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Abstract

This paper is concerned with constructing an optimal controller in the coherent
quantum Linear Quadratic Gaussian problem. A coherent quantum controller is
itself a quantum system and is required to be physically realizable. The use of co-
herent control avoids the need for classical measurements,which inherently entail
the loss of quantum information. Physical realizability corresponds to the equiv-
alence of the controller to an open quantum harmonic oscillator and relates its
state-space matrices to the Hamiltonian, coupling and scattering operators of the
oscillator. The Hamiltonian parameterization of the controller is combined with
Frechet differentiation of the LQG cost with respect to the state-space matrices to
obtain equations for the optimal controller. A quasi-separation principle for the
gain matrices of the quantum controller is established, anda Newton-like iterative
scheme for numerical solution of the equations is outlined.

Keywords: quantum control, LQG cost, physical realizability, Frechet
differentiation
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1. Introduction

Sensitivity to observation is an inherent feature of quantum mechanical sys-
tems whose state is affected by interaction with a macroscopic measuring device.

1A shortened version of this work is to appear in the 18th IFAC World Congress Proceedings
[13].
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This motivates the use of coherent quantum controllers to replace the classical
observation-actuation control loop by a measurement-freefeedback, which is or-
ganized as an interconnection of the quantum plant with another quantum system.
If such a controller is implemented using quantum-optical components (for ex-
ample, optical cavities and beam splitters) mediated by light fields [2], then it is
dynamically equivalent to an open quantum harmonic oscillator, which consti-
tutes a building block of quantum systems described by linear quantum stochastic
differential equations (QSDEs) [7, 8].

This leads to the notion of physical realizability which imposes quadratic con-
straints on the state-space matrices of the controller [4, 6, 9], thus complicating the
solution of quantum control problems which are otherwise reduced to appropri-
ate unconstrained problems for an equivalent classical system. The links between
classical control problems and their quantum analogues areknown, for example,
for Linear Quadratic Gaussian (LQG) andH∞-control.

The Coherent Quantum LQG (CQLQG) problem seeks a physicallyrealizable
quantum controller to minimize the average output “energy”of the closed-loop
system per unit time. This problem has been addressed in [6],where a numeri-
cal procedure was proposed for findingsuboptimalcontrollers to ensure a given
upper bound on the LQG cost. Instead, the present paper focuses on necessary
conditions for optimality and second order conditions for local strict optimality of
a physically realizable controller and computation of theoptimalcontroller. Both
approaches make use of the fact that the CQLQG problem is equivalent to a con-
strained LQG problem for a classical plant, with the LQG costcomputed as the
squaredH2-norm of the system in terms of the controllability and observability
Gramians satisfying algebraic Lyapunov equations.

We utilize a Hamiltonian parameterization that relates thestate-space matrices
of a physically realizable controller to the free Hamiltonian, coupling and scatter-
ing operators of an open quantum harmonic oscillator [1]. Toobtain equations for
the optimal quantum controller, we employ an algebraic approach, based on the
Frechet differentiation of the LQG cost with respect to the state-space matrices
from [12] and similar to [11]. The resulting equations for the optimal controller
involve the inverse of special self-adjoint operators on matrices that requires the
use of vectorization [5]. Their spectral properties play animportant role in the
present study.

Although the optimal CQLQG controller does not inherit the control/filtering
separation principle of the classical LQG control problem,a partial decoupling of
equations for the gain matrices still holds. Thisquasi-separationproperty leads to
a Newton-like scheme for numerical computation of the quantum controller that
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involves the second order Frechet derivative of the LQG costwhich is related to
the perturbation of solutions to algebraic Lyapunov equations.

The paper is organised as follows. Section 2 specifies the quantum plants being
considered. Sections 3 and 4 describe physically realizable quantum controllers.
Section 5 formulates the CQLQG control problem. Sections 6 and 7 introduce
auxiliary classes of matrices and self-adjoint operators.Section 8 obtains equa-
tions for the optimal CQLQG controller. Section 9 discussesthe quasi-separation
property. Section 10 establishes a second order condition of optimality. Sec-
tion 11 outlines a Newton-like scheme for computing the optimal controller. Ap-
pendices provide a subsidiary material on invertibility ofthe special self-adjoint
operators, perturbations of inverse Lyapunov operators and Frechet differentiation
of the LQG cost.

2. Quantum plant

We consider a quantum plant with ann-dimensional state vectorxt, a p-
dimensional outputyt and inputswt, ηt of dimensionsm1, m2. The state and
the output are governed by the QSDEs:

dxt = Axtdt +B1dwt +B2dηt, (1)

dyt = ztdt +Ddwt, (2)

zt = Cxt. (3)

Here,A ∈ R
n×n, Bk ∈ R

n×mk , C ∈ R
p×n, D ∈ R

p×m1 are constant matrices,
andzt is a “signal part” ofyt. The state dimensionn and the input dimensions
m1,m2 are even:n = 2ν, mk = 2µk. The plant state vectorxt is formed by self-
adjoint operators (similar to the position and momentum operators) and, in the
Heisenberg picture of quantum mechanics, evolves in timet. The entries of the
m1-dimensional vectorwt are self-adjoint quantum Wiener processes [7] whose
infinitesimal increments compose with each other accordingto the Ito table

dwtdw
T
t = Fdt. (4)

Here,F is a complex positive semi-definite Hermitian matrix which,on the right-
hand side of (4), is a shorthand notation forF ⊗ I, with I the identity operator
on the underlying boson Fock space and⊗ the tensor product. We assume that
vectors are organized as columns unless indicated otherwise, and the transpose
(·)T acts on vectors and matrices with operator-valued entries as if the latter were
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scalars. Also,(·)† := ((·)#)T denotes the transpose of the entry-wise adjoint
(·)#. Associated with the Hermitian matrixF from (4) are real matricesS :=
(F + F )/2 = ReF andT := (F − F )/i = 2ImF , where(·), Re(·) andIm(·)
are the entry-wise complex conjugate, real and imaginary parts, andi :=

