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a b s t r a c t

Repetitive processes are a class of 2D systems that operate over a subset of the upper-right quadrant of
the 2D plane. Applications include iterative learning control where experimental verification has been
reported based on a linear time-invariant model approximation of the dynamics. This paper considers
discrete nonlinear repetitive processes with Markovian switching and applies, as one application, the
resulting stability theory to iterative learning control for a class of networked systemswhere time-varying
dynamics arise.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The systems considered in this paper repeat the same finite
duration operation over and over again. Each repetition is termed
a pass and the duration the pass length. One industrial application
is long-wall coal mining where the coal is cut by a machine that
passes along the coal face and the objective is to maximize the
volume of coal cut without penetrating the coal/stone interface.
During each pass the machine rests on the pass profile cut during
the previous pass, i.e., the height of the stone/coal interface above
some datum line. Once a pass is complete, the machine is returned
to the starting location and then pushed across to rest on the newly
cut floor profile ready for the start of the next pass.

The geometry of the long-wall coal mining process means that
the previous pass profile acts as a forcing function on the next
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pass profile and hence contributes to its dynamics. This interaction
between successive pass profiles can result in oscillations that
increase in amplitude from pass-to-pass. These oscillations are the
distinguishing feature of repetitive processes [1] and they cannot
be removed by standard control action. Instead these processes
must be treated as systems operating over a subset of the upper-
right quadrant of the 2D plane.

This paper uses the notation yk(t), 0 ≤ t ≤ T , where y is the
scalar or vector valued variable, k ≥ 0, is the pass number and
T < ∞ is the pass length. Given that these process operate over the
domain defined by (k, t) ∈ [0, ∞] × [0, T ], boundary conditions
need to be specified for k = 0 and t = 0, i.e, the starting, or initial,
condition on each pass and the initial pass profile respectively. The
detailed modeling of long-wall coal mining as a repetitive process
is given in [1], which also references the original work and details
the modeling of other repetitive processes, such as forms of metal
rolling.

In physical examples, such as long-wall coal mining, the inter-
action between success pass profiles is part of the evolution of
the dynamics. Of direct relevance to the focus of this paper are
applications where the repetitive process structure arises from
the control action applied. Consider the commonly encountered
industrial taskwhere a gantry robot is undertaking a pick and place
operation over and over again and the sequence of operations is:
(i) collect an object from a specified location, (ii) transfer it over a
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finite duration, (iii) deposit it at a fixed location or onto a moving
conveyor, (iv) return to the starting location, and (v) repeat (i)–(iv)
as many times as required or until a stop for maintenance is re-
quired. The transfer of each object can be viewed as completing a
pass over the finite pass length and once complete, all information
generated is available to update the control law to be applied on
the next pass.

Iterative Learning Control (ILC), see the survey papers [2,3], has
been developed for applications such as the gantry robot operation
outlined briefly above. The control law is usually computed in
the resetting time between successive passes as a function of the
control used on the previous pass and a corrective term computed
using information from the previous pass (also termed a trial
in some literature) input and error or a finite number thereof.
Suppose that a reference signal, yref (t) that can be realized by
the gantry robot is given and on pass k let yk(t), 0 ≤ t ≤ T ,
be the pass profile and uk(t) the control input. Then ek(t) =

yref (t) − yk(t) is the error on this pass and the ILC design problem
to force tracking of the reference can be formulated as control law
design to achieve convergence, as measured by the norm on the
underlying function space, to zero of the error sequence {ek}k and
convergence of the input sequence {uk}k to u∞, which is termed
the learned control. Another example where the repetitive process
structure arises as a result of control action or the iterative solution
method is nonlinear dynamic optimal control problems based on
the maximum principle (described in [1] with references to the
original work).

Given the possibility of oscillations that increase in amplitude
from pass-to-pass, stability of a repetitive process is defined as
requiring that a bounded initial pass profile produces a bounded
sequence of pass profiles, defined in terms of the norm on the
underlying function space, either over the finite pass length or for
all possible values of this parameter. If the dynamics are linear
then an abstract model in a Banach space setting can be used [1]
where the conditions are expressed in terms of the bounded linear
operator describing the contribution of the previous pass profile
to the dynamics of the next. This theory has been applied to
ILC design, assuming that the dynamics are time-invariant, with
experimental verification [4] on a gantry robot that replicates the
pick and place operation discussed briefly above.

A significant proportion of the literature on the control of 2D
systems is based on a linear model of the dynamics. Comparatively
little work has been reported on the stability of nonlinear or linear
time-varying examples, see, for example, [5]. In many possible
applications for repetitive processes/2D systems, the dynamics are
nonlinear and the new results in this paper address this issue with
an application to ILC where it is shown that control law design
by Linear Matrix Inequalities (LMIs) is possible for cases where
linearization of the nonlinear dynamics about an operating point
is possible. One more recent addition to applications for repetitive
process control theory where the use of a nonlinear model will be
required is laser metal deposition processes [6].

In the application of control systems, failures in operation can
arise and the representation used in this paper for this problem is
based on random switching. In particular, a process with failures is
modeled by a state-space model with jumps in the parameter val-
ues and/or structure governed by aMarkov chainwith a finite set of
states, often termedMarkovian jump systems or systemswith ran-
dom structure, see, for example, [7]. Results on the development of
control theory for Markovian jump systems, which address issues
such as stability, optimal and robust control problems, in the stan-
dard, or 1D, case can be found in, for example, [8–13]. These results
cannot be applied to 2D systems. Progress on the development of
a systems theory for 2D linear systems with Markovian jumps is
reported in [14,15] and references therein.

