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Abstract

This paper is concerned with constructing an optimal cdietrin the coherent
guantum Linear Quadratic Gaussian problem. A coherenttqoaoontroller is
itself a quantum system and is required to be physicallyzalale. The use of co-
herent control avoids the need for classical measuremehish inherently entail
the loss of quantum information. Physical realizabilityresponds to the equiv-
alence of the controller to an open quantum harmonic osailland relates its
state-space matrices to the Hamiltonian, coupling andesaaj operators of the
oscillator. The Hamiltonian parameterization of the coltér is combined with
Frechet differentiation of the LQG cost with respect to ttegesspace matrices to
obtain equations for the optimal controller. A quasi-sefian principle for the
gain matrices of the quantum controller is established agaNdwton-like iterative
scheme for numerical solution of the equations is outlined.
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1. Introduction

Sensitivity to observation is an inherent feature of quantnechanical sys-
tems whose state is affected by interaction with a macraseopasuring device.

1A shortened version of this work is to appear in the 18th IFAGM/Congress Proceedings

[13].
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This motivates the use of coherent quantum controllers ptace the classical
observation-actuation control loop by a measurementf&edback, which is or-
ganized as an interconnection of the quantum plant withrem@fuantum system.
If such a controller is implemented using quantum-opticahponents (for ex-
ample, optical cavities and beam splitters) mediated kit liiglds ﬁ], then it is
dynamically equivalent to an open quantum harmonic osoillavhich consti-
tutes a building block of quantum systems described by tiggantum stochastic
differential equations (QSDE§S| [Iﬂ 8].

This leads to the notion of physical realizability which ioges quadratic con-
straints on the state-space matrices of the contr e, @] @hus complicating the
solution of quantum control problems which are otherwiskioed to appropri-
ate unconstrained problems for an equivalent classicé&sysThe links between
classical control problems and their quantum analoguekreoen, for example,
for Linear Quadratic Gaussian (LQG) affl.-control.

The Coherent Quantum LQG (CQLQG) problem seeks a physiczdhjzable
guantum controller to minimize the average output “energfythe closed-loop
system per unit time. This problem has been addressed invf@&re a numeri-
cal procedure was proposed for findisgboptimalcontrollers to ensure a given
upper bound on the LQG cost. Instead, the present paperds@arsnecessary
conditions for optimality and second order conditions tadl strict optimality of
a physically realizable controller and computation of dipgimalcontroller. Both
approaches make use of the fact that the CQLQG problem isadgut to a con-
strained LQG problem for a classical plant, with the LQG ammhputed as the
squaredH,-norm of the system in terms of the controllability and obaéility
Gramians satisfying algebraic Lyapunov equations.

We utilize a Hamiltonian parameterization that relatesstiage-space matrices
of a physically realizable controller to the free Hamiltamj coupling and scatter-
ing operators of an open quantum harmonic oscillator [1Jodt@in equations for
the optimal quantum controller, we employ an algebraic eagh, based on the
Frechet differentiation of the LQG cost with respect to thetesspace matrices
from ﬂﬂ] and similar to@l]. The resulting equations foetbptimal controller
involve the inverse of special self-adjoint operators onrives that requires the
use of vectorizatior[[S]. Their spectral properties playiraportant role in the
present study.

Although the optimal CQLQG controller does not inherit tloatrol/filtering
separation principle of the classical LQG control problampartial decoupling of
equations for the gain matrices still holds. Thisasi-separatioproperty leads to
a Newton-like scheme for numerical computation of the quantontroller that
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involves the second order Frechet derivative of the LQG wdsth is related to
the perturbation of solutions to algebraic Lyapunov eauresti

The paper is organised as follows. Seclibn 2 specifies thetguoreplants being
considered. Sectiof$ 3 ahld 4 describe physically reabzgidhntum controllers.
Section b formulates the CQLQG control problem. Sectldnsd{& introduce
auxiliary classes of matrices and self-adjoint operat&@wsctior 8 obtains equa-
tions for the optimal CQLQG controller. Sectibh 9 discusbesquasi-separation
property. Section 10 establishes a second order condifimptimality. Sec-
tion[I1 outlines a Newton-like scheme for computing theropticontroller. Ap-
pendices provide a subsidiary material on invertibilitytloé special self-adjoint
operators, perturbations of inverse Lyapunov operatatd-aachet differentiation
of the LQG cost.

2. Quantum plant

We consider a quantum plant with andimensional state vector;, a p-
dimensional outpuy; and inputsw;, 1, of dimensionsn;, m,. The state and
the output are governed by the QSDEs:

dxy = Axydt + Bidwy + Bodn, (1)
dyt = tht + det7 (2)
Zt = C..'Et. (3)

Here,A € R"*", B, € R™™ (C ¢ RP*", D € RP*™ are constant matrices,
andz; is a “signal part” ofy;. The state dimension and the input dimensions
my, mo are evenn = 2v, my, = 2. The plant state vectar, is formed by self-
adjoint operators (similar to the position and momentunmrafoes) and, in the
Heisenberg picture of quantum mechanics, evolves in timEhe entries of the
my-dimensional vector; are self-adjoint quantum Wiener process@s [7] whose
infinitesimal increments compose with each other accortlirife Ito table

dw,dw! = Fdt. (4)

