arXiv:1107.5364v2 [math.NA] 14 May 2012

Interpolatory H., Model Reduction

Garret Flagg, Christopher Beattie, Serkan Gugercin
Department of Mathematics, Virginia Tech.
Blacksburg, VA, 24061-0123

e-mail: {flagg,beattie,gugercin}@math.vt.edu

November 13, 2018

Abstract

We introduce an interpolation framework for H., model reduction founded on ideas
originating in optimal-H, interpolatory model reduction, realization theory, and com-
plex Chebyshev approximation. By employing a Loewner “data-driven” framework
within each optimization cycle, large-scale H., norm calculations can be completely
avoided. Thus, we are able to formulate a method that remains effective in large-scale
settings with the main cost dominated by sparse linear solves. Several numerical exam-
ples illustrate that our approach will produce high fidelity reduced models consistently
exhibiting better H., performance than those produced by balanced truncation; these
models often are as good as (and occasionally better than) those models produced by
optimal Hankel norm approximation. In all cases, these reduced models are produced
at far lower cost than is possible either with balanced truncation or optimal Hankel
norm approximation.

1 Introduction

The need for high accuracy mathematical models in problems involving simulation and con-
trol often results in dynamical systems described by a large number of differential equations.
Working with such large-scale systems can easily place overwhelming demands on compu-
tational resources, a problem which model reduction methods seek to alleviate by approxi-
mating the original model with another model consisting of far fewer (but carefully crafted)
differential equations. Strategies for carrying out this approximation should be both efficient
and accurate. For an overview of model reduction, see [I].



We consider here single-input /single-output (SISO) linear dynamical systems given in state-
space form as:

Ex(t) = Ax(t) + bu(t), y(t) = z(t) + du(t), (1)

where E, A € R™" b,c € R” and d € R. FE is assumed to be nonsingular throughout,
although our approach extends without difficulty to cases where E is singular so long as
nullity(E) = nullity(E?) (that is, provided that 0 is a nondefective eigenvalue for E). x(t) €
R" are the states; u(t) € R is the input; and y(t) € R is the output of the dynamical system
in . The transfer function of the system is

H(s)=c"(sE - A)"'b+d,

defined for s € C. In accord with standard convention, we denote both the system and
its transfer function by H(s). We assume that H(s) is both controllable and observable.
The order of H(s) is the number of poles it possesses, counting multiplicity. Since E is
nonsingular, all poles of H(s) are finite and since H(s) is both controllable and observable,
the order of H(s) is identical to the dimension, n, of the state vector & in ().

We denote by H”_, the set of rational functions of order at most k which are bounded and
analytic in the closed right half plane in C. We assume in all that follows that H € H .
The H,, norm of H is defined as

11l = max | H(w) |- (2)

1

o 2
If the input function, wu(t), is square integrable: ||ul|zz = (/ | u(t) |2 dt) < 00, then

the output function, y(¢), of will be square integrable aso well; u and y have Fourier
transforms @, § € L*(R) that are related according to y(w) = H(jw)u(w). One immediately
observes that the H., norm defined in is an L2-induced operator norm of the underlying
convolution operator mapping u +— y.

Our goal is to construct another system
Er-"tr(t) = Arwr(t) + bﬂl(t), yr(t) = Cziﬂr(t) + dru(t) (3>

of much smaller order r < n, with E,., A, € R™*" b,, ¢, € R", and d,, € R determined so
that y, approximates y uniformly well over all u € L*(RT), in an appropriate sense.

Toward this end, define a reduced transfer function associated with (3)) as H,(s) = ¢ (sE, —
A,)7'b, +d,. Then, for any v € L*(R"),

ly = yellzz < |1H — Hellseo w22 (4)
The error transfer function, H(s) — H,.(s), may be rewritten as

H(s)— H.(s)=c"(sE—A)"'b— [c] (sE. — A,)"'b, + (d, — d)] .
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Evidently, a non-zero d-term in the original model may be absorbed into a reduced-order
model by assigning d, — (d, — d). This allows us to assume in all that follows that d = 0 in
the original model without any loss of generality.

In view of ({4]), the output error magnitude, ||y — y,|/z2, may be made uniformly small over
all bounded inputs u (say, with ||u|/p2 < 1) if we find a reduced system, H,, that makes
|H — H,||%., small. This leads naturally to the optimal Ho, model reduction problem:

For a given H € H and reduction order r < n, find H} € H/_, that solves

(5)

min
HyeHT,

‘H—Hr

Hoo

This problem is an active area of research [2]. We develop a methodology for approximating
solutions to that remain effective in large-scale settings, settings where the original state-
space dimension, n, could be on the order of 10° or more, for example. Most methods known
to us will be intractable even for modest system order, say, on the order of a few thousand
(with the exception of balanced truncation, see the discussion below).

Kavranoglu and Bettayeb [26] showed that can be converted into an optimal Hankel
norm approximation problem for a special imbedded system with augmented input and
output mappings. However, this approach is infeasible in practice since knowledge both
of the minimum of as well the imbedded system is required. As noted in [26], this
information is available (or computationally accessible) only in very special cases.

Several methods to solve that utilize linear matriz inequality (LMI) frameworks have
been presented as well; see, for example, [15], 25 24] 23, 41] and references therein. These
approaches rapidly become computationally intractable with increasing state space dimen-
sion. Indeed, published examples illustrating LMI-based methods in [I5], 25, 24, 23] 41] all
had order less than n = 10.

