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Abstract

A time-optimal reconfiguration strategy for formation flying of autonomous acceleration-controlled agents is presented. In the proposed
strategy, the agents are moved to a special designated formation in the time interval between the completion of the mission in the current
formation and the issuance of the next reconfiguration command. It is shown that the problem of finding the special designated formation
which minimizes the expected value of the reconfiguration time is nonconvex. This optimization problem is treated for two cases of
constrained acceleration, and constrained acceleration and velocity. It is shown that in both cases, the search space for finding the special
designated formation can be reduced to a convex compact set. An alternative search algorithm is presented for the second case, which
consists of searching a vicinity of possible formations, and solving a convex nondifferentiable optimization problem. This search algorithm
is typically much faster than the one concerning the acceleration constraint only. The effectiveness of the proposed strategy is illustrated

via simulation.

Key words: Multi-agent systems; formation; optimization.

1 Introduction

The problem of formation flying control of autonomous
agents has been extensively studied for various applications
in the recent literature [16,8,17,19,20,12,15]. Such applica-
tions include, for instance, deep space missions, autonomous
highway systems, and border patrol using unmanned aerial
vehicles (UAV). The relative position of agents in a forma-
tion flying system may need to be reconfigured as changes
occur in the mission. Such reconfiguration is desired to be
carried out in such a way that some performance index such
as maneuver time, fuel or energy consumption, etc. is mini-
mized during reconfiguration. The choice of the performance
index depends on the nature of the mission. For instance,
while fuel consumption is the main concern in a deep-space
mission to prolong the operation time [16], in some other ap-
plications such as rescue missions or forest fire surveillance
[8] completing the mission in the shortest possible time is
of utmost importance.
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Fuel, energy and time are among the most important quanti-
ties of interest in a multi-agent system, and a number of re-
configuration strategies are reported in the literature to min-
imize them. [3,18,13] propose minimum-fuel control strate-
gies for spacecraft and micro-satellites under various con-
straints such as balanced fuel consumption and fixed mission
completion time. Minimizing energy for network reconfig-
uration is investigated in [11,10,22], where reconfiguration
strategies are proposed for multiple aircraft and deep-space
spacecraft. [23,1] introduce a strategy to properly coordi-
nate the agents in the time-interval between the accomplish-
ment of the mission at the most recent formation and the
issuance of the next reconfiguration command, which will
henceforth be referred to as the idle time, in order to achieve
better reconfiguration performance. This is carried out by
moving the agents to a special designated formation during
the idle time. This special designated formation in [23] has
the property that it positions each agent as close as possible
to its next potential location, aiming to minimize the aver-
age reconfiguration time. The special designated formation
in [1], on the other hand, is obtained in such a way that the
expected value of the reconfiguration energy consumption
for a team of acceleration-controlled agents is minimized.

In this paper, a two-stage time-optimal reconfiguration
strategy for formation flying of a team of autonomous
acceleration-controlled agents is presented. The results de-
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veloped here are the time-optimal counterparts of the ones
in [1], where a two-stage energy-optimal reconfiguration
strategy is presented for a multi-agent system. A special
designated formation is obtained analogously to [1], such
that the expected value of the time required to move the
team from this formation to a newly commanded formation
is minimized. The proposed strategy can be effectively used
in applications where the reconfiguration time is a critical
component of the formation mission. Such applications in-
clude border patrol, or defending a base station by forming
different configurations depending on the potential enemy
threat. Unlike the energy-optimal case presented in [1], it
turns out that the problem of finding the time-optimal spe-
cial designated formation is a nonconvex nondifferentiable
optimization problem. This problem is treated for two cases
of constrained acceleration, and constrained acceleration
and velocity. It is shown that in both cases the search space
for finding the special designated formation can be reduced
to a convex compact set. In the case when both accelera-
tion and velocity are constrained, an alternative algorithm
is presented which involves searching a vicinity of possible
formations, and solving a convex nondifferentiable opti-
mization problem. This simplified search method is typi-
cally much faster than the original one. Sufficient conditions
are provided under which the special designated formation
can be directly obtained from the solution of the convex
optimization problem. A norm-bounded subgradient is de-
rived for the convex nondifferentiable objective function in
the case of constrained acceleration and velocity, which is
subsequently used to solve the problem numerically.