Here,F is a complex positive semi-definite Hermitian matrix whioh,the right-
hand side of[{(l), is a shorthand notation forz Z, with Z the identity operator
on the underlying boson Fock space andhe tensor product. We assume that
vectors are organized as columns unless indicated otresramgl the transpose
()T acts on vectors and matrices with operator-valued entsiéfstiae latter were



scalars. Also(-)" := ((-)#)T denotes the transpose of the entry-wise adjoint
()#. Associated with the Hermitian matrik from (4) are real matrice§ :=

(F +F)/2 = ReF andT := (F — F)/i = 2ImF, where(-), Re(-) andIm(-)

are the entry-wise complex conjugate, real and imaginarspand; := /—1

is the imaginary unit. The symmetric matrix contributes to the evolution of
the covariance matrix of the plant state vectgrwhilst 7" is antisymmetric and
affects the cross-commutations between the entries tfrough|dw;, dw/] :=
dwdw! — (dw,dw) = (F — FY)dt = iT'dt. Here, the commutatdey, 3] :=

af — Ba applies entry-wise, and the relatidi’ = F is ensured by = F*. In
what follows, it is assumed that= 7,,,,, and7" is canonical in the sense that

0 1
T:=1, ®J, J .= {_1 O] , (5)
wherel, is the identity matrix of order. That is,T" is a block diagonal matrix
with i, copies ofJ over the diagonal. By permuting the rows and columns, the
matrix 7" from (8) can be brought to an equivalent canonical form

0 I
T=J®l :[ - ‘“}, 6

" _Im O/Jl ( )
where0, denotes thér x r)-matrix of zeros. The canonical antisymmetric matrix
J of any order satisfieg? = —I. Quantum Wiener processes will be assumed to
have the canonical Ito matrik = I + i.J/2.

3. Coherent quantum controller

A measurement-free coherent quantum controller is anajhantum sys-
tem with an-dimensional state vectgy with self-adjoint operator-valued entries
whose interconnection with the plaht (I)}-(3) is describg@B8DES

d& = a&dt + bydw, + bedyy, (7)
dn, = Gdt + dw, (8)
Gt = c&. (9)

Here,a € R™*", b, € R™*™2 b, € R"*P, ¢ € R™*" andw, is amy-dimensional
vector of self-adjoint quantum Wiener processes which caterwith the plant
noisew, in (@) and [2). The combined set of equations (I)—(3) and(@))ee-
scribes the fully quantum closed-loop system in Eig. 1, vetmstput observables
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plant
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Figure 1: The quantum closed-loop system describedlbyFLiAd [T)-(P), where the plant and
controller noisesw andw are commuting quantum Wiener processes.

form apy-dimensional process
2, = Coxy + Dog, (10)

whereCy, € Rro*™ and D, € RPo*™2 gre given matrices. Thgn-dimensional
combined state vectdy; := [z] ¢!T and the outpug; of the closed-loop system
are governed by the QSDEs

d.)(t - .A.Xtdt + Bth, Zt = CXt (11)

Here, the combined quantum Wiener proces := [w; w[]|T has a block di-
agonal Ito table. The matrice4, B, C of the closed-loop systerh (l11) are given

by

./4 B A BQC Bl Bg A BQC B
{ 1 } = | 0C a |bD b | =|0bC a |D |, (12)
C() D()C‘ 0 0 CO DOC‘ 0

where

b = [bl bg] s B = [Bl Bg] s C = |ig:| y D .= |i10) é:| . (13)

The dependence o4, B, C on the controller matrices, b, c is equivalently de-
scribed by

A B b
= [C 0} =T+ D, = [Z 0} . (24)
The affine mapy — I is completely specified by the plami (1)}(3) through the
matrices
A 0 B 0 By 0 I 0
Fo={0 0, 0, Ti:=|L 0|, Ty:=|5 [ 5. (19
C() 0 0 0 DO
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Using the terminology introduced formally in Sectidn 7, thap~ + I'17T's in
(14) is a grade one linear operafft;, I';].
4. Physical realizability

A controller [1)(9) is calleghhysically realizabl¢PR) QEG] if its state-space
matrices satisfy

ady + Joat +bJbT =0, by = JocT Js. (16)
Here,J is a block-diagonal matrix, partitioned in conformancehathhe matrixb
from (13) as
- Ji 01 |2 0
/=D [O JJ D" = [O DJlDT} ’ (7

and.Jy, J;, Jo are fixed real antisymmetric matrices of ordersn,, m,, which
specify the commutation relations for the controller stateables; and the plant
and controller noises andw. For convenience/,, .J;, J, are assumed to have
the canonical form(5) of{6). The relatioris (16) descritedhuivalence of the
controller to an open quantum harmonic oscillator and thesidity of its quan-
tum optical implementatiorﬂ[Z]. The first of these equatienthe condition for
preservation of the canonical commutation relations ferdtate variables of the
guantum harmonic oscillator. The second PR condition, wingtates the ma-
tricesb, andc by a linear bijection, describes the unitary transfornratd the
guantum Wiener process at the input of the quantum harmauitlator. The
first of the PR conditiong (16), which is a linear equatiorhwispect ta, deter-
minesa as a quadratic function @fup to the subspace of Hamiltonian matrices
{a € R™™ . alJy+ Joat = 0} = JyS, = S, Jy, with S,, the subspace of real
symmetric matrices of order.

a= JoR + bJbTJy)/2. (18)

Hamiltonian matrix  particular solution

Here, R € S, specifies the free Hamiltonian operatghR¢, /2 of the quantum
harmonic oscillatorﬂl, Egs. (20)—(22) on pp. 8-9]. Sinceatrixb./b" is anti-
symmetrich.Jb™ J, is skew-Hamiltonian. Thereforé, (118) describes an ortinagjo
decomposition of the matrix into projections onto the subspaces of Hamiltonian
and skew-Hamiltonian matrices in the sense of the Frobanier product of
real matriceg X, Y) := Tr(XTY), with || X|| := 1/(X, X) the Frobenius norm.



