni
(ω))− ǫm

2
, or yn(i+1)

(ω) ∈ N δm(HM).

Since W (·) cannot keep decreasing by ǫm/2 forever, it follows that for some
i, yni

(ω) ∈ N δm(HM). Note that N δm(HM) ⊂ HM+ ǫm

2 . Consequently, if
yni

(ω) ∈ N δm(HM) then W (yni
(ω)) < M+ ǫm

2
and so yn(i+1)

(ω) ∈ N δm(HM).

It follows that the iterates yni
(ω) will eventually get trapped in N δm(HM).

Once the iterates yni
(ω) are trapped in N δm(HM) ⊂ HM+ ǫm

2 , the o.d.e.
starting from yni

(ω) will remain in HM+ ǫm

2 . It follows that once the iterates
yni

(ω) are trapped in N δm(HM), the intermediate iterates yj(ω), ni(ω) <
j < n(i+1)(ω) will get trapped in N δm

(

HM+ ǫm

2

)

. Since both ǫm and δm
were chosen arbitrarily small positive quantities (see Remark 3), the result
follows.

Consider two statements of stability: first

yn(ω) → H̄M a.s. (15)

and second, for every positive integer k ≥ 0,

yn∧τM
k

(ω) → H̄M a.s. (16)

The next result establishes the equivalence of the two stability statements.

Lemma 8. Under assumptions (A1)–(A4), the two stability statements (15)
and (16) are equivalent.

Proof. Clearly (15) implies (16). For the converse, assume (16). We need to
show that

P

[

yn∧τM
k

(ω) → H̄M ∀k and yn(ω) 6→ H̄M
]

= 0.

9



Fix an m > M . Let ω be such that yn∧τM
k

(ω) → H̄M ∀k and yn(ω) 6→ H̄M .

Since yn(ω) 6→ H̄M , by Proposition 7 there exists a k such that τmk (ω) = ∞
a.s. For this choice of k, since m > M , it follows that τMk (ω) = ∞ a.s.
Thus for this k, yn∧τM

k

(ω) → H̄M reduces to yn(ω) → H̄M a.s. The result
follows.

On the basis of Lemma 8, we get the following test for stability: for every
k, if yn∧τM

k

(ω) → H̄M a.s. then supn ‖yn‖ < ∞ a.s. Note that it does not
require the o.d.e. to descend the Lyapunov function inside the arbitrarily
large set HM . In the next section we give a sufficient condition for this
stability test.

4 A sufficient condition for stability

In this section we show that assumption (A5) below is sufficient for stability.

(A5) Let the W (·) of (A4) be twice continuously differentiable such that all
second order derivatives of W (·) are bounded in absolute value by a
constant.

We start with a few lemmas.

Lemma 9. Assume (A1)–(A5). For any positive integer k, and for any
Fk-measurable set A, if E[W (yk(ω);A)] < ∞ then

sup
n≥k

E

[

W
(

yn∧τM
k

(ω)
)

;A
]

< ∞.

Proof. We have

y(n+1)∧τM
k

= yn∧τM
k

+ aω(n)I{τMk > n}
[

h
(

yn∧τM
k

)

+Mn+1

]

.

Doing a Taylor expansion and using the fact that the second order space
derivatives of W (·) are bounded, we get

W
(

y(n+1)∧τM
k

)

≤ W
(

yn∧τM
k

)

+ aω(n)I{τMk > n}∇W
(

yn∧τM
k

)

·
[

h
(

yn∧τM
k

)

+Mn+1

]

+caω(n)2I{τMk > n}
∥

∥

∥
h
(

yn∧τM
k

)

+Mn+1

∥

∥

∥

2

.
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Since I{τMk > n}∇W
(

yn∧τM
k

)

·h
(

yn∧τM
k

)

≤ 0 and E

[

h
(

yn∧τM
k

)

·Mn+1|Fn

]

=

0, we get

E

[

W
(

y(n+1)∧τM
k

)

|Fn

]

≤ W
(

yn∧τM
k

)

+ caω(n)2
(

E

[

I{τMk > n}

(

∥

∥

∥
h
(

yn∧τM
k

)∥

∥

∥

2

+ ‖Mn+1‖
2

)∣

∣

∣

∣

Fn

])

.

From (5) and the definition of aω(n), it follows that

E
[

W
(

y(n+1)∧τM
k

)

|Fn

]

≤ W
(

yn∧τM
k

)

+ ca(n)2 · cNW
(

yn∧τM
k

)

≤ (1 + ca(n)2)W
(

yn∧τM
k

)

≤ exp (ca(n)2)W
(

yn∧τM
k

)

For n ≥ k, integrating gives

E
[

W
(

y(n+1)∧τM
k

)

;A
]

≤ exp

(

c
∞
∑

i=k

a(i)2

)

E[W (yk(ω);A)] < ∞.

The result follows.

The next lemma is independent of assumption (A5) and requires only
assumptions (A1)–(A4) for its proof.

Lemma 10. Assume (A1)–(A4). Let k be an arbitrary positive integer.
Let A be an arbitrary Fk-measurable set. If

sup
n≥k

E

[

W (yn∧τM
k

(ω));A
]

< ∞

then
P

[

A
⋂

(

yn∧τM
k

(ω) 6→ H̄M
)]

= 0.