The rest of the paper is structured as follows. In Section
2, some notations and definitions are introduced which will
prove convenient in presenting the main results. The two-
stage time-optimal formation reconfiguration strategy is pro-
vided in Section 3. Simulation results are presented in Sec-
tion 4, which demonstrate the effectiveness of the proposed
approach. Section 5 outlines the conclusions, and finally the
proofs of the lemmas are provided in the appendix (Sec-
tion 6).

2 Notations and Definitions

Definition 1 Consider a multi-agent system whose config-
uration can vary from time to time. The time between the
completion of the mission at the current formation and the
issuance of the next reconfiguration command is referred to
as the idle time, and is denoted by . Furthermore, the time
it takes for the agents to move from the current formation to
a newly commanded formation is called the reconfiguration
time, and is denoted by T.

Let Z denote the set of predefined desired formation con-
figurations, which is assumed to be finite. Any d € Z is
described as d = [d],dY,...,dl]", d € R*, where n is the
number of agents and d; € RR3 is the position of agent j in
the formation d with respect to an inertial reference frame.

The union of all possible positions for agent j in & consti-
tutes a region Z; for this agent, i.e. Z; = Uycyd;. In gen-
eral, some formations may occur more frequently than the
others. To formulate this, the probability of the formation d
is denoted by p(d), d € 2, which is assumed to be known a
priori. Note that by definition p(d) >0 and ¥ ;.5 p(d) = 1.
Let the set of integers {1,2,...,n} be denoted by N,,. The
agents are assumed to have double integrator dynamics of
the form X; = a;, j € N,, i.e,, each agent is controlled by
its acceleration (or more precisely by applying a force). The
initial and final velocities of the agents while moving from
their current formation to a newly commanded formation
are assumed to be zero with respect to the reference frame.

It is desired in the next section to find a control strategy
under which the expected value of the reconfiguration time
is minimized.

3 Two-Stage Time-Optimal Formation Reconfigura-
tion Strategy

The objective of the two-stage time-optimal formation re-
configuration strategy is to move the agents to a special for-
mation during the idle time, in such a way that the expected
value of the reconfiguration time, i.e. the time required to
move the team from this formation to a newly commanded
formation is minimized. This special formation will be re-
ferred to as the time-optimal special designated formation
(TOSDF) and will be denoted by .7 € R, It is assumed
that the idle time is long enough for the agents to move
from any possible formation to their location in .7. The
cost function to be minimized is

J(x:T) =) p(d) max T(x;,d)) (1)

dey  1sisn

where T'(x;,d;) is the minimum time required for agent j
to move from x; to d; with zero initial and final velocities,
and x = [xT xT . xIT.

Let aj(-) € R? and v;(-) € R? be the acceleration and ve-
locity of agent j while moving from x; to d;. The underly-
ing optimization problem is investigated for two cases. In
the first case, a threshold on the acceleration of every agent
is considered as ||a;|| < dmax, j € N,. In the second case,
thresholds for both acceleration and velocity are considered,
ie. ||aj|| < amax and ||v;|| < Vinax, for all j € N,. It will be
shown later that both cases share a number of interesting
properties. A few lemmas are presented in the sequel, which
will be used to derive the results for both cases. The proofs
of these lemmas are provided in the appendix.

Remark 1 It is to be noted that in the conventional one-
stage strategy, the agents stay at their most recent formation
during the idle time. The initial configuration of the agents
is random (with exactly the same set of possible formations
2 and probabilities p(d), d € D). This is the basis for the



comparison of the reconfiguration time in the proposed two-
stage strategy and the conventional one-stage strategy.

Remark 2 Finding the TOSDF requires a closed-form an-
alytical expression for the reconfiguration time, i.e. the time
required to move the agents from formationx € R> tod € 9.
With the collision avoidance constraint, however, a closed-
form expression for this function may not exist. Since the
set of potential formations is assumed to be known and the
TOSDF is computed off-line, therefore any pair of crossing
optimal trajectories obtained for the resultant TOSDF (i.e.
the trajectories which meet at the same point in time) can be
slightly modified to avoid collision (with no major impact
on the reconfiguration time).