From the second PR condition {[n {16) and the canonical strecif.J, and.J,, it
follows that the matrix is related ta, by

c = Jobi Jy = JLITb I, I:= H (19)

where, in view of[(1B), the matrik“extracts’b, fromb asb; = bI. In combination
with the decompositiori (18), this implies that, for a phadlicrealizable quantum
controller, the matrixy in (I4) is completely parameterized by the matrigesnd
bas

JoITbT 0" (20)
In view of the physical meaning a®, we will refer to [20) as thédamiltonian
parameterizatiorof the coherent quantum controller, with tBg x R"*(m2+p).
valued parametefR b]; see Fig[R. The PR conditions{16) are invariant un-

_ [JORerJbTJO/Q b}

.:.*@; ;

><x_
Hox

Figure 2: This directed acyclic graph describes the deparedef the LQG cosE of the closed-
loop system on the matricg® andb. An oriented edge&y— @) signifies ‘3 depends om”. The
dashed lines encircle the matrix triplesandT" defined by [(I4). The emergence Bfand the
dependencies indicated by double arrows represent the RdRtioms for the quantum controller,
with a, b, ¢ being otherwise independent.

der the group of similarity transformations of the congolinatricesa, b, c) —
(aaa‘1 ob,cot), whereo is any real symplectic matrix of order (that is,
oJoo T = Jy). This corresponds to the canonical state transformdatien o&,;
see alsoﬂo Egs. (12)-(14)]. Any such transformation ohgsrally realiz-
able controller leads to its equivalent state-space reptason, with the matrix
R transformed a® — o~ TRo ™!



5. Coherent quantum LQG control problem
The Coherent Quantum LQG (CQLQG) control probl&‘n [6] cassis mini-

mizing the average output “energy” of the closed-loop sysfel):

t—+o0

E := lim (1 / tE(Z;rZs)ds) = Tr(CPC")
t Jo
=Tr(B*QB) = —2(A, H) — min. (21)

The minimum is taken over the-dimensional controller§17)4(9) which make
the matrix.A in (12) Hurwitz and satisfy the PR conditiods [16). HeFeX :=
Tr(pX) denotes the quantum expectation over the underlying geoysératorp,
andP := lim,_,, ., ReE(X,XT) is the steady-state covariance matrix of the state
vector of the closed-loop system. Also, we use the shorthatation

H:=QP, (22)
with P and@ satisfying the algebraic Lyapunov equations
AP+ PAT+BBT =0, ATQ+QA+C'C =0, (23)

so that these matrices are the controllability and obsdiyaBramians of the
state-space realization triplel, B, C). The spectrum of the diagonalizable matrix
H in (22) is formed by the squared Hankel singular values ofsystem, and
we will refer to H as theHankelian The fact thate' coincides with the squared
‘Ho-norm of a classical strictly proper linear time invariagstem enables the
CQLQG problem[(211) to be recast as a constrained LQG contodil@m for an
equivalent classical plant

N R
Col0 Dy | = 0 0 (24)
Pl 010 I 0

C|D 0 0

driven by a(m; + ms)-dimensional standard Wiener process, with the controller
being noiseless. We will employ the smooth dependence otaseFE on the
matricesR andb which govern the Hamiltonian parameterizatibnl (20) of agshy
ically realizable stabilizing controller. The conditioooptimality, obtained in
Sectior 8, utilize the Frechet differentiation of the LQGsttwith respect to the
state-space realization matrices [12] assembled intaceatwith a specific spar-
sity pattern and an auxiliary class of self-adjoint opaersiotroduced in Sections 6
and.7.



6. TheT sparsity structure

The subsequent considerations involve Frechet diffextati with respect to
state-space realization matrices assembled into mawicée “I"-shaped” spar-
sity structure[(14). We denote by

mez{ﬁ ﬂ;weRWﬁaeR”%TeRW? (25)

the Hilbert space of redl- + p) x (r + m)-matrices whose bottom-right block
of size(p x m) is zero. The spack,.,,,, Which is a subspace @r+r)xr+m),
inherits the Frobenius inner product of matrices. Ilet,, , denote the orthogonal
projection ontal’,.,,, , whose action on & + p) x (r + m)-matrix consists in
padding its bottom-rightp x m)-block > with zeros:

L[5 N A

The subscripts i’ ,,, , andIL, ,, , will often be omitted for brevity. The Frechet

derivativedx f of a smooth functioml” > f g = X — f(X) € R be-
longs to the same Hilbert spade25) and inherits the sgasiicture:dy f =
Opf Oof

o-f 0|

7. Special self-adjoint operators

For the purposes of Sectibh 8, we associate a linear opdatgi] : RP*? —
R*** with a pair of matricesx € R¥*? andf € R?*!, by