This paper considers nonlinear and time-varying discrete
repetitive processes where, with applications such as ILC over a
network in mind, the dynamics also have Markovian switching.
The property of exponential stability in themean square is defined
and characterized, leading to results on stabilization and H∞

control with an application to ILC. Moreover, the results are
developed for time-invariant dynamics but have an immediate
extension to the time-varying case. As in other control systems
areas, it is to be expected that progress towards control law design
will for physical examples with nonlinear dynamics make use
of particular features in the corresponding models. Exactly this
feature is present in the ILC design analysis that forms the second
major part of this paper.

2. Process description and stability theory

If the dynamics of a repetitive process are linear then stability
analysis can proceed from the abstract model and the task for a
given example is to obtain conditions that can be tested. Let the
pass profile yk ∈ ET where ET is a Banach space. Then the pass-
to-pass dynamics of a linear repetitive process with constant pass
length T < ∞ are described by yk+1 = LTyk, k ≥ 0, where LT
is a bounded linear operator mapping ET into itself. In this case LT
is a convolution operator over the finite interval t ∈ [0, T ] and
contributions that enter on the current pass can be represented by
adding a term that lies in a linear subspace of ET .

The stability problem for repetitive processes is that the pass
profile sequence {yk}k≥1 for a given initial profile y0 can contain
oscillations that increase in amplitude with k, as discussed in
the previous section for the coal cutting example. Bounded-Input
Bounded-Output (BIBO) stability for these processes is therefore
defined, in terms of the norm on the underlying function space,
as the requirement that a bounded initial pass profile produces
a bounded sequence {yk}k≥1, either over the finite pass length or
else independent of this parameter. The latter property is the most
general case and for dynamics described by the abstract model,
i.e., by LT , requires the existence of real numbers M∞ > 0 and
λ∞ ∈ (0, 1), which are independent of T , such that ∥LkT∥ ≤ M∞λk

∞

where ∥ · ∥ denotes both the norm on ET and the induced operator
norm.

The vast majority of the systems theory currently available for
repetitive processes is for linear deterministic examples or those
forwhich such a description is an adequate basis for initial analysis.
In this paper, the process state-space model considered is

xk+1(t + 1) = F1(xk+1(t), yk(t), uk+1(t), wk(t), rk(t)),
yk+1(t) = F2(xk+1(t), yk(t), uk+1(t), wk(t), rk(t)),
0 ≤ t ≤ T , k = 0, 1, 2, . . . (1)

where the integer T denotes the pass length and on pass k, xk(t) ∈

Rnx is the current pass state vector, yk(t) ∈ Rny is the pass profile
vector, uk(t) ∈ Rnu is the control input vector, wk(t) ∈ Rnw is
the disturbance vector, F1 and F2 are nonlinear functions, r(t) is
the homogeneous Markov chain whose state-space is the set of
integers N = {1, 2, . . . , ν} and the transition probabilities are
given by

P[rk(t + 1) = j|rk(t) = i] = πij,

P[rk+1(t) = j|rk(t) = i] = ωij.

The boundary conditions are the pass state initial vector
sequence and the initial pass profile and in this paper have the form

xk+1(0) = dk+1, k ≥ 0,

y0(t) = f (t), 0 ≤ t ≤ T − 1, (2)

where the entries in the n × 1 vector dk+1 are known constants
and f (t) is anm×1 vector whose entries are known functions of t .
Also the presence of the time shift on the left-hand side of the first
equation in (1) means that the state vector xk(t) is defined over
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0 ≤ t ≤ T , including the specified initial state vector (t = 0) and
the remaining vectors over 0 ≤ t ≤ T − 1.

Let |q| denote the Euclidian norm on the vector q and E the
expectation operator. Suppose also that there exists a finite real
numberMf > 0 such that dk+1 and f (t) satisfy

|dk+1|
2

≤ κdη
k+1
d , κd > 0, 0 < ηd < 1, k = 0, 1, . . .

|f (t)| ≤ Mf , 0 ≤ t ≤ T − 1. (3)

Except where stated otherwise, all future references to the
boundary conditions in this paper will assume that they satisfy (3)
and it is also assumed that for each r ∈ N

F1(0, 0, 0, 0, r) = 0, F2(0, 0, 0, 0, r) = 0.
The following is the definition of stability for the repetitive

processes considered in this paper.

Definition 1. A discrete nonlinear repetitive process described
by (1) and (2) is said to be exponentially stable in themean square,
or exponentially stable for short, if

E[|xk+1(t)|2 + |yk(t)|2] ≤ κηk+t , κ > 0, 0 < η < 1. (4)

To study stability, a vector Lyapunov function approach is used
where it is convenient to define from (1)

x̄k(t) = [xTk+1(t) yTk (t)]
T . (5)

The candidate function is

V (x̄k(t), rk(t)) =


V1(xk+1(t), rk(t))
V2(yk(t), rk(t))


, (6)

with V1(0, r) = 0, V2(0, r) = 0. Define the operator D along
the trajectories of (1) as the stochastic discrete counterpart of
divergence

Dx̄,u,w,rV (x̄k(t), rk(t)) = E[V1(xk+1(t + 1), rk(t + 1))
+ V2(yk+1(t), rk+1(t)) − V1(xk+1(t), rk(t))
− V2(yk(t), rk(t))|xk+1(t) = x,

yk(t) = y, uk(t) = u, wk(t) = w, rk(t) = r] (7)
and the following result can be established.