Proof. Assume yn∧τM
k

(ω) 6→ H̄M . Clearly, this implies that τMk (ω) = ∞

and so yn∧τM
k

(ω) = yn(ω). It follows that yn(ω) 6→ H̄M . Now, let u be an

arbitrary integer, u > M . By Proposition 7, since yn(ω) 6→ H̄M , there exists
an integer l, l ≥ k, such that τul (ω) = ∞ a.s. It follows that
{

A
⋂

(

yn∧τM
k

(ω) 6→ H̄M
)}

=
⋃

l

{

A
⋂

(

yn∧τM
k

(ω) 6→ H̄M and τul (ω) = ∞
)}

.
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Since {τul (ω) = ∞} ⊂ {τul+1(ω) = ∞} for all l, it follows that there exists a
positive integer L ≥ k such that

P

[

A
⋂

(

yn∧τM
k

(ω) 6→ H̄M and τuL(ω) = ∞
)]

>
1

2
×P

[

A
⋂

(

yn∧τM
k

(ω) 6→ H̄M
)]

.

Combining everything we get the following inequalities

sup
n≥k

E

[

W (yn∧τM
k

(ω));A
]

≥ E

[

W (yL∧τM
k

(ω));A
]

≥ u× P

[

A
⋂

(

τMk (ω) = ∞ and τuL(ω) = ∞
)

]

≥ u× P

[

A
⋂

(

yn∧τM
k

(ω) 6→ H̄M and τuL(ω) = ∞
)]

≥
u

2
× P

[

A
⋂

(

yn∧τM
k

(ω) 6→ H̄M
)]

.

Since u is arbitrary and supn≥k E

[

W (yn∧τM
k

(ω));A
]

< ∞, the result follows.

Lemma 11. Assume (A1)–(A5). For k an arbitrary positive integer, we
have

P

[

yn∧τM
k

(ω) 6→ H̄M
]

= 0.

Proof. Define Al := {ω : W (yk(ω)) < l}. Clearly Al is Fk-measurable and
E[W (yk(ω)) ;A

l] < l < ∞. It follows from Lemma 9 that

sup
n≥k

E

[

W
(

yn∧τM
k

(ω)
)

;Al
]

< ∞.

Lemma 10 now gives us

P

[

Al
⋂

(

yn∧τM
k

(ω) 6→ H̄M
)]

= 0.

Since P
[
⋃

l A
l
]

= 1 it follows that P
[

yn∧τM
k

(ω) 6→ H̄M
]

= 0

We now give our main results and a couple of examples.

Theorem 12. Under assumptions (A1)–(A5),

yn(ω) → H̄M a.s.

In particular, supn ‖yn‖ < ∞ a.s.

12



Proof. The result follows from Lemma 8 and Lemma 11.

The next results establish that the iterates (yn) indeed capture bahaviour
as time goes to infinity.

Proposition 13. Under assumptions (A1)–(A5), almost surely aω(n) =
a(n) for all except finitely many n. In particular,

∑

n

aω(n) = ∞ a.s.

Proof. By Theorem 12, yn(ω) → H̄M a.s. Since g(y) = 1 for y ∈ HN , and
N > M , it follows that g(yn) = 1 for all except finitely many n.

Finally, following [3] (see also [7], Chapter 2), we get

Theorem 14. Under assumptions (A1)–(A5), the iterates (yn) converge
a.s. to an internally chain transitive set of the o.d.e.

We also get a condition for the convergence of the iterates (xn) obtained
by the original iteration scheme as given by (1).

Theorem 15. Under assumptions (A1)–(A5), if

sup
x∈Rd

‖h(x)‖2 + f(x)

1 ∧W (x)
= c∞ < ∞

then the original iterates (xn) converge a.s. to an internally chain transitive
set of the o.d.e.

Proof. By Remark 1 we can set N = ∞ in (3). Now (4) gives g(x) = 1 for all
x ∈ R

d. Equation (5) continues to hold with c∞ in place of cN . The choice
of g(·) gives aω(n) = a(n) for all n, or xn(ω) = yn(ω) for all n. The result
now follows from Theorem 14.

Example 16. Consider the scalar iteration

xn+1 = xn − a(n)xn exp (|xn|)(1 + ξn+1),

where {ξn} are i.i.d. N(0, 1) (say). Here W (x) = x2 and g(x) = O(exp (|x|))
will do.
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Example 17. Consider the scalar iteration (1) with bounded h(·) satisfying

lim
x↑∞

h(x) = − lim
x↓−∞

h(x) = −1,

with {Mn} i.i.d. uniform on [−1, 1]. Then W (x) = x2 and g(x) ≡ 1 will do.
In particular, there is no need to adaptively scale the step sizes.

Note that neither of these two examples, even the apparently simple Ex-
ample 17, is covered by the tests of [1], [8], [16].

Acknowledgements: The author would like to thank Prof. V. S. Borkar
for suggesting this problem and for his comments on an earlier draft which
included, in particular, the idea of using an adaptive scheme.
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