The most common practical methods for obtaining satisfactory H., reduced models are
Gramian-based methods such as balanced truncation (BT) [31, B2 and optimal Hankel norm
approzimation methods (HNA) [14]. Both approaches are known to yield small approximation
errors in the H,, norm [19, [I], though neither generally is capable of producing globally opti-
mal solutions to . Both approaches also remain computationally feasible for modest state
space dimension (perhaps a few thousand), but significantly larger state space dimension
still presents challenges. HNA requires an all-pass dilation of the full-order model followed
by a full eigenvalue decomposition. These are dense matrix operations, having a complexity
growing with O(n?), which generally limits problem sizes to a few thousand. Notably, [11]
was able to extend HNA to dynamical systems having state space dimension of O(10%), using
state-of-the-art numerical techniques tailored to high performance computer architectures.

The situation for BT is a bit better. BT has been applied to systems of order O(10°) by
solving the underlying Lyapunov equations iteratively using ADI-type algorithms; see, for
example, [20, 38|, B3], 10, B35, 22] and references therein.
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We describe here a different model reduction methodology that can be applied effectively
even for very large state space dimension, yielding reduced models typically having smaller
H, errors than either BT or HNA moreover, at significantly lower cost. Towards this end,
we present a new framework for the H,, approximation problem using interpolatory model
reduction. By connecting ideas from interpolatory H; model reduction [21], realization
theory [29], and complex Chebyshev approximation [39], we develop an interpolation-based
method for H-approximation that remains numerically efficient in large-scale settings. The
main cost of our approach involves the solution of sparse linear systems. We demonstrate
that our approach can yield reduced-order systems having H., errors which are often half
that of BT, and very close to (indeed, sometimes better than) that of HNA. For symmetric
systems, our method typically produces reduced-order systems with H.-errors that are near
the theoretical best possible of .

The rest of the paper is organized as follows: we close this section with a brief review of
interpolatory model reduction and related approaches for solving the optimal Hy approxi-
mation problem. We introduce our method in §2) and illustrate its effectiveness via several
numerical examples in §3

Interpolatory model reduction. Given a dynamical system H(s) and a set of points

{s1, s2, ..., Sk} C C, interpolatory model reduction produces a dynamical system H,(s)
such that H,.(s) interpolates H(s) together with a prescribed number of derivatives at the
points {s1, Sa, ..., sx}. Although this is posed as a rational interpolation problem, the

construction of a solution may be accomplished with a variety of rational Krylov subspace
projection techniques. Rational interpolation via projection was first proposed by Skelton
et al. [42] 44, [45]. Later, Grimme [16] showed how to construct a reduced-order (Hermite)
interpolant using a method of Ruhe.

Theorem 1.1 (Grimme [16]). Given H(s) = ¢’ (sE — A)7'b and a point-set S; C C
containing r distinct points: Sy = {s1,...,s.}, let

CT(SlE — A)il
V,=[(siE-A)'b...(s,E—- A" W= :

r

: (6)

cl'(s,E— A)™!

Define a reduced-order model HY(s) = ¢! (sE, — A,)"'b,, where d, = 0 and
E.=W!EV, A, =W'AV, b.=W'b, and c' =c"V,. (7)

Then H(s;) = H(s;) and H'(sy) = HY (sg), fori =1,...2r where' denotes the derivative
with respect to the frequency parameter, s.

Higher-order derivatives can be matched similarly; for details, see [16], 4].



‘Ho-optimality conditions. Theorem gives explicitly computable conditions that will
yield a reduced-order model satisfying 2r interpolation conditions; one need only solve 2r
linear algebraic systems to form the columns of V,. and W,.. Notably, Theorem carries no
hint of how best to choose these interpolation points. A method for determining interpolation
points that leads to reduced-order models that are (locally) optimal with respect to the H,
error was developed in [2I] and will be a point of departure for the approach we propose
here.

For a SISO dynamical system H(s), the Hy norm is defined as

i, = (s [ VoG Pas) ©)

[ee]

Then, for a given full-order model H(s), and selected reduction order r < n, the optimal Hs
approzimation problem seeks a reduced model, HE (s), that solves

H-H°

min
HoeMs

(9)

HQ'

The approximation problem ([9) has been studied extensively; see, for example, [30],[43],[21],
[36], [40], [17], [6], [7],[47] and references therein. First-order necessary conditions for Ho-
optimal approximation may be formulated in terms of interpolation conditions:

Theorem 1.2 ([30, 21]). Given a full-order model H(s), let H)(s) be an Ha-optimal reduced
order model of order r, with simple poles Ay, ..., \.. Then,

H(=X\) = H’(=X;) and H'(=\)=HY(=\) for i=1,...,r (10)

where " denotes differentiation with respect to the frequency parameter, s.

These necessary conditions characterize the Hy-optimal reduced order model as a rational
Hermite interpolant matching the full-order transfer function and its derivative at mirror
images of the reduced-order system poles. This can be accomplished with the help of Theo-
rem [1.1] once the poles of HY(s) are known. Of course, the poles of H?(s) are not known a
priori, but they can be computed iteratively using the Iterative Rational Krylov Algorithm
(IRKA) developed by Gugercin et al. [21].

