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Abstract

This paper studies the problem of robust stabilization by a stable controller for a

linear time-invariant single-input single-output infinite dimensional system. We

consider a class of plants having finitely many simple unstable zeros but possi-

bly infinitely many unstable poles. First we show that the problem can be re-

duced to an interpolation-minimization by a unit element. Next, by the modified

Nevanlinna-Pick interpolation, we obtain both lower and upper bounds on the

multiplicative perturbation under which the plant can be stabilized by a stable

controller. In addition, we find stable controllers to provide robust stability. We

also present a numerical example to illustrate the results and apply the proposed

method to a repetitive control system.
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1. Introduction

In this paper, we studyrobust stabilization by a stable controllerfor a single-

input single-output infinite dimensional system. The advantage of stable con-

trollers is well appreciated in that such controllers are robust against a sensor or

actuator failure [1] and the saturation of the control input [2]. Typical examples

are flexible structures [3] and traffic networks [2]. Additionally, stable controllers

are preferred for control of electromechanical positioning devices [4]. We also

recall that two plants are simultaneously stabilizable if and only if an associated

plant derived from these two plants is stabilizable by a stable controller [5].

For finite dimensional systems, several design methods of stableH∞ con-

trollers have been developed: linear matrix inequalities or algebraic Riccati equa-

tions [6, 7] and non-smooth, non-convex optimization [8]. On the other hand, for

infinite dimensional systems, while sensitivity reduction by a stable controller has

been studied in [9–11], robust stabilization by a stable controller still remains to

be an open problem.

Let us briefly summarize the difference between these two problems. Sensitiv-

ity reduction by a stable controller can be transformed to the modified Nevanlinna-

Pick interpolation [9, 12–14], and the associatedH∞-norm condition is‖F‖∞ < ρ,

whereF is a solution of the unit interpolation problem. On the other hand, in ro-

bust stabilization by a stable controller, the counterpart is‖W−mF‖∞ < ρ, where

W, 1/W ∈ H∞ andm ∈ H∞ is inner. SinceF needs to be a unit element, we

cannot change this norm condition to a simpler one, although we can in the usual

robust stabilization problem. We overcome this difficulty by extending the tech-

nique of [14]. We will discuss this technique in Section 3.

This paper studies a class of plants havingfinitely many simple unstable zeros
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but possiblyinfinitely many unstable poles. An example of such plants is a system

with delayed feedback such as repetitive control systems [15, 16]. The objective

of the present paper is to obtain lower and upper bounds on the multiplicative

perturbation under which the plant can be stabilized by a stable controller. We

also develop a design method of stable controllers achieving robust stability by

the method of [9, 10].

The paper is organized as follows: Section 2 gives the statement of the robust

stabilization problem with stable controllers. In Section 3, we obtain a sufficient

condition for the problem and find stable controllers for robust stabilization. A

necessary condition follows along similar lines. We present a numerical example

and apply the proposed method to a repetitive control system in Section 4.

Notation and Definitions

Let C+ denote the open right half-plane{s ∈ C | Res > 0}. For s ∈ C \ {0},

the principal value Logs is the complex logarithm whose imaginary part lies in

the interval (−π, π].

The spaceH∞ denotes the Hardy space of functions that are bounded and

analytic inC+, andRH∞ denotes the subset ofH∞ consisting of real-rational

functions.U ∈ H∞ is called aunit elementinH∞ if U, 1/U ∈ H∞. ForG ∈ H∞,

theH∞ norm is defined as‖G‖∞ := sups∈C+ |G(s)|. The field of fractions ofH∞ is

denoted byF ∞.

Two functionsN, D ∈ H∞ arestrongly coprimein the sense of [17] ifNX+

DY = 1 for someX, Y ∈ H∞. By the corona theorem [5],N andD are strongly

coprime if and only if there existsδ > 0 such that|N(s)|+ |D(s)| ≥ δ for all s ∈ C+.

To denote the interpolation dataG(si) = αi (i = 1, . . . , n) for G ∈ H∞, we use

the notation (si; αi)n
i=1.
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Figure 1: Closed-loop system.

