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Abstract

In this paper, we are concerned with the controllability of a chemotaxis system of parabolic-

elliptic type. By linearizing the nonlinear system into two separated linear equations to bypass

the obstacle caused by the nonlinear drift term, we establish the local null controllability of the

original nonlinear system. The approach is different from the usual way of treating the coupled

parabolic systems.
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1 Introduction and main result

In this paper, we are concerned with a controlled initial-boundary value system of parabolic-elliptic

type






























∂tu = ∇ · (∇u− χu∇v) + 1ωf in Ω× (0, T ),

0 = ∆v − γv + δu in Ω× (0, T ),

∂νu = 0, ∂νv = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x) x ∈ Ω,

(1.1)
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where and henceforth u and v are shorthands for states u(x, t) and v(x, t) at time spacial position

x ∈ Ω and time t ≥ 0, ∂t = ∂/∂t, ∂ν = ∂/∂ν is the directional derivative along the outward unit

normal vector ν on ∂Ω, 1ω stands for the characteristic function of ω, f is the control function, u0

is the initial value, χ, γ and δ are given positive constants.

The system (1.1) without the control (i.e., f ≡ 0) is a simple chemotaxis system, which was

addressed by Keller and Segel [14] as a model to describe the aggregation process in slime mold

morphogenosis, assuming that the cells emit directly the chemoattractant which is immediately

diffused. The unknown function u then denotes the cell density, whereas v represents the concen-

tration of the chemoattractant. The validity of Keller-Segel’s chemotaxis system is supported by

some experiments on the Escherichia Coli bacteria and other interesting physical interpretations.

In fact, it has been extensively involved in many medical and biological applications as well as some

relevant areas such as ecology and environment sciences. Moreover, because the model has a rich

structure from mathematical point of view, it deserves to be challenged. Actually, some special

but interesting cases have been studied such as the aggregation, the blow-up of solutions, and the

chemotactic collapse. Some significant results have been achieved from different perspectives. We

refer to [11] (also [12]) for a survey where a quite complete bibliography on the topic is included.

In this paper, we study the Keller-Segel system from the controllability point of view. We say

that the system (1.1) is locally null controllable at time T , if there exists a neighborhood of the

origin such that for any initial data u0 belonging to this neighborhood, the solution (u, v) of (1.1)

produced by corresponding control function f satisfies u(x, T ) = 0 for almost all x ∈ Ω, where the

neighborhood and the control function space will be specified later. Here, we consider the local

null controllability instead of the exact null controllability. The reason being interested is that the

solutions of Keller-Segel system may blow up in either finite time or infinite time, which is shown

in [10] for the 3-d case. The 2-d case is even more interesting and attractive. Actually, it has been

found for the 2-d case that the solution exists globally in finite time when the mass of the initial

value is less then a threshold value, while the solution will blow up either in finite or in infinite

time when the mass of initial value is larger than the threshold value (see, e.g., [13]).

The study of the controllability for parabolic equations has been thriving in the past decade, see

for instance [5, 8] and the references therein. Among them, a special interest is on the controllability

of coupled parabolic systems. For coupled systems, the most practical situation is to impose the

control force on one equation, which has attracted intensive attention in the last few years. We

refer to a survey paper [2] wherein abundant references are provided.

However, to the best of our knowledge, very few results are available to the control problems

of the Keller-Segel system (1.1) where a parabolic equation is coupled with an elliptic equation

through a drift term. Very recently, the null controllability of a kind of nonlinear parabolic-elliptic

system of the following is considered in [7]:






∂ty −∆y = F (y, z) + 1ωf in Ω× (0, T ),

−∆z = f(y, z) in Ω× (0, T ),
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where F (y, z) and f(y, z) are nonlinear terms. In [16], an optimal control problem of the system

(1.1) with the control to be imposed on the second equation is considered. Our previous work

[9] is the first work that considers the local exact controllability of a type of Keller-Segel system

where a parabolic equation couples with another parabolic equation. In the present work, we

attempt the controllability of system (1.1), which is probably the first work for this system. In

the system (1.1), since the drift term −χ∇ · (u∇v) destroys some good properties of the diffusion

operator which ensure the regularity of the system, much more mathematical difficulties than the

aforementioned coupled parabolic systems are caused. These include the regularity, the estimation

of the “observability inequality”, and many others. The usual way to establish the controllability of

a nonlinear system is to linearize the nonlinear system into some coupled linear ones. Then, by the

combination of the controllability result of the linearized system and some fixed point results, one

is able to establish the controllability of the nonlinear system. We refer to the typical works [7, 9]

for the approach of this kind. In this paper, we investigate, however, the controllability of system

(1.1) in a different way motivated intuitively by the special mathematical structure of system (1.1).