IRKA is a fixed point iteration that in the SISO case typically exhibits rapid convergence to
a local minimizer of the Hs-optimal model reduction problem. Sparsity in E and A can be
well-exploited in the linear solves of Steps 2 and 3¢ and IRKA has been remarkably successful
in producing high fidelity reduced-order approximations in large-scale settings; it has been
applied successfully in finding Hy-optimal reduced models for systems of high order (e.g.,
n > 160, 000, see [27]). For details on the algorithm, we refer to the original source [21].



Algorithm IRKA. [terative Rational Krylov Algorithm [21)]
Given a full-order H(s), a reduction order r, and convergence tolerance tol.

1. Make an initial selection of interpolation points s;, for = 1,...,r that is
closed under complex conjugation.

2. Construct V, and W, as in @ with s;y, =s; fore=1,...,r
3. while (relative change in {s;} < tol)

a) E,=WTEV, and A, = WTAYV,

b) Solve r x r eigenvalue problem A,u = \E,u.

c) Assign s; = ;1 < —N(A, E,) fori=1,...,r.

d) Update V, and W, as in (0)) using new {s;}.

4. E,=WTEV, A, =WTAV, b, = Wb, ¢’ ="V, and d, = 0.

2 An interpolatory approach for H. approximation

The principal result that defines the character of our approach was provided by Trefethen
in [39]; it is an analog to the Chebyshev Equioscillation Theorem.

Theorem 2.1 (Trefethen [39]). Suppose H(s) is a transfer function associated with a dynam-
ical system as in (1)). Let HP'(s) be an optimal Ho approzimation to H(s) (i.e., a solution
to (8) ) and let H,(s) be any v order stable approzimation to H(s) that interpolates H(s)
at 2r + 1 points in the open right half plane. Then

min |H () — H(w)| < |H — HP I < [1H — Hellue
In particular, if |H(jw) — H,(jw)| = const for all w € R then H.,(s) is itself an optimal Ho
approzimation to H(s).

One sees from this that a good H. approximation will be obtained when the modulus
of the error, |H(s) — H,.(s)|, is nearly constant as s = jw runs along the imaginary axis.
We select 2r + 1 interpolation points in the open right half plane that will induce this. By
utilizing Theorem we may locate 2r interpolation points in the right half plane as we like,
producing an interpolating reduced-order system, H?(s). Also, H(cc) = H?(0o) = 0 so we
can exploit the freedom in choosing d, to move the (2r+1)% interpolation point from oo into
the open right half-plane. Note that the straightforward construction, H,(s,d,) = H?(s)+d,,
creates a reduced-order model that has all interpolation points depending on d,. We prefer a
different formulation that uncouples the 2r interpolation points associated with H?(s) from



the influence of d,.. The construction that accomplishes this was introduced in [29] (see also
[5] for a formulation close to what we use here).

Theorem 2.2. Given H(s) = ¢’ (sI — A)™'b and a point-set S C C containing r distinct
points: S = {s1,...,s:}, let V,, W,, E,, A,, b,, and ¢, be defined as in Theorem[1.1 For
any given d, € R, define a new reduced-order system

H,(s,d,) = (¢, — d.e) (sE, — A, — d.ee’) (b, — d,e) +d, (11)
where e denotes a vector of ones. Define auxiliary reduced systems:

H(s) = cl(sE. — A,)"'b,, Gi(s) = e’ (sE, — A,)"'b,,
Gy(s) =cl(sE. — A,)'e, and Gs(s) = el (sE,. — A,) 'e.

Then
(Gi(s) = 1)(Ga(s) — 1)

_ 170
Hy(s,dr) = H;(s) + dvi——7— d,Gs(s)

(12)

and for all d, € R
H(s;) = HY(s;) = H,(s5,d,) and H'(s;) = H(s;) = H\.(s;,d,) for i=1,...,r

where " denotes the derivative with respect to the frequency parameter, s.

PROOF: The expression follows from ([11]) with straightforward manipulations that begin
with the Sherman-Morrison formula:
d

E —A —dee)'=G6E, -A) '+ —————
(s ee’) (s ) +1—er3(s)

(sE, — A,) 'ee’ (sE, — A,)™*

Define P(s) = V,(sE, — A,)"'WT(sE — A). Observe that P(s) is a (skew) projection onto
Ran(V,) for any s € C for which it is well-defined and so we have
VTek :P(sk)V}ek = [‘/;‘(SkEr — Ar)ileT(SkE — A):| (SkE — A)ilb
=V,(sLE, — A,) "W b= V,(s;,E. — A,)"'b,
Linear independence of the columns of V, then implies e, = (s, E, — A,)"'b, and thus,

Gi(sg) =1, for k=1,2, ..., r. A similar argument yields Go(sg) =1, for k=1,2, ..., r.
Taken together, we get that H'(s;) = H,(s;,d,) for i =1, 2, ..., r. Likewise,

d;G4(s) G1(s)(Ga(s) = 1) |, (Gi(s) = 1)Gi(s)