2. Problem Statement

Consider the linear, continuous-time, time-invariant, single-input single-output

closed-loop system given in Figure 1. Let the plantP and the controllerC belong

toF ∞. P is said to bestabilizableif there existsC such thatS := 1/(1+PC), CS,

andPS belong toH∞. For a givenP, the set of allC leading toS, CS, PS ∈ H∞

is denoted byC (P). P is strongly stabilizableif H∞ ∩ C (P) , ∅. We say thatC

stabilizes Pif C ∈ C (P), and thatC strongly stabilizes Pif C ∈ H∞ ∩ C (P).

Let P be a real-rational proper function. ThenP is stabilizable byC ∈ RH∞

if and only if P has the parity interlacing property [18]. On the other hand, if

we do not requireC ∈ RH∞ but C ∈ H∞ allowing complex coefficients, every

stabilizableP ∈ F ∞ is strongly stabilizable [19], via a complex-valued controller

in general.

We make the following assumption on the plant throughout this paper:

Assumption 2.1. P ∈ F ∞ can be factorized into the following form:

P =
Mn

Md
No, (1)

where Md ∈ H∞, Mn ∈ RH∞ are inner functions and No, 1/No ∈ H∞. We

assume that Mn possesses simple zeros z1, . . . , zn only and that Md, Mn are strongly

coprime.
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Under Assumption 2.1,P has only finitely many unstable zeros arising from

Mn, butP is allowed to possess infinitely many unstable poles arising fromMd. In

[20], it is shown how to factorize retarded or neutral time delay systems into the

form (1) under some mild conditions.

Let P be thenominalmodel of the plant. In this paper, we assume that the

transfer function of theactualplant belongs to the following model set with mul-

tiplicative perturbations:

Pρ := {P∆ = (1+W∆)P : ∆ ∈ H∞, ‖∆‖∞ < 1/ρ} for some ρ > 0.

Recall that the controllerC stabilizes allP∆ ∈ Pρ if and only if C stabilizes the

nominal modelP and satisfies

‖WT‖∞ ≤ ρ, where T :=
PC

1+ PC
. (2)

See, e.g., [1, 5, 21] for the details.

We impose the following assumption on the weighting funcion:

Assumption 2.2.Both W and1/W belong toH∞.

Then robust stabilization by a stable controller can be formulated as follows:

Problem 2.3. Let Assumptions 2.1 and 2.2 hold. Supposeρ > 0. Determine

whether there exists a controller C∈ H∞ ∩ C (P) satisfying(2). Also, if one

exists, find such a controller C.

We call Problem 2.3strong and robust stabilization. Our aim is to provide both

a sufficient and a necessary condition for strong and robust stabilization. These

conditions give lower and upper bounds on the multiplicative perturbation.
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3. Strong and Robust Stabilization

In this section, we first transform Problem 2.3 to the problem of an interpolation-

minimization by a unit element inH∞. Next we obtain a sufficient condition as

well as a necessary condition for the interpolation-minimization problem using

the modified Nevanlinna-Pick interpolation [22].

Lemma 3.1 below is a scalar version of Lemma III. 1 of [11]. This result

provides a necessary and sufficient condition that a controller strongly stabilizes

the plant. The next statement is different from that of Lemma III. 1 in [11], but

the modification is easy. So we omit the proof.

Lemma 3.1([11]). Suppose P= N/D, where N, D ∈ H∞ are strongly coprime.

Then C strongly stabilizes P if and only if C,1/(D + NC) ∈ H∞.

The following result shows that Problem 2.3 can be reduced to an interpolation-

minimization by a unit element.

Theorem 3.2. Consider Problem 2.3 under Assumptions 2.1 and 2.2. Problem

2.3 is solvable if and only if there exists a function F such that

F, 1/F ∈ H∞, (3)

‖W− MdF‖∞ ≤ ρ, (4)

F(zi) =
W(zi)
Md(zi)

, i = 1, . . . ,n. (5)

Furthermore, once such a function F is constructed, the solution of Problem 2.3

is given by

C =
W− MdF
MnNoF

. (6)
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Proof. Necessity. Let C be a solution of Problem 2.3. DefineF := W/(Md +

MnNoC). ThenF satisfies (3) by Lemma 3.1. Since

WT =W
(
1− MdF

W

)
=W− MdF, (7)

F also achieves the norm constraint (4). In addition,

F(zi) =
W(zi)

Md(zi) + Mn(zi)No(zi)C(zi)
=

W(zi)
Md(zi)

, i = 1, . . . , n.

