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Abstract

In this paper, the approximate observability of a class of infinite

dimensional bilinear systems is investigated. The observability con-

ditions are discussed based on a Volterra series representation of this

class of systems. A testable observability criterion is derived for the

case where the infinitesimal generator is self-adjoint or Riesz-spectral

operator. The theoretical results are illustrated by examples.

1 Introduction

System theoretic properties, such as stability, controllability and observabil-
ity for infinite dimensional systems have been extensively studied over the
past four decades. There is a well established systems theory for infinite
dimensional linear dynamical systems (Russell [19], Curtain and Zwart [9],
and Zuazua [27] and the references therein). Roughly speaking, the con-
trollability problem consists in driving the state of the system (the solution
of the controlled equation under consideration) to a prescribed final target
state (exactly or in some approximate way) in finite time. The observabil-
ity problem concerns the problem of reconstructing the full trajectory from
measured outputs. For infinite dimensional linear systems, controllability
and observability form a duality relationship considering the linear system
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and its dual system so that these two properties can be investigated under the
same framework. In this paper, we are mainly concerned about the observ-
ability of infinite dimensional bilinear systems. It is worth pointing out that
observability is one of the most fundamental properties, along with control-
lability and stability, in control systems theory. If sensors are arranged such
that a system is observable, in principle, we may uniquely reconstruct the
full trajectory or the initial states of the system without detecting them. Ob-
servability indicates how one can arrange sensors to determine states with a
smaller number of sensors than the number of states, and plays an important
role in both finite and infinite dimensional control theory. Thus, observabil-
ity is an important criterion when implementing sensors and designing state
observers for physical systems.

Unlike finite-dimensional systems, there are various definitions of observ-
ability for infinite dimensional systems which in the finite dimensional case
coincide. Most observability is defined in terms of the distinguishability of a
pair of initial states and two important concepts are exact and approximate
observability (Curtain and Zwart [9]). The definition of observability can
also depend on the length of the time interval or be independent of any spe-
cific time interval (Curtain and Zwart [9]). Generally, for infinite dimensional
linear systems, the control input is irrelevant to the observability whilst for
nonlinear systems, observability is normally input dependent. In this paper,
we concentrate on systems governed by bilinear partial differential equations
and consider the approximate observability which is input dependent. There
are a few results about the observability and observers of infinite dimensional
bilinear systems (Belikov [2], Xu [25], Bounit and Hammouri [6], and Gau-
thier, Xu, and Bounabat [11]). The difference between these earlier studies
and our approach is that we will use a Volterra series representation of this
class of infinite dimensional bilinear systems in the analysis of observability.

The Volterra series (Volterra [23], Rugh [18]) is a functional series ex-
pansion which is generally used to represent the input/output relationship
of a nonlinear system with mild nonlinearities. It has been successfully
applied in the analysis of finite dimensional nonlinear control systems in
the time and frequency domains (Schetzen [22], Sansen [21], Billings and
Tsang [4],[5], Peyton-Jones and Billings [17], Billings and Peyton-Jones [3]
and the references therein). One of the most important problems in the
Volterra series approach is the existence and convergence of such series, which
has been addressed by several authors for finite dimensional nonlinear sys-
tems. d’Alessandro, Isidori, and Ruberti [10] studied the Volterra series
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representation for bilinear systems. Linear-analytic systems have been stud-
ied by Brockett [8] and Lesiak and Krener [14]. Other relevant theoretical
results also exist (Sandberg [20], Boyd and Chua [7], Banks [1], and Peng
and Lang [16]). More recently, the Volterra series expansion for infinite di-
mensional nonlinear systems has been investigated. Guo, et al [12] proved
the existence and convergence of a Volterra series representation for the mild
solutions of a class of infinite dimensional nonlinear systems. In Helie and
Laroche [13] it was shown that a series expansion of a class of infinite dimen-
sional bilinear systems, nonlinear in the state and affine in the input, can be
obtained. Based on these previous results, in this paper, the approximate
observability of a class of infinite dimensional bilinear systems is investigated
using the Volterra series representation.

The paper is organised as follows. In Section 2 a formal Volterra series
representation is derived for the solution of the underlying infinite dimen-
sional bilinear systems. Section 3 gives the definition of the observability
we are investigating and the observability conditions are discussed based on
a Volterra series representation of this class of systems. A testable observ-
ability criterion is derived for the case where the infinitesimal generator is
self-adjoint or the Riesz-spectral operator. Examples are presented in Sec-
tion 4. Finally, conclusions are drawn in Section 5.

