
On Conditional Decomposability

Jan Komendaa, Tomáš Masopusta,∗, Jan H. van Schuppenb

aInstitute of Mathematics, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno, Czech Republic
bCWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

The requirement of a language to be conditionally decomposable is imposed on a specification language in the coordi-
nation supervisory control framework of discrete-event systems. In this paper, we present a polynomial-time algorithm
for the verification whether a language is conditionally decomposable with respect to given alphabets. Moreover, we
also present a polynomial-time algorithm to extend the common alphabet so that the language becomes conditionally
decomposable. A relationship of conditional decomposability to nonblockingness of modular discrete-event systems
is also discussed in this paper in the general settings. It is shown that conditional decomposability is a weaker condi-
tion than nonblockingness.

Keywords: Discrete-event system, coordination control, conditional decomposability.
2000 MSC: 93C65, 93A99, 93B50

1. Introduction

In the Ramadge-Wonham supervisory control framework, discrete-event systems are represented by deterministic
finite automata. Given a specification language (usually also represented by a deterministic finite automaton), the aim
of supervisory control is to construct a supervisor so that the closed-loop system satisfies the specification [1]. The
theory is widely developed for the case where the system (plant) is monolithic. However, large engineering systems
are typically constructed compositionally as a collection of many small components (subsystems) that are intercon-
nected by rules; for instance, using a synchronous product or a communication protocol. This is especially true for
discrete-event systems, where different local components run in parallel. Moreover, examples of supervisory control
of modular discrete-event systems show that a coordinator is often necessary for achieving the required properties
because the purely decentralized control architecture may fail in achieving these goals.

The notion of separability of a specification language has been introduced in [2], and says that a language K over an
alphabet

⋃n
i=1 Ei, n ≥ 2, is separable if K =

fn
i=1 Pi(K), where for all i = 1, 2, . . . , n, Pi : (

⋃
Ei)∗ → E∗i is a projection.

A specification for a global system is separable if it can be represented (is fully determined) by local specifications
for the component subsystems. It is very closely related to the notion of decomposability introduced in [3, 4] for
decentralized discrete-event systems, which is also further studied in, e.g., [5]. Decomposability is a slightly more
general condition because it involves not only the specification, but also the plant language, that is, a language K ⊆ L
over an alphabet

⋃n
i=1 Ei, n ≥ 2, is decomposable with respect to a plant language L if K =

fn
i=1 Pi(K) ‖ L: separability

is then decomposability where L = (
⋃n

i=1 Ei)∗ is the set of all strings over the global alphabet. In this paper, we slightly
abuse the terminology and call a separable language in the sense of [2] also decomposable. It has been shown in [2]
that decomposability is important because it is computationally cheaper to compute locally synthesized supervisors
that constitute a solution of the supervisory control problem for this decomposable specification. Recently, the notion
of decomposability has also been extended to automata as an automaton decomposability in, e.g., [6].

∗Corresponding author. Institute of Mathematics, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno, Czech Republic,
Tel. +420222090784, Fax. +420541218657

Email addresses: komenda@ipm.cz (Jan Komenda), masopust@math.cas.cz (Tomáš Masopust), J.H.van.Schuppen@cwi.nl (Jan H.
van Schuppen)

A revision with minor corrections, originally published in Systems & Control Letters 61 (12), 1260-1268, 2012 September 17, 2018

ar
X

iv
:1

20
1.

17
33

v3
 [

cs
.S

Y
]

 1
9

D
ec

 2
01

4

However, the assumption that a specification language is decomposable is too restrictive. Therefore, several
authors have tried to find alternative techniques for general indecomposable specification languages; for instance, the
approach of [7] based on partial controllability, which requires that all shared events are controllable, or the shared
events must have the same controllability status (but then an additional condition of so-called mutual controllability [8]
is needed).

In this paper, we study a weaker version of decomposability, so-called conditional decomposability, which has
recently been introduced in [9] and studied in [10, 11] in the context of coordination supervisory control of discrete-
event systems. It is defined as decomposability with respect to local alphabets augmented by the coordinator alphabet.
The word conditional means that although a language is not decomposable with respect to the original local alphabets,
it becomes decomposable with respect to the augmented ones, i.e., decomposability is only guaranteed (conditioned)
by local event set extensions by coordinator events.

In the coordination control approach of modular discrete-event systems, the plant is formed as a parallel composi-
tion of two or more subsystems, while the specification language is represented over the global alphabet. Therefore,
the property of conditional decomposability is required in this approach to distribute parts of the specification to the
corresponding components to solve the problem locally. More specifically, we need to ensure that there exists a cor-
responding part of the specification for the coordinator and for each subsystem composed with the coordinator. Thus,
if the specification is conditionally decomposable, we can take this decomposition as the corresponding parts for the
subsystems composed with a coordinator and solve the problem locally.

Conditional decomposability depends on the alphabet of the coordinator, which can always be extended so that
the specification is conditionally decomposable. In the worst (but unlikely) case all events must be put into the co-
ordinator alphabet to make a language conditionally decomposable. But in the case when the coordinator alphabet
would be too large it is better to divide the local subsystems into groups that are only loosely coupled and introduce
several coordinators on smaller alphabets. In this paper, a polynomial-time algorithm is provided for the verification
whether a language is conditionally decomposable. We make an important observation that the algorithm is linear in
the number of local alphabets, while algorithms for checking similar properties (such as decomposability and coob-
servability) suffer from the exponential-time complexity with respect to the number of local alphabets. This algorithm
is then modified so that it extends the coordinator alphabet to make the specification language conditionally decom-
posable. Furthermore, we discuss a relationship of conditional decomposability to nonblockingness of a coordinated
system, where a coordinated system is understood as a modular system composed of two or more subsystems and a
coordinator.

Finally, since one of the central notions of this paper is the notion of a (natural) projection, the reader is referred
to [12] for more information on the state complexity of projected regular languages.

The rest of this paper is organized as follows. In Section 2, basic definitions and concepts of automata theory and
discrete-event systems are recalled. In Section 3, a polynomial-time algorithm for testing conditional decomposability
for a general monolithic system is presented. In Section 4, this algorithm is modified to extend the coordinator alphabet
so that the specification becomes conditionally decomposable. In Section 5, the relation of nonblockingness of a
coordinated system with conditional decomposability is discussed. The conclusion with hints for future developments
is presented in Section 6.

2. Preliminaries and definitions

In this paper, we assume that the reader is familiar with the basic concepts of supervisory control theory [13] and
automata theory [14]. For an alphabet E, defined as a finite nonempty set, E∗ denotes the free monoid generated by E,
where the unit of E∗, the empty string, is denoted by ε. A language over E is a subset of E∗. A prefix closure L of a
language L ⊆ E∗ is the set of all prefixes of all words of L, i.e., it is defined as the set L = {w ∈ E∗ | ∃u ∈ E∗ : wu ∈ L}.
A language L is said to be prefix-closed if L = L.