ThusF satisfies (3), (4), and (5).

Sufficiency. SupposeF satisfies (3), (4), and (5), and defineC by (6).

We showC ∈ H∞ as follows. Since 1/No, 1/F ∈ H∞, it follows from (6) that

MnC =
W− MdF

NoF
∈ H∞. (8)

SupposeC < H∞. Then the unstable poles ofC must be the zeros ofMn by

(8). Let zi be such a pole. Since the zeros ofMn are simple, it follows that

(MnC)(zi) , 0. In addition, since the unitsNo andF do not have unstable zeros,

No(zi) , 0 andF(zi) , 0. Hence

W(zi) − Md(zi)F(zi) = (MnC)(zi) · No(zi)F(zi) , 0,

which contradicts (5). ThusC belongs toH∞.

Moreover since
1

Md + MnNoC
=

W
F
∈ H∞,

C strongly stabilizesP by Lemma 3.1.C also achieves the norm constraint (2) by

(4) and (7). ThusC is a solution of Problem 2.3.

We obtain a sufficient condition as well as a necessary condition for robust

stabilizability by a stable controller using the following problem:
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Problem 3.3([22, 23]). Suppose s1, . . . , sn ∈ C+ are distinct, and letβ1, . . . , βn ∈

C \ {0}. Determine whether there exists a function G such that G, 1/G ∈ H∞,

‖G‖∞ ≤ 1, and G(si) = βi for i = 1, . . . , n. Also, if one exists, find such a function

G.

Problem 3.3 is calledthe modified Nevanlinna-Pick interpolation problem[22].

The difference between Problem 3.3 and the Nevanlinna-Pick interpolation

problem [1, 21] is that Problem 3.3 has the condition 1/G ∈ H∞. Despite this

difference, the solvability of Problem 3.3 is also equivalent to the positive semi-

definiteness of an associated Pick matrix.

Theorem 3.4([22, 23]). Consider Problem 3.3. Defineαi := φ(si) for all i =

1, . . . , n, where the conformal mapφ is

φ : C+ → D : s 7→ s− 1
s+ 1

.

Problem 3.3 is solvable if and only if there exists an integer set{k1, . . . , kn} such

that the Pick matrixP({k1, . . . , kn}),

P({k1, . . . , kn}) :=

− Logβp − Logβq + j2π(kq − kp)

1− αpαq

n

p,q=1

(9)

is positive semi-definite.

The next result gives a solution of Problem 3.3 by the Nevanlinna-Pick inter-

polation.

Theorem 3.5([9, 10]). Consider Problem 3.3. Fixσ > 0. Defineαi in the same

way as in Theorem 3.4 andζi := Ψσ(− Logβi − j2πki) for i = 1, . . . , n, where

{k1, . . . , kn} is an integer set and the conformal mapΨσ is

Ψσ : {s ∈ C+ : 0 < Res< σ} → D : s 7→ je− jπs/σ − 1
je− jπs/σ + 1

.
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If there exists an analytic function g: D→ D such that g(αi) = ζi for i = 1, . . . ,n,

then

G(s) := exp

(
−σ

2
− jσ
π

Log

(
1+ g(φ(s))
1− g(φ(s))

))
(10)

is a solution to Problem 3.3.

Remark 3.6. 1. In Theorem 3.4, we have an infinite number ofP({k1, . . . , kn}).