2 Preliminary

Consider the following infinite dimensional bilinear system with input u and
output y

ż(t) = Az(t) +D(z(t), u(t)), z(0) = z0, t ≥ 0

y(t) = Cz(t) (1)

where x(t) ∈ Z, u(t) ∈ U , and y(t) ∈ Y , Z,U , and Y are Hilbert spaces. It is
assumed that A is the infinitesimal generator of a C0-semigroup S(t), t ≥ 0
of bounded linear operators on Z. This means that there exist constants
M ≥ 1 and ω > 0 such that

‖S(t)‖L(Z) ≤M exp(ωt), t ≥ 0 (2)
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It also implies that A is closed and densely defined in Z. Assume that C is
a bounded linear operator from Z to Y , D is a bounded bilinear operator
from Z × U to Z, with norm

‖D‖L(Z×U,Z) = sup
z∈Z,u∈U

‖z‖Z=‖u‖U=1

‖D(z, u)‖Z (3)

and

‖D(z, u)‖Z ≤ L‖z‖Z‖u‖U (4)

where L > 0 is a positive constant. In this paper, we consider the admissible
controls are essentially bounded, i.e., u ∈ Ua ⊂ L∞([0,∞);U). Following
the standard definition (e.g. Pazy [15]), for a given T > 0, the mild solution
z ∈ C([0, T ];Z) of (1) is defined as the solution of the following integral
equation

z(t) = S(t)z0 +

∫ t

0

S(t− τ1)D(z(τ1), u(τ1))dτ1, t ∈ [0, T ] (5)

The existence and uniqueness of the mild solution of system (1) over [0, T ]
can be readily shown by using the Banach fixed point theorem with the
standard arguments (e.g. Theorem 6.1.2 Pazy [15] and Theorem 2.1 Zhang
and Joo [26]).

Lemma 1 For every z0 ∈ Z and u ∈ Ua, the bilinear system (1) has a
unique mild solution z ∈ C([0, T ];Z), Moreover z0 → z is Lipschitz from Z
to C([0, T ];Z).

Note that the bounded bilinear operator D : Z × U → Z induces a
bounded linear operator D1 from Z to L(U,Z) (the set of bounded linear
operators from U to Z) as

D1zu = D(z, u) (6)

or a bounded linear operator D2 from U to L(Z) (the set of bounded linear
operators from Z to Z) as

D2uz = D(z, u) (7)

It follows that we can rewrite (5) as
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z(t) = S(t)z0 +

∫ t

0

S(t− τ1)D1z(τ1)u(τ1)dτ1

= S(t)z0 +

∫ t

0

S(t− τ1)D2u(τ1)z(τ1)dτ1

(8)

Actually, the unique mild solution of (1) can also be expressed as

z(t) = Su(t, 0)z0

= S(t)z0 +

∫ t

0

S(t− τ1)D2u(τ1)Su(τ1, 0)z0dτ1

(9)

where Su(t, s) is the mild evolution operator generated by the operator A+
D2(u), u ∈ Ua (Definition 3.2.4 and Theorem 3.2.5, Curtain and Zwart [9]).

There are several ways to derive the Volterra series representation such as
the standard Picard iteration or the regular perturbation approach. A simple
way to understand this is to substitute for z(τ) in (8) using an expression of
this same form,

z(t) = S(t)z0 +

∫ t

0

S(t− τ1)D1[S(τ1)z0

+

∫ τ1

0

S(τ1 − τ2)D1z(τ2)u(τ2)dτ2]u(τ1)dτ1

= S(t)z0 +

∫ t

0

S(t− τ1)D1S(τ1)z0u(τ1)dτ1

+

∫ t

0

∫ τ1

0

S(t− τ1)D1S(τ1 − τ2)D1z(τ2)u(τ2)u(τ1)dτ2dτ1

(10)

Substituting for z(τ2) in (10) using an expression of the form (8), and con-
tinuing in this manner yields, after N − 1 steps,
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z(t) = S(t)z0 +
N−1
∑

n=1

∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

S(t− τ1)D1 · · ·D1S(τn−1 − τn)

D1S(τn)z0u(τn)u(τn−1) · · · u(τ1)dτn · · · dτ1

+

∫ t

0

∫ τ1

0

· · ·
∫ τN−1

0

S(t− τ1)D1S(τ1 − τ2)D1 · · ·D1S(τN−1 − τN)

