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Abstract

We consider the use of linear multivariable feedback control to achieve a nonover-

shooting and nonundershooting step response. Recently Schmid and Ntogramatzidis [19]

introduced a linear state feedback controller design method to avoid overshoot. In this

paper we describe conditions under which the design method may be modified to avoid

undershoot. The method is applicable to square and non-square systems, minimum and

nonminimum phase systems, and also strictly proper and bi-proper systems.

Keywords: Tracking control, step response, nonovershooting and nonundershooting

linear controllers, MIMO systems.

1 Introduction

The problem of designing a linear control law to achieve a nonundershooting or nonover-

shooting step response for linear time invariant (LTI) systems has been studied for several

decades. It is well known that the transient response of an LTI system is related to its

zero structure, and numerous studies have reported fundamental performance limitations

arising from nonminimum phase (NMP) zeros. A recent comprehensive survey of the

impact of system zeros on control system performance is given in [7].

Much of the existing literature on overshoot and undershoot is concerned with single-

input single-output (SISO) systems. Papers offering analytic results on the system over-

shoot include [14], which considers third-order continuous-time SISO systems, and where

necessary and sufficient conditions are given in terms of the closed-loop poles for which

the step response is nonovershooting. In [21] it is shown that for a continuous-time SISO

system with two nonminimum phase real zeros (right-hand complex plane), the step re-

sponse must overshoot if the settling time is sufficiently small. Papers offering design
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methods include [4], where it is shown how to design a two parameter feedback controller

for an LTI continuous-time plant that renders the step response nonovershooting. In

[2] an eigenvalue assignment method is proposed to obtain a nonovershooting LTI state

feedback controller for continuous-time plants with one nonminimum phase zero. In [3]

conditions are given for the existence of a controller to achieve a sign invariant impulse

response, and hence also a nonovershooting step response. Corresponding conditions for

discrete systems are given in [5].

Analytic results on the system undershoot include [15], where it is shown that an LTI

SISO continuous-time system has an undershooting step response if it contains at least

one real nonminimum phase zero. A lower bound for the size of the undershoot is also

given, and this result is extended in [13] where SISO systems with two real nonminimum

phase zeros are considered and a lower bound for the minimum undershoot is given.

Papers simultaneously considering both undershoot and overshoot have generally sought

conditions to ensure the step response is monotonic. In [1], the authors give conditions for

discrete-time and continuous-time SISO systems to have a nonnegative realization, imply-

ing a positive impulse response and hence a monotonic step response. Sufficient conditions

for discrete-time SISO systems to have a monotonic step response were also given in [11].

Papers offering design methods for a nonundershooting response have typically aimed at

achieving a sign invariant impulse response, such as [3] and [5]. However such an ap-

proach is inherently conservative, because a sign invariant impulse response (and hence

also a monotonic step response) is not necessary to avoid undershoot or overshoot.

To date there have been few papers offering analysis or design methods for undershoot

or overshoot in the step response of multi-input multi-output (MIMO) systems. The

paper [8] considered MIMO systems subject to dynamic output feedback, and gave a lower

bound on the system undershoot and interaction for systems with at least one real NMP

zero. A recent contribution in this area is [19], which employed the classic eigenstructure

assignment algorithm of [16], and gave conditions under which a state feedback controller

could be obtained to yield a nonovershooting step response for LTI MIMO systems; the

design method was applicable to some nonminimum phase systems, and could be applied

to both continuous-time and discrete-time systems. In this paper we give conditions under

which the design method of [19] may be modified to achieve a step response for MIMO

systems that is both nonovershooting and also nonundershooting. It should be noted

however that the question of whether a nonundershooting (or nonovershooting) tracking

controller can be obtained for an arbitrary LTI system is an open question, even for SISO

systems.

The paper is organized as follows. In Section 2 we formulate our tracking problem

and formalize the definitions of overshooting and undershooting step response. Section

3 briefly reviews the state feedback controller design method given in [19], and describes

conditions under which a gain matrix can be obtained to give a closed-loop system in which

only a small number of the system modes appear in each component of the output. Thus

each component of the output may be rendered as the sum of just a few real exponentials.
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Section 4 then provides some conditions under which sums of real exponentials have

real positive roots. In Section 5 these technical results are incorporated into the design

method of [19]. We begin by considering square systems and give conditions under which

the design method will yield a state feedback control law that renders the closed-loop

system response as nonovershooting, or nonundershooting, or both. Additionally, we give

conditions under which the method may be used to yield a monotonic step response. Next

we describe briefly how the method for square systems can be modified to accommodate

non-square systems. We provide some discussion on the effectiveness of the algorithm,

and describe some generic conditions under which the search for a suitable gain matrix

is likely to be successful. We summarise the procedure in the form of an algorithm that

may be readily coded in MATLABR©.

In Section 6 the designed method is applied to two examples. We consider a MIMO

system with two inputs/outputs, and two real nonminimum phase zeros. We use our

design method to obtain a state feedback law that yields a step response that is monotonic

in both outputs. This example shows that several results [6], [15] and [12] describing

how the presence of real NMP zeros shape the transient response of a SISO system do

not necessarily generalize to the transient response of MIMO systems. In our second

example we consider a NMP non-square system, and give a state feedback law that yields

a monotonic response from all initial conditions and step references.

2 Problem Formulation

Consider the LTI system Σ governed by

Σ :

{

ẋ(t) = Ax(t) +B u(t),

y(t) = C x(t) +Du(t),
(1)

where, for all t ∈ R, x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, y(t) ∈ Rp is

the output. For time t < 0, we assume the control input takes a constant value u0, which

holds the system state at an initial equilibrium x0, yielding an output with constant value

y0 = Cx0 + Du0. Here, A, B, C and D are appropriate dimensional constant matrices.