In this paper, the notion of a generator is used to denote an incomplete deterministic finite automaton. A generator
is a quintuple G = (Q, E, δ, q0, F), where Q is a finite set of states, E is an input alphabet, δ : Q × E → Q is a
partial transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final or marked states. In the usual
way, δ is inductively extended to a function from Q × E∗ to Q. The language generated by G is defined as the set
L(G) = {w ∈ E∗ | δ(q0,w) ∈ Q}, and the language marked by G is defined as the set Lm(G) = {w ∈ E∗ | δ(q0,w) ∈ F}.
Moreover, we use the predicate δ(q, a)! to denote that the transition δ(q, a) is defined in state q ∈ Q for event a ∈ E.

2

For a generator G, let trim(G) denote the trim of G, that is, a generator trim(G) such that Lm(trim(G)) =

L(trim(G)) = Lm(G). In other words, all reachable states of G from which no marked state is reachable are re-
moved (including the corresponding transitions), and only reachable states are considered in trim(G), see [13, 15]. A
generator G is said to be nonblocking if Lm(G) = L(G). Thus, trim(G) is always nonblocking.

A (natural) projection P : E∗ → E∗0, where E0 ⊆ E are alphabets, is a homomorphism defined so that P(a) = ε, for
a ∈ E \ E0, and P(a) = a, for a ∈ E0. The inverse image of the projection P, denoted by P−1 : E∗0 → 2E∗ , is defined so
that for a language L over the alphabet E0, the set P−1(L) = {s ∈ E∗ | P(s) ∈ L}. In what follows, we use the notation
Pi

j to denote the projection from Ei to E j, that is, Pi
j : E∗i → E∗j . In addition, we use the notation Ei+ j = Ei ∪ E j,

and, thus, Pi+ j
k denotes the projection from Ei+ j to Ek. If the projection is from the union of all the alphabets, then we

simply use the notation Pi : (
⋃

j E j)∗ → E∗i .
Let L1 ⊆ E∗1 and L2 ⊆ E∗2 be two languages. The parallel composition of L1 and L2 is defined as the language

L1 ‖ L2 = P−1
1 (L1) ∩ P−1

2 (L2) ,

where P1 : (E1 ∪ E2)∗ → E∗1 and P2 : (E1 ∪ E2)∗ → E∗2. A similar definition in terms of generators follows. Let
G1 = (X1, E1, δ1, x01, F1) and G2 = (X2, E2, δ2, x02, F2) be two generators. The parallel composition of G1 and G2 is
the generator G1 ‖ G2 defined as the accessible part of the generator (X1 × X2, E1 ∪ E2, δ, (x01, x02), F1 × F2), where

δ((x, y), e) =


(δ1(x, e), δ2(y, e)), if δ1(x, e)! and δ2(y, e)!;
(δ1(x, e), y), if δ1(x, e)! and e < E2;
(x, δ2(y, e)), if e < E1 and δ2(y, e)!;
undefined, otherwise.

The automata definition is related to the language definition by the following properties: L(G1 ‖ G2) = L(G1) ‖ L(G2)
and Lm(G1 ‖ G2) = Lm(G1) ‖ Lm(G2), see [13].

The automata-theoretic concept of nonblockingness of a composition of two generators G1 and G2 is equivalent
to the language-theoretic concept of nonconflictness of two languages Lm(G1) and Lm(G2) if the generators G1 and G2
are nonblocking. Recall that two languages L1 and L2 are nonconflicting if L1 ‖ L2 = L1 ‖ L2, cf. [15, 16, 17].

Let G be a generator and P be a projection, then P(G) denotes the minimal generator such that Lm(P(G)) =

P(Lm(G)) and L(P(G)) = P(L(G)). For a construction of P(G), the reader is referred to [13, 15].
Now, the main concept of interest of this paper, the concept of conditional decomposability, is defined. See also

[9, 10, 11, 18] for the applications and further discussion concerning this concept.

Definition 1 (Conditional decomposability). A language K over an alphabet E1 ∪ E2 ∪ . . .∪ En, n ≥ 2, is said to be
conditionally decomposable with respect E1, E2,. . . , En, and Ek, where

⋃i, j
i, j∈{1,2,...,n}(Ei ∩ E j) ⊆ Ek ⊆

⋃n
j=1 E j, if

K = P1+k(K) ‖ P2+k(K) ‖ . . . ‖ Pn+k(K) .

Recall that Pi+k denotes the projection from
⋃n

j=1 E j to Ei+k.

Note that ‖ni=1 Pi+k(K) = (‖ni=1 Pi+k(K)) ‖ Pk(K) because Pi+k(K) ⊆ (Pi+k
k)−1Pk(K), which follows from the fact that

Pi+k
k Pi+k(K) = Pk(K). Hence, ‖ni=1 Pi+k(K) ⊆ P−1

k Pk(K). Moreover, if the language K is given as a parallel composition
of n languages (over the required alphabets), then it is conditionally decomposable.

Lemma 2. A language K ⊆ (E1 ∪ E2 ∪ . . .∪ En)∗ is conditionally decomposable with respect to alphabets E1, E2,. . . ,
En, Ek if and only if there exist languages Mi+k ⊆ E∗i+k, i = 1, 2, . . . , n, such that K =‖ni=1 Mi+k.

Proof. If K = ‖ni=1 P2+k(K), define Mi+k = Pi+k(K), for i = 1, 2, . . . , n. On the other hand, assume that there exist
languages Mi+k ⊆ E∗i+k, i = 1, 2, . . . , n, such that K = ‖ni=1 Mi+k. Obviously, Pi+k(K) ⊆ Mi+k, i = 1, 2, . . . , n, which
implies that ‖ni=1 Pi+k(K) ⊆ K. As it always holds that K ⊆ P−1

i+k[Pi+k(K)], the definition of the synchronous product
implies that K ⊆ ‖ni=1 Pi+k(K). �

Note that K = ‖ni=1 Mi+k implies that the languages Pi+k(K) ⊆ Mi+k, for i = 1, 2, . . . , n, which means that Pi+k(K)
are the smallest languages whose parallel composition results in K. In other words, if K is conditionally decomposable,
then Pi+k(K), i = 1, 2, . . . , n, is the smallest decomposition of K with respect to the corresponding alphabets.

3

3. Polynomial Test of Conditional Decomposability

In this section, we first construct a polynomial-time algorithm for the verification of conditional decomposability
for alphabets E1, E2, and Ek, that is, for the case n = 2, and then show how this is used to verify conditional
decomposability for a general n ≥ 2. To this end, consider a language L over E1 ∪ E2, marked by a generator G. To
verify whether or not L is conditionally decomposable with respect E1, E2, and Ek, we construct a new structure as a
parallel composition of two copies of G, denoted fi+k(G), for i = 1, 2, (see Example 3 and Figure 2) that simultaneously
verifies that each word of P1+k(L) ‖ P2+k(L) also belongs to L = Lm(G); fi+k(G) is constructed from the generator G
by renaming each event e ∈ E j−k = E j \ Ek, j , i, by a new event ẽ ∈ Ẽ j−k. In other words, each event e which is not
observed by G according to the observable alphabet Ei ∪ Ek is replaced with a new event. Thus, the copy fi+k(G) is
over the alphabet Ei+k ∪ Ẽ j−k, as demonstrated in the following example.