[e, BI(X) := aXB. (27)

The map(«, 5) — [a, 8] from the direct product of the matrix spaces to the
space of linear operators on matrices is bilinears ¥ p andt = ¢, then the
spectrum of the operatdy, 5] on RP*? consists of the pairwise producisy,

of the eigenvalues,, ..., A\, andyu,, ..., i, of the matricesy and, so that their
spectral radii are related by
r([ev, B]) = r(e)r(B). (28)



Furthermore, for any positive integeand matricesvy, ..., a,. € R¥*Pandgy, ..., 3, €
R?*t, we define a linear operator

T

I]Iabﬁl | te ‘ O‘raﬁr]]] = Zmak7ﬁk]]]7 (29)

k=1

where the matrix pairs are separated B Of importance will be self-adjoint
linear operators on the Hilbert spa@é*? of the form [29) wherey, ..., a, €
RP*P and Sy, ..., 5, € R?*? are such that for any¢ = 1,...,r, the matrices
ay and g are either both symmetric or both antisymmetric. Such anatpe
(29) will be referred to as self-adjoint operator of grade. The self-adjointness
is understood in the sense of the Frobenius inner produd@rsf and follows
from the property that, in each of the cages, 37) = (+«, +3), the adjoint
[, B]T = [[@T, 8T] coincides with[«, £]. In these cases, as for any self-adjoint
operator, the eigenvalues [pf, 5] are all real.

Lemmal. If a € RP*? and g € R7*? are both antisymmetric, then the spectrum
of o, 5] is symmetric about the origin. df and 3 are both symmetric and positive
(semi-) definite, thefi, 3] is positive (semi-) definite, respectively.

Proof. If o andf are both antisymmetric, then their eigenvalues. .., A\, and
wi, - . ., pg are all pure imaginary and symmetric about the oriﬁin [3]néte the
eigenvalues\; ., of [lo, 3] also form a set which is symmetric about the origin.
By a similar reasoning, itv and g are real positive (semi-) definite symmetric
matrices, then their eigenvalues are all real and (honivegatositive, and hence,
so are the eigenvalues i, 3] which implies its positive (semi-) definiteness.
Alternatively, the second assertion of the lemma also ¥adldrom the relation
e, 8] = [/, VB]? which holds for any positive semi-definite symmetric ma-
tricesa € RP*? and 3 € R9*9, so that(X, aX ) = ||/aXV/B||? = 0 for any

X € RPx4, ]

Whilst the operatof (27) with nonsingularand 3 is straightforwardly invert-
ible: o, B]' = [, 87'], the inverse ofM := [y, b1 | .. | ., 8] from
(29) forr > 1 (except for the castvkﬂ]aj,ﬁk]]] = ﬂ[Zj aj, >, Br]l, which re-
duces to a grade one operator, or special Lyapunov opeffatof§ + [[7, o] with
a = o which are treated by diagonalizing the matsix can only be computed
using the vectorization of matrices [5] asl~!(Y) = vec™(Z~lvec(Y)), pro-
vided that the matris€ := >, _, B} ® a, is nonsingular. Herejec : RP*4 — R
is a linear bijection which maps a matriX to the vector obtained by writing
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the columnsX,, ..., X,, of the matrix one underneath the other. Invertibility
conditions for grade two operators is discusse€d in Appefdix

8. Equationsfor the optimal controller

Necessary  conditions  for  optimality in the  class of
n-dimensional physically realizable stabilizing conteoi are obtained by equat-
ing the Frechet derivatives of the LQG cdstwith respect tak andb to zero. In
view of Fig.[2, the chain rule allows the differentiation te barried out in three
steps. First, the matriced, B, C of the closed-loop system are considered to be
independent variables. Below is an adaptation of [12, Lerdrn&Appendix B]
whose proof is given to make the exposition self-contained.

Lemma 2. Suppose the matriM in (I2) is Hurwitz. Then the Frechet derivative
of the LQG cost’ from (21) with respect to the matrixfrom (13) is

. [H @B
%E_Qkp 0]. (30)

Here, H is the Hankelian defined b/ (22) in terms of the Grami&hg) from
(23

Proof. As discussed in Sectidd 6, the Frechet derivativ®& inherits the block
structure of the matriX':

OAE aBE} . (31)

%E:{&E 0

We will now compute the blocks of this matrix. To calculatgF, let B andC
be fixed. Then the first variation df with respect tad is 0F = (C'C,6P) =
—(ATQ+QA,6P) = —(Q, ASP+(6P)A") = (Q, (0 A)P+PSATY = 2(H, 5 A),
which implies that

O4F =2H. (32)

To computeds F, supposed andC are fixed. Then the observability Grami@n
which is a function ofd and(C, is also constant, and the first variationfofwith
respect taB is 0F = (Q,5(BBY)) = (Q, (6B)BT + BiBT) = 2(QB,B), and
hence,

OgE = 2QB. (33)

The derivative). E is calculated by a similar reasoning. Assumig@ndB5 (and
so also the controllability GramiaR) to be fixed, the first variation of with
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respect taC is 0F = (P,5(CTC)) = (P, (6C)*C + CTsC) = 2(CP,sC), which
implies that
OcFE = 2CP. (34)