We may decompose this nonlinear system into two separated linear systems: one is a controlled

parabolic system, and another one is an irrelevant elliptic equation. In such a way, we can bypass

the obstacle caused by the nonlinear drift term. This technique would be useful for other coupled

systems like drift-diffusion equations from the semiconductor device.

Throughout the paper, Ω ⊂ R
N (N ≥ 1) stands for a bounded domain with smooth boundary

∂Ω, ω is a nonempty open subset of Ω, and T > 0. Q = Ω × (0, T ), Σ = ∂Ω × (0, T ), and

Qω = ω × (0, T ). The norms of the usual Lebesgue function spaces Lp(Ω) and Lp(Q) are denoted

by | · |p and ‖ · ‖p, respectively. W s,q(Ω), W 2,1
q (Q), C2,1(Q̄) and Cα(Ω̄) (s, α ≥ 0, 1 ≤ q ≤ ∞)

represent the usual Sobolev spaces (see, e.g., [15]). When q = 2, Hm(Ω) = Wm,2(Ω), m ∈ N. In

addition,

W (0, T ) =
{

y|y ∈ L2(0, T ;H1(Ω)), ∂ty ∈ L2(0, T ;H1(Ω)∗)
}

is equipped with the graph norm ‖y‖W (0,T ) = ‖y‖L2(0,T ;H1(Ω)) + ‖∂ty‖L2(0,T ;H1(Ω)∗), where H1(Ω)∗

denotes the dual space of H1(Ω) and their duality product is denoted by 〈·, ·〉. We also use C to

denote a positive constant independent of T , which have different values in different contexts.

Definition 1. A pair of functions (u, v), with u ∈ W (0, T ) ∩ L∞(Q) and v ∈ L2(0, T ;H1(Ω)) ∩

L∞(Q), is said to be a weak solution of (1.1) if for every ϕ ∈ L2(0, T ;H1(Ω)), the following

identities hold true:
∫ T

0
〈∂tu, ϕ〉 dt+

∫∫

Q
[(∇u− χu∇v) · ∇ϕ− 1ωfϕ] dxdt = 0,

∫∫

Q
[∇v · ∇ϕ+ (γv − δu)ϕ] dxdt = 0.

Now, we are in a position to state the main result of this paper.

Theorem 1.1. Let T > 0. For any initial value u0 satisfying

|u0|∞ ≤ e−c1(1+T+ 1
T ), (1.2)
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where c1 > 0 is a constant independent of T , there exists a control f ∈ L∞(Qω) such that system

(1.1) admits a solution (u, v) satisfying

u ∈ C([0, T ];L2(Ω)) ∩ L∞(Q), v ∈ L2(0, T ;H1(Ω)) ∩ L∞(Q),

and u(x, T ) = 0 for almost all x ∈ Ω.

Remark 1.1. Theorem 1.1 gives an explicit representation of the initial data with respect to time

T . It particularly shows that the shorter of the terminal time T is, the smaller for the initial value

for the null controllability of system (1.1). In addition, under the assumption of Theorem 1.1,

lim supt→T− ‖v(·, t)‖2 = 0.

We proceed as follows. In section 2, we give some preliminary results. Section 3 is devoted to

the null controllability of a scalar parabolic equation, for which the L∞-control is obtained and its

estimates with respect to time T are also established. The proof of Theorem 1.1 is presented in

section 4.

2 Some results for linear equations

In the sequel of the paper, we need some regularity results for linear equations for both parabolic

and elliptic types. We first consider the well-posedness of the linear elliptic equation followed by







0 = ∆v − γv + δη in Ω,

∂νv = 0 on ∂Ω,
(2.1)

where γ and δ are positive constants. The result of Proposition 2.1 is brought from [1].

Proposition 2.1. For any η ∈ Lp(Ω), p > 1, Eq. (2.1) admits a unique solution v ∈ W 2,p(Ω) with

‖v‖W 2,p(Ω) ≤ C |η|p .