We assume that B has full column rank and C has full row rank. We use R+ to denote

the set of positive real numbers, and C− to indicate the left hand complex plane. A

complex number λ ∈ C is said to be stable if λ ∈ C−, and a stable matrix is one that

has all its eigenvalues contained within C−. In this paper we are concerned with the

problem of designing a linear state feedback control law for (1) such that the output y of

(1) tracks a step reference r ∈ Rp with zero steady-state error, and with zero undershoot

and overshoot. We adopt the following standard assumption throughout this paper:

Assumption 2.1 System Σ is right invertible, stabilisable and has no invariant zeros at

the origin.

This assumption ensures that a linear tracking controller can be obtained to track any

constant reference r from any given initial condition x0 as follows: choose a feedback gain
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matrix F such that A + B F is stable. Two vectors xss ∈ Rn and uss ∈ Rm exist that

satisfy

0 = Axss +B uss (2)

r = C xss +Duss (3)

for any r ∈ Rp. Application of the control input

u(t) =

{

u0, t < 0

F (x(t) − xss) + uss, t ≥ 0
(4)

to Σ yields the output

y(t) =

{

y0, t < 0

C x(t) +Du(t), t ≥ 0
(5)

Employing the change of variable ξ := x − xss, we obtain the closed loop homogeneous

system

Σhom :

{

ξ̇(t) = (A+B F ) ξ(t),

y(t) = (C +DF ) ξ(t) + r.
(6)

Since A+B F is stable, x converges to xss, u converges to uss, and y converges to r as t

goes to infinity. For a SISO system, overshoot means that the output exceeds the target

r ∈ R, while undershoot means that the output moves further away from the target than

its initial distance. Thus, if y0 < r, undershoot occurs if the response y(t) takes values

less than or equal to y0, while overshoot occurs if y(t) takes values greater than or equal

to r. If y0 > r, undershoot occurs if the response y(t) takes values greater than or equal

to y0, and overshoot occurs if y(t) takes values less than or equal to r.

It is also helpful to understand the system response in terms of the tracking error

ε(t) = r − y(t). At the initial equilibrium (u0, x0, y0), we have ε0 = r − y0. Thus

overshoot corresponds to the tracking error crossing the time axis. For y0 < r, undershoot

corresponds to the tracking error taking values greater than or equal to its initial value

ε0, while for y0 > r it corresponds to the error taking values smaller than its initial value

ε0.

Figure 1 shows some examples of step responses y(t) and the corresponding tracking

errors ε(t) = r− y(t) with y0 < r. Notice that y1, and y2 are all overshooting and nonun-

dershooting step responses, while y3 and y4 are all nonovershooting but undershooting.

Figure 2 shows some examples of step responses and tracking errors with y0 > r.

Again, y1, and y2 are examples of overshooting and nonundershooting responses, while y3

and y4 are nonovershooting and undershooting. Intuitively, we may say that overshoot

or undershoot occur when the output curve goes outside the ‘train tracks’ formed by the

horizontal lines y = y0 and y = r.

Note that for bi-proper systems (i.e., with D %= 0), the instantaneous change in the

control input at t = 0 may lead to instantaneous changes in the output at t = 0. Thus

in general for D %= 0, we have y0 %= y(0). For example, in Figure 1 we can see that the

responses y1, y2 and y3 are all characterized by an instantaneous transition from y0 to
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Figure 1: Possible step response curves and corresponding tracking errors with y0 < r.

 

 

t

r

y1
y2
y3
y4

 

 

t

ε1
ε2
ε3
ε4

Figure 2: Possible step response curves and corresponding tracking errors with y0 > r.

y(0) at t = 0. For y0 < r, we must have y0 ≤ y(0) < r, else overshoot or undershoot occur

immediately. This is the case of y1 and y3 in Figure 1: indeed, y1(0) > r, so that we have

instantaneous overshoot, and y3(0) < y0, so that we have instantaneous undershoot.

Conversely, for y0 > r, we must have r < y(0) ≤ y0. This does not hold for y1 and

y3 in Figure 2: we have y1(0) < r, implying instantaneous overshoot, and y3(0) > y0,

implying instantaneous undershoot.

To diagnose cases where overshoot and undershoot may occur instantaneously due to

discontinuities in the output arising from D %= 0, we may write the error ε(0) = µε0,

for some µ ∈ R. Then µ ≤ 0 corresponds to instantaneous overshoot, since it leads to

an instantaneous change of sign in the error function at t = 0. If 0 < µ ≤ 1, then
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overshoot occurs if there exists t̄ ∈ R+ such that ε0ε(t̄) < 0. Lastly µ > 1 corresponds

to instantaneous undershoot, since the inequalities ε(0) > ε0 and ε(0) < ε0 in the cases

y0 < r and y0 > r, respectively, can be written as ε(0) = µε0 with µ > 1. For strictly

proper systems we will always have µ = 1.

A key technical task of this paper is to establish simple tests for overshoot and un-

dershoot, in terms of the error function. We have noted that overshoot corresponds to

the error function crossing the time axis. Since the outputs of system Σ are continuous

functions of time, this means the error function will have a root, i.e if overshoot occurs,

there exists t̄ ∈ R+ such that ε(t̄) = 0.

Note however that it is possible for the error function to have a root without changing

sign, if the root is also a turning point. In this very special case the output reaches

the constant target exactly, but then moves back from it without exceeding it. Thus,

to properly define overshoot in terms of roots of the error function, we should say that

overshoot occurs when the error term has at least one root that is not also a turning

point. This would however make the task of testing for overshoot very difficult, since it

would require locating the roots and testing them until at least one of them was found to

not also be a turning point. Instead, we adopt the simpler approach of defining overshoot

to occur if the error function has a root, whether or not the root is also a turning point.