Theorem 1. Consider a discrete nonlinear repetitive process de-
scribed by (1) and (2). Suppose also that there exist positive constants
c1, c2, c3, with c2 > c3, such that V and D satisfy

c1|x|2 ≤ V1(x, r) ≤ c2|x|2, (8)

c1|y|2 ≤ V2(y, r) ≤ c2|y|2, (9)

Dx̄,0,0,rV (x̄k(t), rk(t)) ≤ −c3(|x|2 + |y|2), r ∈ N. (10)

Then exponential stability holds.

Proof. Using (8)–(10)

E[V1(xk+1(t + 1), rk(t + 1)) + V2(yk+1(t), rk+1(t))]

≤ λE[V1(xk+1(t), rk(t)) + V2(yk(t), rk(t))], (11)

where λ =
c2−c3
c2

∈ (0, 1) by construction. Evaluating (11) in k and
t from 0 toN under the condition k+t = N , summing the resulting
inequalities, adding V1(xN+2(0)) + V2(y0(N + 1)) to both sides of
the result and rearranging gives
N+1
n=0

E [V1(xN+2−n(n), rN+1−n(n)) + V2(yN+1−n(n), rN+1−n(n))]

≤ λ

N
n=0

E [V1(xN+1−n(n), rN−n(n)) + V2(yN−n(n), rN−n(n))]

+ E[V1(xN+2(0), rN+1(0)) + V2(y0(N + 1), r0(N + 1))].
Considering this last inequality in terms of

W (N) =

N
n=0

E[V1(xN+1−n(n), rN−n(n)) + V2(yN−n(n), rN−n(n))]

gives

N
n=0

E[V1(xN+1−n(n), rN−n(n)) + V2(yN−n(n), rN−n(n))]

≤

N
n=0

λN−nE[V1(xn+1(0), rn(0)) + V2(y0(n), r0(n))]. (12)

Also for the specified boundary conditions

E[|xN+1−t(t)|2 + |yN−t(t)|2] ≤
c2
c1


κd

1 − η̄
+

T−1
t=0

λ−t
|f (t)|2


η̃N ,

where η̃ = max{η̄, λ}, η̄ = η
1
2
∗ , η∗ = max{ηd, λ}. Consequently

(4) holds with κ =
c2
c1


κd
1−η̄

+

T−1
t=0

λ−t
|f (t)|2


, η = η̃ and the

proof is complete. �

The following corollary to this last result holds for boundary
conditions that also satisfy

∞
k=0

|dk+1|
2
+

T−1
t=0

|f (t)|2 < ∞. (13)

Corollary 1. Consider a discrete nonlinear repetitive process de-
scribed by (1) and boundary conditions satisfying (13). Suppose that
there exist positive constants c1, c2, c3, with c2 > c3, such that V
and D of (6) and (7), respectively, satisfy (8)–(10). Then

E[|xk+1(t)|2 + |yk(t)|2] → 0 (14)

as k + t → ∞.

Proof. Summing inequalities (12) in the variable N gives

M
N=0

W (N) ≤ c2
M

k=0

λk(|d1|2 + |f (0)|2)

+ c2
M−1
k=0

λk(|d2|2 + |f (1)|2) + · · · + c2λ

× (|dM |
2
+ |f (M − 1)|2) + c2(|dM+1|

2
+ |f (M)|2)

≤ c2
∞
k=0

λk


M

N=0

(|dN+1|
2
+ |f (N)|2)



=
c2

1 − λ

M
N=0

(|dN+1|
2
+ |f (N)|2).

The right-hand side of the last inequality is bounded as M → ∞

since 0 < λ < 1 and (13) holds. Hence the series on the left-hand
side is convergent andW (N) → 0 as N → ∞. Given (8) and (9), it
follows that
N

n=0

E

|xN+1−n(n)|2 + |yN−n(n)|2


≤ c−1

1 W (N) → 0,

as N → ∞. Consequently (14) holds and the proof is com-
plete. �



J. Emelianova et al. / Systems & Control Letters 75 (2015) 108–116 111
It follows from the proof of Theorem 1 that this result is also
valid for more general time-varying discrete nonlinear repetitive
processes described by

xk+1(t + 1) = F̄1(xk+1(t), yk(t), uk(t), wk(t), rk(t), t),
yk+1(t) = F̄2(xk+1(t), yk(t), uk(t), wk(t), rk(t), t),

0 ≤ t ≤ T , k = 0, 1, 2, . . . (15)

where F̄1 and F̄2 are nonlinear functions such that

F̄1(0, 0, 0, 0, r, t) = 0,
F̄2(0, 0, 0, 0, r, t) = 0

and the remaining notation is the same as for (1).
Given this general stability theory for nonlinear processes,

research on the structure and design of control laws can begin.
In some applications, disturbance attenuation will also arise. As
with other nonlinear control systems problems, the aim will be
to develop general results but cases of applications interest could
arise where the dynamics have particular structural properties
that can be exploited to advantage, i.e. akin to electro-mechanical
systems. In this context, the next section develops a solution
to the stabilization and disturbance attenuation problem for the
general model and then in Section 5 application to ILC design
for an applications relevant sub-class is considered. The result is
LMI based stability tests and control law design algorithms that
allows for linear time-varying dynamics as an approximation about
an operating point of nonlinear dynamics, whereas the current
experimentally verified repetitive process based ILC [4] designs
require time-invariant models.

