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Networked Control Systems for Multi-Input Plants

Based on Polar Logarithmic Quantization∗

Guoxiang Gua, Li Qiub

aDepartment of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803-5901.
bDepartment of Electrical and Electronic Engineering, Hong Kong University of Science and Technology, Clear Water

Bay, Kowloon, Hong Kong.

Abstract

This paper investigates the use of polar logarithmic quantization (PLQ) for multi-input systems,

and the corresponding design issues for the underlying networked control system (NCS). It is shown

that the PLQ induces sector bounded nonlinear uncertainties in multiplicative and relative forms

for vector-valued analog signals, similar to those in the scalar case. For the two-input NCS, optimal

quantization is obtained through minimization of the quantization error that are quantified explic-

itly. The results are extended to more than two-input NCSs with an upper bound derived for the

quantization error. Feedback stabilization and control of the NCS are also investigated under the

PLQ at the plant input under state feedback. The coarsest quantization density (CQD) is studied

and obtained. Results in this paper are illustrated by a numerical example.

Keywords: Quadratic stability, quantization errors, robust control.

1. Introduction

This paper is motivated by logarithmic quantization proposed in [2] and studied in [3, 4, 5, 7, 10].

The CQD is obtained in [2] for single input systems under the state feedback control, and shown

to be dictated by the Mahler measure [8]. By treating the quantization error as sector bounded

nonlinear uncertainty [12], the CQD in [2] is re-derived in [5]. The sector bound approach to modeling

the quantization error provides us a new insight and new design tool to tackle the information

distortion caused by quantization for NCSs. For multi-input systems under state feedback control,

logarithmic quantization can be applied to the vector input signal by quantizing each component of

the vector independently, which is termed as Cartesian logarithmic quantization (CLQ). In [10], the

largest quantization error under which stabilizability holds is obtained by optimal resource allocation
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and H∞-based robust control, in spite of its being a μ synthesis problem. However because the

CLQ for multi-input/multi-out (MIMO) systems leads to a more complex μ-type synthesis problem,

generalization of the multi-input state feedback result in [10] to the case of MIMO output feedback

control is extremely difficult, if it is not impossible.

It turns out that PLQ is more efficient than CLQ for vector signals [3, 4]. However very limited

results, except a lower bound for the CQD in the 2-D case, are available in the existing literature. This

paper will investigate several research issues for PLQ. The first is coding or quantization regarding

how an analog vector in polar coordinates can be mapped to a digital one. This issue is closely related

to the second one regarding quantification of the quantization error. Can the associated quantization

error be modeled again by the sector bounded nonlinear uncertainty in form of multiplicative or

relative errors? How to minimize such quantization errors? These two questions need to be answered

together. After the first two issues are resolved, the next research issue is the stabilizability condition

for the NCS when the PLQ is employed only at the plant input under state feedback. This condition

can be converted to the problem of the largest quantization error under which the NCS is stabilizable.

It is related to the notion of stability margin based on which the CQD can be obtained.

2. Problem Formulation

The multi-input feedback system under consideration is described by

x(k + 1) = Ax(k) +Bu(k), u(k) = Q[Fx(k)], (1)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

m is the control input, and F ∈ R
m×n is some state

feedback gain. It follows that A ∈ R
n×n and B ∈ R

n×m. The nonlinear map Q[ · ] represents the

PLQ to be studied. Prior to our investigation, it is beneficial to review logarithmic quantization for

the case m = 1, which is initially proposed in [2]. In this case, Q(v) = −Q(−v) is defined by [5]

Q(v) = u(i) ∀ v ∈
(

u(i)

1 + δ
,

u(i)

1− δ

]
(2)

where u(i) =
(
1−δ
1+δ

)i
u(0) > 0, i = 0,±1,±2, · · · , and 0 < δ < 1. In light of [5], the above logarithmic

quantization induces a sector bounded memoryless nonlinearity in the form of

u(k) = [1 + Δ]v(k), δ = ‖Δ‖iE := sup
v(k) �=0

|u(k)− v(k)|
|v(k)| < 1, (3)

where v(k) = Fx(k) and ‖ · ‖iE is an induced norm. It is noted that the quantization error is

captured by the memoryless nonlinear operator Δ that maps zero to zero, and the positive constant