This is a slightly more conservative definition of overshoot, since it declares the output

to be overshooting in some cases where, strictly speaking, it is not. Since the aim of our

design method is to avoid overshoot, and given the exceptional rarity of such situations,

this mild conservatism is acceptable for our purposes.

An analogous situation arises with respect to undershoot. Strictly speaking, under-

shoot occurs if there exists t̄ ∈ R+ such that ε(t̄) > ε0. Again, this situation is very

difficult to test for; we shall instead test for the condition ε(t̄) = ε0, which again involves

a mild conservatism. The following definition formalizes the above discussion.

Definition 2.1 Assume the initial control input, state and output of the system Σ are at

an equilibrium (u0, x0, y0). Let r ∈ Rp be a step reference and let ε = r− y be the tracking

error obtained when the control input u given in (4) is applied to Σ. Define ε0 = r − y0,

and for each component k ∈ {1, . . . , p}, let ε0,k denote the k-th component of ε0. Then

(i) the system Σ has an overshooting response in the output component yk(t) (k ∈

{1, . . . , p}) for a given r ∈ Rp from the initial condition (u0, x0, y0) if either (a) εk(0) =

µk ε0,k, for some µk < 0, or (b) the tracking error εk has a positive real root, i.e., there

exists a t̄ ∈ R+ such that εk(t̄) = 0, or (c) εk(0) = 0, and there exists t̄ ∈ R+ such that

ε0,kεk(t̄) < 0;

(ii) the system Σ has an undershooting response in the output component yk(t) (k ∈

{1, . . . , p}) for a given r ∈ Rp from the initial condition (u0, x0, y0) if either (a) εk(0) =

µk ε0,k, for some µk > 1, or (b) there is a t̄ ∈ R+ such that εk(t̄) = ε0,k;

(iii) if Σ is nonovershooting (respectively, nonundershooting, monotonic) in all out-

put components for a given r ∈ Rp, then we say Σ has a nonovershooting (respectively,

nonundershooting, monotonic) response for the specified (u0, x0, y0) and r.
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(iv) if Σ is nonovershooting (respectively, nonundershooting, monotonic) in all output

components for a given r ∈ Rp from all initial equilibria (u0, x0, y0), then we say Σ has

a globally nonovershooting (respectively, globally nonundershooting, globally monotonic)

response for this r.

Our aim in this paper is to design, for any given initial equilibrium (u0, x0, y0) and

target reference r, a gain matrix F such that the control law (4) moves the system to a

final equilibrium (uss, xss, r) without overshoot or undershoot in the transient response.

3 Feedback controller design method

In [19] a linear state feedback design method was introduced to yield a nonovershooting

step response. The main idea of the method was to employ the classic result on eigen-

structure assignment given by B.C. Moore in [16] to constrain the output y(t) in such

a way that each component of the error term ε(t) contained only a small number of the

closed-loop modes (poles). Here we summarize the design method, and present some re-

sults that describe the form of the error term. In Section 5 we consider how the design

method may be employed to yield a closed loop response that is both nonovershooting and

nonundershooting. A key result is the following eigenstructure lemma from [19], which is

itself an adaptation of Moore’s algorithm.

Lemma 3.1 [19] Let L = {λ1, . . . ,λn} be a self-conjugate set of n distinct complex num-

bers. Let S = {s1, . . . , sn} be a set of n (not necessarily distinct) vectors in Rp. Assume

that, for each i ∈ {1, . . . , n}, the matrix equation

[

A− λiI B

C D

][

vi

wi

]

=

[

0

si

]

(7)

has solutions sets V = {v1, . . . , vn} ⊂ Cn and W = {w1, . . . , wn} ⊂ Cm. Then, provided

V is linearly independent, a unique real feedback matrix F exists such that, for all i ∈

{1, . . . , n},

(A+BF ) vi = λi vi, (8)

(C +DF ) vi = si. (9)

Remark 3.1 For square systems (p = m), if si = 0, then (7) is solvable for non-zero vi if

and only if λi is a zero of Σ. For arbitrary non-zero si ∈ Rp, (7) is solvable if and only if

λi is real, and not a zero of Σ, by right invertibility. Assuming L and S are such that the

solution sets V and W do exist, then Moore’s algorithm (Proposition 1 of [16]) can be used

to construct F : Obtain real vectors V̂ = {v̂1, . . . , v̂n} ⊂ Rn and Ŵ = {ŵ1, . . . , ŵn} ⊂ Rm

as follows: for each i ∈ {1, . . . , n},

(i) If λi ∈ R, define v̂i = vi and ŵi = wi.
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(ii) If λi,λi+1 ∈ C are a complex conjugate pair, define v̂i = Re(vi), v̂i+1 = Im(vi),

ŵi = Re(wi), ŵi+1 = Im(wi), where Re and Im denote the real and imaginary

components of a complex vector, respectively.

(iii) Define V̂ = [v̂1 . . . v̂n] and Ŵ = [ŵ1 . . . ŵn] and solve

F = Ŵ V̂ −1 (10)

3.1 Systems with at least n− p minimum phase zeros

The first design method applies to systems that satisfy

Assumption 3.1 System Σ is square (m = p) has at least n− p distinct invariant zeros

in C−.

Let L = {λ1, . . . , λn} ⊂ C− denote the set of distinct stable closed loop eigenvalues of

A+BF to be chosen. Let {z1, z2, . . . , zn−p} ⊂ C− be freely chosen from among the distinct

minimum phase invariant zeros of Σ. Then, we choose λi = zi for i ∈ {1, . . . , n−p}; these

modes are stable as all zi lie in C−. For i ∈ {n − p + 1, . . . , n}, the λi may be freely

chosen to be any real distinct stable modes not coincident with invariant zeros of Σ. Let

{e1, . . . , ep} be the canonical basis of Rp, and let S = {s1, . . . , sn} ⊂ Rp be such that

si =



















0 for i ∈ {1, . . . , n− p};
e1 for i = n− p+ 1;
...
ep for i = n.