Example 3. Consider the language Lm(G) marked by the generator G depicted in Figure 1(a), where the correspond-
ing alphabets are E1 = {a, b, d}, E2 = {a, c, d}, and Ek = {a, d}. The isomorphic generators f1+k(G) with renamed
event c, and f2+k(G) with renamed event b are depicted in Figure 1(b) and Figure 1(c), respectively. �

(a) Generator G. (b) Generator f1+k(G). (c) Generator f2+k(G).

Figure 1: Generators G, f1+k(G) and f2+k(G).

More specifically, let E1, E2, Ek be alphabets such that E1 ∩ E2 ⊆ Ek ⊆ E1 ∪ E2, and define the global alphabet
E = E1 ∪ E2. The structure is constructed as follows:

1. For the alphabet Ei \ Ek, where i = 1, 2, introduce a new alphabet Ẽi−k = {ã | a ∈ Ei \ Ek} that for each event
a ∈ Ei \ Ek contains a new event ã. That is, Ẽi−k ∩ (Ei \ Ek) = ∅ and there exists a bijection gi−k from (Ei \ Ek)
to Ẽi−k such that gi−k(a) = ã. Note that Ẽ1−k ∩ Ẽ2−k = ∅ because E1 ∩ E2 ⊆ Ek.

2. Recall that Ei+k = Ei ∪ Ek, for i = 1, 2, and let P̃ : (E ∪ Ẽ1−k ∪ Ẽ2−k)∗ → E∗ be a projection.
3. Define two isomorphisms fi+k : E∗ → (Ei+k ∪ Ẽ j−k)∗, where i, j ∈ {1, 2}, i , j, so that

fi+k(a) =

{
a , for a ∈ Ei+k;
ã , for a ∈ E j \ Ek .

Note that it immediately follows that P̃(fi+k(Lm(G))) = Pi+k(Lm(G))) because both projections remove all events
that are not in Ei+k.

4. For a generator G = (Q, E, δ, q0, F), we abuse the notation and denote by fi+k(G) = (Q, Ei+k ∪ Ẽ j−k, δ̃, q0, F),
where j , i, the generator isomorphic with G where events are renamed according to the isomorphism fi+k, and
the transition function δ̃ is define as δ̃(q, fi+k(a)) = δ(q, a).

5. Let L ⊆ E∗ be a language generated by a minimal generator G, and define the generator

G̃ = f1+k(G) ‖ f2+k(G)

over the alphabet E ∪ Ẽ1−k ∪ Ẽ2−k. By the definition of G̃, the assumption that E1 ∩ E2 ⊆ Ek which ensures that
P̃ distributes over the synchronous product (see Lemma 4 below), and Step 3 above, respectively, we have that

P̃(Lm(G̃)) = P̃(f1+k(Lm(G)) ‖ f2+k(Lm(G)))
= P̃(f1+k(Lm(G))) ‖ P̃(f2+k(Lm(G)))
= P1+k(Lm(G)) ‖ P2+k(Lm(G)) .

(1)

4

Lemma 4 ([15]). Let E1 ∩ E2 ⊆ Ek ⊆ E1 ∪ E2, and let L1 ⊆ E∗1 and L2 ⊆ E∗2 be languages. Let Pk : E∗ → E∗k be a
projection, then Pk(L1 ‖ L2) = Pk(L1) ‖ Pk(L2).

From the equations of (1), we immediately have the following result for conditional decomposability.

Theorem 5. The language Lm(G) is conditionally decomposable with respect to alphabets E1, E2, Ek if and only if it
holds that P̃(Lm(G̃)) = Lm(G).

Proof. The proof follows immediately from the definition of conditional decomposability and (1). �

However, the inclusion Lm(G) ⊆ P1+k(Lm(G))) ‖ P2+k(Lm(G))) = P̃(Lm(G̃)) always holds. Thus, only the opposite
inclusion is of interest. This inclusion, P̃(Lm(G̃)) ⊆ Lm(G), holds if and only if Lm(G̃) ⊆ P̃−1(Lm(G)), which gives the
following key theorem for testing conditional decomposability.

Theorem 6. The language Lm(G) is conditionally decomposable with respect to alphabets E1, E2, Ek if and only if
the inclusion Lm(G̃) ⊆ P̃−1(Lm(G)) holds.

Proof. It remains to prove that P̃(Lm(G̃)) ⊆ Lm(G) if and only if Lm(G̃) ⊆ P̃−1(Lm(G)). However, if P̃(Lm(G̃)) ⊆
Lm(G), then Lm(G̃) ⊆ P̃−1P̃(Lm(G̃)) ⊆ P̃−1(Lm(G)). On the other hand, assume that Lm(G̃) ⊆ P̃−1(Lm(G)). Then,
P̃(Lm(G̃)) ⊆ P̃P̃−1(Lm(G)) = Lm(G). �

The verification of this inclusion results in Algorithm 1 for checking conditional decomposability of two com-
ponents in polynomial time. Let a language L be represented by the minimal generator G = (Q, E, δ, q0, F) with the
complete (total) transition function δ such that Lm(G) = L. If the transition function is not complete, the generator can
be completed in time O(|E| · |Q|) by adding no more than one non-marked state and the missing transitions. Assume
that the alphabets E1, E2, and Ek are such that E1 ∩ E2 ⊆ Ek ⊆ E1 ∪ E2 = E, and see Algorithm 1. To determine

Algorithm 1 Conditional decomposability checking.
1: function IsCD(G, E1, E2, Ek)
2: Compute G̃ . O(|E| · |Q|2).
3: Compute P̃−1(Lm(G)) . O(|E| · |Q|).
4: Compute complement co(P̃−1(Lm(G))) . O(|Q|).
5: if co(P̃−1(Lm(G))) ∩ Lm(G̃) = ∅ then . O(|E| · |Q|3).
6: return Lm(G) is CD.
7: else
8: return Lm(G) is not CD.
9: end if

10: end function

the time complexity of the algorithm, note that the computation is dominated by step 5, and thus the overall time
complexity can be stated as O(|E| · |Q|3). This also means that the space complexity is polynomial with respect to
the number of states of the input generator G because we do not need to use more space than O(|E| · |Q|3). The com-
plexity of individual steps of the algorithm are computed as follows. Step 2 is a parallel composition of two copies
of G, which requires to create up to |Q|2 states of the generator G̃, and for each of these states up to |E| transitions.
Step 3 requires up to |E| · |Q| steps because in each state, we have to add self-loops labeled by the new symbols from
Ẽ1−k ∪ Ẽ2−k. The complement in Step 4 is computed by interchanging the marking of states, cf. [19]. That is, marked
states are unmarked and vice versa. As G is complete, this results in a generator for the complement. Note that
Steps 3 and 4 can be done at the same time. Finally, to decide the emptiness in Step 5 requires up to |Q|2 · |Q| using a
standard product automaton, see [19], where for each state, up to |E| transitions are constructed, and is verified by the
reachability of a final state by the depth-first-search procedure in linear time [20]. Note also that it is a longstanding
open problem whether the emptiness of intersection of two regular languages generated by generators with m1 and m2
states, respectively, can be decided in time o(m1 ·m2), cf. [21]. If this is possible, then the complexity of our algorithm
can be improved accordingly.