H'(s,d,)—H%(s) = W(Gl(s)—l)(G2(5)—l)+dr 11_er3(3) e

1-— erg(s)
so that HY(s;) = H/(s;,d,) as well. O

Let {H.(s,-)}4, denote the set of all transfer functions H,(s, d,) with d, ranging over R. The
freedom we have in choosing d, is significant to us for at two reasons. First, {H,(s,)}q, is a
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parameterization of the set of all proper rational functions of degree r having real coefficients
that satisfy the same interpolation constraints as HC(s) (see e.g., [29]). Second, it is now
possible to construct reduced-order models of order r satsfying 2r+1 interpolation conditions,
which is an essential step towards constructing reduced-order models that are optimal in the
Hoo-norm. Since H,.(s,d,) interpolates H(s) at si,..., sy, for any d,, one could select an
additional (real) interpolation point, sg.11 > 0 and directly calculate from the value of
d, that enforces H,(soqy1,d,) = H(S941):

H(82r+1) - HS(SQ’I‘-‘,-l)
(Gi(s2r41) = 1)(Ga(s2r41) — 1) + Ga(s2011) (H (S2041) — HP(52011))

We avoid the necessity of explicitly selecting ss,..1. Instead, as discussed below, d, will be
chosen directly to decrease the H,, error.

d, =

2.1 An algorithm for H, approximation

It has been observed (e.g., see [21],[4]) that Hs optimal interpolation points produced by
IRKA yield reduced models that are not only (locally) Ho-optimal but frequently also are
high-fidelity H., approximations to the original system. Indeed, Hs-optimal models pro-
duced by IRKA yield H,, error norms that are comparable to that of BT and sometimes are
even better. Therefore, our approach begins with Algorithm IRKA to obtain 27 interpolation
points (counting multiplicity — Hermite interpolation at r distinct points) determining an
Hs-optimal reduced model, H?(s). This choice for H?(s) defines a family of approximations
parameterized by d,., {H,(s,)}a.. We then proceed by (approximately) minimizing the H
error with respect variations in d,.. These steps are summarized below:

Algorithm IHA. Interpolatory Ho, Approximation:
Given a full-order model, H(s), and reduction order, r.

1. Apply Algorithm IRKA to compute 2r Hy-optimal interpolation points and an
associated Ha-optimal reduced model, H?(s).

2. Find d; = arg gni% |\H — H,||,,  where H, = H,(s,d,) is defined in 1}
€ >

3. Construct the final H, approximant as H(s) = H,(s,d}).

The distribution of interpolation points obtained in Step 1 (as an outcome of Hs-optimal
approximation) yields very effective H., approximants as well. We therefore wish to preserve
these interpolation points using Theorem while varing the d, parameter in such a way
as to drive down the H, error - centering the error curve about the origin in the process.
H(s) will denote an ‘H, approximant having 1) an #, optimal pole distribution (from Step
1 of Algorithm IHA) and 2) an optimally chosen d (from Step 2).
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2.2 Efficient Implementation of Step 2 of Algorithm IHA

The major contributions to the cost of IHA come from linear solves arising in Step 1 (from
IRKA) and the H., norm evaluations required in solving the (scalar) nonlinear optimization
problem in Step 2. H. norm evaluation involves repeated solution of several large-scale
Riccati equations of order n + r. Solving even a single Riccati equation, let alone several,
will be a formidable task when n is on the scale of tens of thousands or larger, the range
of system dimension of interest here. We describe below an effective strategy to circumvent
this difficulty.

The optimization problem of Step 2 can be rewritten (from Theorem as

d,(G1(s) = 1)(Ga(s) — 1)
1— erg(S)

. o 0 o
min | H(s) — H,(s)

Hoo
where H?(s) is a reduced-model obtained by IRKA in Step 1 of Algorithm IHA.

If one can find a reduced-order approximation, Fy(s), to the error system, F'(s) = H(s) —
H?(s), having modest fidelity and order k& < n, then an associated optimal d,-term could
be efficiently calculated by solving the (comparatively) low order optimization problem

min d,(Gi(s) = 1)(Ga(s) — 1)
dreR 1 — erg(S)

Fk(S) —

(13)

Hoo

Provided k£ < n, the cost of solving will be negligible compared to that of original
problem. Of course, whatever advantage this strategy may bring could be nullified if the
cost of obtaining Fy(s) is significant. By using a Loewner matrix approach developed by
Mayo and Antoulas [29] and described briefly below, we are able to obtain Fy(s) at negligible
cost relative to the computational demands already incurred in Step 1. We reuse information
obtained in the course of IRKA in Step 1 to obtain, for negligible additional effort, a reduced
error model Fj(s) having modest fidelity, adequate for the demands of Step 2.

Suppose we have evaluated the error system, F'(s), and derivative, F”(s), on a set of distinct
points {s1, S2, ..., $¢} C C. We will construct from this data a reduced order surrogate,

~

Fi(s) = ¢l (sE), — Ak)_l/l;k so that

F(s;) = Fy(s;) and F'(s;) = F(s;) for i=1,2,... (.

The Loewner matrix approach as developed by Mayo and Antoulas [29] permits “data-
driven” model reduction; one need not have access to state-space matrices determining a
realization of the full order system. Only “response measurements” are used, that is, transfer
function evaluations. Reduced-order models will be constructed directly that interpolate this
“measured data”.