3. Stabilization and H∞ disturbance attenuation

The problem considered in this section is stabilization and
attenuation of the effects of the disturbance term w in (1) on, in
general, some of the entries in the pass profile vector as defined by
the auxiliary measurement

zk(t) = G(xk(t), yk(t), uk(t), wk(t), rk(t)), (16)

where G is a nonlinear function such that G(0, 0, 0, 0, r) = 0, in
terms of an H∞ norm. In particular, consider wk(t) ∈ l2([0, ∞),
[0, ∞)) and introduce

∥w∥2 =

 ∞
k=0

∞
t=0

|wk(t)|2 < ∞.

Define also the norm on zk(t) as

∥z∥E =

E


∞
k=0

∞
t=0

|zk(t)|2

.

Disturbance attenuation as measured by an H∞ norm for the
processes considered in this paper is defined as follows where no
loss of generality arises from assuming zero boundary conditions
for the remaining part of this section and hence the formal
statements of the new results are given without explicit reference
to these conditions.

Definition 2. A discrete nonlinear repetitive process described
by (1) and (16) is said to be exponentially stable with prescribed
H∞ disturbance attenuation level γ if it is exponentially stable
and for zero boundary conditions and for all wk(t) ∈ l2([0, ∞),
[0, ∞)) ≠ 0

∥z∥E < γ ∥w∥2.
Recall the definition of the vector x̄k(t) in (5) in the previous
section and write u ∈ Φ , if u = ϕ(x̄, r), where ϕ is a nonlinear
function such thatϕ(0, r) = 0, r ∈ N. This control law is activated
by the current pass state and previous pass profile vectors. It hence
has a feedback/feedforward structure, i.e., feedback of the current
state vector and feedforward of the previous pass vector.

Suppose also that L(x̄, u, r) is a nonlinear function such that
L(x̄, u, r) ≥ c(|x̄|2 + |u|2). Then the following result for the distur-
bance free case is established by following the steps of the proof of
Theorem 1 with routine changes and is hence omitted.

Theorem 2. Assume that for some u = ϕ(x̄, r) ∈ Φ the inequality

Dx̄,ϕ,0,rV (x̄k(t), rk(t)) + L(x̄k(t), ϕ(x̄k(t), rk(t))) ≤ 0

has a solution V (x̄k(t), rk(t)) satisfying (8) and (9). Then a discrete
nonlinear disturbance free repetitive process described by (1) and
(16) with uk(t) = ϕ(x̄k(t), rk(t)) is exponentially stable.

The following result solves the disturbance attenuation prob-
lem of this section.

Theorem 3. Assume that for some u = ϕ(x̄, r) ∈ Φ the inequality

Dx̄,ϕ,w,rV (x̄k(t), rk(t)) + ε|x̄|2 + |z|2 − γ 2
|w|

2
≤ 0 (17)

has a solution V (x̄, r), satisfying (8) and (9). Then the discrete non-
linear repetitive process obtained by applying u = ϕ(x̄, r) to (1) and
(16) is exponentially stable with prescribed H∞ disturbance attenu-
ation level γ .

Proof. Let the pair (V (x̄), ϕ(x̄, r)) be a solution of (17) and if
wk(t) ≡ 0 then

Dx̄,ϕ,0,rV (x̄k(t), rk(t)) + ε|x̄|2 ≤ 0 (18)

and since (8), (9) and (18) hold the controlled process is exponen-
tially stable by Theorem 2.

Setting wk(t) ∈ l2([0, ∞), [0, ∞)) ≠ 0, assuming zero bound-
ary conditions and using (17) gives

E[V1(xk+1(t + 1), rk(t + 1)) + V2(yk+1(t), rk+1(t))]
< E[V1(xk+1(t), rk(t)) + V2(yk(t), rk(t)) + |zk(t)|2

+ γ 2
|wk(t)|2]. (19)

Moreover, evaluating (19) for 0 ≤ k, t ≤ N , summing the re-
sulting inequalities over 0 ≤ k ≤ N under the assumption that
k + t = N and then adding E[V1(xN+2(0), rN+1(0)) + V2(y0(N +

1)), r0(N + 1)] to both sides of the result gives
N+1
k=0

E[V1(xk+1(N + 1 − k), rk(N + 1 − k))

+ V2(yk(N + 1 − k), rk(N + 1 − k))]

<

N
k=0

E[V1(xk+1(N − k), rk(N − k))

+ V2(yk(N − k), rk(N − k))]

+

N
k=0

E[|zk(N − k)|2 − γ 2
|wk(N − k)|2].