(11)

Observe from Remark 3.1 that L and S are such that solution sets V = {v1, . . . , vn} ⊂ Cn

and W = {w1, . . . , wn} ⊂ Cp for (7) do exist. Provided V is linearly independent, by

Lemma 3.1, Moore’s algorithm yields F such that A+B F has eigenstructure given by L

and V, respectively. Since wi = Fvi, the vectors in V satisfy

(A+B F ) vi = λi vi, i ∈ {1, . . . , n}, (12)

(C +DF ) vi =

{

0 i ∈ {1, . . . , n− p},

ei−(n−p) i ∈ {n− p+ 1, . . . , n}.
(13)

Now introduce the new state coordinate ξ := x−xss. As V is linearly independent, the ma-

trix V := [ v1 v2 . . . vn ] is invertible. Introduce ξ0 = x0−xss and α := [α1 α2 . . . αn]" =

V −1ξ0. Theorem 3.1 describes the form of the error term:

Theorem 3.1 [19] Assume Σ satisfies Assumption 3.1. Let L be chosen as above, let F

be obtained from Moore’s algorithm, let r ∈ Rp be any step reference, and let (u0, x0, y0)

be the initial equilibrium. Then, the error term ε obtained from applying u in (4) to Σ

has the form

ε(t) =









αn−p+1 eλn−p+1t

...

αn eλnt









. (14)

We observe that each of the p components of ε contain exactly one mode.
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3.2 Systems with fewer than n− p minimum phase zeros

Next we consider how the design method given in Section 3.1 can be extended to systems

with fewer than n− p zeros. Let us denote by zmin the number of minimum phase zeros

of Σ and we can then write

zmin = n− lp+ q (15)

for some integers l and q, with 0 ≤ q < p. Firstly let us suppose for simplicity that q = 0

and we have exactly n − l p minimum phase zeros. The key idea is to channel l modes

per output component. Choose L = {λ1, . . . , λn} with λi = zi for i ∈ {1, . . . , n − l p},

and for i ∈ {n − l p+ 1, . . . , n} the λi may be freely chosen to be any distinct real stable

modes that are not coincident with invariant zeros of Σ. Next let S = {s1, . . . , sn} ⊂ Rp

be such that

si =























0 for i ∈ {1, . . . , n−l p};
e1 for i ∈ {n−l p+1, . . . , n−l(p− 1)};
e2 for i ∈ {n− l(p− 1) + 1, . . . , n−l(p− 2)}
...
ep for i ∈ {n−p+ 1, . . . , n}.

(16)

As before, L and S are such that solution sets V = {v1, . . . , vn} ⊂ Cn and W =

{w1, . . . , wn} ⊂ Cp for (7) do exist. Provided V is linearly independent, Moore’s algo-

rithm yields F such that A + BF has distinct eigenvalues and eigenvectors given by L

and V, respectively. The following notation allows us to succinctly state our theorem for

the form of the tracking error term in this case.

Notation 3.1 For each k ∈ {1, . . . , p}, we let

(i) vk,1, vk,2, . . . , vk,l denote the eigenvectors in V associated with canonical basis vector

ek in (16), and let λk,1,λk,2, . . .λk,l be the corresponding real eigenvalues in L, ordered

such that λk,1 < λk,2 < · · · < λk,l in each case;

(ii) For any x ∈ Rn, introduce the new state coordinates ξ = x − xss and let ξ0 = ξ(0).

Let V be the matrix formed by the columns of V, and let α := V −1ξ0 be the coordinate

vector of ξ0 in terms of V. Then define

α = [α1 . . . αn−l p α1,1 . . . α1,l . . . αp,1 . . . αp,l]
". (17)

Theorem 3.2 [19] Assume Σ is square and has exactly n − l p minimum phase zeros.

Let L be chosen as above, let F be obtained from Moore’s algorithm, let r ∈ Rp be any

step reference, and let x0 ∈ Rn be any initial condition. Then εk, the k-th component of

the error term ε obtained from applying u in (4) to Σ has the form

εk(t) = αk,1 e
λk,1t + αk,2 e

λk,2t + · · · + αk,l e
λk,lt. (18)

Remark 3.2 The design method described above employs two rather simple ideas. Firstly,

the available minimum phase invariant zeros are used to render the corresponding modes

invisible in the tracking error via pole/zero cancelation. The remaining modes are dis-

tributed evenly into the p components of the tracking error. Thus, in Theorem 3.1, n− p
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modes are canceled and the remaining p modes are allocated with one mode per com-

ponent. In Theorem 3.2, n − lp modes are canceled and the remaining lp modes are

distributed with l modes per component.

Finally if q > 0 in (15), then we have n − lp + q minimum phase zeros, and the

additional minimum phase zeros may be employed by modifying the targets si in (16) so

that si = 0 for i ∈ {1, . . . , n− l p + q}. Then we would choose q of the outputs to have

only l−1 modes allocated into them; the q canonical basis vectors corresponding to those

outputs need be associated with only l − 1 modes each. The remaining p − q outputs

would have l modes allocated into them as in (16).

Remark 3.3 Let us use ztotal to denote the total number of invariant zeros of Σ. For

square bi-proper Σ, [17] gives the equation ztotal = n − p + rankD. Hence, if D is of

full rank, system Σ has n zeros. Alternatively, if Σ is strictly proper (D = 0) and CB

is nonsingular, then ztotal = n − p [17]. It should be noted that Theorems 3.1 and 3.2

above are only concerned with zmin, the number of minimum phase zeros. The remaining

system zeros may be of nonminimum phase and do not impact upon the design method.