δ characterizes the quantization density defined in [2]. Assume that (A,B) is stabilizable. The

2
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supremum of δ, denoted by δmax, over all quadratic stabilizing state feedback gains determines the

CQD, and is known to be [2, 5]

δmax =
1

M(A)
, M(A) :=

n∏
i=1

max{|λi(A)|, 1}, (4)

where λi(·) denotes the ith eigenvalue and M(A) is called Mahler measure [8]. The quantity δmax

is termed stability margin in the sense that stabilizing controllers exist for all uncertainties strictly

bounded by δmax, including sector bounded nonlinearities induced by quantization. This notion is

borrowed from the robust control literature and has an important role to play in NCS stabilization.

A different logarithmic quantization is proposed in [10] by taking

Q(v) = u(i) ∀ v ∈ (
u(i)(1− δ), u(i)(1 + δ)

]
. (5)

The above Q[ · ] used in (1) leads to the sector bounded memoryless nonlinearity in the relative form:

u(k) = [1 + Δ]−1v(k), δ = ‖Δ‖iE := sup
v(k) �=0

|u(k)− v(k)|
|u(k)| < 1 (6)

with again v(k) = Fx(k). In this case, the stability margin δmax, i.e., the supremum of δ over all

quadratic stabilizing state feedback gains, has the same expression as in (4) which also provides the

CQD for the corresponding NCS under logarithmic quantization.

Logarithmic quantization becomes more subtle for multi-input systems. A simple generalization

is the so called CLQ by quantizing each component of the input vector independently. With m > 1

for the feedback system in (1), there holds either

(i) u(k) = [I +Δ]Fx(k) or

(ii) u(k) = [I +Δ]−1Fx(k)
(7)

under CLQ, dependent on whether (2) or (5) is used for each component of u(k). In either case,

Δ = diag(Δ1,Δ2, · · · ,Δm), δi = ‖Δi‖iE < 1. (8)

The above Δ is a diagonal memoryless nonlinear operator with Δi a sector bounded nonlinear

uncertainty. Thus CLQ induces diagonally structured nonlinear uncertainty. Feedback stabilizability

in this case becomes a μ problem that is notoriously difficult. Indeed let us denote

Dδ = diag(δ1, δ2, . . . , δm),

and D as the set of m×m diagonal matrices with positive diagonal entries. The subscript δ for Dδ

indicates the determinant of Dδ, i.e., δ = det(Dδ). Let F be stabilizing and

T (z) = F (zI −A−BF )−1B (9)

3
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be the closed-loop transfer matrix. Define

‖T‖H∞ = sup
|z|>1

σ[T (z)]

as the H∞-norm of T (z) with σ(·) the maximum singular value. Then the quadratic stability of the

closed-loop system in (1) is equivalent to [5, 9]

inf
D∈D

inf
F

‖D−1TDDδ‖H∞ < 1.

Hence stabilizability of the closed-loop system in presence of CLQ involves H∞ optimization over not

only the stabilizing state feedback gain F , but also the scaling positive diagonal matrix D. Moreover

the quantization error bounds {δi}mi=1 also play a role. A useful result obtained in [10] is that the

following inequality, required by feedback stability,

inf
det(Dδ)=δ

{
inf
F

[
inf
D∈D

‖D−1TDDδ‖H∞

]}
< 1 (10)

holds for some stabilizing state feedback gain F , if and only if det(Dδ) = δ < M(A)−1. In fact the

notion of resource allocation is introduced in [10] by treating 1
δ as the total resource (− log δ can be

regarded as the total number of bits) available. As long as 1
δ > M(A), a quadratically stabilizing

feedback gain F exists and can be computed explicitly, {δi}mi=1 exist with 0 < δi < 1 satisfying

δ = det(Dδ), and a positive diagonal matrix D exists such that the inequality (10) holds.

To the authors of this paper, there are two major issues presented by PLQ employed in NCSs.