We demonstrate our approach in the following example.

5

Example 7. Consider the language Lm(G) marked by the generator G depicted in Figure 1(a), where the correspond-
ing alphabets are E1 = {a, b, d}, E2 = {a, c, d}, and Ek = {a, d}. The isomorphic generators f1+k(G) with renamed event
c, and f2+k(G) with renamed event b are depicted in Figure 1(b) and Figure 1(c), respectively. Their parallel compo-
sition G̃ is shown in Figure 2. It is obvious that the string “cacb” belongs to the language Lm(G̃), whereas it does not
belong to the language P̃−1(Lm(G)). Thus, by Theorem 6, the language Lm(G) is not conditionally decomposable with
respect to alphabets E1, E2, Ek. �

Figure 2: Generator G̃ = f1+k(G) ‖ f2+k(G) with a highlighted word violating conditional decomposability of the language Lm(G).

Now, we generalize this approach to verifying conditional decomposability for a general number of n ≥ 2 alpha-
bets. The following theorem proves that we can directly use Algorithm 1.

Theorem 8. Let K be a language, and let Ei, for i = 1, 2, . . . , n, n ≥ 2, and Ek be alphabets such that
⋃

i, j(Ei ∩ E j) ⊆
Ek ⊆

⋃n
j=1 E j. Then, Pi+k(K) ‖ P1+2+...+(i−1)+(i+1)+...+n+k(K) ⊆ K, for all i = 1, 2, . . . , n, if and only if K is conditionally

decomposable with respect to alphabets Ei, i = 1, 2, . . . , n, and Ek.

Proof. First, P1+2+...+(i−1)+(i+1)+...+n+k(K) ⊆ P1+k(K) ‖ P2+k(K) ‖ . . . ‖ P(i−1)+k(K) ‖ P(i+1)+k(K) ‖ . . . ‖ Pn+k(K)
because for all j ∈ {1, 2, . . . , n} \ {i}, we have P j+k(P1+2+...+(i−1)+(i+1)+...+n+k(K)) = P j+k(K). Thus, if K is conditionally
decomposable, then Pi+k(K) ‖ P1+2+...+(i−1)+(i+1)+...+n+k(K) ⊆ Pi+k(K) ‖ P1+k(K) ‖ . . . ‖ P(i−1)+k(K) ‖ P(i+1)+k(K) ‖ . . . ‖
Pn+k(K) = K, for all i = 1, 2, . . . , n.

To prove the opposite implication, assume that K is not conditionally decomposable. Then there exist ti = Pi+k(wi),
for some wi ∈ K and for all i = 1, 2, . . . , n, such that t1 ‖ t2 ‖ . . . ‖ tn * K. We prove by induction on i = 1, 2, . . . , n− 1
that

{ti} ‖ {ti−1} ‖ . . . ‖ {t2} ‖ {t1} ‖ P(i+1)+(i+2)+...+n+k(wn) ⊆ K . (2)

For i = 1 and by the assumption, {t1} ‖ P2+3+...+n+k(wn) ⊆ P1+k(K) ‖ P2+3+...+n+k(K) ⊆ K. Thus, we assume that it
holds for all i = 1, 2, . . . , `, ` < n − 1, and we prove it for i = ` + 1. By the induction hypothesis, {t`} ‖ {t`−1} ‖ . . . ‖
{t2} ‖ {t1} ‖ P(`+1)+(`+2)+...+n+k(wn) ⊆ K. Then, using the projection P1+2+...+`+(`+2)+...+n+k, we get that

P1+2+...+`+(`+2)+...+n+k

(
{t`} ‖ {t`−1} ‖ . . . ‖ {t2} ‖ {t1} ‖ P(`+1)+(`+2)+...+n+k(wn)

)
⊆ P1+2+...+`+(`+2)+...+n+k(K)

6

and, by Lemma 4, we get that P1+2+...+`+(`+2)+...+n+k

(
{t`} ‖ {t`−1} ‖ . . . ‖ {t2} ‖ {t1} ‖ P(`+1)+(`+2)+...+n+k(wn)

)
= {t`} ‖

{t`−1} ‖ . . . ‖ {t2} ‖ {t1} ‖ P(`+2)+...+n+k(wn). By this equality and the assumption for i = ` + 1, we have

{t`+1} ‖
[
{t`} ‖ {t`−1} ‖ . . . ‖ {t2} ‖ {t1} ‖ P(`+2)+...+n+k(wn)

]
⊆ P(`+1)+k(K) ‖ P1+2+...+`+(`+2)+...+n+k(K)
⊆ K

as claimed. Then, substituting i = n−1 to (2), we immediately have that {tn−1} ‖ {tn−2} ‖ . . . ‖ {t2} ‖ {t1} ‖ Pn+k(wn) ⊆ K,
which together with Pn+k(wn) = tn implies that {tn−1} ‖ {tn−2} ‖ . . . ‖ {t2} ‖ {t1} ‖ {tn} ⊆ K, which is a contradiction.
Thus, K is conditionally decomposable. �

The previous theorem says that we can check conditional decomposability of a language K by n executions of
Algorithm 1. This means that the overall complexity of verifying conditional decomposability for a general number
of alphabets, n ≥ 2, is O(n · |E| · |Q|3), which is polynomial with respect to the number of states and the number of
components.

To conclude this section, note that an example of an r-state automaton with |E| = 4 and a projection reaching the
exponential upper bound on the number of states, more precisely the upper bound 3 · 2r−2 − 1, has been shown in
[22]. Thus, the approach following the definition of conditional decomposability computing projections and parallel
composition is exponential for that language even for the case of two alphabets. In comparison, the complexity of our
algorithm is polynomial. A preliminary version of this algorithm has been implemented in libFAUDES [23].

4. Extension of the coordinator alphabet

According to Theorem 8, we can again consider only the case n = 2. To compute an extension of Ek so that the
language becomes conditionally decomposable, we modify Algorithm 1 to Algorithm 2, which uses more structural
properties of the structure G̃. First, however, we explain the technique on an example.