Next, we consider the parabolic equation



















∂tu = ∆u−∇ · (Bu) + F in Q,

∂νu = 0 on Σ,

u(x, 0) = u0(x) x ∈ Ω.

(2.2)

Proposition 2.2. Let B ∈ L∞(Q)N with B · ν = 0 on Σ, F ∈ L∞(Q), and u0 ∈ L∞(Ω). Then

Eq. (2.2) admits a weak solution u ∈ L∞(Q) with

‖u‖∞ ≤ eC̺0 (|u0|∞ + ‖F‖∞) , (2.3)

where C = C(Ω) is a positive constant depending on Ω, and ̺0 is given by

̺0 = (1 + ‖B‖2∞)(1 + T ). (2.4)
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A similar inequality (2.3) could be found in [15], but here we improve the estimate so that it

depends on time T explicitly. To this end, we need the following lemma (see [15, Lemma 5.6, p.

95]).

Lemma 2.1. Suppose that a sequence Ys, s = 0, 1, 2, · · · of nonnegative numbers satisfy a recursion

relation

Ys+1 ≤ cbsY 1+ε
s , s = 0, 1, 2, · · ·

with some positive constants c, ε and b ≥ 1. Then Ys → 0 as s → ∞ provided that

Y0 ≤ c−
1
ε b−

1
ε2 .

Proof of Proposition 2.2. Let (u− k)+ = max{u− k, 0} and Ak(t) = meas{x ∈ Ω|u(x, t) > k}

for t ∈ [0, T ], where

k ≥ K0 = ‖F‖∞ + |u0|∞ . (2.5)

Multiplying by (u − k)+ the both sides of (2.2), we get, by integration by parts and the Hölder

inequality, that
d

dt

∫

Ω
|(u− k)+|

2 dx+

∫

Ω
|∇(u− k)+|

2 dx

≤ ‖B‖2∞

∫

Ak(t)
u2dx+

∫

Ω
|(u− k)+|

2 dx+

∫

Ak(t)
F 2dx.

≤ (2 ‖B‖2∞ + 1)

(

∫

Ω
|(u− k)+|

2 dx+

∫

Ak(t)
k2dx

)

.

From Gronwall’s inequality, it follows that

∫

Ω
|(u− k)+|

2 dx+

∫ t

0

∫

Ω
|∇(u− k)+|

2 dxdt ≤ eC̺0

∫ T

0

∫

Ak(t)
k2dxdt (2.6)

for all t ∈ [0, T ], where and in what follows ̺0 is given by (2.4). On the other hand, by Proposition

I.3.2 of [6],

‖v‖ 2(N+2)
N

≤ C(Ω)(1 + T )
N

2(N+2) ‖v‖V2(Q) (2.7)

for any v ∈ V2(Q). Here V2(Q) = L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) is endowed with its graph

norm. Then, (2.6) together with (2.7) gives

‖(u− k)+‖ 2(N+2)
N

≤ eC̺0

∫ T

0

∫

Ak(t)
k2dxdt. (2.8)

Let ϕ(k) =meas{(x, t) ∈ Q|u(x, t) > k}. Then for any h > k, we get, from (2.8), that

(h− k)2ϕ(h)
N

N+2 ≤ ‖(u− k)+‖
2
2(N+2)

N

≤ eC̺0ϕ(k)k2,

which then gives

ϕ(h) ≤ eC̺0

(

k

h− k

)

2(N+2)
N

ϕ(k)
N+2
N . (2.9)

5



Next, set Ys = ϕ(ks), ks = M(2− 1
2s ), and put h = ks+1 and k = ks in (2.9) to get

Ys+1 ≤ c̃4τ (2τ )s Y 1+ε
s ,

where τ = 2(N + 2)/N, ε = 2/N, and c̃ = eC̺0 . By Lemma 2.1, we get ϕ(2M) = 0 provided that

Y0 = ϕ(k0) = ϕ(M) ≤ (c̃4τ )−
1
ε (2τ )−

1
e2 , (2.10)

for some positive real number M . To determine the value of M , let m > 1 be an integer and

M = mK0, where K0 is given by (2.5). Put h = M = mK0 and k = K0 in (2.9) to get

ϕ(M) ≤ c̃

(

1

m− 1

)τ

ϕ(K0)
1+ε ≤ c̃

(

1

m− 1

)τ

T 1+ε (measΩ)1+ε . (2.11)

Now, to get ϕ(2M) = 0, we need to choose a proper m such that (2.10) holds. Combining (2.10)

and (2.11), we only need the integer m to be such that

m ≥ 1 + c̃
1+ε
ετ T

1+ε
τ (measΩ)

1+ε
τ 2

2
ε
+ 1

ε2 .