Define matrices L € c*¢ and M € c**¢ as

F(si) — F(s;) siF'(si) — s;F(s;)

if i1#£7 if 1#£7

L) =q 77 (M), := Y (14)
F'(s;) if i=j [sF(s)]'] o—s, if i=95

L is the Loewner matrix associated with interpolation points sy, ss, ..., s, and the dynamical

system F'(s); M is the corresponding shifted Loewner matriz (see [29] for details). Once L
and M are constructed, assume that the interpolation data satisfy the following assumption:

rank (s, — M) = rank[L M] — rank { v ] (15)

fori=1,2,...,¢. For SISO systems, this assumption holds whenever an interpolant of order
r = rank (s;L. — M) exists [29]. For MIMO systems, this assumption is also generically valid,
but details are more involved; the interested reader should see Lemma 5.4 of [29].

In light of , a rational Hermite interpolant is constructed by first choosing k so that
rank [ L ] > k. Then for some choice of 1 <17 < ¢, compute s;I. — M = YOX™, the SVD

M
of s,L—M. Let Y}, € ¢”* and X, € C** denote the leading k columns of Y and X, respec-
tively (associated with a truncated SVD of order k). Let Z = [F(sy), F(s2) ,..., F(s¢)]"
and define

Ey=-YLX,, A,=-YMX,, b,=YZ, ¢ =2"X,,

and Fy(s) = Ef(sﬁk - Ek)_lgk. k may be considered as a truncation index here. Depending
on whether k is chosen so that k = rank (s;IL. — M) or k < rank (s;L. — M), Fy(s) will then be
either an exact or an approximate interpolant, respectively. In practice, one should choose k
no larger than the numerical rank of s;I. — M, which can be determined by a Singular Value
Decomposition (SVD) of s;I. — M. See [29] for a full development of these ideas.

Observe that until convergence occurs within Step 1 of Algorithm IHA, every cycle of Step 3 in
Algorithm IRKA will provide a sampling of H(s) and H'(s) at r interpolation points — generally
a different set of interpolation points in each cycle. (Step 3 of Algorithm IRKA constructs a
Hermite interpolant on a set of r interpolation points that is cyclically adjusted.) Suppose
that Algorithm IRKA takes ¢ steps to convergence. When Step 1 of Algorithm IHA concludes,
we will have had H(s) and H'(s) sampled at a total of £ = ¢ x r interpolation points. We
collect these interpolation points and transfer function evaluations throughout IRKA. Once
IRKA converges, (yielding an Hy-optimal model, H?(s)), we evaluate H? and H?' at these
¢ points as well. Since the order of H?(s) is r, the cost of these function evaluations is
negligible. After the completion of Step 1 of Algorithm IHA, we have an /¢-fold sampling
of both F(s) = H(s) — H%(s) and F’(s) with virtually no additional computational cost
beyond what was needed for Step 1 itself. Then, we simply apply the Loewner matrix
approach described above to construct Fy(s). The choice of k will be clarified via numerical
examples in §3|
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Numerical Cost of IHA. Note that once Step 1 of Algorithm IHA is completed, Step 2 is
not computationally intense. The cost is dominated typically by an £ x £ SVD computation
with ¢ = ¢ x r. Since IRKA typically converges rather quickly (especially so in the SISO
case focused on here), ¢ is generally modest in size. In all of our numerical examples, we
have never needed to compute an SVD of size larger than 200 x 200; a trivial computation.
Moreover, in all of our numerical examples k£ never exceeded 33; making the solution of the
optimization problem in Step 2 quite cheap. The overall cost of IHA is only marginally more
than that of IRKA and is dominated by the same sequence of sparse linear solves.

Stability of the reduced model: The asymptotic stability of H, in Step 2 may be
enforced by adding a penalty function to the cost function penalizing values of d, that yield
systems having poles too close to the imaginary axis. The optimization algorithm would then
automatically reject d, terms that cause unstable eigenvalues in the pencil sE, — A, —d,ee’.
Alternatively, one may simply calculate and check the eigenvalues of this r x r pencil to
determine whether to accept a d, on the basis of stability. In our numerical examples, we
simply reject d,. values that cause unstable reduced models by setting the corresponding the
function value to co. We always obtained a stable reduced-model as a result but there are
better, more effective numerical strategies to perform this task. For example, a logarithmic
barrier function that takes the real part of the pole closest to the imaginary axis as its
argument. These numerical issues will be studied in a separate work where we extend the
method to the MIMO as discussed next.

Application to MIMO systems: Algorithm IHA, together with the results of Section 2.2,
can be easily generalized to the MIMO case. In the MIMO case, IRKA enforces bitangential
interpolation conditions at the reflection of the reduced-order poles across the imaginary
axis. A complete account of Hs optimal model reduction and IRKA for MIMO systems can
be found in [4]. These interpolation conditions can be enforced while varying the D-term
of the reduced-order system. See Theorem 3 in [5] for a complete description of how to
construct the bitangential interpolant while varying the D-term; thus the theory in this
paper directly generalizes to the MIMO case. The optimization step involving the matrix
D € RP*™ however, is more involved than its scalar counterpart for SISO systems and a
robust numerical implementation is the subject of ongoing research.

3 Numerical Experiments

We illustrate here the performance of IHA on various benchmark models for model reduction
and compare its performance with that of balanced truncation (BT) optimal Hankel norm
approximation (HNA), and Iterative Rational Krylov Algorithm (IRKA). We note that generic
BT yields d,. = 0, a null feed-forward term. Therefore, in order to present a fair representation
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for BT, we add a final step that varies the d, term in the BT model as well; we use d, that gives
the minimum H., norm. We refer to BT with this optimally chosen d, term as “modified
balanced truncation” (or MBT).