√
−1

is the imaginary unit. The symmetric matrixS contributes to the evolution of
the covariance matrix of the plant state vectorxt, whilst T is antisymmetric and
affects the cross-commutations between the entries ofxt through[dwt, dw

T
t ] :=

dwtdw
T
t − (dwtdw

T
t )

T = (F − FT)dt = iTdt. Here, the commutator[α, β] :=
αβ − βα applies entry-wise, and the relationFT = F is ensured byF = F ∗. In
what follows, it is assumed thatS = Im1

, andT is canonical in the sense that

T := Iµ1
⊗ J, J :=

[
0 1
−1 0

]
, (5)

whereIr is the identity matrix of orderr. That is,T is a block diagonal matrix
with µ1 copies ofJ over the diagonal. By permuting the rows and columns, the
matrixT from (5) can be brought to an equivalent canonical form

T = J⊗ Iµ1
=

[
0µ1

Iµ1

−Iµ1
0µ1

]
, (6)

where0r denotes the(r×r)-matrix of zeros. The canonical antisymmetric matrix
J of any order satisfiesJ2 = −I. Quantum Wiener processes will be assumed to
have the canonical Ito matrixF = I + iJ/2.

3. Coherent quantum controller

A measurement-free coherent quantum controller is anotherquantum sys-
tem with an-dimensional state vectorξt with self-adjoint operator-valued entries
whose interconnection with the plant (1)–(3) is described by QSDEs

dξt = aξtdt+ b1dωt + b2dyt, (7)

dηt = ζtdt+ dωt, (8)

ζt = cξt. (9)

Here,a ∈ R
n×n, b1 ∈ R

n×m2 , b2 ∈ R
n×p, c ∈ R

m2×n, andωt is am2-dimensional
vector of self-adjoint quantum Wiener processes which commute with the plant
noisewt in (1) and (2). The combined set of equations (1)–(3) and (7)–(9) de-
scribes the fully quantum closed-loop system in Fig. 1, whose output observables
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Figure 1: The quantum closed-loop system described by (1)–(3) and (7)–(9), where the plant and
controller noisesw andω are commuting quantum Wiener processes.

form ap0-dimensional process

Zt = C0xt +D0ζt, (10)

whereC0 ∈ R
p0×n andD0 ∈ R

p0×m2 are given matrices. The2n-dimensional
combined state vectorXt := [xTt ξ

T
t ]

T and the outputZt of the closed-loop system
are governed by the QSDEs

dXt = AXtdt+ BdWt, Zt = CXt. (11)

Here, the combined quantum Wiener processWt := [wT
t ωT

t ]
T has a block di-

agonal Ito table. The matricesA, B, C of the closed-loop system (11) are given
by

[
A B
C 0

]
=




A B2c B1 B2

b2C a b2D b1
C0 D0c 0 0


 =




A B2c B
bC a bD
C0 D0c 0


 , (12)

where

b :=
[
b1 b2

]
, B :=

[
B1 B2

]
, C :=

[
0
C

]
, D :=

[
0 I
D 0

]
. (13)

The dependence ofA, B, C on the controller matricesa, b, c is equivalently de-
scribed by

Γ :=

[
A B
C 0

]
= Γ0 + Γ1γΓ2, γ :=

[
a b
c 0

]
. (14)

The affine mapγ 7→ Γ is completely specified by the plant (1)–(3) through the
matrices

Γ0 :=



A 0 B
0 0n 0
C0 0 0


 , Γ1 :=



0 B2

In 0
0 D0


 , Γ2 :=

[
0 In 0
C 0 D

]
. (15)
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Using the terminology introduced formally in Section 7, themapγ 7→ Γ1γΓ2 in
(14) is a grade one linear operator[[[Γ1,Γ2]]].

4. Physical realizability

A controller (7)–(9) is calledphysically realizable(PR) [4, 6], if its state-space
matrices satisfy

aJ0 + J0a
T + bJbT = 0, b1 = J0c

TJ2. (16)

Here,J is a block-diagonal matrix, partitioned in conformance with the matrixb
from (13) as

J := D

[
J1 0
0 J2

]
D

T =

[
J2 0
0 DJ1D

T

]
, (17)

andJ0, J1, J2 are fixed real antisymmetric matrices of ordersn, m1, m2, which
specify the commutation relations for the controller statevariablesξt and the plant
and controller noisesw andω. For convenience,J0, J1, J2 are assumed to have
the canonical form (5) or (6). The relations (16) describe the equivalence of the
controller to an open quantum harmonic oscillator and the possibility of its quan-
tum optical implementation [2]. The first of these equationsis the condition for
preservation of the canonical commutation relations for the state variables of the
quantum harmonic oscillator. The second PR condition, which relates the ma-
tricesb1 andc by a linear bijection, describes the unitary transformation of the
quantum Wiener process at the input of the quantum harmonic oscillator. The
first of the PR conditions (16), which is a linear equation with respect toa, deter-
minesa as a quadratic function ofb up to the subspace of Hamiltonian matrices
{a ∈ R

n×n : aJ0 + J0a
T = 0} = J0Sn = SnJ0, with Sn the subspace of real

symmetric matrices of ordern:

a = J0R︸︷︷︸
Hamiltonian matrix

+ bJbTJ0/2.︸ ︷︷ ︸
particular solution

(18)

Here,R ∈ Sn specifies the free Hamiltonian operatorξTt Rξt/2 of the quantum
harmonic oscillator [1, Eqs. (20)–(22) on pp. 8–9]. Since the matrixbJbT is anti-
symmetric,bJbTJ0 is skew-Hamiltonian. Therefore, (18) describes an orthogonal
decomposition of the matrixa into projections onto the subspaces of Hamiltonian
and skew-Hamiltonian matrices in the sense of the Frobeniusinner product of
real matrices〈X, Y 〉 := Tr(XTY ), with ‖X‖ :=