Note, however, that in order thatP({k1, . . . , kn}) be positive semi-definite it

is necessary thatKpq := kp − kq be bounded. It turns out that only finitely

many distinctP({k1, . . . , kn}) could possibly be positive semi-definite. In

fact, for the positive semi-definiteness ofP({k1, . . . , kn}), Kpq must satisfy

the following quadratic inequality:

det


−Logβp−Logβp

1−αpαp

−Logβp−Logβq− j2πKpq

1−αpαq

− Logβq−Logβp+ j2πKpq

1−αqαp

− Logβq−Logβq
1−αqαq

 = aK2
pq+ bKpq+ c ≥ 0,

wherea := −4π2, b := 4πRe [j(−Logβp − Logβq)], and

c :=

Logβp + Logβp

1− αpαp
·

Logβq + Logβq

1− αqαq
−

∣∣∣∣∣∣∣Logβp + Logβq

1− αpαq

∣∣∣∣∣∣∣
2 · |1− αpαq|2.

HenceD := b2− 4ac≥ 0 and (b+
√

D)/(2a) ≤ Kpq ≤ (b−
√

D)/(2a). Thus

we can check the solvability of Problem 3.3 in a finite number of steps. See

[23, 24] for the details.

2. A function f is said to bereal if f (s) = f (s). Simple calculations show that

G(s) in (10) is real ifg(z) = j · g0(z), whereg0(z) is real.

For finite dimensional systems [12–14] and systems with infinitely many un-

stable modes [9, 10], the problem of sensitivity reduction by a stable controller is

equivalent to Problem 3.3. On the other hand, the difficulty of strong and robust

stabilization is theH∞-norm condition (4) in Theorem 3.2.
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We now develop both a sufficient and a necessary condition for (4). It follows

from these conditions that we obtain lower and upper bounds on the perturbation

by Problem 3.3. Theorem 3.4 and Remark 3.6.1 show that we can compute these

bounds by calculations of the finitely many Pick matrices. Additionally, we find

stable controllers for robust stabilization by Theorem 3.5.

Defineρinf := infC∈H∞∩C (P) ‖WT‖∞. ThenKsup := 1/ρinf can be regarded as

the largest allowable multiplicative uncertainty bound for robust stability with a

stable controller. Theorem 3.7 below gives a lower bound ofKsupand stable robust

controllers.

Theorem 3.7. Consider Problem 2.3 under Assumptions 2.1 and 2.2. Suppose

‖W‖∞ < ρ. Choose Ws satisfying Ws, 1/Ws ∈ RH∞ and |Ws( jω)| ≤ ρ − |W( jω)|

for almost allω ∈ R. Defineβi := W(zi)/(Md(zi)Ws(zi)) for i = 1, . . . ,n. If G is

a solution of Problem 3.3 with the interpolation data(zi; βi)n
i=1, then Ksup ≥ 1/ρ

and

C :=
W− MdWsG
MnNoWsG

(11)

is a solution to Problem 2.3.

Proof. Note thatβi , 0 for eachi because the unitW does not have unstable

zeros. By Theorem 3.2, it suffices to show that there existsF satisfying (3), (4),

and (5).

Let us first obtain a sufficient condition for (4). SinceMd is inner,

|W( jω) − Md( jω)F( jω)| ≤ |Md( jω)| · |F( jω)| + |W( jω)| ≤ |F( jω)| + ρ − |Ws( jω)|

for almost allω ∈ R. Moreover |F( jω)| + ρ − |Ws( jω)| ≤ ρ if and only if

|(F/Ws)( jω)| ≤ 1. It follows that if ‖F/Ws‖∞ ≤ 1, then we have (4).
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SupposeG is a solution of Problem 3.3 with (zi; βi)n
i=1. DefineF := WsG. By

the argument given above,F achieves (4) because‖F/Ws‖∞ = ‖G‖∞ ≤ 1. Since

G andWs are unit elements,F satisfies (3). Moreover the interpolation conditions

(5) can be obtained directly by those ofG. ThusF satisfies (3), (4), and (5). By

substitutingF =WsG into (6), we can also derive (11).