We see that this eigenstructure based method for designing the feedback matrix F

gives us an error term that has a rather simple form; each component contains at most

l distinct exponential terms. Other MIMO pole placement methods, for example those

in [9], that do not allow the designer to simultaneously select the eigenvectors lead to an

error term in which all n modes contribute in all p output components. In Section 5 we

introduce methods of exploiting the simplified form of the error term to obtain a suitable

gain matrix F that yields a nonovershooting and nonundershooting step response.

4 Conditions implying Overshoot and Undershoot

In this section we consider functions composed of sums of real exponential functions,

and obtain some technical conditions under which these functions contain a real positive

root. When applied to the system tracking error ε, such roots correspond to overshoot or

undershoot. When applied to the derivative of the tracking error ε̇, such roots correspond

to the existence of local extrema, which imply a non-monotonic step response. The

following result from the classic paper [10] provides information on the number of real

roots of such functions in terms of the variations of the signs of their coefficients.

Notation 4.1 Let l ∈ N, let {λ1, . . . ,λl} and {α1, . . . ,αl} be sets of real numbers with

λ1 < λ2 < · · · < λl. Define f : R → R as

f(t) = α1 e
λ1t + α2 e

λ2t + · · · + αl e
λlt. (19)

We let C{α1, . . . ,αl} denote the number of changes in the signs in the sequence of coeffi-

cients {α1, α2, . . . ,αl}, and for any interval I ⊆ R, Zf
I
denotes the number of real roots

of f in I.

Let us also introduce p1 = α1, p2 = α1 + α2, p3 = α1 + α2 + α3, . . . , pl = α1 + · · · + αl
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and q1 = p1(λ1 − λ2), q2 = q1 + p2(λ2 − λ3), . . . , ql−1 = ql−2 + pl−1(λl−1 − λl), ql = pl.

Also introduce r1 = αl, r2 = αl + αl−1, r3 = αl + αl−1 + αl−2, . . . , rl = αl + · · ·+ α1 and

s1 = r1(λl − λl−1), s2 = s1 + r2(λl−1 − λl−2), . . . , sl−1 = sl−2 + rl−1(λ2 − λ1), sl = rl.

Lemma 4.1 [10, Section 24]. Let f be defined as in (19). Then

Zf
(0,1) ≤ C{q1, . . . , ql},

Zf
[1,∞) ≤ C{s1, . . . , sl}.

Our first lemma provides conditions under which the sum of two or three real expo-

nentials contains a real root, which corresponds to overshoot in the step response.

Lemma 4.2 [19] Let λ1 < λ2 < λ3 < 0, and for any real constants {α1,α2,α3} with

α3 %= 0, define

f(t) = α1 e
λ1t + α2 e

λ2t + α3 e
λ3t. (20)

There exists t̄ ∈ R+ such that f(t̄) = 0 if and only if one of the following conditions hold:

I. C{α1,α2,α3} = 1 and (α1 + α2 + α3)α3 < 0;

II. C{α1,α2,α3} = 2 and (α1 + α2 + α3)α3 ≥ 0;

III. C{α1,α2,α3} = 2, (α1 +α2 +α3)α3 < 0, t∗ > 0 and |g(t∗)| ≥ |α1 +α2 +α3|, where

t∗ =
1

λ3 − λ1
ln

(

α1(λ2 − λ1)

α3(λ3 − λ2)

)

(21)

g(t) = α1(1− e(λ1−λ2)t) + α3(1− e(λ3−λ2)t). (22)

Proof: The proof appears in [19]; here we have streamlined the presentation by adopting

the Notation 4.1.

Note that if f consists of the sum of only two exponentials then we may employ Lemma

4.2 with α1 = 0; in this case only condition I. of Lemma 4.2 is relevant.

The next lemma gives a necessary and sufficient condition for the sum of two real

exponentials to take on a specified non-zero value, which corresponds to undershoot.

Lemma 4.3 Let λ1 < λ2 < 0, and for any real nonzero constants {α1,α2}, define

f(t) = α1 e
λ1t + α2 e

λ2t. (23)

Let β = 1
µ(α1 + α2) for some 0 < µ ≤ 1. Then there exists t̄ ∈ R+ such that f(t̄) = β if

and only if t∗ ∈ R+ and f(t∗)β ≥ β2, where

t∗ =
1

λ2 − λ1
ln

(

−λ1α1

λ2α2

)

. (24)

Proof: Since λ1 < λ2 < 0, function f(t) goes to 0 as t → ∞. Since β = f(0)/µ, in the

case f(0) = α1 + α2 > 0, a t̄ exists for which f(t̄) = β if and only if f(t) has a maximum

whose value exceeds β, i.e., there exists t∗ > 0 such that ḟ(t∗) = 0 and f(t∗) ≥ β. If

f(0) < 0, such t̄ exists if and only if f(t) has a minimum whose value is more negative

11



than β, i.e., a t∗ > 0 exists such that ḟ(t∗) = 0 and f(t∗) ≤ β. Setting ḟ(t∗) = 0 yields

t∗ given by (24). If t∗ /∈ R+, then f is monotonic on R+ and takes its extreme value at

t = 0, implying |f(t)| < |α1+α2| ≤ |β| for all t ∈ R+. If t∗ ∈ R+, then f takes its extreme

value at t = t∗. As such, t̄ ∈ R+ satisfying f(t̄) = β exists if and only f(t∗)β ≥ β2, which

captures both the condition f(t∗) ≥ β when f(0) > 0 and the condition f(t∗) ≤ β when

f(0) < 0.