Hence ϕ(2M) = ϕ(2mK0) = 0 gives

u ≤ 2mK0 ≤ eC̺0 (‖F‖∞ + |u0|∞) .

In a similar argument, we can also get the other half part of (2.3) for −u. This completes the

proof. ✷

3 Null controllability of a linear parabolic equation

In this section, we consider the null controllability of the linear parabolic equation


















∂tu = ∆u−∇ · (Bu) + 1ωf in Q,

∂νu = 0 on Σ,

u(x, 0) = u0(x) x ∈ Ω.

(3.1)

Theorem 3.1. Let T > 0, and B ∈ L∞(Q)N with B · ν = 0 on Σ. For any u0 ∈ L2(Ω), there

exists a control f ∈ L∞(Qω) such that the solution u of system (3.1) corresponding to f satisfies

u ∈ W (0, T ) and u(x, T ) = 0 for x ∈ Ω almost everywhere. Moreover, the control f satisfies

‖1ωf‖∞ ≤ eCκ |u0|2 , (3.2)

where

κ = (1 + ‖B‖2∞)(1 + T ) +
1

T
. (3.3)

To prove Theorem 3.1, we need to establish a type of “observability inequality” for the following

adjoint equation of (3.1):


















−∂tφ = ∆φ+B · ∇φ in Q,

∂νφ = 0 on Σ,

φ(x, T ) = φT (x) x ∈ Ω,

(3.4)
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where φT ∈ L2(Ω). By [8, Lemma 1.1], there is a function β ∈ C2(Ω) such that β(x) > 0 for all

x ∈ Ω and β|∂Ω = 0, |∇β(x)| > 0 for all x ∈ Ω \ ω. For λ > 0, set

ϕ =
eλβ

t(T − t)
, α =

eλβ − e2λ‖β‖C(Ω)

t(T − t)
. (3.5)

We then have a Carleman inequality stated in Lemma 3.1 (see [8]).

Lemma 3.1. There exists a constant λ0 = λ0(Ω, ω) > 1 such that for all λ ≥ λ0 and s ≥

γ(λ)(T + T 2),

∫∫

Q

[

sϕ|∇y|2 + (sϕ)3|y|2
]

e2sα dxdt

≤ C

∫∫

Q
e2sα|∂ty ±∆y|2 dxdt+

∫∫

Qω

(sϕ)3e2sα|y|2 dxdt (3.6)

for all y ∈ X = {ξ ∈ C2,1(Q̄)|∂νξ = 0 on Σ}, where γ(λ) is given by

γ(λ) = e2λ‖β‖C(Ω) . (3.7)

Proposition 3.1 is an “observability inequality” for the adjoint equation (3.4).

Proposition 3.1. Let δ0 ∈ (1, 2). Then there exist positive constants λ and s such that for all

T > 0, φT ∈ L2(Ω), the solution φ of system (3.4) satisfies

|φ(·, 0)|22 ≤ eCκ

∫∫

Qω

eδ0sα |φ|2 dxdt, (3.8)

where κ is given by (3.3).

Proof. First, by Lemma 3.1, there exists a positive constant λ1 = C1(Ω, ω)(1 + ‖B‖2∞) satisfying

γ(λ1) ≥ λ1 > 1 such that for any λ ≥ λ1, s ≥ γ(λ)(T +T 2) and φT ∈ L2(Ω), the associated solution

φ to (3.4) satisfies
∫∫

Q
(sϕ)3|φ|2e2sα dxdt ≤ C

∫∫

Qω

(sϕ)3 |φ|2 e2sαdxdt, (3.9)

where C = C(Ω, ω), and γ(λ1) and γ(λ) are given by (3.7). By (3.4),

d

dt

(

e‖B‖2∞t |φ|22

)

≥ 0.