√
〈X,X〉 the Frobenius norm.
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From the second PR condition in (16) and the canonical structure ofJ0 andJ2, it
follows that the matrixc is related tob1 by

c = J2b
T
1 J0 = J2I

TbTJ0, I :=

[
I
0

]
, (19)

where, in view of (13), the matrixI “extracts”b1 from b asb1 = bI. In combination
with the decomposition (18), this implies that, for a physically realizable quantum
controller, the matrixγ in (14) is completely parameterized by the matricesR and
b as

γ =

[
J0R + bJbTJ0/2 b

J2I
TbTJ0 0

]
. (20)

In view of the physical meaning ofR, we will refer to (20) as theHamiltonian
parameterizationof the coherent quantum controller, with theSn × R

n×(m2+p)-
valued parameter

[
R b

]
; see Fig. 2. The PR conditions (16) are invariant un-
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✍✌
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c ✲

✍✌
✎☞
A
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✲
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✎☞
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✎☞
E

Figure 2: This directed acyclic graph describes the dependence of the LQG costE of the closed-
loop system on the matricesR andb. An oriented edge©α→©β signifies “β depends onα”. The
dashed lines encircle the matrix triplesγ andΓ defined by (14). The emergence ofR and the
dependencies indicated by double arrows represent the PR conditions for the quantum controller,
with a, b, c being otherwise independent.

der the group of similarity transformations of the controller matrices(a, b, c) 7→
(σaσ−1, σb, cσ−1), whereσ is any real symplectic matrix of ordern (that is,
σJ0σ

T = J0). This corresponds to the canonical state transformationξt 7→ σξt;
see also [10, Eqs. (12)–(14)]. Any such transformation of a physically realiz-
able controller leads to its equivalent state-space representation, with the matrix
R transformed asR 7→ σ−TRσ−1.
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5. Coherent quantum LQG control problem

The Coherent Quantum LQG (CQLQG) control problem [6] consists in mini-
mizing the average output “energy” of the closed-loop system (11):

E := lim
t→+∞

(
1

t

∫ t

0

E(ZT
s Zs)ds

)
= Tr(CPCT)

=Tr(BTQB) = −2〈A, H〉 −→ min . (21)

The minimum is taken over then-dimensional controllers (7)–(9) which make
the matrixA in (12) Hurwitz and satisfy the PR conditions (16). Here,EX :=
Tr(ρX) denotes the quantum expectation over the underlying density operatorρ,
andP := limt→+∞ReE(XtXT

t ) is the steady-state covariance matrix of the state
vector of the closed-loop system. Also, we use the shorthandnotation

H := QP, (22)

with P andQ satisfying the algebraic Lyapunov equations

AP + PAT + BBT = 0, ATQ+QA+ CTC = 0, (23)

so that these matrices are the controllability and observability Gramians of the
state-space realization triple(A,B, C). The spectrum of the diagonalizable matrix
H in (22) is formed by the squared Hankel singular values of thesystem, and
we will refer toH as theHankelian. The fact thatE coincides with the squared
H2-norm of a classical strictly proper linear time invariant system enables the
CQLQG problem (21) to be recast as a constrained LQG control problem for an
equivalent classical plant



A B B2

C0 0 D0

C D 0


 =




A B1 B2 B2

C0 0 0 D0

0 0 I 0
C D 0 0


 (24)

driven by a(m1 +m2)-dimensional standard Wiener process, with the controller
being noiseless. We will employ the smooth dependence of thecostE on the
matricesR andb which govern the Hamiltonian parameterization (20) of a phys-
ically realizable stabilizing controller. The conditionsof optimality, obtained in
Section 8, utilize the Frechet differentiation of the LQG cost with respect to the
state-space realization matrices [12] assembled into matrices with a specific spar-
sity pattern and an auxiliary class of self-adjoint operators introduced in Sections 6
and 7.
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6. The Γ sparsity structure

The subsequent considerations involve Frechet differentiation with respect to
state-space realization matrices assembled into matricesof the “Γ-shaped” spar-
sity structure (14). We denote by

Γr,m,p :=

{[
ϕ σ
τ 0

]
: ϕ ∈ R

r×r, σ ∈ R
r×m, τ ∈ R

p×r

}
(25)

the Hilbert space of real(r + p) × (r + m)-matrices whose bottom-right block
of size(p × m) is zero. The spaceΓr,m,p, which is a subspace ofR(r+p)×(r+m),
inherits the Frobenius inner product of matrices. LetΠr,m,p denote the orthogonal
projection ontoΓr,m,p whose action on a(r + p) × (r + m)-matrix consists in
padding its bottom-right(p×m)-blockψ with zeros:

Πr,m,p

([
ϕ σ
τ ψ

])
=

[
ϕ σ
τ 0

]
. (26)

The subscripts inΓr,m,p andΠr,m,p will often be omitted for brevity. The Frechet

derivative∂Xf of a smooth functionΓ ∋
[
ϕ σ
τ 0

]
=: X 7→ f(X) ∈ R be-

longs to the same Hilbert space (25) and inherits the sparsity structure:∂Xf =[
∂ϕf ∂σf
∂τf 0

]
.