When we apply Lemma 4.3 to test for undershoot, each εk(t) has the form (23), and

we use βk = ε0,k for the initial output. Also εk(0) = α1+α2, and we find µk ∈ R such that

µkε0,k = εk(0). We only need consider 0 < µ ≤ 1 in Lemma 4.3 because µ < 0 implies

instantaneous overshoot, and µ > 1 implies instantaneous undershoot. The following

corollary offers a simpler result that can be used for strictly proper systems where no

initial discontinuity in the output can occur.

Corollary 4.1 Under the assumptions of Lemma 4.3, if µ = 1, then there exists t̄ ∈ R+

such that f(t̄) = β if and only if and (α1 + α2)(λ1α1 + λ2α2) > 0.

Proof: Here t̄ ∈ R+ satisfying f(t̄) = β exists if and only if f(0)ḟ(0) > 0. This holds if

and only (α1 + α2)(λ1α1 + λ2α2) > 0.

The next lemma gives conditions on when the sum of three real exponentials takes on

a specified non-zero value.

Lemma 4.4 Let λ1 < λ2 < λ3 < 0, and for any nonzero constants {α1,α2,α3}, define

β = 1
µ(α1 + α2 + α3) for some 0 < µ ≤ 1. Let

f(t) = α1 e
λ1t + α2 e

λ2t + α3 e
λ3t, (25)

and introduce p1 = α1, p2 = α1 + α2, p3 = α1 + α2 + α3, p4 = α1 + α2 + α3 − β and

q1 = p1(λ1 − λ2), q2 = q1 + p2(λ2 − λ3), q3 = q2 + p3(λ3), q4 = p4. Also introduce

r1 = −β, r2 = α3 − β, r3 = α3 + α2 − β, r4 = α1 + α2 + α3 − β and s1 = r1(−λ3),

s2 = s1 + r2(λ3 − λ2), s3 = s2 + r1(λ2 − λ1), s4 = r4. Then there exists t̄ ∈ R+ such that

f(t̄) = β only if at least one of the following conditions hold:

I. C{q1, q2, q3, q4} ≥ 1;

II. C{r1, r2, r3, r4} ≥ 1.

Proof: Define g(t) = f(t) − β. Then f(t̄) = β for some t̄ ∈ R+ if and only g(t̄) = 0.

Then we may write g in the form (19) with coefficients {α1,α2,α3,−β} and exponents

{λ1,λ2,λ3, 0}. Applying Lemma 4.1 to g, we see that t̄ exists only if C{q1, q2, q3, q4} ≥ 1

or C{r1, r2, r3, r4} ≥ 1.

The generalisation of these lemmas to the sum of any finite number of real exponentials

is given by the following:

Lemma 4.5 For some positive integer l, let λ1 < λ2 < · · · < λl < 0, and for any

non-zero constants {α1,α2, . . . ,αl}, define

f(t) = α1 e
λ1t + α2 e

λ2t + · · · + αl e
λlt. (26)

12



(a) Use the sets {αi : 1 ≤ i ≤ l} and {λi : 1 ≤ i ≤ l} to obtain sets {qi : 1 ≤ i ≤ l}

and {si : 1 ≤ i ≤ l} as in Lemma 4.1. Then there exists t̄ ∈ R+ such that f(t̄) = 0 only

if C{qi : 1 ≤ i ≤ l} ≥ 1 or C{si : 1 ≤ i ≤ l} ≥ 1.

(b) Let β = 1
µ(α1 + · · ·+αl) for some 0 < µ ≤ 1, and define αl+1 = −β and λl+1 = 0.

Use the sets {αi : 1 ≤ i ≤ l+1} and {λi : 1 ≤ i ≤ l+1} to obtain sets {qi : 1 ≤ i ≤ l+1}

and {si : 1 ≤ i ≤ l + 1} as in Lemma 4.1. Then there exists t̄ ∈ R+ such that f(t̄) = β

only if C{qi : 1 ≤ i ≤ l + 1} ≥ 1 or C{si : 1 ≤ i ≤ l + 1} ≥ 1.

Proof: These follow straightforwardly from Lemma 4.1. In each case, if neither of the

conditions hold, then the relevant function has no root in R+.

Remark 4.1 The conditions given here are necessary, and in some cases also sufficient,

for the existence of t̄ ∈ R+ that corresponds to overshoot, undershoot or non-monotonic

behaviour. Negating these conditions, we obtain conditions that are sufficient, and in some

cases also necessary, to ensure that overshoot, undershoot or non-monotonic behavior do

not occur. It is worth noting the conditions given depend only the coefficients {αi} and

the modes {λi}, and do not require simulating the system response.

5 Nonovershooting and nonundershooting feed-

back controllers

In this section we see how the feedback design method described in Section 3 can be com-

bined with the technical lemmas in Section 4 to give a systematic procedure for searching

for a nonovershooting and nonundershooting feedback controller. We also discuss of the

effectiveness of the search procedure.

5.1 Gain Matrix Search Algorithm

We assume an LTI square system Σ in the form (1), together with a specified initial

equilibrium (uo, x0, y0) and step reference r. The following algorithm seeks to obtain a

suitable set of closed loop eigenvalues L and corresponding eigenvectors V to which the

Moore’s algorithm may be applied to obtain a state feedback gain matrix F that yields a

closed-loop step response that is neither overshooting nor undershooting.

Algorithm 5.1

(i) Begin by determining zmin and then solving (15) for l and q.

(ii) For a given initial condition x0 and reference r, determine xss and uss from (2)-(3)

and hence also ξ0 = x0 − xss.