This gives, for any t ∈ (0, T ], that

|φ(·, 0)|22 ≤ e‖B‖2∞T |φ(·, t)|22 (3.10)

for all t ∈ (0, T ]. Integrate both sides of (3.10) over [T/4, 3T/4] to give

|φ(·, 0)|22 ≤
2

T
e‖B‖2∞T

∫ 3T
4

T
4

∫

Ω
|φ|2 dxdt. (3.11)

Since (sϕ)−3e−2sα ≤ eCs/T 2
in Ω× [T/4, 3T/4], inequality (3.8) then follows from (3.9) and (3.11),

with λ and s taken as λ = C(1 + ‖B‖2∞) > λ1 and s = C(1 + ‖B‖2∞)(T + T 2). ✷
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Proof of Theorem 3.1. Let ε > 0. We set

Jε(u, f) =
1

2

∫∫

Qω

|f |2 e−δ0sαdxdt+
1

2ε

∫

Ω
|u(x, T )|2 dx

and consider the extremal problem

inf
(u,f)∈U

Jε(u, f),

where U is the totality of (u, f) ∈ W (0, T ) × L2(Q) solving (3.1). The existence of an optimal

pair (fε, uε) to the above extremal problem follows from a standard argument. By the maximum

principle (see [4]), we get the optimality system for this problem as follows:


















−∂tφε = ∆φε +B · ∇φε in Q,

∂νφε = 0 on Σ,

φε(x, T ) = −1
εuε(x, T ) x ∈ Ω;

(3.12)



















∂tuε = ∆uε −∇ · (Buε) + 1ωfε in Q,

∂νuε = 0 on Σ,

uε(x, 0) = u0(x) x ∈ Ω;

(3.13)

fε − 1ωφεe
δ0sα = 0. (3.14)

Note that we can choose s and λ such that the observability inequality (3.8) and

ω(λ) = e−λ‖β‖
C(Ω) < δ0 − 1 (3.15)

hold. Furthermore, by (3.12), (3.13), (3.14), and Proposition 3.1, we get
∫∫

Qω

|φε|
2 eδ0sαdxdt+

1

ε

∫

Ω
|uε(x, T )|

2 dx ≤ eCκ |u0|
2
2 . (3.16)

Eq. (3.14) and (3.16) then lead to ‖1ωfε‖2 ≤ eCκ |u0|2 , which means that the controls fε can be

taken in L2 space.

Now, we show that fε can actually be taken in L∞ space. To this purpose, we apply a so-called

bootstrap method in [17] (see also [5]). Firstly, set α0 = minΩ α. Then the following inequalities

can be easily verified:

α0 ≤ α ≤
α0

1 + ω(λ)
< 0, (3.17)

where ω(λ) is defined by (3.15). Secondly, let τ be a sufficiently small positive constant and let

{τj}
M
j=0 be a finite increasing sequence such that 0 < τj < τ, j = 0, 1, . . . ,M, τM = τ. Let {pi}

M
i=0

be another finite increasing sequence such that p0 = 2, pM = ∞, and

−

(

N

2
+ 1

)(

1

pi
−

1

pi+1

)

+ 1 >
1

2
, i = 0, 1, . . . ,M − 1. (3.18)

For each i, i = 0, 1, . . . ,M, define

zi(x, t) = e(s+τi)α0φε(x, T − t),

Fi(x, t) =
[

∂t(e
(s+τi)α0)

]

φε(x, T − t),

B̃(x, t) = B(x, T − t).

8



Then, the adjoint equation (3.12) is transformed into the following initial-boundary problem for

every i = 0, 1, . . . ,M :


















∂tzi −∆zi = B̃ · ∇zi + Fi in Q,

∂νzi = 0 on Σ,

zi(x, 0) = 0 x ∈ Ω.

(3.19)

Let {S(t)}t≥0 be the semigroup generated by the Laplace operator with Neumann boundary con-

dition. It follows that (see, e.g., [3])

|S(t)u|q ≤ Cm(t)
−N

2

(

1
p
− 1

q

)

|u|p (3.20)

for all u ∈ Lp(Ω), t > 0, and 1 < p ≤ q ≤ ∞, where m(t) = min{1, t}. Note that the solution zi of

(3.19) can be represented as

zi(·, t) =

∫ t

0
S(t− s)

(

B̃ · ∇zi + Fi

)

(·, s)ds, i = 0, 1, . . . ,M. (3.21)

Applying the estimates (3.20) to (3.21), we have

|zi(·, t)|pi ≤ C

∫ t

0
m(t− s)