Summing both sides of this last inequality inN and rearranging the
resulting summands gives
M

N=0

N
k=0

E|zk(N − k)|2 < γ 2
M

N=0

N
k=0

|wk(N − k)|2

−

M+1
k=0

E[V1(xk+1(M + 1 − k), rk(M + 1 − k))

+ V2(yk(M + 1 − k), rk(M + 1 − k))].
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Letting M → ∞ gives for all wk(t) ∈ l2([0, ∞), [0, ∞)) ≠ 0,
∥z∥E < γ ∥w∥2. �

One possible method of constructing the stabilizing control law
u = ϕ(x̄, r) is to assume that the inequality

min
u∈Φ

{Dx̄,u,0,rV (x̄k(t), rk(t)) + L(x̄, u, r)} ≤ 0, (20)

has a solution {V (x̄, r), ϕ(x̄, r)}. Then, given Theorem 2, the con-
trol law u = ϕ(x̄, r) ensures exponential stability of the controlled
dynamics.

Remark 1. The results in this and the previous section have as-
sumed time-invariant dynamics but the results obtained extend
directly to time-varying dynamics.

The results in this and the previous section give existence con-
ditions for stability and control law design and to progress to ap-
plications tractablemethods of designing the control laws required
must be developed. This situation mirrors that in the control the-
ory for other classes of nonlinear systems and as in these areas
further progress can be made for sub-classes where particular fea-
tures that arise in modeling the dynamics can be used to advan-
tage. The remaining part of this paper considers the ILC application
where linearization about an operating point is possible, which re-
sults in time-varying models whereas the existing ILC designs in a
repetitive process that have been experimentally verified require
the assumption of time-invariant dynamics.

Further progress from (20) is possible for the special case of (1)
described by

xk+1(t + 1) = A11(rk(t))xk+1(t) + A12(rk(t))yk(t)
+ B1(rk(t))uk+1(t),

yk+1(t) = A21(rk(t))xk+1(t) + A22(rk(t))yk(t)
+ B2(rk(t))uk+1(t), (21)

with boundary conditions again given by (2). In particular, suppose
that with L(x̄, u, r) = x̄TQ (r)x̄ + uTR(r)u, Q (r) = Q T (r) ≥

0, R(r) = RT (r) > 0, r ∈ N and V1(x̄, r) = xTP1(r)x, V2(x̄, r) =

yTP2(r)y, r ∈ N, where ≥ and > denote the positive semi-
definite and positive-definite properties. Then the control law can
be obtained from
∂

∂u
{Dx̄,u,0,rV (x̄k(t), rk(t)) + L(x̄, u, r)} = 0,

in the form of switching linear feedback and thematrices P1 and P2
obtained as a solution of a corresponding LMI problem. Similarly, in
the case of stabilization and disturbance attenuation it is possible
to consider the corresponding minimax problem.

In the next two sections, practically relevant applications of the
general results already developed in this paper are considered. The
first of these considers the case of absolute stability, which, for
example, can be applied to the case when the actuator in a linear
control system exhibits nonlinear dynamics. Second, the results of
Theorem 1 are applied to ILC design for networks where random
failures can occur.

4. Absolute stability of a repetitive process with nonlinear
actuation

Consider the particular case of (21) when

uk+1(t) = ϕ(σ(i, x̄k(t))) if rk(t) = i, ϕ(0) = 0 (22)

where σ(i, x̄k(t)) = F(i)x̄k(t), F(i) = [F1(i) F2(i)], ϕ(·) is
nonlinear function, satisfying the following quadratic constraint

σ TQσ + 2σ T Sϕ(σ) + ϕT (σ )Rϕ(σ) ≥ 0, (23)
where Q = Q T , R = RT and S are matrices of appropriate di-
mensions. This last inequality is a standard constraint in absolute
stability theory [16,17]. In particular, if σ is a scalar function and ϕ
is a sector bounded nonlinearity, i.e.

0 ≤
ϕ(σ)

σ
≤ k, ϕ(0) = 0,

(23) has the form

ϕ(σ)(σ − k−1ϕ(σ)) ≥ 0.

The following definition is based on this last fact.

Definition 3. A system described by (21) is said to be absolutely
stable in the class of nonlinearities (22) if it is exponentially stable
in themean square for any nonlinear function ϕ(σ) satisfying (23).

The problem now considered is: find conditions for absolute
stability of (21) in the class of nonlinearities (22) in the form
suitable for efficient numerical verification.

Choose the components of the vector Lyapunov function (6) in
this case as the quadratic forms

V1 = xTk+1(t)P1(rk(t))xk+1(t), V2 = yTk (t)P2(rk(t))yk(t), (24)

To ensure the absolute stability of the system (21) with the control
law (22) applied, this particular case of the function (6)must satisfy
the conditions of Theorem 1 for all ϕ(σ) satisfying (23). Applying
the S-procedure [17] gives that these conditions hold and (21) is
absolute stable if P(i) = P1(i)⊕P2(i) > 0, i ∈ N and for sufficiently
small arbitrary ε > 0
AT (i)H(i)A(i) − P(i) + F T (i)QF(i) + εI AT (i)H(i)B(i) + F T (i)S

BT (i)H(i)A(i) + ST F(i) R + BT (i)H(i)B(i)


≤ 0, i ∈ N, (25)

where A(i) =


A11(i) A12(i)
A21(i) A22(i)


, H(i) =

ν
j=1 πijP1(j) ⊕

ν
j=1 ωij

P1(j), B(i) =


B1(i)
B2(i)


, i ∈ N and ⊕ denotes the direct sum of

two matrices. Also the inequalities (25) are easily checked using
standard LMI software.