7. Special self-adjoint operators

For the purposes of Section 8, we associate a linear operator[[[α, β]]] : Rp×q →
R

s×t with a pair of matricesα ∈ R
s×p andβ ∈ R

q×t, by

[[[α, β]]](X) := αXβ. (27)

The map(α, β) 7→ [[[α, β]]] from the direct product of the matrix spaces to the
space of linear operators on matrices is bilinear. Ifs = p and t = q, then the
spectrum of the operator[[[α, β]]] on R

p×q consists of the pairwise productsλjµk

of the eigenvaluesλ1, . . . , λp andµ1, . . . , µq of the matricesα andβ, so that their
spectral radii are related by

r([[[α, β]]]) = r(α)r(β). (28)
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Furthermore, for any positive integerr and matricesα1, . . . , αr ∈ R
s×p andβ1, . . . , βr ∈

R
q×t, we define a linear operator

[[[α1, β1 | . . . | αr, βr]]] :=

r∑

k=1

[[[αk, βk]]], (29)

where the matrix pairs are separated by “|”s. Of importance will be self-adjoint
linear operators on the Hilbert spaceRp×q of the form (29) whereα1, . . . , αr ∈
R

p×p andβ1, . . . , βr ∈ R
q×q are such that for anyk = 1, . . . , r, the matrices

αk andβk are either both symmetric or both antisymmetric. Such an operator
(29) will be referred to as aself-adjoint operator of grader. The self-adjointness
is understood in the sense of the Frobenius inner product onR

p×q and follows
from the property that, in each of the cases(αT, βT) = (±α,±β), the adjoint
[[[α, β]]]† = [[[αT, βT]]] coincides with[[[α, β]]]. In these cases, as for any self-adjoint
operator, the eigenvalues of[[[α, β]]] are all real.

Lemma 1. If α ∈ R
p×p andβ ∈ R

q×q are both antisymmetric, then the spectrum
of [[[α, β]]] is symmetric about the origin. Ifα andβ are both symmetric and positive
(semi-) definite, then[[[α, β]]] is positive (semi-) definite, respectively.

Proof. If α andβ are both antisymmetric, then their eigenvaluesλ1, . . . , λp and
µ1, . . . , µq are all pure imaginary and symmetric about the origin [3]. Hence, the
eigenvaluesλjµk of [[[α, β]]] also form a set which is symmetric about the origin.
By a similar reasoning, ifα andβ are real positive (semi-) definite symmetric
matrices, then their eigenvalues are all real and (nonnegative) positive, and hence,
so are the eigenvalues of[[[α, β]]] which implies its positive (semi-) definiteness.
Alternatively, the second assertion of the lemma also follows from the relation
[[[α, β]]] = [[[

√
α,

√
β]]]2 which holds for any positive semi-definite symmetric ma-

tricesα ∈ R
p×p andβ ∈ R

q×q, so that〈X,αXβ〉 = ‖√αX√
β‖2 > 0 for any

X ∈ R
p×q.

Whilst the operator (27) with nonsingularα andβ is straightforwardly invert-
ible: [[[α, β]]]−1 = [[[α−1, β−1]]], the inverse ofM := [[[α1, β1 | . . . | αr, βr]]] from
(29) for r > 1 (except for the case

∑
j,k[[[αj , βk]]] = [[[

∑
j αj ,

∑
k βk]]], which re-

duces to a grade one operator, or special Lyapunov operators[[[α, I]]]+ [[[I, α]]] with
α = αT which are treated by diagonalizing the matrixα), can only be computed
using the vectorization of matrices [5] asM−1(Y ) = vec−1(Ξ−1vec(Y )), pro-
vided that the matrixΞ :=

∑r
k=1 β

T
k ⊗αk is nonsingular. Here,vec : Rp×q → R

pq

is a linear bijection which maps a matrixX to the vector obtained by writing
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the columnsX•1, . . . , X•q of the matrix one underneath the other. Invertibility
conditions for grade two operators is discussed in AppendixA.

8. Equations for the optimal controller

Necessary conditions for optimality in the class of
n-dimensional physically realizable stabilizing controllers are obtained by equat-
ing the Frechet derivatives of the LQG costE with respect toR andb to zero. In
view of Fig. 2, the chain rule allows the differentiation to be carried out in three
steps. First, the matricesA, B, C of the closed-loop system are considered to be
independent variables. Below is an adaptation of [12, Lemma7 of Appendix B]
whose proof is given to make the exposition self-contained.

Lemma 2. Suppose the matrixA in (12) is Hurwitz. Then the Frechet derivative
of the LQG costE from (21) with respect to the matrixΓ from (14) is

∂ΓE = 2

[
H QB
CP 0

]
. (30)

Here,H is the Hankelian defined by (22) in terms of the GramiansP , Q from
(23).

Proof. As discussed in Section 6, the Frechet derivative∂ΓE inherits the block
structure of the matrixΓ:

∂ΓE =

[
∂AE ∂BE
∂CE 0

]
. (31)

We will now compute the blocks of this matrix. To calculate∂AE, let B andC
be fixed. Then the first variation ofE with respect toA is δE = 〈CTC, δP 〉 =
−〈ATQ+QA, δP 〉 = −〈Q,AδP+(δP )AT〉 = 〈Q, (δA)P+PδAT〉 = 2〈H, δA〉,
which implies that

∂AE = 2H. (32)

To compute∂BE, supposeA andC are fixed. Then the observability GramianQ,
which is a function ofA andC, is also constant, and the first variation ofE with
respect toB is δE = 〈Q, δ(BBT)〉 = 〈Q, (δB)BT + BδBT〉 = 2〈QB, δB〉, and
hence,

∂BE = 2QB. (33)

The derivative∂CE is calculated by a similar reasoning. AssumingA andB (and
so also the controllability GramianP ) to be fixed, the first variation ofE with

11



respect toC is δE = 〈P, δ(CTC)〉 = 〈P, (δC)TC + CTδC〉 = 2〈CP, δC〉, which
implies that

∂CE = 2CP. (34)

Now, substitution of (32)–(34) into (31) yields (30).

We will now take into account the dependence of the closed-loop system ma-
tricesA, B, C in (12) on the controller matricesa, b, c, with the latter still con-
sidered to be independent variables. In what follows, the GramiansP andQ in
(23) and the HankelianH, defined by (22), inherit the four-block structure of the
matrixA from (12). Their blocks have size(n× n) and are numbered as follows:

H :=

←n→←n→[
H11 H12

H21 H22

]
ln

ln
=

←n→←n→[
H•1 H•2

]
l2n =

←2n→[
H1•

H2•

]
ln

ln
. (35)

The block(·)11 is related to the state variables of the plant, while(·)22 pertains to
those of the controller. The blocks of the matrixH in (35) are expressed in terms
of the block rows ofQ and block columns ofP asHjk = Qj•P•k.