3.1 PEEC Model

The full-order system is the spiral inductor system PEEC model [12] of order n = 1434. The
system is state-space-symmetric (SSS), i.e. the transfer function H(s) = ¢’ (sE — A)~'b
satisfies E = ET > 0, A = A" and ¢ = b. SSS systems appear in many important
applications such as in the analysis of RC circuits, and has been the subject of several
model reduction papers; e.g, see |28 37, 34 [46]. We first illustrate the effect of the d,-term
modification for MBT and for Step 2 of Algorithm IHA. In MBT, once the initial BT phase is
completed, we vary d,. and measure the resulting changes to the H., error. For IHA, once the
IRKA phase in Step 1 is completed, we vary the d, term (inducing corresponding changes to
A,, b, and c, as in Theorem and once again measure the resulting changes to the H.,
error. Note that calculation of H,, error is for illustration only and is not used by IHA to
compute the optimal d,-term. Results are shown in Figure [I| for r = 2. As the figure shows,
there is essentially no improvement in MBT that comes from adjusting d,., however for IHA
the error is reduced by a factor larger than two. Even though at the starting point, d, = 0,
the Hy-optimal approximation has higher H., error than does BT at d. = 0, IHA is able
to reduce the H., error to a value significantly lower than that for MBT through d,-term
optimization, at virtually negligible computational cost. In Figure|ll the point d,, = 0 on the
curve for IHA gives the value of the H, error produced by IRKA. Note that the H., error for
IHA is less than half of that for IRKA. This behavior is common to all the numerical examples
that follow.

Before presenting the comparisons between IHA, MBT, and HNA, we illustrate the efficiency
of the methodology outlined in in solving the optimization problem in Algorithm IHA; in
other words in finding the optimal d,-term in Figure[I} For the three r values r = 2,4, 6, we
implement IHA both by exactly solving Step 2 and by the method of §2.2] Table [I] tabulates
the results where the resulting optimal d, values and the H, error norms for both methods
together with the order-£ used in method of are listed. As the table clearly illustrates
that the Loewner matrix approach yields d, terms and the H., error norms which are very
close to true-optimal values of the underlying optimization problem in Step 2 of Algorithm IHA.
More importantly, this is achieved with negligible computational cost where the function
evaluations are the H,, norm computations for an order k system only as opposed to order
n + r. One pattern we have observed via several SSS models is that £ = 2r 4+ 1 is a natural
choice. This pattern repeated itself for every SSS example we have tried. There was a clear
cut-off point in the singular values of the matrix s;L. — M at (27 + 1) singular value. The
decay of these singular for all three r values are shown in Figure [2| supporting the £ = 2r +1
choice.
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Figure 1: Comparison of the H., Error as the d.-term varies for IHA and MBT

Table 1: Solution of the optimization problem in Step 2

Exact Loewner
" ; [H — Hln & [H — Hllw. *
2 1 6.9577 x 1072 4.4522 x 1072 | 6.9659 x 1072 4.4574 x 10~2 5
41 1.0041 x 107* 8.6577 x 1072 | 1.0076 x 10~* 8.7114 x 10™°> 9
6| 2.7795 x 1076 4.4771 x 1076 | 2.7804 x 107 4.4857 x 107 13

Next, to compare IHA, MBT, and HNA, we reduce the order of the system to r = 2,4,6.
The resulting relative H, error values together with the lower bound (i.e. o,41/||H| 3.,
where 0,1, denotes the (r + 1)** Hankel singular value of H(s)) are listed in Table 2] The
lowest error value for each r is shown in bold font. For every r, IHA outperforms MBT by
almost a factor of two. Also it performs very close to HNA, indeed outperforms it for r = 4.
This shows the strength of the proposed method. Without solving any Lyapunov equations
and without the need for any large-scale ‘H., norm computation, our methods consistently
outperforms BT by a significant amount and performs as nearly as and sometimes better
than HNA. Note that H., error values for IHA is very close to the lower bound given by
ori1/||H||#.., .- We can relate this to Theorem for each order of approximation shown in
Table [2], the reduced-model due to IHA results in exactly 2r + 1 interpolation points in the
right-half plane and a nearly circular error curve as illustrated in Figure|[3|. 2r of these zeros
result from IRKA; indeed these are r distinct zeroes with multiplicity 2. Then, the (2r + 1)
zero is obtained by introducing the d, term. For example, for the case r = 6, computing the
optimal d,-term in turn placed an additional zero at the point 6.60 x 108.
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Figure 2: The decay of the singular values of s;I. — M for PEEC Model

Table 2: Relative H, error norms for the PEEC Model

IHA MBT HNA | Lower bound
445 x107% 821 x10% 3.95x1073| 3.72x 1073
8.66 x 107° 278 x10™* 124x107* | 7.79x 107°
448 x107° 816 x107° 3.41x107%| 3.15x107°

O = N3

Note that the findings in this SSS example are common to all other SSS examples we have
tried. The H., error due to IHA has always been around half of MBT, and k£ = 2r 4+ 1 has
been a clear cut-off point for the Loewner matrix approach. Due to space limitations, we
omit these examples. For some other SSS examples, we refer the reader to [13].