Note 1 In order to reduce the amount of backtracking, all
notations used in developing the time-optimal formation re-
configuration strategy are listed in Table 1.

Lemma 1 Consider the function f :R> — R defined as
f(x) = Laeq p(d)maxi<j<ng(x; —d;), where g : R> — R
satisfies the following conditions

i) g(0) =0 and g(r) > 0 for any nonzero r € R>,
ii) g'(0;v) = +oo for any nonzero direction v € R>,
iii) ||g'(r;v)|| < oo for any nonzero r.

Then, every x € 9 is a local minimizer of f.

Lemma 2 Consider the function f defined in Lemma 1, and
assume that g satisfies the following conditions

i) g(0)=0and g(r) =0
ii) g(r)=g(—r)
iii) g(r)+g(s) > g(r+s)

Suppose that p(d) > 0.5 for some d € 9. Then, x =d is a
global minimizer of the function f.

Lemma 3 Let ¢ C R? denote the convex hull of the region
9 corresponding to agent j, for any j € N,. Consider the
function f defined in Lemma 1, and assume that g(r) is an
increasing function of ||r||, where || - || is the Euclidean norm.
Then, f has a global minimizer lying in € =61 X 62 X ... X

ne

Lemma 4 Let x* be a global minimizer of the function f
defined in Lemma 1, and suppose that g satisfies the condi-
tions of Lemma 2. Then,

05Y pd)f(d)<fx)< Y pd)f(d) ()

ey de9

3.1 Bounded acceleration

It is assumed now that the magnitude of the acceleration
of each agent is bounded by .. Let Ti(x;,d;) denote

Table 1
List of the notations used in developing the two-stage time-optimal
formation reconfiguration strategy.

Notation  Description

time-optimal special designated formation

set of predefined desired formation configurations

ST
9
D; union of all possible positions for agent j in &
C; convex hull of the region Z;

4

BC1LXGrX...X 6
p(d) probability of d being the desired formation

dj position of agent j in formation d
a;j(r) acceleration of agent j moving from x; to d;
v;(t) velocity of agent j moving from x; to d;

Amax threshold on the acceleration of every agent

Vinax threshold on the velocity of every agent

>

%g d-vicinity of formation d

ot union of all %’5’5 forde 2
(xj,dj)  minimum time required for agent j to move from

xj to dj with zero initial and final velocities

minimum time required for agent j to move from
xj to d; with zero initial and final velocities, sub-
ject to bounded acceleration

minimum time required for agent j to move from
Xj to d; with zero initial and final velocities, sub-
ject to bounded acceleration and bounded velocity

minimum time required for agent j to move from
Xxj to d; with zero initial and final velocities, sub-
ject to bounded acceleration and bounded velocity
for the case when ||x; —d;|| > L

T(@ expected value of the reconfiguration time for the
two-stage time-optimal strategy with bounded ac-
celeration

T(va) expected value of the reconfiguration time for the
two-stage time-optimal strategy with bounded ac-
celeration and bounded velocity

r(a) expected value of the reconfiguration time for the
conventional one-stage strategy with bounded ac-
celeration

T(va) expected value of the reconfiguration time for the
conventional one-stage strategy with bounded ac-
celeration and bounded velocity

the minimum time required by agent j to move from x;
to d; with zero initial and final velocities under the above
constraint. Using Pontryagin’s minimum principle, it can
be easily verified that a time-optimal strategy will require

aj(t) = sgn( t)amaxﬁ Substituting for a;(-) in



"1 [ a;(t)dtdt = d; —x; and solving for Ty, one will obtain

Ti(xj,d;) = [[x; — djl 3)

ﬁ

Thus, the function to be minimized is

2

J(xTh) = Y p(d) max

lxj—dil 4
Amax jcog

which shows that finding the TOSDF involves a nonconvex

nondifferentiable optimization problem. However, one can

use Lemmas 1-4 to characterize some interesting properties

of this optimization problem. These properties are presented

in the following theorem.