Lemma 3. Suppose the matrixA in (12) is Hurwitz. Then the Frechet derivative

∂γE =

[
∂aE ∂bE
∂cE 0

]
ofE from (21) with respect to the matrixγ from (14) is

∂γE = 2

[
H22 H21C

T +Q2•BDT

BT
2 H12 +DT

0 CP•2 0

]
, (36)

where the matricesΓ1, Γ2 are defined by (15);H, P , Q are given by (22)–(23),
and the notation (35) is used.

Proof. SinceE is a composite function ofa, b, c which enter (21) through the
closed-loop system matricesA, B, C, the chain rule gives

∂γE = (∂γΓ)
†(∂ΓE) = Π(ΓT

1 ∂ΓEΓ
T
2 ). (37)

Here, (·)† is the adjoint in the sense of the Frobenius inner product of matri-
ces, andΠ is the orthogonal projection onto the subspaceΓ defined by (25)–
(26). Indeed, the first variation of the affine mapγ 7→ Γ, defined by (14)–
(15), is given byδΓ = Γ1(δγ)Γ2, which implies that∂γΓ = [[[Γ1,Γ2]]]. Hence,
δE = 〈∂ΓE, δΓ〉 = 〈∂ΓE,Γ1δγΓ2〉 = 〈ΓT

1 ∂ΓEΓ
T
2 , δγ〉 = 〈Π(ΓT

1 ∂ΓEΓ
T
2 ), δγ〉,
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which establishes (37). Substitution of the matricesΓ1 andΓ2 from (15) and∂ΓE
from (30) into the right-hand side of (37) yields

∂γE = 2Π



[
0 In 0
BT

2 0 DT
0

] [
H QB
CP 0

]

0 C

T

In 0
0 D

T






= 2

[
H22 H21C

T +Q2•BDT

BT
2 H12 +DT

0 CP•2 0

]
,

where Lemma 2 and the notation (35) are also used, which proves (36).

Finally, we will utilize the Hamiltonian parameterization(20), which makes
E a function of the matricesR andb; see Fig. 2.

Theorem 1. A physically realizable stabilizing controller, with Hamiltonian pa-
rameterization (20), is a critical point of the LQG costE from (21) if and only if
there exists a real antisymmetric matrixΦ of ordern such that

H22 = −ΦJ0, (38)

M(b) +H21C
T +Q21BD

T

+J0(H
T
12B2 + P21C

T
0 D0)J2I

T = 0. (39)

Here,
M := [[[Φ, J | Q22,DD

T | J0P22J0, IJ2D
T
0D0J2I

T]]] (40)

is a self-adjoint operator of grade three in the sense of (29).

Proof. In view of (20), the symmetric matrixR enters the controller only through
a. Hence,

∂RE = (−J0∂aE + (−J0∂aE)T)/2 = HT
22J0 − J0H22, (41)

where the relation∂aE = 2H22 from Lemma 3 is used. UnlikeR, the matrixb
both entersa and completely parameterizesc, and hence,

dE/db =((∂aE)J0 + J0(∂aE)
T)bJ/2 + ∂bE

+ J0(∂cE)
TJ2I

T

=(H22J0 + J0H
T
22)bJ + 2(H21C

T +Q2•BDT)

+ 2J0(B
T
2 H12 +DT

0 CP•2)TJ2IT, (42)

13



where (36) of Lemma 3 is used again. By introducing a real antisymmetric matrix

Φ := (H22J0 + J0H
T
22)/2, (43)

and recalling (12), (13) and (35), it follows from (42) that

(dE/db)/2 =ΦbJ +H21C
T +Q21BD

T +Q22bDD
T

+ J0(H
T
12B2 + P21C

T
0 D0)J2I

T

+ J0P22J0bIJ2D
T
0D0J2I

T

=H21C
T +Q21BD

T

+ J0(H
T
12B2 + P21C

T
0 D0)J2I

T +M(b),

where (19) and (40) are also used. Therefore,dE/db = 0 is equivalent to (39).
The definition (43), which is considered as an equation with respect toH22, de-
termines uniquely the skew-Hamiltonian part−ΦJ0 of H22, so thatH22 can be
represented as

H22 = (Ψ− Φ)J0, (44)

where
Ψ := (J0H

T
22 −H22J0)/2 (45)

is a real symmetric matrix of ordern. Direct comparison of (45) with (41) yields

∂RE = −2J0ΨJ0. (46)

Hence,∂RE = 0 holds if and only ifΨ = 0, in which case, (44) takes the form
of (38). Therefore, the property that the controller is a critical point ofE (that is,
∂RE = 0 anddE/db = 0) is indeed equivalent to the fulfillment of (38) and (39)
for a real antisymmetric matrixΦ of ordern.

For a given matrixb in the Hamiltonian parameterization (20) of the controller,
(45) defines a mapR(b) ∋ R 7→ Ψ ∈ Sn on the set

R(b) := {R ∈ Sn : A is Hurwitz}. (47)

In view of (46), the Frechet derivative of this map with respect toR is expressed
in terms of the second order Frechet derivative of the LQG cost of the closed-loop
system as

∂RΨ = −1

2
[[[J0, J0]]]∂

2
RE, (48)

where we have also used the property that[[[J0, J0]]] is involutory since[[[J0, J0]]]2=
[[[J2

0 , J
2
0 ]]]=[[[−I,−I]]] is the identity operator.
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9. A Quasi-separation principle

The operatorM, which is defined by (40) and acts on the controller gain matrix
b from (13), can be partitioned as

M(b) =
[
M1(b1) M2(b2)