5. ILC application

As briefly discussed in the Introduction section of this paper,
ILC is applicable to systems that repeat the same finite duration
task over and over again. In ILC design, the input on pass k + 1
is a function of the input on the previous term and a correction
term involving the error on the previous pass k, i.e., of the form
uk+1 = h(uk, ∆k) where ∆k denotes the this term.

As one application of the stability theory developed in the
previous section, ILC design over a leader–follower network is
considered where the dynamics of the subsystems linearized
about an operating point are represented by time-varying linear
models with uncertainty. The ILC design algorithms that have seen
experimental verification, such as those in [4], assume that the
system dynamics are time-invariant or can be well approximated
by such a model. Research has also been reported on linear and
nonlinearmodel based ILC for time-varying dynamics, such as [18],
but there is no one way of addressing this issue and it is only when
a number of methods have been investigated in significant depth
that will it be possible to do comparative studies. The analysis
that follows allows failures to be included and extends to LMIs for
design.

The leader–follower network considered consists of N systems,
each of which is described a state-space model of the form

xn(t + 1) = A(n)(δ(t))xn(t) + B(n)(δ(t))un(t),

yn(t) = C (n)xn(t), n = 1, 2, . . . ,N, 0 ≤ t ≤ T , (26)
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where for the nth system xn(t) is the state vector, un(t) is the
input vector, yn is the output vector, δ(t) is the vector of uncertain
parameters and A(n), B(n) and C (n) denote the model matrices. Also
the dynamics have associated uncertainty that is assumed to be
of the affine parallelotopic type with variations around a central
nominal model defined by the matrices (A(n), B(n)) along the axes
(A(n)l , B(n)l) of the form

A(n)(δ(t)) = A(n)
+

M
l=1

δl(t)A(n)l ,

B(n)(δ(t)) = B(n)
+

M
l=1

δl(t)B(n)l ,

(27)

whereM denotes the number of uncertain parameters and the un-
certainty region 1 is defined as

1 = {δ(t) = [δ1(t) . . . δM(t)]T : δl ≤ δl ≤ δl, δl ≤ 0,

δl ≥ 0, l = 1, . . . ,M}. (28)

Define also the finite set

1v = {δ = [δ1, . . . , δM ]
T

: δl ∈ {δl, δl}, l = 1, . . . ,M}, (29)

representing the vertices of the convex hull in which the uncertain
parameters take their values. Again the subscript k is added to the
vector variables to denote the ILC pass number.

In this paper it is assumed that only one system, termed the
leader, tracks the reference signal directly and the others track the
leader. If a follower loses communication from the leader due to
insufficient reliability of the network, it will track the available
follower and the system will track the leader again when access
to the leader is restored. It is assumed that at each time instant
only one of the followers can be out of contact with the leader.
Network failures are also considered where these are assumed
to be modeled by the Markov chain r(t) with finite set of states
N = {1, . . . , ν} and transition probabilities given by

P[r(t + 1) = j|r(t) = i] = πij. (30)

Suppose that yref (t) denotes the reference vector. Then on pass
k, the errors of the leader and followers are given by

e1k(t) = yref (t) − y1k(t),

enk(t) = yIn[r(t)]k − ynk(t), n = 2, . . . ,N, (31)

where In[r(t)] can take values from 1 to N , except n, depending on
the failures in the network, i.e., on the state of the Markov chain
r(t). Also it is assumed that the controlled system starts each pass
from a state vector with constant entries. The problem is to design
an ILC law such that

lim
k→∞

E[|enk(t)|] = 0, lim
k→∞

E[|un
k(t) − un

∞
(t)|] = 0, (32)

A common form of ILC law for linear dynamics is to select the
input on the current pass as that used on the previous one plus a
correction term, i.e.,

un
k+1(t) = un

k(t) + ∆un
k+1(t), (33)

where ∆un
k+1(t) denotes the correction used to update the control

input on the previous pass for use on the next pass, where once a
pass is complete all information generated during its evolution is
available for use in constructing this term.

Introduce, for analysis purposes only,

ξ n
k+1(t + 1) = xnk+1(t) − xnk(t), n = 1, . . . ,N,

ξk(t) = [(ξ 1
k )T (t) . . . (ξN

k )T (t)]T ,

ek = [(e1k)
T (t) . . . (eNk )T (t)]T .

(34)
Suppose also that the state vector xk(t) is available for use and
consider the following form of the correction term in the control
law (33):

∆uk+1(t) = F1(i)ξk+1(t + 1) + F2(i)ek(t + 1),

if r(t) = i, i ∈ N, (35)

where ∆uk(t) = [∆u1
k(t)

T . . . ∆un
k(t)

T
]
T and

F1(i) =

F (1)
1 (i) 0 . . . 0
0 F (2)

1 (i) . . . 0
0 0 . . . F (N)

1 (i)

 ,

F2(i) =

F (1)
2 (i) 0 . . . 0
0 F (2)

2 (i) . . . 0
0 0 . . . F (N)

2 (i)

 .

Using (34), the ILC law for this application can be written as

uk+1(t) = uk(t) + F1(i)[xk+1(t) − xk(t)] + F2(i)ek(t + 1),
if r(t) = i, i ∈ N,

where the term ek(t + 1) is causal and hence implementable since
it is generated on the previous pass. The ability to use non-causal
temporal information in control law design is the novel property
of ILC.