D1z(τN)u(τN)u(τN−1) · · · u(τ2)u(τ1)dτN · · · dτ1
(11)

where we denote τ0 = t. The last term in (11) should approach to 0 in a
uniform way on any finite time interval [0, T ] if the above iteration process
converges (Recall that the iteration is absolutely and uniformly convergent
on [0, T ] in this case provided ‖u‖Ua

≤ ε and T is sufficiently small). It
follows the the standard Volterra series representation of the system (1) is
given by

z(t) =
∞
∑

n=0

zn(t)

= h0(t) +
∞
∑

n=1

∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

hn(t, τ1, · · · , τn)u(τn) · · · u(τ1)dτn · · · dτ1

(12)

where

h0(t) = S(t)z0

hn(t, τ1, · · · , τn) = S(t− τ1)D1S(τ1 − τ2) · · ·D1S(τn−1 − τn)D1S(τn)z0

(13)

for t ≥ τ1 ≥ τ2 ≥ · · · ≥ τn ≥ 0 and hn = 0 otherwise.
The convergence of such series has been shown to be normally convergent

with a convergence radius ρ, which depends on the magnitudes of the input
u ∈ L∞(T;U) and the homogeneous solution S(·)z0 ∈ L∞(T;Z) in [13],
where T = [0, T ] or R+. Helie and Laroche [13] gave an explicit expression
of the bound as
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Φ(‖u‖L∞(T,U) +
1

ω
‖S(·)x0‖L∞(T,Z)) (14)

where Φ(s) is analytic on the open disk with radius ρ. The result in [13]
provides potentials in many applications such as the optimization of param-
eterized stabilizing controllers through the maximization of the convergence
parameter ρ.

Alternatively, we can show the Volterra series (12) is uniformly convergent
on [0, T ], T > 0 as an infinite series of functions from [0, T ] to Z using
Weierstrass M-test. From (2) and (13), for any t ∈ [0, T ]

‖z0(t)‖Z = ‖h0(t)‖Z ≤ ‖S(t)‖L(Z)‖z0‖Z ≤M exp(ωt)‖z0‖Z ≤M exp(ωT )‖z0‖Z
(15)

and for n ≥ 1 and for any τ1, · · · , τn ∈ [0, T ]

‖zn(t)‖Z = ‖
∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

hn(t, τ1, · · · , τn)u(τn) · · · u(τ1)dτn · · · dτ1‖Z

≤
∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

‖hn(t, τ1, · · · , τn)u(τn) · · · u(τ1)‖Zdτn · · · dτ1

≤ ‖z0‖Z‖u‖nUa
‖D1‖nL(Z,L(U,Z))M

n+1

∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

exp(ωt)dτn · · · dτ1
=M exp(ωt)‖z0‖Z‖u‖nUa

‖D1‖nL(Z,L(U,Z))M
ntn/n!

=M exp(ωT )‖z0‖Z‖u‖nUa
‖D1‖nL(Z,L(U,Z))M

nT n/n!

(16)

This means that the formally generated Volterra series (12) is dominated by
a series

M‖z0‖Z exp(ωT )
∑∞

n=0 ‖u‖nUa
‖D1‖nL(Z,L(U,Z))M

nT n/n!

=M‖z0‖Z exp((ω + ‖u‖Ua
‖D1‖L(Z,L(U,Z))M)T ) <∞ (17)

which is convergent on [0, T ]. This indicates that the obtained Volterra
series is uniformly convergent on [0, T ] for any 0 < T < ∞, which gives the
following result
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Lemma 2 Let u ∈ Ua ⊂ L∞([0, T ], U), the Volterra series (12) derived
from the bilinear system (1) is uniformly convergent on [0, T ].

It is easy to see that if the C0-semigroup S(t), t ≥ 0 is exponentially
stable, that is, there exist constant M > 0 and α > 0 such that ‖(S(t)‖ ≤
M exp(−αt), then the Volterra series (12) converges on [0,∞).

For the rest of the paper, we assume that u ∈ Ua ⊂ L∞([0, T ], U) and
z0 ∈ Z and the Volterra series representation (12) converges uniformly to the
mild solution (5) on [0, T ].