Theorem 1 Consider the function J(x;T), where Ty (x},d;)
is given by (3). The following statements are all true.

i) Every d € 9 is a local minimizer of J.
ii) pr( 1) > 0.5 for some d € 9, then d is a global mini-
mizer of J.
iii) J has a global minimizer lying in € =6\ X 63 x ... X
Cn, Where €; denotes the convex hull of the region 9;
for agent j, j € N,.

Proof.
Part (i). Let g(r) =
v and nonzero r

7], r € R3. Then, for any direction

VTV

!/
g(rv)= 3
2|2

It is now easy to show that g satisfies the conditions of
Lemma 1, which completes the proof of part (i).

Part (ii). The proof follows immediately from Lemma 2.
Part (iii). The proof is straightforward using Lemma 3. W

®)

One of the results of Theorem 1 is that J has at least ||
local minimizers. Because of the multiple local minima of
the function J (given by (4)), methods of descent for non-
differentiable optimization (e.g., [14,2]) may converge to a
suboptimal solution. However, part (iii) of the theorem re-
duces the search space for finding the TOSDF to the convex
compact set € = 61 X 62 X ... X 6,. It is to be noted that
this search can be tedious in general and may take a rela-
tively long time to complete. However, this is not a major
concern since the TOSDF is computed off-line.

In the next theorem, an upper bound is presented on the
maximum reduction in the reconfiguration time using the
proposed two-stage strategy.

Theorem 2 Let T'9 and T('9) denote the expected values of
the reconfiguration time for the two-stage time-optimal strat-
egy with the maximum acceleration constraint ||a;|| < amax,
J € N, and the conventional one-stage counterpart with the

same constraint, respectively. Then 0.5T(14) < T(@) < 7(4),

Proof. Let g(r) = \/||r|| for any r € R3. Let also f be de-
fined as in Lemma 1. Then, the function J given by (4) can

be written as J(x;77) = \/%f( x). Since T(@ is the min-

imum of J(x;T}), hence 7% = \/%f(x*), where x* is a

global minimizer of f. In the conventional one-stage strat-
egy, the agents stay at their most recent formation during
the idle time. Therefore, the expected value of the reconfig-
uration time given the current formation d is J(d;T;), and

hence T4 = ¥ e p(d)J(d;Th) = WZdeQP( )f(d).
On the other hand, it can be easily verified that g satisfies

the conditions given in Lemma 2. Thus, from Lemma 4,

0.5¥4eq p(d)f(d) < f(x*) < Laep p(d)f(d), which com-
pletes the proof. |

3.2 Bounded acceleration and bounded velocity

Assume now that in addition to the constraint on the acceler-
ation, the maximum velocity of each agent is also bounded
by Viar. Let Tr(xj,d;) denote the minimum time required
by agent j to move from x; to d; with zero initial and final
velocities under these constraints. One can use Pontryagin’s
minimum principle to find 75 in this case. To this end, define

V2

S (6)

Amax

If ||x; —dj|| <L, then a time-optimal strategy will require

T2 dj—xj
7_1‘ - v
3 e

aj(t) = sgn( (N

If on the other hand ||x; —d;|| > L, then the constraint on the
velocities affects the equations, and the time-optimal control
will be

dj—x;
Amax Ty =d;T

aj(t) =14 0,
di—x

_ A _ Vmax
Amax Tx=d,T° b dmax <t<T

0 < < Vmax

— dmax

Vmax <t < T2 Vmax (8)

Amax Amax

Substituting for a;(-) from (7) and (8) in the relation

0 Ji aj(t)drdT = d;
T>» whose solution is

\/fT llxj—djll, IIxj—d;|| <L

—x; leads to an equation in terms of

TZ(xjvdj) = —d: 9
Birdil yovoas x| > L
The function to be minimized is (see (1))
Jx:T) =Y pld ymax 7 (x;, d;) (10)

deg JEN



Minimizing J(x;7>) (with T>(x;,d;) given by (9)) is still
a nonconvex nondifferentiable optimization problem. How-
ever, it is shown in the sequel that the results presented for
the case of bounded acceleration are also valid in this case.

Theorem 3 Consider the function J(x;T>), where T>(x;,d;)
is given by (9). The following statements are true.

i) Every d € 9 is a local minimizer of J.
ii) Suppose that p(d) > 0.5, for some d € 9. Then, d is a
global minimizer of J.
iii) J has a global minimizer lying in € =6\ X 63 x ... X
©n, Where €; denotes the convex hull of the region 9;
for agent j, j € N,.