Figure 3: Generator G̃ with the corresponding states of G × G̃. Note that transitions δ(5, b) and δ(6, b) are not defined in G, and, therefore, they
violate conditional decomposability of the language Lm(G).

7

Example 9. Consider the generator G and G̃ of Examples 3 and 7. The main idea of this technique is to construct,
step-by-step, the parallel composition of G and G̃, and to verify that all the steps possible in G̃ are also possible in
G. In Figure 3, G̃ is extended with the states of G, written in the states of G̃. Note that after reading the string ca, the
generator G̃ is in a state from which b can be read, but G being in state 5 can read only c. Because of this symbol
b, the language Lm(G) is not conditionally decomposable. The reader can verify that adding b to Ek results in the
situation where Lm(G) is conditionally decomposable with respect to E1, E2, and Ek ∪ {b}. �

Let a language L be represented by the minimal generator G = (Q, E, δ, q0, F) with the total transition function δ
such that Lm(G) = L. Assume that alphabets E1, E2, Ek satisfy E1 ∩ E2 ⊆ Ek ⊆ E1 ∪ E2 = E, and see Algorithm 2.
To prove that the algorithm is correct, note that it computes Lm(G̃) ∩ P̃−1(Lm(G)) because Lm(G̃) = Lm(trim(G̃)). If

Algorithm 2 Extension of Ek.
1: procedure Extension(G, E1, E2, Ek)
2: Compute G̃
3: Compute trim(G̃) . Now, we compute, step-by-step, the generator H for trim(G̃) ‖ G.
4: Set QH = {((q0,1, q0,2), q0)}, a pair of initial states of G̃ and G . The initial state of H.
5: for all ((q1, q2), q) ∈ QH do
6: for all a ∈ E ∪ Ẽ1−k ∪ Ẽ2−k do
7: if a ∈ Ẽ1−k ∪ Ẽ2−k and δG̃((q1, q2), a)! then
8: δH(((q1, q2), q), a) = (δG̃((q1, q2), a), q)
9: end if

10: if a ∈ E and δG̃((q1, q2), a)! then
11: if δ(q, a)! then
12: δH(((q1, q2), q), a) = (δG̃((q1, q2), a), δ(q, a))
13: else
14: if a < Ek then
15: Ek = Ek ∪ {a} . a is allowed in G̃, but not in G; adding it to Ek solves this problem.
16: else
17: Ek = Ek ∪ {b}, where b ∈ E \ Ek

18: end if
19: Restart the procedure with the updated set Ek.
20: end if
21: end if
22: end for
23: end for
24: return Ek.
25: end procedure

the condition on line 11 is always satisfied, it means that Lm(G̃) ∩ P̃−1(Lm(G)) = Lm(G̃). In other words, Lm(G̃) ⊆
P̃−1(Lm(G)), which means by Theorem 6 that Lm(G) is conditionally decomposable. On the other hand, if the condition
on line 11 is not satisfied, there exists a string s ∈ L(trim(G̃)) = Lm(G̃) such that P̃(s) < L(G) = Lm(G), where the
last equality follows from the assumption that G is minimal. This implies that P̃(Lm(G̃)) * Lm(G), hence Lm(G) is not
conditionally decomposable by Theorem 5. The algorithms halts because we have only a finite number of events to
be added to Ek, and the language is conditionally decomposable for Ek = E1 ∪ E2.

The complexity of this algorithm is O(|E|2 · |Q|3), which follows from the complexity of Algorithm 1 and the fact
that, in the worst-case, we have to run the algorithm |E| times. Note that the resulting extension depends on the order
the states of G and G̃ are examined. It should be clear that, in general, there might be different extensions (with respect
to set inclusion) that correspond to different orders. This is a typical issue with algorithms extending the event sets in
such a way that a particular property becomes true. There are examples where the algorithm does not construct the
minimal possible extension. Note that to construct the minimal extension (with respect to set inclusion) is an NP-hard
problem [24].

8

The following example demonstrates the situation where the event that causes the problem on line 11 already
belongs to Ek. Thus, to solve the problem, another symbol from E \ Ek must be added to Ek.

Example 10. Consider the generator G depicted in Figure 4(a), where the corresponding alphabets are E1 = {a1, u},
E2 = {a2, u} and Ek = {u}. The isomorphic generators f1+k(G) with renamed event a2 and f2+k(G) with renamed event
a1 are depicted in Figure 4(b) and Figure 4(c), respectively. The parallel composition G̃ = f1+k(G) ‖ f2+k(G) and one

1

2

3

5

4

a1

a2

a2

a1

u

(a) Generator G.

1

2

3

5

4

a1

ã2

ã2

a1

u

(b) Generator f1+k(G).

1

2

3

5

4

ã1

a2

a2

ã1

u

(c) Generator f2+k(G).

Figure 4: Generators G, f1+k(G) and f2+k(G).

Figure 5: Generator G̃, where E1 = {u, a1}, E2 = {u, a2}, and ã1 = ev3, ã2 = ev2

can see that the string ã1a2a1ã2u belongs to Lm(G̃), but does not belong to P̃−1(Lm(G)). By Theorem 5, Lm(G) is not
conditionally decomposable with respect to E1, E2, Ek. However, since u belongs to Ek, another event that does not
belong to Ek must be added to Ek. Namely, either a1 or a2. �

This opens a field for potentially interesting heuristics. Indeed, to solve the problem on line 11, it does not make
sense to add to Ek an event that does not appear on the path leading to the problematic state. Thus, one could, for
instance, store the last visited event from E \ Ek that leads the generator H = G̃ ‖ G to a state where the problem was
discovered. This event is then added to Ek on line 17.

9

5. Relationship of nonblockingness of coordinated systems to conditional decomposability

In this section, we study the relation between conditional decomposability and nonblockingness of coordinated
discrete-event systems. A coordinated modular discrete-event system is a system composed (by parallel composition)
of two or more subsystems. In this section, we consider the case of one central coordinator. Let n ≥ 2, and let Gi,
i = 1, 2, . . . , n, be generators over the respective alphabets Ei, i = 1, 2, . . . , n. The coordinated system G is defined
as G = G1 ‖ G2 ‖ . . . ‖ Gn ‖ Gk, where Gk is the coordinator over an alphabet Ek, which contains all shared events;
namely, Es ⊆ Ek, where Es is the set of all events that are shared by two or more components, defined as

Es =

i, j⋃
i, j∈{1,...,n}

(Ei ∩ E j) .

This is a standard assumption in hierarchical decentralized control where the coordinator level plays a role of the high
(abstracted) level of hierarchical control.

In the following theorem, we show the relation between nonblockingness of a coordinated system and conditional
decomposability of that system. First, however, we need the following auxiliary lemmas.

Lemma 11 (Proposition 4.1 in [16]). Let L ⊆ E∗ be a language and Pk : E∗ → E∗k be a projection with Ek ⊆ E, for
some alphabet E. Then, Pk(L) = Pk(L).