3 Main result

There are many definitions of observability of infinite dimensional linear and
bilinear systems(Williamson [24], Belikov [2], Curtain and Zwart [9], Bounit
and Hammouri [6]). Informally, all the observability problems are concerned
with the ability of systems to reconstruct the full trajectory from measured
outputs. Let y(t, z0, u) denote the output of the system (1) at time t, when
the input u(s) is used during s ∈ [0, T ], given that the system passed through
the state z0 at time t = 0. From (1), (9), and (12) we rewrite it using
D2 : U → L(Z) to obtain

y(t, z0, u) = Cz(t)

= CSu(t, 0)z0

= CS(t)z0 +
∞
∑

n=1

∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

CS(t− τ1)D2(u(τ1))S(τ1 − τ2)

· · ·D2(u(τn−1))S(τn−1 − τn)D2(u(τn))S(τn)z0dτn · · · dτ1
(18)

It follows that y(·, z0, u) ∈ C([0, T ];Y ) so that y is always in L2([0, T ];Y ) (we
use this space to derive some adjoint operators), and the series representation
(18) of y is uniformly convergent on [0, T ]. The observability problem is to
determine z0, given y(t, z0, u), t ∈ [0, T ] and u ∈ Ua. First, we consider
the observability with respect to a given input, which leads to the following
definition

Definition 1 Given an input u ∈ Ua, the bilinear system (1) is approxi-
mately observable with respect to u on [0, T ] if CSu(t, 0)z = 0, z ∈ Z for all
t ∈ [0, T ] implies z = 0.
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Given an input u ∈ Ua, we consider the observability gramian Lu of
system (1) on [0, T ] as

Lu = (Cu)∗Cu (19)

where Cu is the bounded linear map from Z to L2([0, T ], Y ) defined by

Cuz = CSu(·, 0)z, z ∈ Z (20)

and ∗ denotes its adjoint.
Theorem 1 The following assertions are equivalent:

(a) The bilinear system (1) is approximately observable with respect to u on
[0, T ],

(b) Lu > 0,

(c) kerCu = {0}.

Furthermore, in terms of the Volterra series representation (18), the operator
Cu ∈ L(Z,L2([0, T ], Y )) can be expressed by using C0-semigroup S(t) and the
operator D as

Cuz = CS(·)z +
∞
∑

n=1

∫ ·

0

∫ τ1

0

· · ·
∫ τn−1

0

CS(· − τ1)D2(u(τ1))S(τ1 − τ2)

· · ·D2(u(τn−1))S(τn−1 − τn)D2(u(τn))S(τn)zdτn · · · dτ1
(21)

and its adjoint operator is given by

(Cu)∗y =

∫ T

0

S∗(t)C∗y(t)dt

+
∞
∑

n=1

∫ T

0

∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

S∗(τn)D2(u(τn))
∗S∗(τn−1 − τn)

· · ·D2(u(τ2))
∗S∗(τ1 − τ2)D2(u(τ1))

∗S∗(t− τ1)C
∗y(t)dτn · · · dτ1dt

(22)
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and the series here is uniformly convergent on [0, T ].
Proof. (a) and (c) are equivalently because Cu is bounded linear operator

from Z to L2([0, T ], Y ). Note that

< Luz, z >=< (Cu)∗Cuz, z >=< Cuz, Cuz >= ‖Cuz‖2 (23)

So Lu > 0 if and only if kerCu = {0}.
Furthermore, following Theorem 2.2.6 of Curtain and Zwart [9], S∗(t), t ∈

[0, T ] is a C0-semigroup with infinitesimal generator A∗ on Z. From the
definition of the adjoint, the adjoint operators of the individual operator
terms in the series representation (21) of Cu ∈ L(Z,L2([0, T ], Y )) are given
by

∫ T

0

S∗(t)C∗y(t)dt

∫ T

0

∫ t

0

S∗(τ1)D(u(τ1))
∗S∗(t− τ1)C

∗y(t)dt

...
∫ T

0

∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

S∗(τn)D2(u(τn))
∗S∗(τn−1 − τn) · · ·

D2(u(τ2))
∗S∗(τ1 − τ2)D2(u(τ1))

∗S∗(t− τ1)C
∗y(t)dτn · · · dτ1dt

... (24)

Consider the sequence of partial sums

P ∗
my =

∫ T

0

S∗(t)C∗y(t)dt

+
m
∑

n=1

∫ T

0

∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

S∗(τn)D2(u(τn))
∗S∗(τn−1 − τn)

· · ·D2(u(τ2))
∗S∗(τ1 − τ2)D2(u(τ1))

∗S∗(t− τ1)C
∗y(t)dτn · · · dτ1dt

(25)
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They are the adjoint operator of the sequence of partial sums of Cu

Pmz = CS(t)z +
m
∑

n=1

∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

CS(· − τ1)D2(u(τ1))S(τ1 − τ2)