(iii) Choose a desired interval [a, b] of the real line (where a < b < 0), and form a candi-

date set L of n distinct closed-loop eigenvalues containing the n− l p+ q minimum

phase zeros of Σ, and p sets of l eigenvalues chosen from within [a, b].

13



(iv) For the appropriate value of l, determine the target set S from (16), modified ac-

cording to Remark 3.2 if q > 0. Then solve for the corresponding V and W in (7)

and check if V is linearly independent. If it is not then return to Step (iii) and

choose an alternative set of eigenvalues within [a, b].

(v) Obtain the coordinate vector α in (17), and hence obtain the components εk of the

tracking error ε from (18), for each k ∈ {1, . . . , p}.

(vi) For strictly proper systems, proceed directly to Step (vii). For bi-proper systems,

solve εk(0) = µk ε0,k for µk ∈ R, for each k ∈ {1, . . . , p}.

(a) For a step response without instantaneous overshoot, check µk > 0 for each

k ∈ {1, . . . , p}.

(b) For a step response without instantaneous undershoot, check µk < 1 for each

k ∈ {1, . . . , p}.

If not return to Step (iii).

(vii) If l = 1, proceed directly to Step (viii). For l ≥ 2, do the following for each

k ∈ {1, . . . , p}:

(a) For a nonovershooting response, test each εk for the conditions in Lemma 4.2

(if 2 ≤ l ≤ 3), or Lemma 4.5(a) (if l ≥ 4).

(b) For a nonundershooting response, test each εk for the conditions in Lemma 4.3

(if l = 2), Lemma 4.4 (if l = 3) or Lemma 4.5(b) (if l ≥ 4) respectively.

(c) For a monotonic response, test each ε̇k for the conditions in Lemma 4.2 (if

2 ≤ l ≤ 3), or Lemma 4.5(a) (if l ≥ 4).

In each case, if none of the conditions in the respective lemmas are satisfied for any

k ∈ {1, . . . , p}, then L and V are satisfactory. If not, then return to Step (iii).

(viii) Apply Moore’s algorithm to this L, V and W to obtain the feedback matrix F for u

in (4).

According to Theorems 3.1 and 3.2, the components of the closed-loop tracking error

vector ε have the form of (14) or (18), respectively. The tests in Step (vii) ensure the

coefficients αk,l are such that overshoot and undershoot do not occur in any of the output

components. For the case l = 1, the response is globally nonovershooting and nonunder-

shooting.

The conditions on overshoot and undershoot are independent of one another. Thus

if only avoiding overshooting is important, we may perform only Steps (vi)a and (vii)a;

alternatively we perform only Steps (vi)b and (vii)b to avoid undershoot only. If a mono-

tonic response is desired, we perform Steps (vi) and (vii)c; these of course also guarantee

no overshoot or undershoot. Finally note that as Lemmas 4.4 and 4.5 only offer suffi-

cient conditions for the avoidance of overshoot, or undershoot, or extrema, using them in

Step (vii) will reject some L that do in fact yield suitable F for a nonundershooting, or

nonovershooting, or monotonic, response.
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5.2 Extensions to Non-Square Systems

The above analysis assumed Σ to be a square system. The eigenstructure assignment

method given in [19] also considered non-square systems, and we briefly summarise the

results here. For the case p < m, (more inputs than outputs), [19] gave conditions under

which the additional control inputs could be exploited to achieve a globally nonovershoot-

ing and nonundershooting step response with any desired convergence rate (settling time).

This involved augmenting Σ with a fictitious output yp+1. Then p modes were allocated

to the first p components of the tracking error ε(t), while the remaining n− p modes were

“dumped” into the (p + 1)-th component εp+1(t) of the tracking error. This meant that

only a single exponential mode appears in each component of the tracking error, yielding

no overshoot. We note here that such methods also yield no undershoot.

Secondly, for the case p > m, Σ is not right invertible, and some targets r ∈ Rp are not

trackable, as (2)-(3) may not be solvable. This implies that, due to the deficit of inputs,

it is not possible in general to achieve a nonovershooting response for some targets. For

those targets r for which (2)-(3) do have solutions, and hence tracking can be achieved,

[19] gave conditions under which the tracking error would could be made to contain only a

single exponential mode in m− 1 output components, and thus non-overshooting. Again,

we note here that such a response would also be nonundershooting in those outputs.

In [20] the authors considered the implementation and performance of the design

method when implemented with dynamic output feedback based on a Luenberger ob-

server scheme. It was shown that state feedback tracking control scheme could also be

successfully implemented with a dynamic output feedback scheme, provided the initial

state estimation error is sufficiently small.

5.3 Effectiveness of the Algorithm

The mathematical tests employed by Algorithm 5.1 to find suitable sets of closed loop

poles are computationally very tractable within MATLABR©, allowing for large numbers

of candidate sets of poles to be tested in an efficient manner. Very recently the authors

have developed a public domain MATLABR© toolbox, known as NOUS [18], to implement

Algorithm 5.1. The algorithm searches for suitable L and V to yield the required gain

matrix F . However, there can be no guarantee that suitable L and V can always be

found, for any given (u0, x0, y0) and r, even if [a, b] = (−∞, 0) is chosen at Step (iii). For

SISO systems with real nonminimum phase zeros, there are situations in which overshoot,

undershoot and local extrema are known to be unavoidable features of the step response.

This is true both for state feedback and output dynamic feedback control architectures.

The general question of identifying structural a priori conditions in terms of the prob-

lem data for which the algorithm will be successful is a matter for ongoing research. The

toolbox has already revealed some insights into the circumstances under which the algo-

rithm is likely to be successful. The search algorithm is generally more effective for MIMO

systems than for SISO systems, as increasing the number of outputs p reduces the value
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of l, meaning that fewer modes need to be channeled into each component of the output.