−N
2

(

1
pi−1

− 1
pi

)

∣

∣

∣

(

B̃ · ∇zi + Fi

)

(·, s)
∣

∣

∣

pi−1

ds, i = 0, 1, . . . ,M. (3.22)

With (3.18), we apply Young’s convolution inequality (see, e.g. [3]) to the right-hand side of (3.22)

to get

‖zi‖pi ≤ eC(1+T )
(

‖B‖∞ ‖∇zi‖pi−1
+ ‖Fi‖pi−1

)

. (3.23)

On the other hand, by a standard energy estimate applied to (3.19), we can get the following

Lpi−1-estimate for zi:

‖zi‖pi−1
+ ‖∇zi‖pi−1

≤ eCκ ‖Fi‖pi−1
. (3.24)

By the definition of Fi and (3.17), we have

‖Fi‖pi−1
≤ CT ‖zi−1‖pi−1

. (3.25)

Combining (3.23), (3.24), and (3.25) then, we obtain

‖zi‖pi ≤ eCκ ‖zi−1‖pi−1
.

This iteration inequality from 0 to M produces

‖zM‖pM ≤ eCκ ‖z0‖2 . (3.26)

Since pM = ∞, it follow from the definition of z0, (3.16), and (3.26) that ‖zM‖∞ ≤ eCκ ‖u0‖2 ; that

is,
∥

∥φεe
(s+τ)α0

∥

∥

∞
≤ eCκ ‖u0‖2 . By (3.14), we get

∥

∥

∥
e[−s(δ0−1−ω(λ))+τ(1+ω(λ))]α1ωfε

∥

∥

∥

∞
≤ eCκ ‖u0‖2 , (3.27)
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where ω(λ) is given by (3.15). By choosing τ small enough so that −s (δ0 − 1− ω(λ))+τ(1+ω(λ)) <

0, we conclude from (3.27) that

‖1ωfε‖∞ ≤ eCκ ‖u0‖2 . (3.28)

This shows that the controls fε can be taken in L∞ space.

Finally, by (3.28), we can extract a subsequences of {fε}ε≥0, still denoted by itself, such that

1ωfε → 1ωf ∈ L∞(Q) weakly in L2(Q) as ε → 0. Denote by uε the solution to the system (3.13)

associated to fε. By virtue of Proposition 2.2, {uε}ε≥0 is uniformly bounded in W (0, T ). Thus, we

can extract a subsequence of {uε}ε≥0, still denoted by itself, such that uε → u weakly in W (0, T )

for u ∈ W (0, T ) ⊂ C([0, T ];L2(Ω)). Such a u is the weak solution of (3.1) corresponding to f . In

addition, by (3.16), u(x, T ) = 0 almost everywhere in Ω. This completes the proof. ✷

4 Proof of Theorem 1.1

Let K = {ξ ∈ L∞(Q)| ‖ξ‖∞ ≤ 1} ∩ L∞(0, T ;Lp(Ω)) ⊂ L2(Q), p > max{N, 2}. For every ξ ∈ K,

consider the following two linear equations:






0 = ∆v(·, t)− γv(·, t) + δξ(·, t) in Ω,

∂νv(·, t) = 0 on ∂Ω
(4.1)

for almost every t ∈ [0, T ] and



















∂tu = ∆u−∇ · (Bu) + 1ωf in Q,

∂νu = 0 on Σ,

u(x, 0) = u0(x) x ∈ Ω,

(4.2)

where B = χ∇vξ. In what follows, we denote by shorthand vξ = vξ(·, t) the unique solution

of equation (4.1) corresponding to ξ(·, t) for t ∈ [0, T ]. First, by Proposition 2.1, we see that

vξ ∈ L∞(0, T ;W 2,p(Ω)) for p > max{N, 2} provided that ξ ∈ K. Hence, the embedding theory

between Sobolev spaces for p > N (see, e.g., [6]) then implies

B = χ∇vξ ∈ L∞(0, T ;W 1,p(Ω))N ⊂ L∞(0, T ;C(Ω̄))N with B · ν = 0 on Σ,

and in addition,

‖B‖∞ = χ
∥

∥

∥
∇vξ

∥

∥

∥

L∞(0,T ;W 1,p(Ω))
≤ C‖ξ‖∞ ≤ C. (4.3)

Thus, we can define a linear continuous operator Φ from K to L∞(0, T ;C(Ω̄))N ⊂ L∞(Q)N by

Φ(ξ) = B = χ∇vξ,∀ ξ ∈ K.