These two issues are fundamental and present a significant challenge to design of NCSs that employ

PLQ at the plant input or/and output. The first is that for a given analog vector v, how to obtain

the quantized vector vq by quantizing its polar coordinates such that either

(a) vq = [I +Δ]v or (b) vq = [I +Δ]−1v (11)

holds, and the quantization error bound δ̃ := ‖Δ‖iE (that can be computed according to (3) or (6)

by replacing the absolute value | · | by Euclidean norm ‖ · ‖) is minimized. Note that (a) and (b)

in (11) are direct generalizations of (3) and (6), respectively. Different from CLQ, the uncertainty

induced by the quantization error in (11) is unstructured, contrasting to that of CLQ, and can be

regarded as generalized sector bounded uncertainty in either multiplicative or relative form. Hence

it is much easier to synthesize the stabilizing feedback controller than the case of CLQ in [10]. The

second is how to synthesize the stabilizing feedback controller when the input of the system involves

unstructured multiplitive/relative uncertainty induced by the PLQ. Although quadratic stabilization

becomes simpler compared with that for the structured uncertainty in (8), it is still an open problem

4
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to be investigated in this paper. These two problems will be tackled in the next two sections.

Before concluding this section, it is important to note that the logarithmic quantization Q[ · ] has an
equivalent expression

uq = Q(v) =

(
1 + δ

1− δ

)q v0
vc

, if

(
1 + δ

1− δ

)q

v0 < v ≤
(
1 + δ

1− δ

)q+1

v0 (12)

by taking u(0) = v0/(1 + δ) in (2) with vc = 1/(1 + δ) or u(0) = v0/(1− δ) in (5) with vc = (1− δ),

where q = −i = 0,±1,±2, · · · . The above is more general and provides a parameter vc. It covers (2)

and (5) as a special case by taking vc to some specific values. It also helps to derive the error bound

of the unstructured time-varying uncertainty for the quantization error induced by the PLQ.

3. Polar Logarithmic Quantization

For a given analog m-D vector v, PLQ quantizes its polar coordinates. Let v ∈ R
m with vi the

ith entry of v. Its polar form is specified by [11] v1 = ρ cosφ1, vm = ρ
∏m−1

i=1 sinφi, and

vk = ρ cosφk

k−1∏
i=1

sinφi, k = 2, · · · ,m− 1,

where
(
ρ, {φi}m−1

i=1

)
are its m coordinate variables. While 0 ≤ ρ < ∞ and φm−1 ∈ [0, 2π), all other

angle variables φi ∈ [0, π] [11]. There holds the identity

cos2φ1 +
m−1∏
i=1

sin2φi +
m−1∑
k=2

cos2φk

k−1∏
i=1

sin2φi = 1. (13)

By setting ϕi =
π
2 − φi for 1 ≤ i < m − 1, ϕi ∈ [−π

2 ,
π
2 ] is true for 1 ≤ i < m − 1. In addition we

replace φm−1 by ϕm−1 with its range [−π, π). As a result,

v1 = ρ sinϕ1,
... vm−1 = ρ sinϕm−1

∏m−2
i=1 cosϕi,

v2 = ρ sinϕ2 cosϕ1,
... vm = ρ

∏m−1
i=1 cosϕi.

The PLQ quantizes ρ by mapping the positive real axis to a countable set {ρq}∞q=−∞ defined by

ρq =

(
1 + δρ
1− δρ

)q ρo
ρc

, if

(
1 + δρ
1− δρ

)q

≤ ρ

ρo
<

(
1 + δρ
1− δρ

)q+1

(14)

that is the same as (12) where 0 < δρ < 1. The constant ρo > 0 divides the positive real axis into

two parts with {ρq} (more and more) densely distributed below ρo, and (more and more) scarcely

distributed above ρo. The constant ρc > 0 is a parameter to be determined through minimization of

the quantization error, and leads to unstructured multiplicative or relative nonlinear uncertainties.

5
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In practice, the set of {ρq} ranges over a finite interval with ρo adjusted to cover the dynamic range

of the analog vector length ρ by the finite set {ρq}.
The PLQ quantizes {ϕi} uniformly. Let κ > 1 be integer. The interval [−π

2 ,
π
2 ] can be divided

into κ uniform intervals with interval length 2θ and θ = π
2κ . Each analog value of the argument ϕi

with 0 < i < m− 1 is quantized uniformly according to

ϕiq = 2�θ ∀ ϕi ∈ [(2�− 1)θ, (2�+ 1)θ) (15)

for � = 0,±1, · · · ,±�κ/2	 where �x	 takes the integer part of x. The right end of the interval in (15)

needs to be closed when � = �κ/2	 and κ is odd. For quantization of ϕm−1, (15) can also be used

but with � = 0,±1, · · · ,±κ so that it covers the interval [−π, π).