3.2 CD Player Model

Next, we demonstrate the proposed method on the CD player model of order n = 120. For
details on this model, see [3, 12]. We reduce the order to r = 2, 4,6, 8, 10 using IHA; stopping
at r = 10 as the relative error fell below 1073, As for the previous example, we compare
the effect of solving the optimization problem in Step 2 of Algorithm IHA exactly versus by
the method of The results are listed in Table [3 As for the previous case, the Loewner
matrix approach yields H., error norms which are very close to the true optimal values of
the underlying optimization problem. Once again, the function evaluations are much simpler
as k never exceeds 33. In this example, we chose the value of k£ as the normalized singular
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Figure 3: The Nyquist plot of the error system H — H for PEEC Model

values of s;I. — M drops below the tolerance of 107°. Figure 4| shows this decay behavior for
r=4 and r = 6.

Table 3: Solution of the optimization problem in Step 2

Exact Loewner
r dy [H — Hy |l dy |1H — H|n &
2 | —3.6728 3.6597 x 10~ | —3.6545 3.6604 x 10~1 2
4 3.5019 x 1071 2.1318 x 1072 24819 x 1071 2.1422 x 1072 20
6 2.9538 x 1071 1.0155 x 1072 2.0763 x 1071 1.0426 x 1072 25
8 1.3888 x 107! 4.8357 x 1073 1.3625 x 1071 4.8526 x 1073 32
10 | —3.5750 x 1072 8.5384 x 107* | —3.2438 x 1072 8.9952 x 10~* 33

Next, we compare IHA with MBT and HNA. The results are illustrated in Table 4| where the
minumum value for each r is shown in bold font. Note that for every r value, the proposed
approach outperforms MBT. Moreover, except for the r = 2 and r = 4 cases, IHA outperforms
HNA as well.

Before moving to the next example, we illustrate the effect of the d,-term modification in
our proposed method as opposed to MBT. In Figure [, we show how the absolute H.-error
changes both in IHA and in MBT as we vary the d,-term for » = 10. In both cases, d, = 0 is the
starting point. While the H -error reduces marginally from 0.0905 to 0.0852 in MBT-only
a 5.86% reduction, the gain is much more significant in IHA where we reduce the H..-error
from 0.0938 down to 0.0585, a significant 37.67% reduction in the H., error. Even though
the Hy-optimal approximation has a larger H., error at the starting point, d,, = 0, than does
the BT approximation, the d,-term optimization in IHA will produce a final H., error that is
significantly lower than that produced by the corresponding d,-term optimization in MBT.

15



Normalized singular values of sL-M
10 T T T T

5 10 15 20 25

Figure 4: The decay of the singular values of s;L — M for the CD Player Model

Table 4: Relative H,,-norm Error norms for the CD Player Model

r IHA MBT HNA
2 | 3.66 x 107" 3.68x 107! 3.35 x10°!
4 1 214%x1072 225x107%2 2.00 x 102
6 |1.04x10°2 1.19x1072 1.23x 1072
8 | 485 x10°% 6.40x 10~% 5.99 x 1073
10 | 899 x107% 124 x 1073 1.08 x 1073

3.3 Heat Model

The full-order model is a plate with two heat sources and two points of measurements, and
described by the heat equation as explained in [3,[18]. A model of order n = 197 is obtained
by spatial discretization. We choose a SISO subsystem corresponding to the first input and
first output. Using IHA, we reduce the order to r = 2,4 and r = 6. As in the previous
examples, we first tabulate, in Table [5] the results for solving the Step 2 of Algorithm IHA
exactly and by the method of The conclusion is the same as before: The Loewner
matrix approach yields H., error norms and optimal d, values which are very close to the
true optimal values of the underlying optimization problem in Step 2 of Algorithm IHA, indeed
exact to the fifth digit for the r = 6 case. The decay of the singular values of s;IL. — M is
shown in Figure [6] illustrating the choice of k. Only the r = 6 case is presented; the other
cases show the same pattern.
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Figure 5: H, error as a function of the d,-term in MBT and IHA

Table 5: Solution of the optimization problem in Step 2

Exact Loewner
r dy [ H — Hy [l dy [ H — Hflu., Kk
2| —2.0694 x 10~ 1.0710 x 1072 | —2.0700 x 10~' 1.0711 x 102 7
4 2.0875 x 1072 8.9082 x 10~* 2.0813 x 1072 8.9166 x 107* 9
6 | —5.6250 x 107* 2.3578 x 107° | —5.6250 x 10~' 2.3578 x 10~® 13

Results for comparison with MBT and HNA are shown in Table [6] Once more, the proposed
method consistently yields better H., performance than MBT. Even though for r = 2 the
proposed method leads to smaller H, error, for » = 4,6, HNA yields slightly better re-
sults. Hence, for this example as well, using interpolatory projections, we are able to beat
MBT consistently and yield results comparable to or better than that of HNA. Indeed, this is
satisfactory since, as stated in the introduction, for the large-scale settings we are interested
in, implementing HNA will be a formidable task, if not impossible.

As done in the previous examples, we illustrate, in Figure [7| the behavior of the absolute
Hoo-error while optimizing over the d,-term in both IHA and MBT. In this case, MBT almost
gains nothing from the d,-term modification, as the H.-error is reduced from 1.0897 x 1073
only to 1.0894 x 1073, a marginal gain of 0.027%. On the other hand, IHA reduces the H.-
error from 1.26 x 1072 down to 5.46 x 10™*, a reduction factor of 56.89%. Once again, this
reduction in the error is achieved even when the initial H..-error is bigger than that of BT,
providing a clear illustration of the effectiveness of the d,.-term optimization in the proposed
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Figure 6: The decay of the singular values of s;I. — M for the Heat Model

Table 6: Relative H, error norms for the Heat Model

r IHA MBT HNA
2 1.08x10°2 166x102 1.11x 102
4 892x107* 1.68x 1072 847 x 104
6 2.30x107° 4.61 x107® 2.07 x 107°

method.