· · ·D2(u(τn−1))S(τn−1 − τn)D2(u(τn))S(τn)zdτn · · · dτ1
(26)

Note that

‖(Cu)∗y − P ∗
my‖ = ‖Cuz − Pmz‖, y ∈ L2([0, T ], Y ), z ∈ Z (27)

Since Cu is uniformly convergent on [0, T ], (Cu)∗ is uniformly convergent as
the series given in (22) on [0, T ] as well. �

Remark It follows from the explicit expressions (21) and (22) that Lu

can be calculated as

< Luz, z >=< z,W0,0z > +2
∞
∑

n=1

< z,W0,nz > +
∞
∑

n=1

∞
∑

m=1

< z,Wm,nz >

(28)
where

W0,0z =

∫ T

0

S∗(t)C∗CS(t)zdt (29)

W0,nz =
∞
∑

n=1

∫ T

0

∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

S∗(t)C∗CS(t− τ1)D2(u(τ1))S(τ1 − τ2)

· · ·D2(u(τn−1))S(τn−1 − τn)D2(u(τn))S(τn)zdτn · · · dτ1dt
(30)

and for m,n > 1,

Wm,nz =
∞
∑

m=1

∞
∑

n=1

∫ T

0

∫ t

0

∫ τ1

0

· · ·
∫ τm−1

0

∫ t

0

∫ t1

0

· · ·
∫ tn−1

0

S∗(τm)

D2(u(τm))
∗S∗(τm−1 − τm) · · ·D2(u(τ2))

∗S∗(τ1 − τ2)D2(u(τ1))
∗

S(t− τ1)
∗C∗CS(t− t1)D2(u(t1))S(t1 − t2) · · ·D2(u(tn−1))

S(tn−1 − tn)D2(u(tn))S(tn)zdtn · · · dt1dτm · · · dτ1dt
(31)
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The derived expression for the observability gramian (28) is difficult to be
used to test for the observability. However, in practice a finite order truncated
Volterra series is often sufficient to represent the original system. In this case,
the observability gramian (28) can be directly used to check the observability.

The following definition is concerned about the observability with respect
to all inputs.

Definition 2: An initial states z0 ∈ Z of the system (1) is said to be
indistinguishable from 0 on [0, T ] if the response y(t, z0, u), t ∈ [0, T ] with
z(0) = z0 is identical to the response with z(0) = 0 for all u ∈ Ua. The
bilinear system (1) is said to be approximately observable if there are no
indistinguishable states.

All of the indistinguishable states from 0 on [0, T ] form a subspace N of
Z, that is

N = {z ∈ Z|y(t, z, u) = 0, for all t ∈ [0, T ] and for all u ∈ Ua}
=

⋂

u∈Ua

kerCu

(32)

and the system (1) is approximately observable iff N = {0}.
In what follows, an approximate observability criterion will be derived for

the bilinear system (1) with scalar input u and output y. Assume that D
and C are defined by

D(z, u) = αuz, where z ∈ Z, α 6= 0, u ∈ R (33)

and

Cz =< c, z >, z, c 6= 0 ∈ Z (34)

Firstly, we will consider the case where the linear operator A is self-adjoint
or Hermitian. Later we will consider the more general case where the linear
operator A in (1) is a Riesz-spectral operator. Now let A be self-adjoint
defined by

Az =
∞
∑

n=1

λn < z, φn > φn (35)

where
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• {λn, n ≥ 1} are eigenvalues such that

λ1 > λ2 > λ3 > · · · > λn > · · · (36)

• the corresponding eigenvectors {φn, n ≥ 1} form an orthonormal basis

< φn, φm >= δnm (37)

in the Hilbert space Z, where δnm is the Kronecker delta.

It follows that the C0 semigroup S(t), t ≥ 0 can be described by using these
eigenvalues and eigenfunctions

S(t)z =
∞
∑

n=1

eλnt < z, φn > φn (38)

Theorem 2 Consider the bilinear system (1), where A is self-adjoint
defined as above. D and C are given in (33) and (34). Then the system (1)
is approximately observable if and only if < c, φn > 6= 0 for all n ≥ 1.