The parameter ρc plays an important role for PLQ in deriving the error bound of two different

forms. In order to facilitate the development, 2-D vectors are studied first. Consider

v =

⎡
⎣ v1

v2

⎤
⎦ = ρ

⎡
⎣ sin(ϕ)

cos(ϕ)

⎤
⎦ . (16)

The uniform quantization on the argument ϕ, and logarithm quantization on the vector length ρ

lead to the fan shaped tiles covering the two-dimensional plane. Fig. 1 shows one of the fan shaped

regions, marked with A-B-E-D-A in solid line, where the vertical axis stands for v1 and horizontal

axis for v2.

θ

A

D

E

B

O
C

Fig. 1. Fan region with C the center point.

Similar to the scalar case, the logarithmic quantization (14) for the length and uniform quanti-

zation for the argument of the vector in (15) lead to the representation:

v = (I +Δ)vq, vq = ρq

⎡
⎣ sin(ϕq)

cos(ϕq)

⎤
⎦ , (17)

6
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where vq is the quantized vector. All vectors lying in the same fan region are quantized to the same

vector vq. Hence Δ is clearly a nonlinear function of v and vq. A significant problem is quantification

and minimization of ‖Δ‖iE .
Consider the fan region in Fig. 1. For convenience define Sfan as the collection of all vectors

inside the fan shaped region A-B-E-D-A. Quantization error in relative form is studied first. For

each v ∈ Sfan with the same quantized vector vq, the quantization error bound for (b) in (11) can be

expressed as

δ̃ := sup

{‖v − vq‖
‖vq‖ : v ∈ Sfan

}
.

The above is dependent on vq, i.e., δ̃ = δ̃(vq). A natural question arises: how to choose vq such that

δ̃(vq) is the smallest possible? This leads to

δ := inf
vq

sup

{‖v − vq‖
‖vq‖ : v ∈ Sfan

}
. (18)

Recall that δ̃ represents the sector uncertainty bound. Its minimization will provide the correct value

for ρc in (14) in order to have the smallest relative error in (17), and resolve the first major issue

formulated in the previous section.

Since ‖·‖ is invariant under multiplication by orthogonal matrices, there is no loss of generality to

rotate any fan shaped region to the position shown in Fig. 1. The point C represents the quantized

vector, i.e., all vectors inside the fan region are quantized to the same vector vq at point C. It is

customary to define

radius(Sfan) := min
vq

{
max
v∈Sfan

‖v − vq‖
}

(19)

as the radius of the smallest ball containing Sfan.

Let vTq =
[
0 rC

]
with vTq transpose of vq. Then rC is the length of the line OC. Let rA and rB

be the length of the line OA and OB, respectively. Then by (14),

rA =

(
1 + δρ
1− δρ

)k

ρo, rB =

(
1 + δρ
1− δρ

)k+1

ρo. (20)

The point C lies at the center of the fan region in Fig. 1, if and only if the length of the line AC is

the same as the length of the line BC that is equal to radius(Sfan). The simple geometric relation

in Fig. 1 yields

(rC − rAcos θ)
2 + (rAsin θ)

2 = (rC − rBcos θ)
2 + (rBsin θ)

2 .

After rearrangement and noticing the logarithmic quantization in the radial direction, there hold

rC =
rA + rB
2 cos θ

, rB =

(
1 + δρ
1− δρ

)
rA . (21)

7
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The second relation in (21) can be used to deduce

rB − rA =
2δρrA
1− δρ

, rB + rA =
2rA

1− δρ
. (22)

It follows from the first equation in (21) and the second equation in (22) that

rA = (1− δρ)rC cos θ =⇒ ρc = (1− δρ) cos θ (23)

by the fact that rC = ρq is some quantized value in (14) for some q where =⇒ stands for “implying”.

With vq =
[
0 rC

]T
at the center of Sfan, it can be verified that δ defined in (18) is obtained as

δ =
1

rC

√
(rC − rA cos θ)2 + (rA sin θ)2 =

√
δ2ρ + (1− δ2ρ) sin

2 θ > δρ. (24)

It is important to indicate that the expression in (24) holds for any vector inside the dashed circle

covering the fan region.