Second, by Theorem 3.1, we see that for each B ∈ L∞(Q)N with B · ν = 0 on Σ, there exists a pair

(u, f) ∈ L2(Q)× L∞(Q) that solves system (4.2) with u(x, T ) = 0 for almost all x ∈ Ω. Moreover,

the control f satisfies (3.2). By (4.3),

‖1ωf‖∞ ≤ eCκ0 |u0|2 , (4.4)
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where

κ0 = 1 + T +
1

T
. (4.5)

and in the sequel, C is a positive constant independent of time T . By (2.5) in Proposition 2.2 and

(4.4), we have the following estimate:

‖u‖W (0,T ) + ‖u‖∞ ≤ eCκ0 |u0|∞ . (4.6)

We then define a multi-valued mapping Ψ : L∞(Q)N → 2L
2(Q) by

Ψ(B) =

{

u ∈ L2(Q)

∣

∣

∣

∣

∣

∃f ∈ L∞(Qω) satisfying (4.4) such that u is the solution

of (4.2) corresponding to f and B, and u(x, T ) = 0 a.e. in Ω

}

where 2L
2(Q) stands for all subsets of L2(Q). Since both operators Φ and Ψ are well defined, which

is guaranteed by Proposition 2.1 and Theorem 3.1, we let

Λ = Ψ ◦Φ : K ⊂ L2(Q) → 2L
2(Q). (4.7)

Now, we apply Kakutani’s fixed point theorem (see [4, p.7]) to the map Λ to prove Theorem 1.1.

Indeed, it is clear thatK is a convex subset of L2(Q). By Proposition 2.1 and Theorem 3.1 again, for

any ξ ∈ K, Λ(ξ) is nonempty and it is also convex due to the linearity of the equations. Moreover,

from (4.6), it follows that for each ξ ∈ K, Λ(ξ) is bounded in W (0, T ), and hence a compact subset

of L2(Q) according to the Aubin-Lions lemma (see [4, p.17]).

We claim that Λ is upper semi-continuous. Indeed, let {ξn}
∞
n=1 be a sequence of functions in K

such that

ξn → ξ strongly in L2(Q) as n → ∞. (4.8)

For every n, let Bn = Φ(ξn) = χ∇vn and take un ∈ Λ(ξn) = Ψ(Bn), where vn solves






0 = ∆vn(·, t) − γvn(·, t) + δξn(·, t) in Ω,

∂νvn(·, t) = 0 on ∂Ω
(4.9)

for almost every t ∈ [0, T ] and un solves


















∂tun = ∆un −∇ · (Bnun) + 1ωfn in Q,

∂νun = 0 on Σ,

un(x, 0) = u0(x) x ∈ Ω,

(4.10)

with un(x, T ) = 0 for almost all x ∈ Ω. Moreover, the control fn satisfies

‖1ωfn‖∞ ≤ eCκ0 |u0|2 . (4.11)

To show that Λ is upper semi-continuous, it suffices to prove that there exist a subsequence of

{un}
∞
n=1 such that it converges strongly to an element of Λ(η) in L2(Q) topology.

In what follows, we do not distinguish the sequence and its subsequence by abuse of notation.

First, the estimate (4.11) enables us to obtain a function f ∈ L∞(Q) and a subsequence of {fn}
∞
n=1,

such that

1ωfn → 1ωf weakly in L2(Q); weakly∗ in L∞(Q) as n → ∞. (4.12)
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By (4.11) and Proposition 2.2, un satisfies (4.6); that is

‖un‖W (0,T ) + ‖un‖∞ ≤ eCκ0 |u0|2 . (4.13)

Applying the Aubin-Lions lemma again, we get a u ∈ W (0, T ) ∩ L∞(Q) and a subsequence of

{un}
∞
n=1 such that

un → u weakly in W (0, T ); strongly in L2(Q), as n → ∞. (4.14)

Furthermore, by the strong convergence of {un}
∞
n=1 in L2(Q), we can extract a subsequence of

{un}
∞
n=1 (see [15, Lemma 2.1, p. 72]) such that

un → u almost everywhere in Q as n → ∞. (4.15)

On the other hand, by Proposition 2.1, for each n and p > 1, it holds that

‖vn(·, t)‖W 2,p(Ω) ≤ C ‖ξn(·, t)‖Lp(Ω) ≤ C, for almost every t ∈ [0, T ] (4.16)

Thus, Bn satisfies (4.3); that is

‖Bn‖∞ ≤ C ‖∇vn‖L∞(0,T ;W 1,p(Ω)) ≤ C‖ξn‖∞ ≤ C. (4.17)

Furthermore, let v be the unique solution of (4.1) corresponding to ξ. Then, by the linearity of Eq.