Proof.
Part (i). For any r € R3, let

=Vl <L
g =q ", (1n
-t ]| > L
For any direction v and nonzero vector r
—L el <L
g(rv)= \/a:}uullrll2 (12)
N Y
It is to be noted that for ||r|| = L, vyr > = VVT’L since
\/MLQ max:

2
L= Z’”‘” It is easy to show that g satisfies the conditions of

Lemma 1, and the proof follows directly from that.

Part (ii). To prove this part, it suffices to show that the
function g in (11) satisfies the conditions of Lemma 2. It is
straightforward to show that the first two conditions hold.
To prove that the third condition also holds, some useful
properties of g are presented first. It can be easily verified

that ”r” <g(r) <4 smax Moreover, if |[r|| < L, then

— Vmax

g(r) > 2 Il "and if ||r|| > L, then g(r) < 2%. Condition
(iii) of Lemma 2 will now be proved by considering two
cases:

Case (1): ||r|| <L AND ||s|| < L. If ||r +s|| < L, then clearly

g(r)+g(s) > g(r+s). If |[r+s|| > L, then

N T
Vimax Vimax
bl
Vimax

> g(r+s) (13)

Case (2): ||r|| > L OR ||s|| > L. Assume ||r|| > L; then

r 1% N
Il v, s

Vimax  Qmax  Vmax

8(r)+g(s) =

> |7+l _|_Vmax

Vimax Amax

> g(r+s) (14)
Part (iii). The proof follows directly from Lemma 3. |

Part (iii) of the above theorem suggests that one can find a
global minimizer of J(x;T;) by searching only the convex
compact set € = 6] X 62 X ... X €,. As also mentioned
earlier, such a search can be tedious in general. A more
time-efficient search algorithm is developed in the sequel.
For any formation d € & and positive real number 8, define
the -vicinity of d as

B = {x e R*| max |[x; —dj|| < &} (15)
1<j<n

This is, in fact, the set of all formations in which the posi-
tion of agent j, j € N,,, is selected from a ball of radius &,
centered at the position of this agent in the formation d. The
following theorem presents an alternative search algorithm
which involves searching the L-vicinity of the formations
in 2. It is to be noted that this is typically a much smaller
set compared to ¥. The algorithm also involves a convex
optimization problem which can be solved efficiently using
existing methods.

Theorem 4 Let P = Uyc o BE ", where %’L is the L- vicinity
of the formation d, and L is given by (6). Suppose that x2
is a minimizer of J(x;Tz) over 2*N€, and that x®) is a
global minimizer of J(x;T3), where

||xj _de T Vmax

T3(xj,d;) = (16)

Vmax Amax
IfI(x?; 1) <J(xB);13), then x?) is a global minimizer of
J(x;T2); otherwise, x(3) is a global minimizer of J(x;T»).

Proof. Following an approach similar to the one used in the
proof of Lemma 3, one can show that x? is a minimizer
of J(x;T5) on 2L, If xB®) ¢ P*, then x) is a minimizer
of J(x;T») on R¥\ 2% because J(x;T») = J(x;T3) for x €
R3"\ %, and the proof follows directly from that. If on the
other hand x®) € Z%, then for any x € R¥\ 2*

> J(x3).13)
J(x(3) ;Th)
J(x; 1) a17)

J(x; T3)

AVARNY,

(note that the relation 73 (x;j,d;) > T>(x;,d;) is used to derive

(17)). Therefore, in this case 2 is a global minimizer of
J(x; Tz). |



Finding a global minimizer of J(x;T3) for T3(x;,d;) given
in (16) is a convex optimization problem, and 2N % is
typically much smaller than % (specially when L is small
compared to the diameter of the region 4j, j € N,)). Con-
sequently, a search algorithm based on Theorem 4 could be
much more efficient than any algorithm that searches over
the whole space . There are certain cases as described
in the next theorem, where it may not even be required to
search 72X NE.