Now, substitution of[(32)£(34) int¢ (1) yields (30). O

We will now take into account the dependence of the closeg-kystem ma-
trices A, B, C in (12) on the controller matrices b, ¢, with the latter still con-
sidered to be independent variables. In what follows, then@ansP and(Q in
(23) and the Hankelia#/, defined by[(2R), inherit the four-block structure of the
matrix.A from (12). Their blocks have siZe x n) and are numbered as follows:

“n—+n— —2n—
- Hy Hyps $n B n—n—r o Hi, $n
H = |:H21 H22:| 171 - |:H01 Ho2i|$ - H2. 171 . (35)

The block(-);; is related to the state variables of the plant, wki)e, pertains to
those of the controller. The blocks of the matfixin (35) are expressed in terms
of the block rows of)) and block columns of asHj;, = Qe Pey.

Lemma 3. Suppose the matrid in (12) is Hurwitz. Then the Frechet derivative

0E = {gag &E)E} of E from (21) with respect to the matrixfrom (14) is
OFE =2 Hy Hy C" + Q2.BDT (36)
L BQTH12+D6FCP.2 0 ’

where the matrice§', I'y; are defined by[{15)H, P,  are given by[(Z2R)£(23),
and the notation(35) is used.

Proof. Since E is a composite function of, b, ¢ which enter[(2l1) through the
closed-loop system matrices B, C, the chain rule gives

0, E = (0,0)!(0rE) = TI(T'{ Op ETY). (37)

Here, ()" is the adjoint in the sense of the Frobenius inner product affim
ces, andII is the orthogonal projection onto the subspateefined by [(2b)-
(28). Indeed, the first variation of the affine map— I", defined by [(I¥)-
(A5), is given bysI" = I';(dv)I'2, which implies that,I" = [[I';,';]]. Hence,
OE = (OrE,oT) = (0pE,T10qTs) = (TTOrETT, 6v) = (I(ITorETT), 67),
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which establishe$ (37). Substitution of the matricesndI’, from (18) andor £
from (30) into the right-hand side df (B7) yields

o 1, olru o8 |° €
0, F =211 i I, O
= (g g ler {0 0,
_ 5 Hyy Hy CT + Q2.BDT
~ “|BTHy, + DicP,, 0 ’
where Lemmal2 and the notatidn{35) are also used, which p{8¢s. O

Finally, we will utilize the Hamiltonian parameterizatid®d), which makes
E afunction of the matrice® andb; see Fig[P.

Theorem 1. A physically realizable stabilizing controller, with Halteinian pa-
rameterization[(200), is a critical point of the LQG castfrom (21) if and only if
there exists a real antisymmetric matixof ordern such that

Hyy = —®Jy, (38)
M (D) + HyyCT + Qo BD™
+Jo(HE By + Py Cy Dy) JoIt = 0. (39)
Here,
M = [®,J | Qoz, DD | JoPoyJo, 1y Dy Do JoI"] (40)

is a self-adjoint operator of grade three in the sensé of .(29)

Proof. In view of (20), the symmetric matrik enters the controller only through
a. Hence,

ORE = (—Jo0,E + (—Jo0. E)") /2 = HyyJo — JoHaa, (41)

where the relatiod, E = 2H,, from Lemmd3B is used. Unlik&, the matrixb
both enters: and completely parameterizesand hence,

dE/db =((0,E)Jo + Jo(0.E)")bJ /2 + O, E
+ Jo(0.E)T J,I"
=(HayJo + JoHy)bJ + 2(Ho CT + Q2. BD)
+2Jo(By Hyy + Dy CPuy)" JoIT, (42)
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where [36) of LemmE&l3 is used again. By introducing a reabgntmetric matrix
® = (HopJo + JoHy,)/2, (43)
and recalling[(IR) [(13) and (B5), it follows fron (42) that

(AE/db)/2 =®bJ + Hy C" + Qg BDT + QpbDD™
+ Jo(HE By + Py Cf Dy) JoI*
+ JoPay Job1.Jy Dy Do JoI*
=HxC" 4+ Q@ BD"
+ Jo(H 5By + Py Cy Do) JoI' 4 9(b),
where [19) and(40) are also used. Therefdig/db = 0 is equivalent to[(39).
The definition [[4B), which is considered as an equation vapect toH,,, de-

termines uniquely the skew-Hamiltonian par®.J, of H,,, so thatH,, can be
represented as

Hoy = (¥ — @).Jj, (44)
where
U = (JoHy, — HyJy)/2 (45)
is a real symmetric matrix of order. Direct comparison of(45) with (41) yields
OrE = —2Jy0.J,. (46)

Hence,0rE = 0 holds if and only if¥ = 0, in which case,[(44) takes the form
of (38). Therefore, the property that the controller is éicai point of E' (that is,
OrE = 0 anddE/db = 0) is indeed equivalent to the fulfillment df (38) aid(39)
for a real antisymmetric matri® of ordern. 0J

For a given matri» in the Hamiltonian parameterizatidn {20) of the controller
(@5) defines amaR(b) > R +— ¥ € S, on the set

R(b) :={R €S, : Ais Hurwitz}. 47)