Motivated by [10], a different representation from (17) can be derived that has form of

v = (I +Δ)−1vq, vq = ρq

⎡
⎣ sin(ϕq)

cos(ϕq)

⎤
⎦ . (25)

All vectors in the fan shaped region in Fig. 1 are quantized to a single vector vq. Similar problems

arise: what is vq and what is the smallest uncertainty bound for the corresponding quantization

error? The following is similar to (18):

δ := inf
vq

sup
v∈Sfan

‖v − vq‖
‖v‖ = inf

r
C

sup
|ϕ|≤θ, r

A
≤r<r

B

∣∣∣ejϕ − rC
r

∣∣∣ (26)

after replacing the two-dimensional plane by the complex plane, and using ejϕ for v
‖v‖ and rejϕ for

v. Minimization in (26) leads to a different value of ρc for logarithmic quantization in (14) that also

specifies the new center point.

θ

1

r rβ α

Fig. 2. Illustration of |ejθ − rα| = |ejθ − rβ | in C.

Specifically the second relation in (21) is useful in finding the new center point C represented by

rC , and the corresponding induced norm in (26). Indeed,

rα =
rC
rA

, rβ =
rC
rB

=⇒ rα
rβ

=
1 + δρ
1− δρ

. (27)

8
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The center point rC on the real axis can now be determined from the relation |ejθ − rα| = |ejθ − rβ |.
See the illustration in Fig. 2.

The equidistance relation leads to

(rα − cos θ)2 + sin2 θ = (rβ − cos θ)2 + sin2 θ.

Using (27), the above yields

cos θ =
1

2
(rα + rβ) =

rα
1 + δρ

=
rβ

1− δρ
(28)

from which the center point at the complex plane is specified by

rC = rA(1 + δρ) cos θ = rB (1− δρ) cos θ

=⇒ ρc =
1

(1 + δρ) cos θ
. (29)

In addition the quantization error bound in (26) is obtained as

δ = |ejθ − rα| =
√

r2α − 2rα cos θ + 1

=
√

1− (1− δ2ρ) cos
2 θ (30)

=
√

δ2ρ + (1− δ2ρ) sin
2 θ > δρ

that agrees with (24) in the case of m = 2. The result of PLQ derived for two-dimensional vectors

is instrumental to its generalization to multi-dimensional vectors. The next theorem solves the first

major issue posed in the previous section.

Theorem 3.1 Let δ ∈ (0, 1) be real, κ > 1 be integer, and v ∈ R
m. Consider the PLQ in (14) and

(15) for some real ρo > 0 and θ = π
κ . The following hold.

(i) If ρc = (1−δρ) cos
m−1θ, then each real vector v ∈ R

m and its quantization vq satisfy v = (I+Δ)vq

for some sector bounded nonlinearity Δ that has the least induced norm bound

δ =
√
1− (1− δ2ρ) cos

2(m−1)θ > δ. (31)

(ii) If ρc = [(1 + δρ) cos
m−1θ]−1, then each real vector v ∈ R

m and its quantization vq satisfy

v = (I+Δ)−1vq for some sector bounded nonlinearity Δ that has the same least induced norm bound

as in (31). That is, δ =
√

1− (1− δ2ρ) cos
2(m−1)θ > δρ for m ≥ 2.

Proof: Following the same development in the case of m = 2, relative quantization error is

considered first. In this case, each v ∈ R
m is quantized to vq and there holds v = (I + Δ)vq. The

problem is what value of ρc in (14) minimizes the quantization error ‖Δ‖iE . Although m > 2,

9
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Fig. 1 can still be served as reference with rA and rB the same as in (20). By denoting Sfan as

the set of the vectors inside the hyper-fan volume symmetric with respect to the last axis of the

Cartesian coordinate system, the center point of Sfan represented by vector
[
0 · · · 0 rC

]T
can

be determined by the following two vectors:

vC − vA = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rA sin θ

rA cos θ sin θ
...

rA cosm−2θ sin θ

rA cosm−1θ − rC

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, vC − vB = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rB sin θ

rB cos θ sin θ
...

rB cosm−2θ sin θ

rB cosm−1θ − rC

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using the same deduction for the case m = 2, the center point satisfies ‖vC − vA‖ = ‖vC − vB‖. This
equality and the identity (13) implies that

r2
A
− 2rArC cosm−1θ = r2

B
− 2rBrC cosm−1θ.