Theorem 5 Suppose that x7 is a minimizer of J(x;T>) on
x € 2. If X% is a global minimizer of J(x;T3) and

I3 1) <J67; 1) — 2 e (18)

Amax
then x®) is a global minimizer of J(x;Ts) as well.

Proof. Let x'?) be a minimizer of J(x;T5) on 2" as defined

in Theorem 4. Then, x(2) € %’5 for some d € 9. Let also
G(x) = max;<j<, g(x;), for the g given in (11). Following an
approach similar to the one used in the proof of Lemma 4,
one can show that

J(d; ) <J(xP; 1)+ G(d —xP) (19)

On the other hand, x(?) € ZL yields G(d —x?) <2,/ -L- =

Amax

27max This relation along with (18) and (19) implies that

J(x(é);T3) < J(x¥); 1), and the proof is completed using
Theorem 4. ]

Remark 3 It follows from the above proof that a quick al-
ternative to the exact solution of the TOSDF problem in case
of constrained acceleration and velocity could be either x7
or x(3), whichever leads to a smaller performance index.
This means that without searching the L-vicinity of the for-
mations, one can obtain a two-stage strategy whose corre-
sponding reconfiguration time exceeds the minimum value
by at most 2%.

Minimizing J(x; 73) involves a convex nondifferentiable op-
timization problem. The subgradient method [21,5,4] can
be employed now to numerically solve this optimization
problem. In this method, it is required to compute a norm-
bounded subgradient for the objective function at any point
in its domain. Basic rules for finding a subgradient are dis-
cussed in [5,4,7], and are summarized in the next remark.

Remark 4 Consider a convex function ¢ : R" — R.

(1) If ¢ is differentiable at x, then its gradient at x is the
only element of the subdifferential d¢(x).

(2) For any scalar ® > 0, a subgradient of ®¢ at x is given
by &, where & is any subgradient of ¢ at x.

(3) If ¢(x) = 1(x)+... 4+ Ou(x), where ¢1,..., 0y are con-
vex, then any & of the form E =& + ...+ &, is in
29 (x), where & € d¢;i(x) for all i € N,,.

(4) Suppose that ¢ (x) = max<j<m i(x), where @1,...,0p
are convex. Then,

99(x) = Conv(U{99;(x)|¢i(x) = ¢(x)})  (20)
where Conv(-) denotes the convex hull of (-).

The next theorem presents a norm-bounded subgradient of
J(x;T3) at any x € R3 using Remark 4.

Theorem 6 Consider the function J(x;T3), where Tj is de-
fined in (16). For any x € R¥ and any agent j € N, define
& eRas

£ = ! pd) xj—dj Q1)
/ Vmax gey—ix) |Id‘ ”xj - dj H
jely

where I; denotes the set of active indices at x for formation
d, defined as 1; = {j|||x; — d;| = maxi << ||x; — d;||}. Let
i be zero if j is not active at any formation, and define
E=[EL,...,EN1T. Then, & is a subgradient of J(x;Ts) and

IENI < 5

— Vmax

Proof. Define G(x) = maxjen, 73(x;,0); then, J(x;T3) =
Yicop(d)G(x—d). It is easy to check that O is a subgra-
dient of G(x —d) at x = d. Now, assume that x # d, and
for any j € I; denote with &;, a subgradient of T3(x;,d;) at
x;. The inequality x # d implies that x; # d; for any j € I,.
The function T3(x;,d;) is differentiable for x; # d;, and
st which s the
gradient of 73 at x;. Now, let §;, be zero for any j ¢ I,.
According to Remark 4, &; = ﬁ[éﬂ, ey éan]T is a subgra-
dient of G(x —d) at x. The fact that §; = Y. yc () P(d)§},
along with Remark 4 implies that & defined above is a
subgradient of J(x; T3) at x. Finally,

hence Remark 4 implies that &;, =

HENE!
=1

1 & pld 1
< ¥ = p(d)
Vmax J=1 de7—{x} | d| Vmax deP—{x}
jely
1
< (22)
Vmax
|

In the next theorem, an upper bound is presented (similarly
to Theorem 2) on the maximum reduction in the reconfigu-
ration time with the proposed two-stage strategy in the case
of bounded acceleration and velocity.