In view of (48), the Frechet derivative of this map with resf® R is expressed
in terms of the second order Frechet derivative of the LQGaiathe closed-loop
system as

Op¥ = —%HIJO, Jo] 0% E, (48)

where we have also used the property that Jo] is involutory since] Jy, Jo]> =
[J2, J2]=[—1I,—I] is the identity operator.
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9. A Quasi-separation principle
The operatot, which is defined by (40) and acts on the controller gain matri
b from (13), can be partitioned as
M(D) = [ (b1) Ma(by)] (49)

into two operators acting separately on the submatticesdb,. Here,

RIS} ZIHI‘I), Jo \ Q2, [ | JoPaa Jo, JzD(TDon]]], (50)
My =[P, DJ, D" | Q, DD"] (51)
are self-adjoint operators of grades three and two. Thisvalthe equatior (39)
for d£/db = 0 to be splitinto
My (br) + Qo1 Bs + Jo(H 3 Bs + Py Cy Do) Jo = 0, (52)
M (bs) + HoC" + QuB1 D" =0, (53)

which are equivalenttd£ /db; = 0 anddE/db, = 0. Note that[(5P) corresponds
to the equation for the state-feedback matrix

¢=—(DF Do) Y(BTQ, + DI Cy) (54)

of the standard LQG controller for the subsidiary classptaht (24), while [(5B)
corresponds to the equation for the Kalman filter obseraagmin matrix of the
controller R R

by = (P,.C" + B,DY)(DD")~". (55)

Here, itis assumed that the matiik is of full column rank, and is of full row
rank. The matriceg8 andb, from (54) and[(5b) determine the dynamics matrix of
the standard LQG controller as= A — b,C' + Byc and are expressed in terms of
the stabilizing solutiong);, P, of the independent control and filtering algebraic
Riccati equations (ARES):
ATQy + QA+ CY Gy
— (1 By + CT Do) (DT Do) (Q1By + CF Do),
AP, + P,A" + B, B}
= (P,CT + B,DT) (DD N (P,CT + B,D™)T.
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The fact, that[(52) and_(53) are independent linear equatigth respect td,
andb,, as well as the original partitioh (#9), can be interpretedua analogue of
the classical LQG control/filtering separation principbe the CQLQG problem.
In turn, each of the operato?®;, from (50) and[(5ll) can be split into the sum of
self-adjoint operator®)t; andt; of grades one and less one:

sm<> my
ﬂ[‘b Jol] + [Qa2, I | JoPaz o, JzDTDOJﬂﬂ (56)
ﬂ@ DJ1DT1u+u1Q22,DD 1. (57)
im° ngr

By applying Lemmall, it follows that the spectrumF; is symmetric about the
origin, while 90t = 0. Moreover, ifQa > 0, or Py = 0 and Dy in (I0Q) is of
full column rank, therd; = 0. Indeed, the fulfillment of at least one of these
conditions implies positive definiteness of at least on&eftositive semi-definite
operators on the right-hand side of the representation

M = [Qaz, I + [JoPaaJy , J2Dg DoJs | (58)

which follows from.J, and.J; being antisymmetric matrices. Similarly, the con-
ditions that(),;, = 0 and D is of full row rank ensure thabt; = 0. In particular,
by adaptlng-Z Lemma 5 of Section VIII], it follows that 1) addition to the
rank conditions onD, and D, the controller state-space realization is minimal,
thenQy = 0 and Py, = 0 and hencef{ = 0 and9; = 0. Therefore, in the
cases discussed above, the invertibility of the opera&rsand, in (G8)-(57)
can only be destroyed by the presence of the indefinite aperat; and S if
the matrix® is large enough compared®,. This can be formulated in terms of
the matrix

A= Q0 (59)

whose spectrum is pure imaginary and symmetric about zero.

Lemma 4. Suppose the matrik in (@) is of full row rank and@,, > 0. Also,
suppose the spectral radius of the mattixfrom (89) satisfies(A) < 1. Then
the operator9)t; andM1, in (50) and [51) are positive definite.

Proof. Since[[.Jy PaJy, JoD§ Do Jo]] = 0, and[[Qa2, I] = 0 (in view of the as-
sumptionQs, = 0), then [56) and(88) imply that

My = MY+ [Qo, 1] = (1 —1(A))[Qa2, I]. (60)
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Here, we use the relatiaf{[Qa2, I] ') = r(A)r(Jy) = r(A) which follows
from (28) and the property that the eigenvalues of the caab@intisymmetric
matrix J, are +i. Therefore, ifr(A) < 1, then [60) implies tha®t; > 0. By
a similar reasoning, under the additional assumption ihas of full row rank
(thatis,DDT = 0), it follows from (57) and[(BB) tha®l, = (1 —r(A))M; = 0.
Indeedxr((95)~193) = r(A)r(DJ, DY (DDT)1) < r(A)since—1I <iJ, < [
and the Hermitian matrikD D™)~'/2D(i.J,) DT (DD™)~'/2 has all its spectrum in
[—1,1], so thatr(D.J; DT (DDT)~1) < 1. O

Assuming invertibility of the operator®t; andi, (for example, the fulfill-
ment of conditions of Lemnid 4 that ensure a stronger propeptysitive definite-
ness of these operators), the equatibnk (52)[and (53) carittervmore explicitly
for b; andbs:

by = =M Qo By + Jo(H5 By + PoyCy Do)Js), (61)
by = -9y (Hoy CF + Qu B1D™). (62)

These two equations are, in principle, amenable to furteduction (to be dis-
cussed elsewhere) and will be utilized as assignment aperat the iterative
procedure of Sectidn 11 for finding the optimal controller.