]
(49)

into two operators acting separately on the submatricesb1 andb2. Here,

M1 :=[[[Φ, J2 | Q22, I | J0P22J0, J2D
T
0D0J2]]], (50)

M2 :=[[[Φ, DJ1D
T | Q22, DD

T]]] (51)

are self-adjoint operators of grades three and two. This allows the equation (39)
for dE/db = 0 to be split into

M1(b1) +Q21B2 + J0(H
T
12B2 + P21C

T
0 D0)J2 = 0, (52)

M2(b2) +H21C
T +Q21B1D

T = 0, (53)

which are equivalent todE/db1 = 0 anddE/db2 = 0. Note that (52) corresponds
to the equation for the state-feedback matrix

ĉ = −(DT
0D0)

−1(BT
2 Q̂1 +DT

0 C0) (54)

of the standard LQG controller for the subsidiary classicalplant (24), while (53)
corresponds to the equation for the Kalman filter observation gain matrix of the
controller

b̂2 = (P̂1C
T +B1D

T)(DDT)−1. (55)

Here, it is assumed that the matrixD0 is of full column rank, andD is of full row
rank. The matriceŝc andb̂2 from (54) and (55) determine the dynamics matrix of
the standard LQG controller aŝa := A− b̂2C +B2ĉ and are expressed in terms of
the stabilizing solutionŝQ1, P̂1 of the independent control and filtering algebraic
Riccati equations (AREs):

ATQ̂1 + Q̂1A+ CT
0 C0

= (Q̂1B2 + CT
0 D0)(D

T
0D0)

−1(Q̂1B2 + CT
0 D0)

T,

AP̂1 + P̂1A
T +B1B

T
1

= (P̂1C
T +B1D

T)(DDT)−1(P̂1C
T +B1D

T)T.
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The fact, that (52) and (53) are independent linear equations with respect tob1
andb2, as well as the original partition (49), can be interpreted as an analogue of
the classical LQG control/filtering separation principle for the CQLQG problem.
In turn, each of the operatorsMk from (50) and (51) can be split into the sum of
self-adjoint operatorsM⋄

k andM+
k of grades one and less one:

M1 :=

M
⋄

1︷ ︸︸ ︷
[[[Φ, J2]]] +

M
+

1︷ ︸︸ ︷
[[[Q22, I | J0P22J0, J2D

T
0D0J2]]], (56)

M2 := [[[Φ, DJ1D
T]]]︸ ︷︷ ︸

M⋄

2

+ [[[Q22, DD
T]]]︸ ︷︷ ︸

M
+

2

. (57)

By applying Lemma 1, it follows that the spectrum ofM
⋄
k is symmetric about the

origin, whileM
+
k < 0. Moreover, ifQ22 ≻ 0, or P22 ≻ 0 andD0 in (10) is of

full column rank, thenM+
1 ≻ 0. Indeed, the fulfillment of at least one of these

conditions implies positive definiteness of at least one of the positive semi-definite
operators on the right-hand side of the representation

M
+
1 = [[[Q22, I]]] + [[[J0P22J

T
0 , J2D

T
0D0J

T
2 ]]] (58)

which follows fromJ0 andJ2 being antisymmetric matrices. Similarly, the con-
ditions thatQ22 ≻ 0 andD is of full row rank ensure thatM+

2 ≻ 0. In particular,
by adapting [12, Lemma 5 of Section VIII], it follows that if,in addition to the
rank conditions onD0 andD, the controller state-space realization is minimal,
thenQ22 ≻ 0 andP22 ≻ 0 and hence,M+

1 ≻ 0 andM+
2 ≻ 0. Therefore, in the

cases discussed above, the invertibility of the operatorsM1 andM2 in (56)–(57)
can only be destroyed by the presence of the indefinite operatorsM⋄

1 andM⋄
2 if

the matrixΦ is large enough compared toQ22. This can be formulated in terms of
the matrix

∆ := Q−122 Φ (59)

whose spectrum is pure imaginary and symmetric about zero.

Lemma 4. Suppose the matrixD in (2) is of full row rank andQ22 ≻ 0. Also,
suppose the spectral radius of the matrix∆ from (59) satisfiesr(∆) < 1. Then
the operatorsM1 andM2 in (50) and (51) are positive definite.

Proof. Since[[[J0P22J0, J2D
T
0D0J2]]] < 0, and[[[Q22, I]]] ≻ 0 (in view of the as-

sumptionQ22 ≻ 0), then (56) and (58) imply that

M1 < M
⋄
1 + [[[Q22, I]]] < (1− r(∆))[[[Q22, I]]]. (60)
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Here, we use the relationr([[[Q22, I]]]
−1
M
⋄
1) = r(∆)r(J2) = r(∆) which follows

from (28) and the property that the eigenvalues of the canonical antisymmetric
matrix J2 are±i. Therefore, ifr(∆) < 1, then (60) implies thatM1 ≻ 0. By
a similar reasoning, under the additional assumption thatD is of full row rank
(that is,DDT ≻ 0), it follows from (57) and (59) thatM2 < (1− r(∆))M+

2 ≻ 0.
Indeed,r((M+

2 )
−1
M
⋄
2) = r(∆)r(DJ1D

T(DDT)−1) 6 r(∆) since−I 4 iJ1 4 I
and the Hermitian matrix(DDT)−1/2D(iJ1)D

T(DDT)−1/2 has all its spectrum in
[−1, 1], so thatr(DJ1DT(DDT)−1) 6 1.

Assuming invertibility of the operatorsM1 andM2 (for example, the fulfill-
ment of conditions of Lemma 4 that ensure a stronger property– positive definite-
ness of these operators), the equations (52) and (53) can be written more explicitly
for b1 andb2:

b1 = −M
−1
1 (Q21B2 + J0(H

T
12B2 + P21C

T
0 D0)J2), (61)

b2 = −M
−1
2 (H21C

T +Q21B1D
T). (62)

These two equations are, in principle, amenable to further reduction (to be dis-
cussed elsewhere) and will be utilized as assignment operators in the iterative
procedure of Section 11 for finding the optimal controller.