Theorem 7 Let T and T("" denote the expected values
of the reconfiguration time for the two-stage time-optimal
strategy with bounded acceleration and velocity, and its



conventional one-stage counterpart, respectively. Then
0.57(va) < 7va) < (1va),

Proof. The proof is similar to that of Theorem 2, and fol-
lows immediately on noting that the function g defined in
(11) satisfies the conditions of Lemma 2, as shown in The-
orem 3. |

4 Simulation Results

In this section, the effectiveness of the proposed two-stage
time-optimal strategy is illustrated by simulation.

Consider a team of four acceleration-controlled agents, and
let the set of possible formations & consist of six entries
dy,...,ds given below, with the same probabilities p(d;) = %
fori=1,...,6.

di=[033 0 094, —0.16 0.28 0.94,

—0.16 —0.28 094, 0 0 1417
db=[0 —057 0, —05 —028 O,

—0.5 —0.86 0, —0.33 —0.57 0.47)"
d3=[0 057 0, —0.5 0.86 0,

—0.5 028 0, —0.33 0.57 0]"
dy=[1 0 0, 05 0280,

05 —028 0, 0.66 0 0.47)"
ds=[—033 0 047, 0.16 —0.28 0.47,

0.16 028 047, 0 0 0]
ds=[033 0 373, —0.16 0.28 3.73,

—0.16 —0.28 373, 0 0 42]"

The above formations are identical regular tetrahedrons, and
are shown in Fig. 1.

The two-stage time-optimal strategy will now be investi-
gated for both cases of (i) constrained acceleration, and (ii)
constrained acceleration and velocity. The values of a,y
and v,,,, are chosen to be O.ISQ2 and 0.057, resulting in
L =0.025m. In order to find the TOSDF in case (i), the en-
tire convex compact set ¥ is searched according to Theo-
rem 1, which yields

Sr=[03325 0
—0.17 —029 0235, 0 0

0.235, —0.17 0.29 0.235,
0.705])"

It is also obtained that 7(@) = 6.40s and T(!9) =7.29s. Thus,
the two-stage time-optimal strategy improves the expected
value of the reconfiguration time by 12%. The time-optimal
special designated formation for this case is depicted in

Fig. 1 by dashed lines. It is noted that the computation time
required for finding this formation is 20736 seconds using
MATLAB on a 32-bit PC with 2.93 GHz Intel Core Duo
CPU.

1
Formation 4

0.5,
Time—Optimal Special
— Designated{ormation

2N N
x Formation 2 /*\« Formation 5
\

05 Formation 1

Formation 6
2.5

0.8

04 -02 0 02 04

y(m)

—08 -06

Fig. 1. The six possible formations and the corresponding time-op-
timal special designated formation.

For case (ii), using the subgradient method the minimum of
J(x;T3) is obtained to be J(x(3); T3) = 23.89s. On the other
hand, the minimum of J(x;73) on 2 is J(x7;T) = 25.96s.
Since J(x7;T3) —J (x3); T3) > 2.max — 1, Theorem 5 implies

that x> given below is a global minimizer of J(x;T3).

(3) —
X\ =
[0.3324 —0.0032 0.2434, —0.1691 0.2897 0.2413,
—0.1686 —0.2923 0.2418, —0.0034 —0.0002 O.7116]T

Moreover, T14) is obtained to be 23.89s, whereas Tva) can
be shown to be 34.74s for this example. This means that
using the two-stage time-optimal strategy 31% reduction in
the expected value of reconfiguration time is achieved. It is
to be noted that the TOSDF in this case is obtained without
even searching the L-vicinity of the formations, using the
result of Theorem 5. Since .#7 in case (ii) is very close to
that of case (i), it is not shown in Fig. 1. The computation



time required for finding this formation (case (ii)) is only 2
seconds on the same MATLAB platform noted earlier.