10. Second order condition for optimality

A second order necessary condition for optimality of thetoaler with re-
spect to the matrix? of the Hamiltonian parameterization {20) is the positive
semi-definitenesé% F = 0 of the appropriate second Frechet derivative of the
LQG cost [21). Moreover, the positive definitenésss =~ 0 is sufficient for the
local strict optimality. To compute the self-adjoint operad? F, which acts on
the subspacs, of real symmetric matrices of order we define a linear operator
J S, — R?*2" g5 an appropriate restriction of the grade one linear operat
relating.A with R:

7:=1%].on 11 (63)

Sn

Its adjoint is 7T = —Sﬂ][on JO} , B”}]]] since.J, is antisymmetric, withS :
R™" — S, the symmetrizer defined by (B.2).
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Lemma 5. Suppose the matrixd in (I12) is Hurwitz. Then the second Frechet
derivative ofy from (21) with respect to the matrik from (20) is

PE = 4T (QLASP + PLSQ)T. (64)

Here, £, and S are the inverse Lyapunov operator and symmetrizer fiom)(B.1
(B.2), andQ := [Q, ] and P := [I, P] are grade one self-adjoint operators
(see Sectioh]7) of the left and right multiplication by theetvability and con-
trollability Gramians(@ and P of the closed-loop system from [23).

Proof. The matrix R only enters the cost through the matrix4 of the closed-
loop system, andd depends affinely o, with 9. A = J the constant oper-
ator from [€63). Hence[(84) follows frod%E = J'03EJ and Lemmdld of
Appendix C. ]

From [64), it follows that the “matrix” representation oktkelf-adjoint oper-
ator9% F on the spac8,, is described by

vech(9%E(M)) = 4YT(Q + Q) Yvech (M),

wherevech(M) denotes the half-vectorization of a matrfiX € S, that is, the
column-wise vectorization of its triangular part below dancluding) the main
diagonal. Here, the square matrix

Q= —(Ip @ Q)(Ion ® A+ A® Ioy) 'S(P @ Ly)

of order4n? represents the operat@®L ,SP onR***2" with 3 corresponding to
the symmetrize§ : R>"*?" — S,,,. Also,

(o[t

is a(4n? x n(n + 1)/2)-matrix which represents the operator defined by[(6B),
with A € R *n(n+1/2 the “duplication” matrix [5] 111] which expresses the full
vectorization of a matrix/ € S, in terms of its half-vectorization byec(M) =
Avech(M).

11. A Newton-like scheme

The equationg (61)=(62) can be combined with iterationsdtring the equa-
tion U = 0 for the matrix¥ from (43), which is equivalent to the stationarity of
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the LQG costF with respect to the matrik of the Hamiltonian parameterization.
The latter part of the scheme, aimed at finding a ot R(b) of the equation
¥ = 0 from the set[(4l7), can be organized in the form of Newton-Raplitera-
tions

R+ R— (0p¥V) (V) = R— (05E) Y (OrE). (65)

Here, the symmetric matricé F and¥ are related by (46), and, in view ¢f (48),
the inverse of the operatoy V is given by

(0rY) ™ = —2(02E) [ Jo, Jo], (66)

where we have again used the involutional property of theaipe[./;, 5], and
the second order Frechet derivati¥gF is provided by Lemmal5. If the local
strict optimality conditiond%E = 0 is satisfied, this ensures well-posedness of
the inverse in[(66). Thus the equatiohs](60)}}(62), consities assignment op-
erators forb; andb,, and [65) forR, constitute a Newton-like iterative scheme
for numerical computation of the state-space realizatiatrices of the optimal
CQLQG controller. These three assignment operators amated with updating
the Gramians of the closed-loop system via the appropriga@linov equations
in (23). The order of this alternation will influence the aaféconvergence rate of
the scheme and is an important computational issue to berexplAnother issue
to be taken into account is that the asymptotic stabilityhaf ¢tlosed-loop sys-
tem matrix.A can be violated by the update of the matribgs,, R after which
the next iteration becomes impossible. Therefore, beinga bptimization algo-
rithm, the proposed scheme requires a “stability recovielytk. A salient feature
of such an algorithm (which is currently under developméesitat it involves the
inversion of special self-adjoint operators on matricegctvhin general, can only
be carried out via the vectorization of matrices mentiome8ection§17 and 10.