In the same way, an upper bound ofKsup can be obtained by the next result:

Theorem 3.8.Consider Problem 2.3 under Assumptions 2.1 and 2.2. Choose Wn

satisfying Wn, 1/Wn ∈ RH∞ and |Wn( jω)| ≥ ρ + |W( jω)| for almost allω ∈

R. Defineγi := W(zi)/(Md(zi)Wn(si)) for i = 1, . . . ,n. If Problem 3.3 with the

interpolation data(zi; γi)n
i=1 is not solvable, then Ksup≤ 1/ρ.

Proof. As in the proof of Theorem 3.7, we can derive a necessary condition for (4)

by |W( jω)−Md( jω)F( jω)| ≥ |F( jω)|+ρ−|Wn( jω)| for almost allω ∈ R. The rest

of the proof follows the same lines as that of Theorem 3.7, so it is omitted.

Remark 3.9. 1. In Assumption 2.1, we have taken a biproper plant having in-

finitely many unstable poles as the nominal model. Therefore the condition

‖W‖∞ < ρ in Theorem 3.7 implies that the controllers obtained by our pro-

posed method may not robustly stabilize strictly proper plants. In the first

place, however, we should pose the question:Are strictly proper plants with

infinitely many unstable poles stabilizable?The answer is negative; see

Appendix.

2. By the MATLAB commandfitmagfrd, we can computeWs, Wn in Theo-

rems 3.7 and 3.8.

Theorem 3.7 generally gives an infinite dimensional controller. A natural

question at this stage is the following:Does a finite dimensional controller that
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approximates the derived controller stabilize the plant and satisfy theH∞-norm

condition(2)? Rational approximations can be obtained from the frequency re-

spose data with approximation methods for stable infinite dimensional systems;

see, e.g., [25] and its references.

To ensure that the approximationCa ∈ RH∞ still stabilizes the plant, we can

obtain an error bound on the difference‖C −Ca‖∞ [12, Lemma 4].

Define

Ta :=
PCa

1+ PCa
. (12)

The following result illustrates that we can also obtain an upper bound of‖WTa‖∞
by ‖C −Ca‖∞.

Proposition 3.10.Let P∈ F ∞ and W∈ H∞. Suppose there exists C∈ H∞∩C (P)

and Ca ∈ RH∞∩C (P). Defineδ := ‖P/(1+ PC)‖∞ andε := ‖C−Ca‖∞. If δε < 1,

then

‖WTa‖∞ ≤
δε · ‖W‖∞ + ‖WT‖∞

1− δε , (13)

where T and Ta are defined by(2) and(12) respectively.

Proof. Routine calculations show that

T − Ta =
P

1+ PC
(1− Ta)(C −Ca).

Hence

‖WT−WTa‖∞ ≤ δε · ‖W(1− Ta)‖∞ ≤ δε · (‖W‖∞ + ‖WTa‖∞). (14)

Since‖WTa‖∞ − ‖WT‖∞ ≤ ‖WT−WTa‖∞, it follows from (14) that

(1− δε) · ‖WTa‖∞ ≤ δε · ‖W‖∞ + ‖WT‖∞.

Thus we obtain (13) ifδε < 1.
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4. Numerical Examples

In this section, we present a numerical example to show the effectiveness of the

results. We also apply the proposed method to a repetitive control system [15, 16].

Repetitive control attempts to track or reject arbitrary periodic signals of a fixed

period. Tracking or disturbance rejection of periodic signals appears in many

applications, e.g., disk drives [26] and industrial manipulators [27].

Example 1

Consider Problem 2.3 with the following infinite dimensional systemP, weight-

ing functionW, and positive constantρ:

P(s) =
(s− α)(s− 4e−s+ 1)

(s− 10)(s− 15)(2e−s+ 1)
, W(s) = K · s+ 1

s+ 10
, ρ = 1,

where 2≤ α < 10 andK > 0. Let p be the only root ofs−4e−s+1 = 0 inC+ (note

that p ≈ 0.7990). Using the factorization method of [20],P can be factorized as

P = MnNo/Md, where

Mn(s) :=
(s− α)(s− p)
(s+ α)(s+ p)

, Md(s) :=
(s− 10)(s− 15)(2e−s+ 1)
(s+ 10)(s+ 15)(e−s+ 2)

,

No(s) :=
(s+ α)(s+ p)(s− 4e−s+ 1)

(s− p)(s+ 10)(s+ 15)(e−s+ 2)
.