5 Conclusions

A two-stage time-optimal formation reconfiguration strategy
is presented for acceleration-controlled agents. It is assumed
that a set of possible formations is given with prescribed
probabilities assigned to them, which determines how fre-
quently each formation may occur. In the proposed strategy,
the agents are moved to a special designated formation dur-
ing the idle time in order to minimize the expected value
of the reconfiguration time. Finding the special designated
formation involves a nonconvex nondifferentiable optimiza-
tion problem, which is treated for two cases of constrained
acceleration, and constrained acceleration and velocity. The
maximum achievable reduction in the expected value of the
reconfiguration time in both cases is shown to be 50%. A
set of local minimizers are derived for both cases, and the
search space for finding the special designated formation is
reduced to a convex compact set. In the case that both ac-
celeration and velocity are constrained, an alternative search
algorithm is presented which is much faster and can even
further simplify the problem to a convex nondifferentiable
optimization under certain conditions. Simulations demon-
strate the efficacy of the proposed method.

6 Appendix

Proof of Lemma 1. Define the function G : R¥ — R as fol-
lows
G(x) = maxg(x;) (23)
JEN,

It can be shown that the directional derivative of G at x in
the direction u is given by

G'(x;u) = max g'(xj;u;) (24)

JEI(x)

where I(x) denotes the active indices at x, i.e. I(x) =

{Jjlg(x;) = G(x)} (See Danskin’s Theorem [5] or Proposi-
tion 2.3.2 in [6] for similar results). It follows from (24) that
G'(0;u) = maxg'(0;u;) (25)

JeI

where in this case I = N, since all x;’s are equal to zero.
Therefore, it can be concluded from condition (ii) that
G’ (0;u) = +oo for any nonzero u, on noting that a nonzero
u implies at least one of the u;’s is nonzero. For x # 0,
on the other hand, ||G'(x;u)|| < co; this follows from (24),
condition (iii), and the fact that if x # 0, then x; # 0 for
some j € I (due to condition (i)).

The above discussion together with the fact that f(x;u) =
Yico p(d)G'(x — d;u) implies that for any x € 2, the di-
rectional derivative of f in any direction is +oo, and this
completes the proof. ]

Proof of Lemma 2. Consider the function G defined in (23).

It is easy to verify that if g satisfies the conditions of the

lemma, then G also satisfies these conditions. This imp}ies

that G(x —y) < G(x) + G(y), for all x,y € R3". Since p(d) >

0.5, one can conclude that p(d) > Zdiz p(d). Now, for any
d#d

xeR¥”

x)= Y, pd)G(x—d)=p(d)G(x—d)+ ) p(d)G(x—d)

deg de

d#d

> Z p(d)G(x—d) + Z p(d)G(x—d)
de9 de?
d#d d#d

> ) p(d)G(d—d) = f(d) (26)
de9
d#d

This completes the proof. ]

Proof of Lemma 3. To prove this lemma, it suffices to show
that for any x ¢ %, there is a point X € € for which f(¥) <
f(x). Suppose that x ¢ ¢’; then x; ¢ €, for some j € N,,.
Let %; be the closest point in % to x;. Using the convex
projection theorem (see [9]), it is straightforward to show
that for any point d; € 9, ||x; —d;|| > ||X; — d;||. Hence, for
the point X obtained from x after replacing x; with X;, the
relation f(X) < f(x) holds. On the other hand, the point X;
corresponding to X belongs to &;. Therefore, by repeating
the same procedure for all those 1ndlces Jj for which x; ¢ €,
one can obtain a point ¥ lying in % such that the value of f
at X is not greater than that at x. |

Proof of Lemma 4. One can easily verify that G(x+y) <
G(x) + G(y) for all x,y € R, where G is defined in (23).
Thus, for any x € R* and any d € 2, G(x —d) < G(x —
x*) 4+ G(x* —d). Therefore,

Y p(@)G(x—d)< Y p(d)G(x—x*)+ Y, p(d)G(x"—d)
de9 dey de9
27
which implies that
fx) SG(x—x") + f(x7) (28)
for any x € R3. Using (28), one can write
Y pd)f(d) < Y p(d)G(d—x)+ Y p(d)f(x*) (29)
de9 de9 deg

Now, on noting that the right side of the above relation is
equal to 2f(x*), one arrives at

f(x*)>05Y p(d)f(d) (30)

de9

The right-hand side relation in (2) is a straightforward con-
sequence of the equality Y ;5 p(d) = 1 and the fact that
f(d) > f(x*) for all d € &, as x* is a global minimizer of

S (]
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