12. Conclusion

We have obtained equations for the optimal controller inGoéerent Quan-
tum LQG problem by direct Frechet differentiation of the L&t with respect to
the pair of matrices which govern the Hamiltonian paramzedéion of physically
realizable quantum controllers. We have investigatedtsglgaroperties of spe-
cial self-adjoint operators whose inverse plays an impontale in the equations
and can only be carried out by using matrix vectorization.\&%e established a
partial decoupling of these equations with respect to the igatrices of the op-
timal controller, which can be interpreted as a quantumaaned of the standard
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LQG control/filtering separation principle. Using this guiaeparation property,
we have outlined a Newton-like iterative scheme for nunagomputation of the
guantum controller. The scheme involves a yet-to-be-arglfreedom of choos-
ing the order in which to perform iterations with respecttie Hamiltonian and
gain matrices of the controller to optimize the convergerate. The existence
and uniqueness of solutions to the equations for the spateesealization matri-
ces of the optimal CQLQG controller also remains an openlprmoland so does
their further reducibility. This circle of questions is dect of ongoing research
and will be tackled in subsequent publications.
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Appendix A. Invertibility of grade two operators

Lemma®. Letr = 2in (29), and let both matrices; and/3; be nonsingular. Then
the operatorM := [aq, 51 | ag, 52] is invertible if and only if the eigenvalues
A1, - .., A\, Of oyt and the eigenvalues,, . . ., i, of 3,5, " satisfy

Ny # =1 forallj=1,...,p, k=1,...,q. (A.1)

Proof. If r = 2, the operatof(29) can be representedés= [Jay, 51 | az, 52 =
MiMs, whereM, = [ay, f1] and My := [[I, I | o oy, B25; 1] The operator
M is invertible in view of the nonsingularity of the matricas and g, with
Mt = Jart, 871 Hence, the invertibility ofM is equivalent to that of\1,.
In turn, the operatoM,, is invertible if and only if its spectrunil + Aju; : 1 <
Jj <p, 1 <k < q}does not contaif, which is equivalent td (Al1). O

By Lemmal6, the nonsingularity of the matrEi:1 BT @ ay of order pq
reduces to a joint property of individual spectra of two ntas of orderg andg.
This reduction does not hold for> 2.
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Appendix B. Perturbation of inverse Lyapunov operators

We associate amverse Lyapunov operatof 4 with a Hurwitz matrix A €
R™ ™, so thatL, maps a matrix)\/ € R™ ™ to the unique solutionV of the
algebraic Lyapunov equatiohN + NAT + M = 0:

+oo
La(M) = / e MeA L. (B.1)
0
Its adjointisC’, = £ 4r. SinceL , commutes with the transpose, thats,(M ™) =
(LA(M))T, then it also commutes withsymmetrizesS defined by
S(M) := (M + M")/2. (B.2)

The operatos : R™*™ — S, is the orthogonal projection onto the subspace of
real symmetric matrices of ordet

Lemma7. The Frechet derivatives of the controllability and obsdmity Grami-
ans P and @ of an asymptotically stable systefd, B, C') with respect to the

matrixI" := {é ﬂ are expressed in terms ¢f (B.1) and (B.2) as
P
P —2£aSIT 0], { BT]]}], (B.3)
orQ =2L2S[[Q CT], H I. (B.4)

Proof. The Frechet differentiability oP and( is ensured by the assumption that
Ais Hurwitz. The first variation of the algebraic Lyapunov atjon AP + PAT +
BBT = (yields

0= (§A)P + ASP + (0P)AT + PSA™ + (§B)B™ + BSB™*

= ASP + (§P)AT 428 ([M B [ gTD .
This is an algebraic Lyapunov equation with respectfowith the same matrix
A, which proves[(BB) in view of the identityd B] = [I 0] T'. The relation
(B.4) is obtained by a similar reasoning from the first vamiatof the Lyapunov
equation for the observability Gramidh or by using the duality betweeh and

Q. O
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Appendix C. Second Frechet derivative of the LQG cost
Lemma8. The second Frechet derivative of the squakgenormE := ||(A, B, C)||
B

of an asymptotically stable system with respect to the matri= [é 0 is

computed as
ORE :4ﬂ[H, [P BllLaS[[Q CT], H[ﬂ
+4mM 17 01LasSI[ 0], {é}]m

Q 0] (00 0 0 [P O
Al bR e e
Here, L4 and S are the inverse Lyapunov operator and symmetrizer ffom)(B.1

(B.2), andP, @ are the controllability and observability Gramians of thestem.

Proof. Lemmal2 implies that the first variation of the Frechet deiesor E is
computed as

_<|QP @B
58FE/2_5[CP 0}

:H 5Q [P B]+ {g} SPI 0] + {(500)}7 QgB}

Hence, [[C.11) is obtained by using the Frechet derivativeab®iGramians from

LemmdT of Appendix B and the identity

o 7= 0 Tl 3]+ o 3o )

Lemma9. The second Frechet derivative of the squakgenormE := ||(A, B, C)||3
of an asymptotically stable system with respect is

0

OAE = 4R, R = QLASP + PL 4 SQ. (C.2)

Here, Q := [@, I] andP := [I, P] are grade one self-adjoint operators (see
SectiorLT) of the left and right multiplication by the obsgity and controlla-
bility Gramians of the system.
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Proof. In view of Lemmd¥, the first variation @iy £ = 2Q) P with respect ta4d
is
00AFE = 2(QJP + (0Q)P)
= HQLAS((0A)P) + L4rS(Q(0A))P)

which establishe§ (4.2). Alternativelly, (C.2) can be altdifrom [C.1) of Lemmia8.
]

Note that at least some eigenvalues of the self-adjointadpeR in (C.2) are
positive, sinceR (A) = —Q P is the negative of the Hankelian, and, R(A)) =
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