Let Ksupbe the supremum ofK such that there existsC ∈ H∞∩C (P) satisfying

(2). Figure 2 shows the relationship betweenα andKsup. In Figure 2, the solid

line shows the lower bound ofKsup obtained by Theorem 3.7, and the dashed line

indicates the upper bound ofKsup derived by Theorem 3.8. We compute bothWs

andWn in Theorems 3.7, 3.8 by the MATLAB functionfitmagfrd. Both lines in

Figure 2 decrease to 0 asα becomes closer to 10. The reason for this drop is that

an unstable pole-zero cancellation occurs inP whenα = 10.
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Figure 2: The unstable zeroα versus the supremum gainKsup.

Let α = 2. Then we obtain the lower bound 0.471 and the upper bound 0.771.

We also find a stable controller to achieve robust stability forK = 0.468 by The-

orem 3.5 withσ = 100. See Fig. 3 of [9] for a discussion on the selection ofσ

based on a specific numerical example.

WhenK = 0.468,Ws in Theorem 3.7 andg in Theorem 3.5 are given by

Ws(s) ≈
0.53(s+ 10.20)

(s+ 5.86)
, g(z) = j · g0(z), where g0(z) ≈

1.049z+ 1
z+ 1.050

.

The aboveWs is obtained byfitmagfrd. The stable controller that provides

robust stability is obtained by (11), whereG(s) is defined in (10) withg(z).

Note thatG(s) in (10) is real by Remark 3.6.2. The further investigation ofG

is conducted through an example in [9].

Example 2 (Application to Repetitive Control Systems)

Consider the repetitive control system given in Figure 3, whereL = 1 andPa

belongs to the following model set:

P =

{
Pa(s) =

(s− 6)(s− 9)
(as+ 8)(s− 5)

: 0.8 ≤ a ≤ 1.2

}
.
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Note that the plant must be biproper for the exponential stability of the closed-

loop system [16, Theorem 5.12]. When the plant is strictly proper, we need a

modified repetitive controller [15, 16]. See [28] for the details of robust stabiliza-

tion of modified repetitive control systems.

The repetitive controllerC consists of two parts:Cu andCo. Cu = 1/(1− e−Ls)

is the internal model of any periodic signals with periodL. The existence of such

an internal model is equivalent to the exponential decay of the errore(t) under

the hypothesis of the exponential stability of the closed-loop system [16]. On the

other hand,Co is designed for the desired performance. Our goal in this example

is to determine whether there existsCo ∈ H∞ such thatC = CuCo stabilizes all

Pa ∈P and the errore(t) tends exponentially to zero for anyPa ∈P.

For ε > 0, letC−ε denote{s ∈ C | Res > −ε} and letH∞(C−ε) denote the

set of functions that are bounded and analytic inC−ε. For exponential stability,

it is necessary and sufficient thatS, CS, andPS belong toH∞(C−ε) for some

ε > 0 [29, Theorem 3.1]. In addition, ifε is sufficiently small, then

P ⊂
{

P∆ = (1+W∆)P1 : ∆ ∈ H∞(C−ε), sup
s∈C−ε
|∆(s)| < 1

}
, (15)

where

P1(s) :=
(s− 6)(s− 9)
(s− 5)(s+ 8)

, W(s) =
0.25038(s+ 0.02384)

s+ 10
.

Pa(s)Co(s)
+

−

e−Ls

+
+

Cu(s)

e(t)

C(s)

Figure 3: Repetitive control system.
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P1(s)Co(s)
+

−

e−Ls

+

+

P(s)

e(t)
W(s) ∆(s)

+
+

Figure 4: Robust stabilization for the repetitive control system.