The ILC dynamics can be written as

ξk+1(t + 1) = [A11(δ(t)) + B1(δ(t))F1(r(t − 1))]ξk+1(t)
+ B1(δ(t))F2(r(t − 1))ek(t),

ek+1(t) = [A21(δ(t), r(t)) + B2(δ(t), r(t))F1(r(t − 1))]ξk+1(t)
+ [I + B2(δ(t), r(t))F2(r(t − 1))]ek(t), (36)

where A11 = diag[A(1), . . . , A(N)
],

B1 =


B(1) 0 . . . 0
0 B(2) . . . 0
...

...
. . .

...

0 0 . . . B(N)

 ,

and the matrices A21 and B2 have a random structure determined
by the failures that occur. In the absence of failures, each follower
receives information from the leader (system1) and thesematrices
have the following form

A21 =


−C (1)(i)A(1)(δ) 0 0 . . . 0
C (1)(i)A(1)(δ) −C (2)(i)A(2)(δ) 0 . . . 0

.

.

.
.
.
.

.

.

. . . .
.
.
.

C (1)(i)A(1)(δ) 0 . . . 0 −C (N)(i)A(N)(δ)

 ,

B2 =


−C (1)(i)B(1)(δ) 0 0 . . . 0
C (1)(i)B(1)(δ) −C (2)(i)B(2)(δ) 0 . . . 0

.

.

.
.
.
.

.

.

. . . .
.
.
.

C (1)(i)B(1)(δ) 0 . . . 0 −C (N)(i)B(N)(δ)

 .

When failures occur in system n, the entries −C (n)A(n) and
−C (n)B(n) in the above matrices remain in place but the other
entries can change. By way of example, consider the case when
N = 3, where if the first follower (system 2) loses communication
with the leader then

A21 =

−C (1)A(1) 0 0
0 −C (2)A(2) C (3)A(3)

C (1)A(1) 0 −C (3)A(3)

 ,

B2 =

−C (1)B(1) 0 0
0 −C (2)B(2) C (3)B(3)

C (1)B(1) 0 −C (3)B(3)

 .
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If the second follower (system 3) loses communication with the
leader then

A21 =

−C (1)A(1) 0 0
C (1)A(1)

−C (2)A(2) 0
0 C (2)A(2)

−C (3)A(3)

 ,

B2 =

−C (1)B(1) 0 0
−C (1)B(1)

−C (2)B(2) 0
0 C (2)B(2)

−C (3)B(3)

 ,

(the dependence on δ and i is omitted for ease of notation).
It is routine to establish that pass-to-pass error convergence

will occur if exponential stability holds. To obtain conditions for
this property, consider a vector Lyapunov function of the form (6)
with

V1 = ξ T
k+1(t)P1(r(t))ξk+1(t),

P1(i) = diag[P (1)
1 (i), . . . , P (N)

1 (i)],

V2 = eTk (t)P2(r(t))ek(t),

P2(i) = diag[P (1)
2 (i), . . . , P (N)

2 (i)].

By Theorem 2 the controlled system is exponentially stable
when

P(i) > 0,
ν

j=1

ĀT
ci(δ, j)P̄i(j)Āci(δ, j) − P(i) + Q̄ (i) ≤ 0, i ∈ N, δ ∈ 1, (37)

where

Āci(δ, j) =


A11(δ) + B1(δ)F1(i) A12(δ) + B1(δ)F2(i)

A21(δ, j) + B2(δ, j)F1(i) I + B2(δ, j)F2(i)


,

P(i) = diag[P1(i), P2(i)], P̄i(j) = diag[P1(j) P2(i)],
Q̄ (i) = Q (i) + R(i), Q (i) = diag[Q1(i),Q2(i)],
R(i) = diag[F T

1 (i)R1(i)F1(i), F T
2 (i)R2(i)F2(i)].

Using the Schur’s complement formula, the stability conditions
(37) can be reduced to the following finite set of LMIs M11(i) M12(δ, i) M13(i)

M12(δ, i)T M22(i) 0
M13(i)T 0 M33(i)

 ≥ 0,

X(i) = diag[X1(i), X2(i)] > 0, i = 1, . . . , N, δ ∈ ∆v, (38)

where

X1(i) = diag[X (1)
1 (i), . . . , X (N)

1 (i)],

X2(i) = diag[X (1)
2 (i), . . . , X (N)

2 (i)], M11(i) = X(i),
M12(δ, i) = [M121(δ, i) M122(δ, i) . . .M12ν(δ, i)],

M12j(δ, i) = π
1/2
ij

×


(A11(δ)X1(i) + B1(δ)Y1(i)) B1(δ)Y2(i)

(A21(δ, j)X1(i) + B2(δ, i)Y1(i)) X2(i) + B2(δ, j)Y2(i)

T

,

M13(i) = [X(i) Y T (i)], Y (i) = [Y1(i) Y2(i)],
Y1(i) = F1(i)X1(i),
Y2(i) = F2(i)Y2(i), M33(i) = diag[Q−1(i), R−1(i)],
M22(i) = diag[X1(1)X2(i), X1(2)X2(i), . . . , X1(ν)X2(i)],

and the following result has been established.
Theorem 4. Suppose that the LMIs given as (38) are feasible with
respect to the variables

X1(i) = diag[X (1)
1 (i), . . . , X (N)

1 (i)],

X2(i) = diag[X (1)
2 (i), . . . , X (N)

2 (i)],

Y1(i) =

Y 1
1 (i) 0 . . . 0
0 Y 2

1 (i) . . . 0
0 0 . . . YN

1 (i)

 ,

Y2(i) =

Y 1
2 (i) 0 . . . 0
0 Y 2

2 (i) . . . 0
0 0 . . . YN

2 (i)

 .