To illustrate the importance of using the IRKA points in Step 2 of Algorithm IHA, we use
arbitrarily chosen interpolation points (within the bounds of the mirror spectrum of the full
order A) rather than the IRKA points. Then, we apply the same d,-term modification as
before. For r = 6, for example, the resulting relative H-error is 1.72 x 1073, two order
of magnitudes higher than what we obtain using the IRKA points. This simple example
illustrates the advantage of initializing Step 2 of Algorithm IHA with points computed by
IRKA. We want to emphasize that these arbitrary interpolation points are indeed used to
initialize IRKA. Hence, IRKA corrects these arbitrarily chosen points, producing interpolation
points that are used to obtain an H.,-error norm two orders of magnitude smaller.

3.4 A Heat Transfer Problem in the Cooling of Steel Profiles

This model describes a cooling process in a rolling mill which has been modeled as boundary
control of a two dimensional heat equation. The full order model has n = 79841 with 7
inputs and 6 outputs. We consider a SISO subsystem corresponding to the sixth input and
the second output. For details regarding this model, see [8,[9]. For such a large order, imple-
menting HNA is not possible. BT can be implemented iteratively using ADI-type methods;
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Figure 7: H, error as a function of the d,-term in MBT and IHA

however this requires state-of-the-art iterative Lyapunov solvers (two generalized Lyapunov
equations of order n = 79841 need to be solved) and is not the focus of this paper. Hence, we
concentrate only on the performance of the proposed method and compare it with IRKA to
show the improvement by the d,.-term optimzation. IRKA in Step 1 of Algorithm IHA is im-
plemented in Matlab using direct sparse linear solves. Once again, we consider the solution
of the optimization problem in Step 2 of Algorithm IHA using both approaches, i.e., directly
solving the large-scale optimization problem versus using the method of The results are
shown in Table[7|and reveal the same pattern as before. Note that the direct solution of this
scalar optimization problem requires several H,, norm computation for a system of order
79841 + r. This is computationally intractable, so the H., norms for the direct method are
computed approximately by sampling along the imaginary axis at 500 points, logarithmically
spaced points between 10~® and 10. This is not an issue for the Loewner matrix approach
since H.-norm computations are done on surrogate error systems of order k; which does not
exceed 13 for this example. The decay of the singular values of s;I. — M is shown in Figure

Table 7: Solution of the optimization problem in Step 2

Exact Loewner
& - | & I — Ml
1.0189 x 1072 6.3715 x 10! 1.2685 x 1072 6.3725 x 10~ 7
—1.0500 x 1075 7.4620 x 1072 | —5.3232 x 10™° 7.5483 x 1072 12
—1.6859 x 107° 5.4567 x 1072 | —1.6849 x 107° 5.4592 x 1073 13

O = N3
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B, indicating a natural choice for k. Only the r = 6 case is presented; the other cases show
the same pattern.

Normalized singular values of sL - M for r=6
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Figure 8: The decay of the singular values of s;I. — M for the Cooling Steel Model

We compare the performance of IHA with that of IRKA for r = 2,4,6, to illustrate the
improvement offered by optimizing over the d,-term. The results are listed in Table [§] As
expected, IHA outperforms IRKA for every r-value.

Table 8: Relative H, error for the Cooling Steel Model, order = 79841

IRKA IHA
6.46 x 1071 6.37 x 1071
1.80 x 10~' 7.46 x 1072
1.40 x 1072 5.46 x 1073

O = N3

In Figure [0, we demonstrate how the absolute H, error changes over values of d,., for the
order r = 6 approximation. In this case, the H..-error is decreased by over a factor of two,
from 2.58 x 10~* down to 1.09 x 10~*. We also note that, for r = 6, computing the optimal
d* term placed an additional interpolation point at 2.44 x 1072, yielding exactly 2r +1 = 13
interpolation points in C, as suggested by Theorem Recalling Theorem in Figure
we demonstrate how this additional interpolation condition therefore results in a tighter,
more circular Nyquist plot, which is equivalent to the image of the error along the imaginary
axis being nearly circular.
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Figure 9: H., error as a function of the d,-term
4 Conclusions

We have introduced an interpolation-based model reduction technique to construct high-
fidelity H., approximations for large-scale linear dynamical systems. For a given order r, r
Hermite interpolation points are produced that induce (locally) optimal Hy approximation.
The d, (feed-forward) term is then adjusted in a such way that interpolation at these initial
2r points is retained while an additional interpolation point is added that minimizes the H .-
error norm. By employing a data-driven Loewner approach, this last step may be performed
at negligible cost; no large-scale H,,-norm computations are ever needed. The dominant
cost of the method lies with the solution of sparse linear systems. Four numerical examples
show that the proposed method produces high fidelity H., reduced-order models that are
better than those obtained by balanced truncation; and as good as (and sometimes better
than) those obtained by optimal Hankel norm approximation; in all cases, at much lower
computational cost.
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