Now let us consider the closed-loop system in Figure 4. By the preceding

discussion, to determine whether there existsCo ∈ H∞ yielding the exponential

stability of the closed-loop system for everyPa ∈P, we study Problem 2.3 with

P̃(s) := P(s− ε) = Cu(s− ε)P1(s− ε), W̃(s) :=W(s− ε), ρ := 1. (16)

Once we find a solutioñC of this problem,Co(s) := C̃(s+ ε) ∈ H∞(C−ε) makes

the closed-loop system exponential stable for every∆ ∈ H∞(C−ε) satisfying

sups∈C−ε |∆(s)| < 1 in Figure 4.

Let ε = 0.001, which satisfies (15).P̃ in (16) can be factorized as̃P =

MnNo/Md, where

Mn(s) :=
(s− ε − 6)(s− ε − 9)
(s+ ε + 6)(s+ ε + 9)

, Md(s) :=
(1− eεe−s)(s− ε − 5)
(e−s− eε)(s+ ε + 5)

,

No(s) :=
(s+ ε + 6)(s+ ε + 9)

(e−s− eε)(s+ ε + 5)(s− ε + 8)
.

Define T̃ := P̃C̃/(1 + P̃C̃). It follows from Theorems 3.7 and 3.8 that 0.71 <

inf C̃∈H∞∩C (P̃) ‖W̃T̃‖∞ < 0.97. The MATLAB functionfitmagfrd is used forWs

andWn in Theorems 3.7, 3.8.

Thus there existsCo ∈ H∞ such that the repetitive controllerC = CuCo stabi-

lizes allPa ∈P and achieves the exponential decay ofe(t) for anyPa ∈P.
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5. Concluding Remarks

We have studied the strong and robust stabilization problem for single-input

single-output infinite dimensional systems. The plants we consider can have

only finitely many simple unstable zeros but may possess infinitely many un-

stable poles. It still remains an open problem to obtain a necessary and suffi-

cient condition for this robust stabilization problem. However, using the modified

Nevanlinna-Pick interpolation, we have obtained both lower and upper bounds

on the multiplicative perturbation under which a stable controller can stabilize

the plant. Moreover we have found stable controllers to achieve robust stability.

We have also presented a numerical example to illustrate the results. A repetitive

control system has been discussed as an application of the proposed method.

Appendix A. Stabilizablity of strictly proper plants having infinitely many

unstable poles

We answer the question:Can a linear time-invariant controller stabilize a

strictly proper plant with an infinite number of unstable poles?

The previous works [30, 31] onH∞ control of plants with infinitely many

unstable modes assume that the plants are biproper. In addition, a strictly proper

neutral delay system is not stabilizable by a finite dimensional controller [32].

However the above question is not fully answered. Based on the Bezout identity,

the next result shows that more general strictly proper plants with infinitely many

unstable poles are not stabilizable in the sense of [17].

Proposition A.1. Let nonzero N, D ∈ H∞ be weakly coprime in the sense of [17],

i.e., every greatest common divisor of N and D is a unit element. Suppose D has
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infinitely many zeros inC+, and that the set of these unstable zeros has no limit

points on the imaginary axis. If N satisfies

lim
R→∞

sup
|s|>R
|N(s)| = 0, (A.1)

then P:= N/D is not stabilizable.

Proof. SupposeP is stabilizable. Then by Theorem 1 of [17], there existX, Y ∈

H∞ such that

N(s)X(s) + D(s)Y(s) = 1 for all s ∈ C+. (A.2)

By (A.1), for everyε > 0, there existsR > 0 such that|N(s)| · ‖X‖∞ < ε for all

s ∈ C+ satisfying|s| > R. In addition, there existsz0 ∈ C+ such thatD(z0) = 0 and

|z0| > R. Otherwise the set of the unstable zeros ofD has at least one limit point

in {s ∈ C+ : |s| ≤ R}, which implies thatD(s) = 0 for all s ∈ C+. Let ε < 1. Then

|N(z0)X(z0) + D(z0)Y(z0)| ≤ |N(z0)| · ‖X‖∞ < ε < 1.

This contradicts (A.2). ThusP is not stabilizable.
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[9] S. Gümüşsoy and H.̈Ozbay, Sensitivity minimization by strongly stabilizing controllers for

a class of unstable time-delay systems, IEEE Trans. Automat. Control 54 (2009) 590–595.
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