This increased effectiveness may be explained by recalling that we have assumed Σ has

at least as many inputs as outputs, since this is necessary to solve the tracking problem

for an arbitrary step reference. Hence increasing p also means increasing m, and thus we

have more control inputs with which to determine the eigenstructure and hence shape

the transient response. For non-square systems with m > p, it is generically possible

to obtain a globally monotonic response, i.e. the same gain matrix renders the response

monotonic in all output components, from all initial conditions, and with respect to any

step reference.

6 Examples

In this section we consider a number of results for SISO systems describing how real non-

minimum phase zeros shape the transient response, and then consider their generalization

to MIMO systems. Firstly we note the classic result by Middleton on real NMP zeros and

undershoot:

Theorem 6.1 [15] Let Σ be an LTI asymptotically stable strictly proper SISO system

with at least one real NMP zero. Then the step response must exhibit undershoot.

El-Khoury et al linked the number of local extrema in the step response of a SISO

system to the number of system zeros:

Theorem 6.2 [6] For an asymptotically stable, strictly proper SISO system with only real

poles and real zeros, the number of extrema in the step response (not including t = 0) is

greater than or equal to the number of zeros to the right of the right-most pole.

In [7] a simple proof was given to show that a SISO system with a NMP real zero, the

output must have a zero crossing (crossing of the time axis). More generally, Leon de la

Barra gave

Theorem 6.3 [11] For an asymptotically stable, strictly proper SISO system with only

real poles and real zeros, the number of zero crossings is equal to the number of positive

zeros.

The following example shows that none of these results generalize straightforwardly

to MIMO systems.

Example 6.1 Consider the strictly proper MIMO system Σ1 with

A =













0 0 −3 0

0 0 0 4

0 6 −10 0

0 −10 0 0













, B =













−5 −5

−5 0

0 −2

0 1













, C =

[

−4 0 −5 0

−4 0 −4 0

]

, D =

[

0 0

0 0

]

.
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The system has two real NMP zeros at 12.8151 and 2.1849. We assume zero initial

conditions and a step reference of [1, 1]T . Using Algorithm 5.1, we sought a gain matrix

F to deliver a monotonic response. The search was successful, yielding

F =

[

−6.11 23.14 6.16 −25.37

9.24 −15.62 −0.75 18.84

]

,

Applying the control law (4), with this F and with uss and xss obtained from (2)-(3),

yields a transient responses as shown in Figure 3. We see the step response is monotonic

in both outputs. The gain matrix F places the closed-loop poles at {−41,−40,−35,−5}

and thus the closed-loop system is stable and strictly proper with only real poles and

zeros. This example shows that for MIMO systems, the presence of real NMP system

zeros does not necessarily imply the outputs must exhibit undershoot, local extrema or

zero crossings.
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Figure 3: Output components for Σ1.

Example 6.2 Here we consider the non-square MIMO system Σ2 with

A =



















−6 0 0 0 0

3 3 0 0 0

0 0 2 0 2

−1 0 2 0 0

−2 0 0 0 2



















, B =



















0 0 0 0

0 0 0 −3

0 4 2 0

1 −1 0 −1

0 −1 0 0



















,

C =









−1 0 0 0 0

3 0 0 0 9

1 0 0 0 0









, D =









0 0 −2 0

0 3 −3 −3

0 0 2 −2









.
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The system has four real zeros at {−6, 2, 3, 5}. Using our adaptation of the control

design method to non-square systems, we sought a gain matrix F to deliver a globally

monotonic response. The search was successful, yielding

F =













68419/8250 802/125 −1121/125 −6 −1639/250

−5351/2475 −16/75 6/25 0 127/25

5537/4950 −12/225 −36/25 0 −162/25

4/9 4/3 0 0 0













,

This F places the closed loop poles at {−6, −6, −2, −1, −1}. We simulated the transient

response for three sets of initial equilibrium conditions x0i and targets ri as follows:

(x01, r1) =



















−1.039 10

1.118 15

−1.261 20

−0.660 ∗

0.068 ∗



















, (x02, r2) =



















−1.610 5

1.338 0

−1.778 −5

1.422 ∗

−0.239 ∗



















, (x03, r3) =



















−1.610 −10

1.338 −15

−1.778 −20

1.422 ∗

−0.239 ∗



















Applying the control law (4), with this F and with uss and xss obtained from (2)-(3) for

each target ri, yields sets of transient response curves as shown in Figure 4. For t > 0,

the response is monotonic in all outputs, for each set of initial equilibrium conditions and

targets. Note however that the responses may exhibit initial undershoot or overshoot

from some of these initial conditions, due to the presence of the D term in this system.
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Figure 4: Output components for Σ2.
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8 Conclusion

We have extended the design method for a linear state feedback tracking controller to

achieve a nonovershooting step response for suitable MIMO systems given in [19]. Con-

ditions are given under which a suitable gain matrix may be obtained to render the step

response nonovershooting, or nonundershooting, or both. The method is described here

for continuous-time square systems, and is applicable to both strictly proper and bi-proper

systems, which may be of minimum or nonminimum phase. The method may also be ap-

plied to discrete-time systems, and also non-square systems. We refer the reader to [19]

for the details of those cases. In each case the transient response is shaped by a suitable

application of Moore’s algorithm. The method avoids the inherent conservatism of design-

ing for a sign-invariant impulse response, since this is not essential to avoid undershoot

and overshoot in the step response. To the best of the authors’ knowledge, this is the

first linear control scheme that can simultaneously provide both a nonovershooting and

nonundershooting step response for a MIMO system. Moreover, it is the first method

(MIMO or SISO) for avoiding undershoot that does not require monotonicity of the step

response.
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