(4.1) and by (4.16),

‖vn(·, t)− v(·, t)‖H2(Ω) ≤ C |ξn(·, t)− ξ(·, t)|2 , for almost every t ∈ [0, T ].

Since ξn → η strongly in L2(Q) in condition (4.8), it follows that

‖vn − v‖L2(0,T ;H2(Ω)) ≤ C ‖ξn − ξ‖2 → 0,

which implies that

Bn = χ∇vn → χ∇v = B strongly in L2(Q). (4.18)

By (4.14) and (4.17), the sequence {Bnun}
∞
n=1 is bounded in L2(Q), whence there is a subsequence

such that Bnun → π weakly in L2(Q) as n → ∞. By (4.18), there is a subsequence of {Bn}
∞
n=1

such that Bn → B almost everywhere in Q. This together with (4.15) implies that Bnun → Bu

almost everywhere in Q. Therefore π = Bu, and

Bnun → Bu weakly in L2(Q) as n → ∞. (4.19)

Now, by (4.12), (4.14), and (4.19), we can pass to the limit as n → ∞ in (4.10) to get that u is a

weak solution of (4.2) corresponding to B and f in the sense of Definition 1. Now, it only need to

show that u ∈ Λ(ξ) = Ψ(B). Actually, let Un = un − u and Fn = 1ω(fn − f). Then Un solves the

system


















∂tUn = ∆Un −∇ · (BnUn)−∇ · [(Bn −B)u] + Fn in Q,

∂νUn = 0 on Σ,

Un(x, 0) = 0 x ∈ Ω.

(4.20)
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Multiply the first equation of (4.20) by Un, and integrate over Ω to give

d

dt
|Un|

2
2 + |∇Un|

2
2 ≤ C ‖Bn‖

2
∞ |Un|

2
2 + C ‖u‖2∞ |Bn −B|22 + C

∫

Ω
FnYndx.

It then follows from Gronwall’s lemma that

|Un(·, T )|
2
2 ≤ eC‖Bn‖

2
∞T

(

C ‖u‖2∞ ‖Bn −B‖22 + C

∫

Ω
FnYndx

)

. (4.21)

By (4.12), (4.17), and (4.18), we see that the right-hand side of (4.21) tends to 0 as n → ∞, and

hence |Un(·, T )|2 → 0. Since un(x, T ) = 0 for almost all x ∈ Ω, we get that u(x, T ) = 0 for almost

all x ∈ Ω. It then follows that u ∈ Ψ(B) = Λ(ξ). Therefore, Λ is upper semi-continuous.

Finally, it remains to show that Λ(K) ⊂ K. Indeed, by the standard energy estimate we see

that for any ξ ∈ K, each element u of Λ(ξ) satisfies

‖u‖L∞(0,T ;Lp(Ω)) ≤ eC(1+‖B‖2∞)(1+T )
(

|u0|p + ‖1ωf‖p

)

,

which together with (2.5) in Proposition 2.2 and (4.4) leads to u ∈ L∞(Q) ∩ L∞(0, T ;Lp(Ω)) and

‖u‖L∞(0,T ;Lp(Ω)) + ‖u‖∞ ≤ ec1κ0 |u0|∞ ,

where c1 is a positive constant independent of T , and κ0 is given by (4.5). If |u0|∞ ≤ e−c1κ0 which

is exactly (1.2), then ‖u‖∞ ≤ 1 and hence Λ(K) ⊂ K. Apply Kakutani’s fixed point theorem to

obtain at least one fixed point u of Λ; that is u ∈ Λ(u). This u together with v = vu, the solution

of (4.1) with ξ = u, gives the solution of (1.1), corresponding with some control f and u(x, T ) ≡ 0.

This completes the proof. ✷
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