10. Second order condition for optimality

A second order necessary condition for optimality of the controller with re-
spect to the matrixR of the Hamiltonian parameterization (20) is the positive
semi-definiteness∂2RE < 0 of the appropriate second Frechet derivative of the
LQG cost (21). Moreover, the positive definiteness∂2RE ≻ 0 is sufficient for the
local strict optimality. To compute the self-adjoint operator ∂2RE, which acts on
the subspaceSn of real symmetric matrices of ordern, we define a linear operator
J : Sn → R

2n×2n as an appropriate restriction of the grade one linear operator
relatingA with R:

J := [[[

[
0n
J0

]
,
[
0n In

]
]]]

∣∣∣∣
Sn

. (63)

Its adjoint isJ † = −S[[[
[
0n J0

]
,

[
0n
In

]
]]], sinceJ0 is antisymmetric, withS :

R
n×n → Sn the symmetrizer defined by (B.2).
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Lemma 5. Suppose the matrixA in (12) is Hurwitz. Then the second Frechet
derivative ofE from (21) with respect to the matrixR from (20) is

∂2RE = 4J †(QLASP + PLATSQ)J . (64)

Here,LA andS are the inverse Lyapunov operator and symmetrizer from (B.1),
(B.2), andQ := [[[Q, I]]] andP := [[[I, P ]]] are grade one self-adjoint operators
(see Section 7) of the left and right multiplication by the observability and con-
trollability GramiansQ andP of the closed-loop system from (23).

Proof. The matrixR only enters the costE through the matrixA of the closed-
loop system, andA depends affinely onR, with ∂RA = J the constant oper-
ator from (63). Hence, (64) follows from∂2RE = J †∂2AEJ and Lemma 9 of
Appendix C.

From (64), it follows that the “matrix” representation of the self-adjoint oper-
ator∂2RE on the spaceSn is described by

vech(∂2RE(M)) = 4ΥT(Ω + ΩT)Υvech(M),

wherevech(M) denotes the half-vectorization of a matrixM ∈ Sn, that is, the
column-wise vectorization of its triangular part below (and including) the main
diagonal. Here, the square matrix

Ω := −(I2n ⊗Q)(I2n ⊗A+A⊗ I2n)
−1Σ(P ⊗ I2n)

of order4n2 represents the operatorQLASP onR2n×2n, with Σ corresponding to
the symmetrizerS : R2n×2n → S2n. Also,

Υ :=

([
0n
In

]
⊗

[
0n
J0

])
Λ

is a(4n2 × n(n+ 1)/2)-matrix which represents the operatorJ , defined by (63),
with Λ ∈ R

n2×n(n+1)/2 the “duplication” matrix [5, 11] which expresses the full
vectorization of a matrixM ∈ Sn in terms of its half-vectorization byvec(M) =
Λvech(M).

11. A Newton-like scheme

The equations (61)–(62) can be combined with iterations forsolving the equa-
tion Ψ = 0 for the matrixΨ from (45), which is equivalent to the stationarity of
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the LQG costE with respect to the matrixR of the Hamiltonian parameterization.
The latter part of the scheme, aimed at finding a rootR ∈ R(b) of the equation
Ψ = 0 from the set (47), can be organized in the form of Newton-Raphson itera-
tions

R 7→ R− (∂RΨ)−1(Ψ) = R− (∂2RE)
−1(∂RE). (65)

Here, the symmetric matrices∂RE andΨ are related by (46), and, in view of (48),
the inverse of the operator∂RΨ is given by

(∂RΨ)−1 = −2(∂2RE)
−1[[[J0, J0]]], (66)

where we have again used the involutional property of the operator [[[J0, J0]]], and
the second order Frechet derivative∂2RE is provided by Lemma 5. If the local
strict optimality condition∂2RE ≻ 0 is satisfied, this ensures well-posedness of
the inverse in (66). Thus the equations (61)–(62), considered as assignment op-
erators forb1 andb2, and (65) forR, constitute a Newton-like iterative scheme
for numerical computation of the state-space realization matrices of the optimal
CQLQG controller. These three assignment operators are alternated with updating
the Gramians of the closed-loop system via the appropriate Lyapunov equations
in (23). The order of this alternation will influence the overall convergence rate of
the scheme and is an important computational issue to be explored. Another issue
to be taken into account is that the asymptotic stability of the closed-loop sys-
tem matrixA can be violated by the update of the matricesb1, b2, R after which
the next iteration becomes impossible. Therefore, being a local optimization algo-
rithm, the proposed scheme requires a “stability recovery”block. A salient feature
of such an algorithm (which is currently under development)is that it involves the
inversion of special self-adjoint operators on matrices which, in general, can only
be carried out via the vectorization of matrices mentioned in Sections 7 and 10.

12. Conclusion

We have obtained equations for the optimal controller in theCoherent Quan-
tum LQG problem by direct Frechet differentiation of the LQGcost with respect to
the pair of matrices which govern the Hamiltonian parameterization of physically
realizable quantum controllers. We have investigated spectral properties of spe-
cial self-adjoint operators whose inverse plays an important role in the equations
and can only be carried out by using matrix vectorization. Wehave established a
partial decoupling of these equations with respect to the gain matrices of the op-
timal controller, which can be interpreted as a quantum analogue of the standard
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LQG control/filtering separation principle. Using this quasi-separation property,
we have outlined a Newton-like iterative scheme for numerical computation of the
quantum controller. The scheme involves a yet-to-be-explored freedom of choos-
ing the order in which to perform iterations with respect to the Hamiltonian and
gain matrices of the controller to optimize the convergencerate. The existence
and uniqueness of solutions to the equations for the state-space realization matri-
ces of the optimal CQLQG controller also remains an open problem and so does
their further reducibility. This circle of questions is a subject of ongoing research
and will be tackled in subsequent publications.
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Appendix A. Invertibility of grade two operators