After rearrangement and noticing the logarithmic quantization in the radial direction, there hold

rC =
rA + rB

2 cosm−1θ
, rB =

(
1 + δρ
1− δρ

)
rA . (32)

Clearly the relation in (22) still holds, but (23) is now replaced by

rA = (1− δρ)rC cosm−1θ =⇒ ρc = (1− δρ) cos
m−1θ. (33)

Recall that each m-D vector v ∈ R
m can be written as v = (Im+Δ)vq for some quantized vector vq.

The above ρc minimizes the relative error bound ‖Δ‖iE when it is used in (14) for m-D logarithmic

quantization in conjunction with the same uniform quantization for each of its arguments. With the

center vector specified by (32) and by the identity (13), it can be shown that

‖Δ‖2iE =
1

r2
C

(
r2
C
+ r2

A
− 2rArC cosm−1θ

)
= 1 + (1− δρ)

2 cos2(m−1)θ − 2(1− δρ) cos
2(m−1)θ (34)

= 1− (1− δ2ρ) cos
2(m−1)θ > δ2ρ

by 0 < θ < π/2. In the case when m = 2, the above equality is the same as (24).

For quantization in form of v = (I + Δ)−1vq, the value of ρc in (14) needs to be synthesized

differently in order to minimize the quantization error ‖Δ‖iE . Following the same steps as in the
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case of m = 2, the following can be proven:

‖Δ‖iE = sup
v∈Sfan

‖v − vq‖
‖v‖ = sup

|ϕi|≤θ, r
A
≤r<r

B

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sinϕ1

sinϕ2 cosϕ1

...

sinϕm−1

m−2∏
i=1

cosϕi

m−1∏
i=1

cosϕi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0
...

0
...
r
C
r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
that is similar to (26). The equidistance condition and the identity in (13) lead to

‖Δ‖2iE = 1− 2rα cos
m−1θ + r2α = 1− 2rβ cos

m−1θ + r2β (35)

where rα and rβ satisfy (27). A similar derivation to the case of m = 2 shows that

cosm−1θ =
rα + rβ

2
=

rα
1 + δρ

=
rβ

1− δρ
.

In light of the relations in (20) and (27), there holds

rC = rA(1 + δρ) cos
m−1θ = rB (1− δρ) cos

m−1θ =⇒ ρc =
1

(1 + δρ) cosm−1θ
. (36)

Substituting the above into the first equality of (35) and making use of the relation in (20) yield

δ
2
= 1− 2(1 + δρ) cos

2(m−1)θ + (1 + δρ)
2 cos2(m−1)θ = 1− (1− δ2ρ) cos

2(m−1)θ

that is identical to the expression in (34). The proof can be completed if it can be shown that for

a given ρq, the corresponding hyper-fan volume with the center vector v
(0)
q =

[
0 · · · 0 ρq

]T
,

denoted by V
(0)
q , covers every other hyper-fan volume corresponding to the same ρq with a different

center vector. Note that V
(0)
q involves angles {ϕi} ranging [−θ, θ) for 1 ≤ i < m, while all others,

denoted by V
(
)
q with integer � > 1, involve different angle range for at least one i. According to [11],

the “surface volume” generalized from the surface area of a sphere for a given ρ is given by

S
V

(0)
q

= gm(ρ)

∫ θ

−θ
· · ·

∫ θ

−θ

(
m−2∏
i=1

cosm−i−1ϕi

)
dϕ1 · · · dϕm−1 ≥ S

V
(�)
q

if m > 2 where gm(ρ) is a polynomial function of ρ. The reason lies in the fact that cosϕi achieves

the maximum at 0 and monotonically decreases as |ϕi| increases to π
2 for 1 ≤ i < m− 1. Note that

the integrand of S
V

(�)
q

for each � does not involve ϕm−1, and gm(ρ) > 0 is a fixed value for each fixed

ρ. In addition the upper and lower integral limits involved in computing S
V

(�)
q

can all be translated
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to from −θ to θ. As a result the integrand of S
V