Then a networked system descried by (26)–(29) operating under an
ILC law of the form (33) with correction term defined by (35) is
convergent with

F1(i) = Y1(i)X−1
1 (i), F2(i) = Y2(i)X−1

2 (i), i = 1, . . . , N.

Often the transition probabilities of the Markov chain r(t) are
unknown and one option in this case is to find a conservative
solution in the form of a non-switching feedback control law
obtained using a common Lyapunov function. This function has the
form (6) with

V1 = ξ T
k+1(t)P1ξk+1(t), P1 = diag[P (1)

1 , . . . , P (N)
1 ],

V2 = eTk (t)P2ek(t),

P2 = diag[P (1)
2 , . . . , P (N)

2 ],

i.e., the matrices P1 and P2 are independent of r(t). In this case, the
following corollary to the last theorem holds.

Corollary 2. Suppose that LMIs
X ĀT

c (δ, i)
T X Y T

Ac(δ, i) X 0 0
X 0 Q−1 0
Y 0 0 R−1

 ≥ 0,

i = 1, . . . ,N, δ ∈ ∆v, (39)

are feasible with respect to X and Y , which are the counterparts
of those in the previous theorem but with constant entries. Then
a networked system descried by (26)–(29) with an ILC law of the
form (33) and (35) applied is convergent when F1 and F2 are given
by

F1 = Y1X−1
1 , F2 = Y2X−1

2 . (40)

5.1. Numerical example

Consider the case of (26) with N = 3. Suppose also that the
leader has no uncertainty associated with its dynamics and its
state-space model matrices are

A(1)
=


−0.002961 1 0
−0.0008363 −0.002961 0.3035

0 0 0


,

B(1)
=


0 0 0.1563

T
,

C (1)
= [0.0003718 0.007077 0.02335]

where the entries in the matrices of A(n) and B(n) (n = 2, 3) of
the state-space models for the followers have variations up to 20%
of those in the leader model matrices given above. Suppose also
that the possible failures are modeled as an homogeneous Markov
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Fig. 1. Reference signal.

process with three states corresponding to three possible modes.
In the first mode, the normal configuration, both the followers
track the leader. In the second, failure 1, the first follower loses
information from the leader and tracks the second follower and in
the third, failure 2, the second follower loses information from the
leader and tracks the first follower.

In the case when the transition probabilities between these
states are unknown, the non-switching feedback control law is
obtained from Corollary 2. Solving the LMIs of this result and using
(40) gives

F (1)
1 = F (2)

1 = F (3)
1 = [−0.0096 − 0.2814 − 51.9978],

F (1)
2 = F (2)

2 = F (3)
1 = 922.88.

The reference signal for this example is shown in Fig. 1. If the
network has no failures then the error for each system decreases
monotonically from pass-to-pass (k), see Fig. 2. Fig. 3 shows the
simulation results for the following scenario: on pass 5 the first
follower loses contact with the leader and switches to tracking the
second follower, from pass 7 the leader is available again and the
first follower continues to track the leader, on pass 10 the second
follower loses the leader and switches to tracking the first follower,
on pass 15 the leader is available again and the second follower
(a) Output of the leader. (b) Error of the leader. (c) Error of the leader (side view).

(d) Output of the 1-st follower. (e) Error of the 1-st follower. (f) Error of the 1-st follower (side view).

(g) Output of the 2-nd follower. (h) Error of the 2-nd follower. (i) Error of the 2-nd follower (side view).

Fig. 2. Simulation results for the network with no failures.
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(a) Output of the 1-st follower (loss of
the leader on the 5-th pass).

(b) Error of the 1-st follower (loss of the
leader on the 5-th pass).

(c) Error of the 1-st follower (loss of the leader on
the 5-th pass, side view).

(d) Output of the 2-nd follower (loss of
the leader on the 10-th pass).

(e) Error of the 2-nd follower (loss of the
leader on the 10-th pass).

(f) Error of the 2-nd follower (loss of the leader on
the 10-th pass, side view).

Fig. 3. Simulation results for the network with failures.
continues to track the leader. In the presence of failures, the error
convergence from pass-to-pass can be non-monotonic.

6. Conclusions

This paper has developed a stability theory that is applicable to
discrete nonlinear time-varying repetitive processes. The analysis
extends to conditions for stability under control action with
disturbance attenuation as measured by an H∞ norm and the
presence of failures as described by Markovian switching. In
common with other control theory for nonlinear dynamics,
progress from these results towards application will be enabled
by exploiting any extra structural properties of the dynamics in
a given application area. As one example of this latter point,
the application of the new theory to ILC law design has been
considered where the results obtained add to an area that is still
in the relatively early stages of development. The results obtained
allow nonlinear time-varying dynamics in both the nominalmodel
and that for the uncertainty structure assumed. Current research
is aimed at fully exploiting the potential of basing ILC design on
time-varying approximation of the dynamics about an operating
point. Progress in this respect will also widen the applications for
2D nonlinear control theory.
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