Lemma 12. Let E be an alphabet, L ⊆ E∗ be a language, and Pk : E∗ → E∗k be a projection with Ek ⊆ E, for some
alphabet E. Then, L ‖ Pk(L) = L.

Proof. By definition, L ‖ Pk(L) = L ∩ P−1
k Pk(L), and it is not hard to see that L ⊆ P−1

k Pk(L). �

Theorem 13. Let n ≥ 2, and let Gi, for i = 1, 2, . . . , n, be generators over the alphabets Ei, i = 1, 2, . . . , n, re-
spectively. Let Gk be a generator over an alphabet Ek such that Es ⊆ Ek ⊆

⋃n
i=1 Ei. Then, the coordinated system

G = G1 ‖ G2 ‖ . . . ‖ Gn ‖ Gk is nonblocking if and only if the following conditions both hold:

1. Gi ‖ Gk ‖
f

j,i Pk(G j), for all i = 1, 2, . . . , n, are nonblocking and

2. Lm(G) is conditionally decomposable with respect to the alphabets E1, E2, . . . , En, Ek.

Proof. The following always holds for all i = 1, 2, . . . , n, n ≥ 2:

Lm(G) ⊆ P1+k(Lm(G)) ‖ . . . ‖ Pn+k(Lm(G))
⊆ P1+k(L(G)) ‖ . . . ‖ Pn+k(L(G))
= L(G1 ‖ Gk ‖ Pk(G2 ‖ G3 ‖ . . . ‖ Gn))
‖ L(G2 ‖ Gk ‖ Pk(G1 ‖ G3 ‖ . . . ‖ Gn))
...

‖ L(Gn ‖ Gk ‖ Pk(G1 ‖ G2 ‖ . . . ‖ Gn−1))
= L(G) ,

(3)

where the last equation follows from the idempotent property of the parallel composition and Lemma 12. If the
language Lm(G) is nonblocking, then the inclusions become equalities. Thus, from the first equality, we get that the
language Lm(G) is conditionally decomposable as required in item 2 of the theorem. Similarly, for all i = 1, 2, . . . , n,

Pi+k(Lm(G)) = Pi+k(Lm(G)) = Lm(Gi ‖ Gk) ‖ Pi+k(Lm(‖ j,i G j))

= Lm(Gi ‖ Gk ‖ Pi+k(‖ j,i G j)

⊆ Lm(Gi) ‖ Lm(Gk) ‖ Pi+k(‖ j,i Lm(G j))
⊆ L(Gi) ‖ L(Gk) ‖ Pi+k(‖ j,i L(G j))
= Pi+k(L(G)) ,

10

where the first equality holds by Lemma 11, the second equality holds by Lemma 4 because we project to the alphabet
Ei ∪ Ek that includes the intersection of Ei ∪ Ek and

⋃
j,i E j, namely Ek. Finally, the last equality holds by the same

argument as the second equality. Hence, if the global plant is nonblocking, the inclusions become equalities, which
means that the subsystems Gi ‖ Gk ‖ Pi+k(‖ j,i G j) = Gi ‖ Gk ‖

f
j,i Pk(G j) are nonblocking.

On the other hand, from the assumptions 1 and 2 we immediately get that both inclusions in (3) are equalities.
Thus, the implication holds. �

Note that Condition 2 of Theorem 13 does not hold in general because one inclusion of conditional decompos-
ability, namely Lm(G) ⊆ P1+k(Lm(G)) ‖ P2+k(Lm(G)), can be strict. Thus, the prefix closure of the marked language
Lm(G1 ‖ G2 ‖ Gk) of the coordinated system consisting of subsystems G1 and G2 and a coordinator Gk is not in general
conditionally decomposable with respect to alphabets E1, E2, Ek as demonstrated in the following example.

Example 14. Consider two subsystems G1 and G2, and a coordinator Gk as depicted in Figure 6, where the cor-
responding alphabets are E1 = {a, b, d}, E2 = {a, c, d}, and Ek = {a, d}. Then, we can consider the string cacb

(a) Generator G1. (b) Generator Gk .

(c) Generator G2. (d) Generator G1 ‖ G2 ‖ Gk .

Figure 6: Generators G1, G2, Gk , and G1 ‖ G2 ‖ Gk .

and see that its projection P1+k(cacb) = ab belongs to the language P1+k(Lm(G1 ‖ G2 ‖ Gk)), and the projection
P2+k(cacb) = cac belongs to the language P2+k(Lm(G1 ‖ G2 ‖ Gk)). However, this means that the string cacb belongs
to the composition P1+k(Lm(G1 ‖ G2 ‖ Gk)) ‖ P1+k(Lm(G1 ‖ G2 ‖ Gk)). On the other hand, the string cacb is not a
prefix of any string belonging to the marked language Lm(G1 ‖ G2 ‖ Gk) of the coordinated system as is easily seen in
Figure 6(d). Thus, the language is not conditionally decomposable with respect to alphabets E1, E2, Ek. �

Note that it follows from (3) that conditional decomposability is a weaker condition than nonblockingness. This is
because conditional decomposability requires only the first inclusion to be equality, while nonblockingness requires
both the inclusions to be equalities. The fundamental question is whether it is possible to decide in a distributed way
without computing the whole plant whether Lm(‖ni=1 Gi ‖ Gk) is conditionally decomposable. The algorithm described
in the previous section requires the computation of the whole plant.

A specific choice of Lm(Gk) ⊆
⋂n

i=1 Pk(Lm(Gi)), respectively Lm(Gk) =
⋂n

i=1 Pk(Lm(Gi)), yields Corollaries 15 and
16 below, respectively.

Corollary 15. Let G1,G2, . . . ,Gn,Gk be nonblocking generators over the alphabets E1, E2, . . . , En, Ek, respectively,
such that Es ⊆ Ek ⊆

⋃n
i=1 Ei. Assume that Lm(Gk) ⊆

⋂n
i=1 Pk(Lm(Gi)). Then, the coordinated system G = G1 ‖ G2 ‖

. . . ‖ Gn ‖ Gk is nonblocking if and only if the following conditions both hold:

1. Gi ‖ Gk are nonblocking, for all i = 1, 2, . . . , n, and
2. Lm(G) is conditionally decomposable with respect to the alphabets E1, E2, . . . , En, Ek.