(�)
q

for � �= 0 is no greater than the corresponding

integrand of S
V

(0)
q

at each value of {ϕi}m−2
i=1 over the product of intervals [−θ, θ)m. This implies that

each point inside the surface of S
V

(�)
q

is covered by the set of points inside the surface of S
V

(0)
q

after

it is rotated to the same position as that of S
V

(0)
q

. Consequently the hyper-fan volume v
(0)
q covers

every other hyper-fan volume v
(
)
q . The upper bound for ‖Δ‖iE thus holds for every other hyper fan

volume, which completes the proof. �

It is interesting to observe that the above result reduces to the case of m = 2 derived earlier. In

summary, Theorem 3.1 provides the answer to our first major issue for PLQ.

4. Coarsest Quantization Density

The uncertainty bound δ in Theorem 3.1 may not yield the CQD when PLQ is employed to

quantize the input or/and output signals of the system. The reason lies in the fact that δ is a

function of both δρ ∈ (0, 1) and integer κ > 1. On the other hand, the CQD is also, albeit a

different, function of δρ and κ. At this point, it is appropriate to introduce the quantization density

defined in [2, 3]. Denote B ∈ R
m as the unit ball in R

m, and let N(ε) be the number of hyper-fan

volumes inside 1
εB\εB where 0 < ε < 1. It can be easily verified that

N(ε) = 2mκm−1ln

(
1

ε

)[
ln

(
1 + δρ
1− δρ

)]−1

.

The length in log-scale for [a, b] is defined as ln
(∣∣ b

a

∣∣). Thus the length of [ε, ε−1] in log-scale is

2ln(ε−1). The quantization density, denoted by ηm(δρ, κ) for m-D vectors, can be defined as

ηm(δρ, κ) := lim sup
ε→0

N(ε)

2ln(ε−1)
= (2κ)m−1

[
ln

(
1 + δρ
1− δρ

)]−1

(37)

that is the number of hyper-fan volumes per unit length in log-scale over the ray ρ, which is finite

by the fact 0 < δρ < δ < 1.

Remark 4.1 The CQD is the infimum of ηm(δρ, κ) over (δρ, κ) subject to feedback stability. However

the CQD cannot be computed directly that is why a lower bound is derived in [3, 4] for 2-D state

feedback controllers. For this reason, the stability margin δmax needs to be computed first with

δmax as the supremum of δ over all quadratic stabilizing controllers. After δmax is available, then

minimization of ηm(δρ, κ) can be carried out. To be specific, consider the limiting case of δ = δmax.

Since δ is a function of δρ by Theorem 3.1, δ = δmax = f(δρ) for some function f(·). The elementary

form of f(·) leads to the inverse function

δρ = f−1(δmax) =

√
1− (1− δ

2
max)/ cos

2(m−1)[π/(2κ)] =: δρ,κ. (38)
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It follows that δρ,κ is a function of κ by the fact that δmax depends only on the plant model. Define

the subset S :=
{
κ ∈ {2, 3, 4 · · · } : 0 < δρ,κ < δmax

}
. Then the CQD can be obtained through

minimization of ηm(δρ,κ, κ) over κ ∈ S that is a 1-D search over S, i.e., CQD = min
κ∈S

ηm(δρ,κ, κ). �

The following result provides upper and lower bounds for δmax in the case of multi-input systems

under state feedback control when the PLQ is employed to quantize the control input.

Lemma 4.2 Consider feedback system in (1) where u(k) ∈ R
m and PLQ is employed for Q[u(k)]

for each k. Assume that (A,B) is stabilizable,

A =

⎡
⎣ As 0

0 Au

⎤
⎦ , B =

⎡
⎣ Bs

Bu

⎤
⎦

with compatible dimensions, As is Schur stable, and none of the eigenvalues of Au is stable. If Bu

has rank mu ≤ m, then the stability margin satisfies the inequality of M(A)−1 ≤ δmax ≤ M(A)−
1

mu .

Proof: In the case when mu < m, Bu = B̃uV for some V satisfying V V T = I, and (Au, B̃u)

remains to be stabilizable. Because we are concerned with only stabilization, T (z) in (9) can be

replaced by

Tu(s) = F̃u(sI −Au − B̃uF̃u)
−1B̃u

by setting F =
[
Fs Fu

]
with compatible partition to that of A and B, Fs = 0, and Fu = V T F̃u.