Lemma 6. Letr = 2 in (29), and let both matricesα1 andβ1 be nonsingular. Then
the operatorM := [[[α1, β1 | α2, β2]]] is invertible if and only if the eigenvalues
λ1, . . . , λp of α−11 α2 and the eigenvaluesµ1, . . . , µq of β2β

−1
1 satisfy

λjµk 6= −1 for all j = 1, . . . , p, k = 1, . . . , q. (A.1)

Proof. If r = 2, the operator (29) can be represented asM := [[[α1, β1 | α2, β2]]] =
M1M2, whereM1 := [[[α1, β1]]] andM2 := [[[I, I | α−11 α2, β2β

−1
1 ]]]. The operator

M1 is invertible in view of the nonsingularity of the matricesα1 andβ1, with
M−1

1 = [[[α−11 , β−11 ]]]. Hence, the invertibility ofM is equivalent to that ofM2.
In turn, the operatorM2 is invertible if and only if its spectrum{1 + λjµk : 1 6

j 6 p, 1 6 k 6 q} does not contain0, which is equivalent to (A.1).

By Lemma 6, the nonsingularity of the matrix
∑2

k=1 β
T
k ⊗ αk of order pq

reduces to a joint property of individual spectra of two matrices of ordersp andq.
This reduction does not hold forr > 2.
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Appendix B. Perturbation of inverse Lyapunov operators

We associate aninverse Lyapunov operatorLA with a Hurwitz matrixA ∈
R

n×n, so thatLA maps a matrixM ∈ R
n×n to the unique solutionN of the

algebraic Lyapunov equationAN +NAT +M = 0:

LA(M) :=

∫ +∞

0

eAtMeA
Ttdt. (B.1)

Its adjoint isL†A = LAT . SinceLA commutes with the transpose, that is,LA(M
T) =

(LA(M))T, then it also commutes with asymmetrizerS defined by

S(M) := (M +MT)/2. (B.2)

The operatorS : Rn×n → Sn is the orthogonal projection onto the subspace of
real symmetric matrices of ordern.

Lemma 7. The Frechet derivatives of the controllability and observability Grami-
ansP andQ of an asymptotically stable system(A,B,C) with respect to the

matrixΓ :=

[
A B
C 0

]
are expressed in terms of (B.1) and (B.2) as

∂ΓP = 2LAS[[[
[
I 0

]
,

[
P
BT

]
]]], (B.3)

∂ΓQ = 2LATS[[[
[
Q CT

]
,

[
I
0

]
]]]. (B.4)

Proof. The Frechet differentiability ofP andQ is ensured by the assumption that
A is Hurwitz. The first variation of the algebraic Lyapunov equationAP +PAT+
BBT = 0 yields

0 = (δA)P + AδP + (δP )AT + PδAT + (δB)BT +BδBT

= AδP + (δP )AT + 2S
([
δA δB

] [ P
BT

])
.

This is an algebraic Lyapunov equation with respect toδP with the same matrix
A, which proves (B.3) in view of the identity

[
A B

]
=

[
I 0

]
Γ. The relation

(B.4) is obtained by a similar reasoning from the first variation of the Lyapunov
equation for the observability GramianQ, or by using the duality betweenP and
Q.
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Appendix C. Second Frechet derivative of the LQG cost

Lemma 8. The second Frechet derivative of the squaredH2-normE := ‖(A,B,C)‖22
of an asymptotically stable system with respect to the matrix Γ :=

[
A B
C 0

]
is

computed as

∂2ΓE =4[[[

[
I
0

]
,
[
P B

]
]]]LATS[[[

[
Q CT

]
,

[
I
0

]
]]]

+ 4[[[

[
Q
C

]
,
[
I 0

]
]]]LAS[[[

[
I 0

]
,

[
P
BT

]
]]]

+ 2[[[

[
Q 0
0 I

]
,

[
0 0
0 I

]
|
[
0 0
0 I

]
,

[
P 0
0 I

]
]]]. (C.1)

Here,LA andS are the inverse Lyapunov operator and symmetrizer from (B.1),
(B.2), andP ,Q are the controllability and observability Gramians of the system.

Proof. Lemma 2 implies that the first variation of the Frechet derivative ∂ΓE is
computed as

δ∂ΓE/2 =δ

[
QP QB
CP 0

]

=

[
I
0

]
δQ

[
P B

]
+

[
Q
C

]
δP

[
I 0

]
+

[
0 QδB

(δC)P 0

]
.

Hence, (C.1) is obtained by using the Frechet derivatives ofthe Gramians from
Lemma 7 of Appendix B and the identity

[
0 QδB

(δC)P 0

]
=

[
Q 0
0 I

]
δΓ

[
0 0
0 I

]
+

[
0 0
0 I

]
δΓ

[
P 0
0 I

]
.

Lemma 9. The second Frechet derivative of the squaredH2-normE := ‖(A,B,C)‖22
of an asymptotically stable system with respect toA is

∂2AE = 4R, R := QLASP + PLATSQ. (C.2)

Here,Q := [[[Q, I]]] andP := [[[I, P ]]] are grade one self-adjoint operators (see
Section 7) of the left and right multiplication by the observability and controlla-
bility Gramians of the system.

23



Proof. In view of Lemma 7, the first variation of∂AE = 2QP with respect toA
is

δ∂AE = 2(QδP + (δQ)P )

= 4(QLAS((δA)P ) + LATS(Q(δA))P )

which establishes (C.2). Alternatively, (C.2) can be obtained from (C.1) of Lemma 8.

Note that at least some eigenvalues of the self-adjoint operatorR in (C.2) are
positive, sinceR(A) = −QP is the negative of the Hankelian, and〈A,R(A)〉 =
−〈A,QP 〉 = ‖(A,B,C)‖22/2 > 0.
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