Proof. By the assumption, Lm(Gk) ⊆
⋂

i Pk(Lm(Gi)). Applying the prefix closure to the previous inclusion results in
the inclusion L(Gk) = Lm(Gk) ⊆ Pk(

⋂
i Lm(Gi)) ⊆

⋂
i Pk(Lm(Gi)) =

⋂
i Pk(L(Gi)) =

f
i Pk(L(Gi)). From this, it follows

that L(Gk) ‖ Pk(L(Gi)) = L(Gk), for i = 1, 2, . . . , n, which implies that Gi ‖ Gk ‖
f

j,i Pk(G j) = Gi ‖ Gk. Thus, item 1
of Theorem 13 reduces to item 1 of this corollary. �

11

Corollary 16. Let G1,G2, . . . ,Gn,Gk be nonblocking generators over the alphabets E1, E2, . . . , En, Ek, respectively,
such that Es ⊆ Ek ⊆

⋃n
i=1 Ei, and assume that Lm(Gk) =

⋂n
i=1 Pk(Lm(Gi)). Then, the coordinated system G = ‖ni=1 Gi ‖

Gk is nonblocking if and only if the following conditions both hold:

1. Gi ‖ Gk are nonblocking, for all i = 1, 2, . . . , n, and
2. Lm(G1 ‖ G2 ‖ . . . ‖ Gn) is conditionally decomposable with respect to alphabets E1, E2, . . . , En, Ek.

Proof. The proof follows immediately from the previous corollary and the fact that
f

i Lm(Gi) ‖ Lm(Gk) =
(f

i Lm(Gi)
)
‖(f

i Pk(Lm(Gi))
)
, which is equal to

f
i Lm(Gi) by Lemma 12, which reduces item 2 of Corollary 15 to the form of item 2

of this corollary. �

The last corollary is particularly interesting because the coordinated modular discrete-event system coincides with
the original plant and, therefore, nonblockingness of the original plant itself can be checked using the approach based
on a coordinator, provided that we can verify item 2 in a distributed way.

The approach discussed above is based on projections, and the only known sufficient condition ensuring that
the projected automaton is smaller with respect to the number of states than the original one is the observer property
mentioned below. This topic requires further investigation because the observer property is only a sufficient condition,
not necessary; there are examples of projected automata that are smaller than original automata without the projections
satisfying the observer property. For completeness, however, we now discuss the case of projections satisfying the
observer property and show that it corresponds to the known results discussed in [16] and in references therein.

Finally, we mention that in practice one central coordinator is particularly useful for loosely coupled subsystems,
where the interaction between the subsystems (via synchronisation) is not too strong. Otherwise, a general multilevel
hierarchy approach should be adopted, where the subsystems are aggregated into groups that are only loosely coupled.
This is, however, very technical and left for a future study.

5.1. Observer property
The previous results are of interest in the case the projected systems Pk(Gi), for i = 1, 2, . . . , n, are significantly

smaller than the original systems Gi. So far, the only known condition ensuring this is a so-called observer property.

Definition 17 (Observer property). Let Ek ⊆ E be alphabets. A projection Pk : E∗ → E∗k is an L-observer for a
language L ⊆ E∗ if the following holds: for all strings t ∈ P(L) and s ∈ L, if P(s) is a prefix of t, then there exists
u ∈ E∗ such that su ∈ L and P(su) = t.

The following lemma proves that if the projections are observers, then item 2 of the previous results can be
eliminated because it is always satisfied.

Lemma 18. Let Gi, 1, 2, . . . , n, n ≥ 2, and Gk be generators over the alphabets Ei, i = 1, 2, . . . , n, and Ek, respectively,
such that Es ⊆ Ek ⊆

⋃
i Ei, and denote G =

f
i Gi ‖ Gk. If the projections Pi+k

k are Pi+k(Lm(G))-observers, for
i = 1, 2, . . . , n, then the language Lm(G) is conditionally decomposable with respect to Ei, i = 1, 2, . . . , n, and Ek.

Proof. By Lemma 11, showing the first equality, it holds in general that

nn

i=1

Pi+k(Lm(G)) =

nn

i=1

Pi+k(Lm(G)) ⊇
nn

i=1

Pi+k(Lm(G))

=

nn

i=1

Lm

Gi ‖ Gk ‖
n

j,i

Pk(G j)

 = Lm(G) .

(4)

The last equality follows from the commutativity of the synchronous product and Lemma 12. By [25], it holds that
fn

i=1 Pi+k(Lm(G)) =
fn

i=1 Pi+k(Lm(G)) if and only if
fn

i=1 Pk(Lm(G)) =
fn

i=1 Pk(Lm(G)), and the later equality is obviously
satisfied. Thus, the former equality implies by (4) that the language Lm(G) is conditionally decomposable with respect
to alphabets E1, E2, Ek, which was to be shown. �

12

As mentioned in the previous proof, when we consider all the assumptions, Feng [16] (see also the references
therein) has shown that if the projection Pk is an observer for L1 and L2, then L1 ‖ L2 is nonconflicting if and only if
Pk(L1) ‖ Pk(L2) is nonconflicting. This is generalized to arbitrary components in [25]. Note that using this property on
item 1 of Corollary 16, together with the previous lemma and the fact that the observers preserve parallel composition,
[25], results in the following corollary, which generalizes the results shown in [16] for two components.

Corollary 19. Let Gi, 1, 2, . . . , n, n ≥ 2, and Gk be nonblocking generators over the alphabets Ei, i = 1, 2, . . . , n, and
Ek, respectively, such that Es ⊆ Ek ⊆

⋃
i Ei, and assume that Lm(Gk) =

⋂
i Pk(Lm(Gi)) and L(Gk) =

⋂
i Pk(L(Gi)).

Assume that the projections Pi
k are Lm(Gi)-observers, for i = 1, 2, . . . , n. Then, the coordinated system

f
i Gi ‖ Gk is

nonblocking if and only if Gk is nonblocking.

This works because the projection is an observer. However, there are languages which are conditionally decom-
posable, but the projections from Lemma 18 are not observers. For instance, consider a language L = {ba, cdb, dcb}.
It can be verified that L is conditionally decomposable with respect to the alphabets E1 = {a, b, c}, E2 = {a, b, d}, and
Ek = {a, b}, and that the projections Pi+k

k are not Pi+k(L)-observers, for i = 1, 2. Note that P1+k(L) = {ba, cb} and
P2+k(L) = {ba, db}. Then, for t = b and s = cb (for i = 1, or s = db for i = 2), there is no extension of cb such that
P1+k

k (cb) = ba. Hence, the projections are not observers. For that reason, we consider in this paper a more general
assumption that the projections are such that the projected generators are smaller than the original generators. Note
that the conditions under which this is true still need to be investigated. Finally, note that for the verification whether
the subsystems Gi ‖ Gk ‖

f
j,i Pk(G j) are nonblocking, the methods presented in [26, 27] can be used, combined with

further usage of Binary Decision Diagrams [28] or state-tree structures [29] to perform the calculations.

6. Conclusion

The main contributions of this paper are polynomial-time algorithms for the verification whether a language is
conditionally decomposable and for an extension of the coordinator alphabet Ek. Our approach to extend the alphabet
Ek is based on the successive addition of events to the alphabet Ek. Another approach has recently been discussed
in [30], where the problematic transitions are identified, and the events of these transitions are renamed. From the
viewpoint of applications, however, our approach can directly be used in coordination control for which it has primar-
ily been developed. On the other hand, the approach from [30] has so far no direct applications in the coordination
control framework, which is under investigation. Nevertheless, the algorithms presented here can also be used for the
approach presented in [30].