The H∞ norm property implies that ‖T‖H∞ = ‖Tu‖H∞ . In light of [5, 10], the stability margin for

the underlying NCS with PLQ is now given by

δmax =

(
γopt := inf

F̃u

‖Tu‖H∞

)−1

.

By [2, 5], γopt ≤ M(A). See also Lemma 2 in [10]. On the other hand the inequality γopt ≥ M(A)
1

mu

follows from the proof of Theorem 1 in [10]. We can thus conclude M(A)−1 ≤ δmax ≤ M(A)−
1

mu . �

The next result generalizes the lower bound in [3, 4] to m-dimensional input signals.

Corollary 4.3 Under the hypothesis of Lemma 4.2 and mu = m, and subject to feedback stability,

there holds

inf
δρ,κ

ηm(δρ, κ)

(2κ)m−1
>

[
ln

(
M(A)

1
m + 1

M(A)
1
m − 1

)]−1

.

The result in Corollary 4.3 agrees with the lower bound for CQD in [3, 4], derived for the case

m = 2. The proof is straightforward due to PLQ in Theorem 3.1 and the result in Lemma 4.2.

Indeed there holds

δρ < δ < δmax ≤ M(A)−
1
m
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in order for the quadratic stabilizing state feedback gain F to exist. Consequently

inf
δρ,κ

ηm(δρ, κ)

(2κ)m−1
= inf

δ,κ

[
ln

(
1 + δρ
1− δρ

)]−1

>

[
ln

(
M(A)

1
m + 1

M(A)
1
m − 1

)]−1

by δρ < M(A)−
1
m . Hence the proof is skipped.

While Corollary 4.3 provides a lower bound estimate, Theorem 3.1 and Lemma 4.2 can be used

to compute the exact CQD as discussed in Remark 4.1. The following example is illustrative.

Example 1 Consider a 2-input system under state feedback specified by

A =

⎡
⎢⎢⎣

1 −1 0

1 1 0

0 0 −2

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

1 0

0 1
√
2
2

√
2
2

⎤
⎥⎥⎦ . (39)

Eigenvalues of A are 1 ± j and −2, and thus M(A) = 4. Under the PLQ at the control input, the

CQD is tied to the stability margin that can be computed using the proof of Lemma 4.2. Using the

result in [10], γopt =
√
8 = 2.8284 can be obtained which is between

√
M(A) = 2 and M(A) = 4,

and thus δmax = γ−1
opt = 0.3536 that is between 0.25 and 0.5. The numerical results are consistent

with those in Lemma 4.2. To determine the values of δ and κ for PLQ in accordance with Remark

4.1, δ = δmax is taken for the limiting case. By the expression in (38) for the case of m = 2,

δρ = δρ,κ =

√
1− (1− δ

2
max)/ cos

2[π/(2κ)]

that is a function of κ. Recall the subset S that is the collection of those integers κ > 1 such that

0 < δρ,κ < δmax. The expression of the quantization density in (37) yields the CQD as

CQD = min
κ∈S

ηm(δρ,κ, κ) = 23.5479,

and the CQD takes place at κ = 6 and δρ = 0.2494. That is, the optimal PLQ yields the fan shaped

tile with angle expansion of 2θ = 30o and the ratio of (1 + δρ)/(1− δρ) = 1.6645. �

5. Conclusion

This paper investigates logarithmic quantization in terms of how it can be used for multi-input

systems under state feedback, what the corresponding feedback stabilizability condition is, and how

the stabilizing feedback controllers should be synthesized. This problem is studied in the past
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[3, 4, 7]. The results in this paper provide new insight to NCSs when PLQ is employed. It has

the potential to address not only the issue of feedback stability but also of feedback performance.

More interesting part is the optimal PLQ in terms of minimization of the multiplicative and relative

quantization errors which are unstructured contrasting to those under CLQ. The issue of the CQD is

also investigated which is hinged on the stability margin of the corresponding NCS, and depends on

two parameters in quantizing the length and orientation of the signal vectors. Although this paper

did not consider the design issue for NCSs employing PLQ at both input and output of the MIMO

plants, the results in this paper can be used to tackle more general design issues. However explicit

stabilizability condition and the CQD for such design problems will be difficult to obtain, which are

under our investigation.
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