Particularly valuable is the property that algorithms for checking conditional decomposability of a language with
respect to alphabets is linear in the number of alphabets (that corresponds to local controllers in coordination control).
No such results are known for co-observability (the notion playing a central role in decentralized control) and the re-
lated property of decomposability. It is well-known that co-observability is equivalent to decomposability under some
reasonable assumptions on locally controllable and locally observable alphabets. Since conditional decomposability
can be seen as decomposability with respect to particular alphabets (enriched by the coordinator events), it appears
that our results about conditional decomposability will have impact on decentralized control with communicating su-
pervisors. Indeed, co-observability is ensured by a special types of communication (which corresponds to enriching
the sets of locally observable events such that a specification language becomes co-observable) in a similar way as
decomposability is imposed by enriching the alphabets of local supervisors.

The paper also compares the property of conditional decomposability to nonblockingness of a coordinated system.
The current low complexity tests of practical interest are based on the observer property because it is the only known
condition ensuring that the projected generator is smaller than the original one. However, this is only a sufficient
condition and further investigation is needed. It is our plan to further investigate the construction procedures for
designing coordinators for nonblockingness that are as small as possible and we will combine these results with those
obtained in coordination control for safety so that both nonblockingness and safety issues can be efficiently handled
using coordination control.

13

Acknowledgments

The authors gratefully acknowledge very useful suggestions and comments of the anonymous referees. The re-
search has been supported by the GAČR grants P103/11/0517 and P202/11/P028, and by RVO: 67985840.

References

[1] P. J. Ramadge, W. M. Wonham, Supervisory control of a class of discrete event processes, SIAM J. Control Optim. 25 (1987) 206–230.
[2] Y. Willner, M. Heymann, Supervisory control of concurrent discrete-event systems, Internat. J. Control 54 (1991) 1143–1169.
[3] K. Rudie, W. Wonham, Supervisory control of communicating processes, in: Proc. of International Symposium on Protocol Specification,

Testing and Verification X, Elsevier Science Publishers, Amsterdam, The Netherlands, 1990, pp. 243–257.
[4] K. Rudie, W. M. Wonham, Think globally, act locally: Decentralized supervisory control, IEEE Trans. Automat. Control 37 (1992) 1692–

1708.
[5] S. Jiang, R. Kumar, Decentralized control of discrete event systems with specializations to local control and concurrent systems, IEEE Trans.

Syst. Man Cybern. B 30 (2000) 653–660.
[6] M. Karimadini, H. Lin, Decomposability of global tasks for multi-agent systems, in: Proc. of CDC 2010, pp. 4192–4197.
[7] B. Gaudin, H. Marchand, An efficient modular method for the control of concurrent discrete event systems: A language-based approach,

Discrete Event Dyn. Syst. 17 (2007) 179–209.
[8] J. Komenda, J. H. van Schuppen, B. Gaudin, H. Marchand, Supervisory control of modular systems with global specification languages,

Automatica 44 (2008) 1127–1134.
[9] J. Komenda, J. H. van Schuppen, Coordination control of discrete event systems, in: Proc. of WODES 2008, pp. 9–15.

[10] J. Komenda, T. Masopust, J. H. van Schuppen, Synthesis of controllable and normal sublanguages for discrete-event systems using a
coordinator, Systems Control Lett. 60 (2011) 492–502.

[11] J. Komenda, T. Masopust, J. H. van Schuppen, Supervisory control synthesis of discrete-event systems using a coordination scheme, Auto-
matica 48 (2012) 247–254.

[12] G. Jirásková, T. Masopust, State complexity of projected languages, in: Proc. of DCFS 2011, volume 6808 of Lecture Notes in Computer
Science, Springer, 2011, pp. 198–211.

[13] C. G. Cassandras, S. Lafortune, Introduction to discrete event systems, Springer, 2nd edition, 2008.
[14] A. Salomaa, Formal languages, Academic Press, New York, 1973.
[15] W. M. Wonham, Supervisory control of discrete-event systems, 2011. Lecture notes, Department of electrical and computer engineering,

University of Toronto. [Online]. Available: http://www.control.utoronto.ca/DES/.
[16] L. Feng, Computationally Efficient Supervisor Design for Discrete-Event Systems, Ph.D. thesis, University of Toronto, 2007.
[17] L. Feng, W. M. Wonham, Computationally efficient supervisor design: Abstraction and modularity, in: Proc. of WODES 2006, Ann Arbor,

USA, pp. 3–8.
[18] J. Komenda, T. Masopust, J. H. van Schuppen, Synthesis of safe sublanguages satisfying global specification using coordination scheme for

discrete-event systems, in: Proc. of WODES 2010, pp. 436–441.
[19] M. Sipser, Introduction to the theory of computation, PWS Publishing Company, Boston, 1997.
[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, The MIT Press, 3rd edition, 2009.
[21] G. Karakostas, R. J. Lipton, A. Viglas, On the complexity of intersecting finite state automata and NL versus NP, Theoret. Comput. Sci. 302

(2003) 257–274.
[22] K. Wong, On the complexity of projections of discrete-event systems, in: Proc. of WODES 1998, Cagliari, Italy, pp. 201–206.
[23] T. Moor, et al., libFAUDES – discrete event systems library, February 2012. [Online].

Available: http://www.rt.eei.uni-erlangen.de/FGdes/faudes/index.html.
[24] J. Komenda, T. Masopust, J. H. van Schuppen, Coordination control of discrete-event systems revisited, Discrete Event Dynamic Systems:

Theory and Applications (2014). To appear, DOI: 10.1007/s10626-013-0179-x.
[25] P. N. Pena, J. E. R. Cury, S. Lafortune, Verification of nonconflict of supervisors using abstractions, IEEE Trans. Automat. Control 54 (2009)

2803–2815.
[26] H. Flordal, R. Malik, Modular nonblocking verification using conflict equivalence, in: Proc. of WODES 2006, pp. 100–106.
[27] H. Flordal, R. Malik, Compositional verification in supervisory control, SIAM J. Control Optim. 48 (2009) 1914–1938.
[28] R. E. Bryant, Symbolic boolean manipulation with ordered binary-decision diagrams, ACM Comput. Surv. 24 (1992) 293–318.
[29] C. Ma, W. M. Wonham, Nonblocking Supervisory Control of State Tree Structures, Lecture Notes in Control and Information Sciences,

Springer, 2005.
[30] T. Masopust, S. L. Ricker, Another approach to conditional decomposability for discrete-event systems, 2012. Manuscript.

14

	1 Introduction
	2 Preliminaries and definitions
	3 Polynomial Test of Conditional Decomposability
	4 Extension of the coordinator alphabet
	5 Relationship of nonblockingness of coordinated systems to conditional decomposability
	5.1 Observer property

	6 Conclusion