Proof. For any z0 ∈ D(A), the assumption (33) and following the property
of semigroups yields

z(t) = S(t)z0 +
∞
∑

n=1

∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

S(t− τ1)S(τ1 − τ2) · · ·S(τn)z0

αu(τ1)αu(τ2) · · ·αu(τn)dτn · · · dτ1

= S(t)z0 +
∞
∑

n=1

∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

S(t)z0α
nu(τ1)u(τ2) · · · u(τn)dτn · · · dτ1

(39)

and substituting (38) into (39) yields

z(t) =
∞
∑

m=1

eλmt < z0, φm > φm +
∞
∑

n=1

∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

αnu(τ1)u(τ2) · · ·

u(τn)dτn · · · dτ1
∞
∑

m=1

eλmt < z0, φm > φm, t ∈ [0, T ]

(40)
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It follows that the output of the system is given by

y(t) = < c, z(t) >

= (1 +
∞
∑

n=1

∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

αnu(τ1)u(τ2) · · · u(τn)dτn · · · dτ1)

∞
∑

m=1

eλmt < z0, φm >< c, φm >, t ∈ [0, T ]

(41)

For u ∈ Ua, the series 1+
∑∞

n=1

∫ t

0

∫ τ1
0

· · ·
∫ τn−1

0
αnu(τ1)u(τ2) · · · u(τn)dτn · · · dτ1

is absolutely and uniformly convergent on [0, T ] because

|
∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

αnu(τ1)u(τ2) · · · u(τn)dτn · · · dτ1| ≤ |α|n‖u‖nUa
T n/n! (42)

so that we can have that

y(t) = γu(t)
∞
∑

m=1

eλmt < z0, φm >< c, φm >, t ∈ [0, T ] (43)

It follows that if there exists a l ≥ 1 such that < c, φl >= 0, then we can
always find a z0 ∈ Z satisfying < z0, φm >= 0 for all m ≥ 1 but l, say
z0 = φl such that y(t) = 0, t ∈ [0, T ]. This indicates that the system (1) is
approximately observable if and only if < c, φm > 6= 0 for all m ≥ 1. �

Now, assume that the Riesz-spectral operator A has simple eigenvalues
{λn, n = ±1,±2, · · · } and corresponding eigenvectors {φn, n = ±1,±2, · · · }.
Let {ψn, n = ±1,±2, · · · } be the eigenvectors of A∗, the adjoint of A, such
that < φn, ψm >= δnm. It follows that the operator A has the representation,
as the infinitesimal generator of a C0-semigroup S(t),

Az =
∞
∑

n=−∞

λn < z, ψn > φn (44)

and

S(t)z =
∞
∑

n=−∞

eλnt < z, ψn > φn (45)
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Theorem 3 Consider the bilinear system (1), where A is a Riesz-spectral
operator defined above. D and C are given in (33) and (34). Then the
system (1) is approximately observable if and only if < c, φn > 6= 0 for all
n = ±1,±2, · · · .

The proof is similar to that of Theorem 2, thus omitted.

4 Examples

Example 1 Consider the following reaction-diffusion process

∂

∂t
z(x, t) =

∂2

∂x2
z(x, t) + z(x, t)u(t)

z(x, 0) = z0(x), t ≥ 0, x ∈ [0, l], l > 0 (46)

with Dirichlet boundary conditions

z(0, t) = z(l, t) = 0 (47)

or with periodic boundary conditions

∂

∂x
z(0, t) =

∂

∂x
z(l, t), z(0, t) = z(l, t), (48)

The output is given by an observation at a fixed point xo

y(t) = z(xo, t) (49)

or by an observation around a fixed point xo

y(t) =

∫ l

0

c(x)z(x, t)dx (50)

where c(x) is given by

c(x) =
1

2ε
I[xo−ε,xo+ε](x) (51)

where

I[xo−ε,xo+ε](x) =

{

1 xo − ε ≤ x ≤ xo + ε
0 otherwise

(52)
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where it is assumed that ε > 0. Let Z = L2(0, 1) and A be the linear
operator in Z defined by D(A) = {z, z′, z′′ ∈ Z : z(0) = z(l) = 0} or
{z, z′, z′′ ∈ Z : zx(0) = zx(l), z(0) = z(l)} as Az = νz′′ for z ∈ D(A). So it is
easy to see that (46) can be formulated as (1) with Z = L2(0, 1), U = Y = C,
D(z, u) := zu,D ∈ L(Z × C,Z), and Cz := z(x0) or

Cz :=

∫ l

0

c(x)z(x)dx (53)

C ∈ L(Z,C). Note that A here is a self-adjoint operator. For Dirichlet
boundary condition (47), it is readily seen that

λn = −ν(2nπ/l)2 (54)

and

φn(x) =

√

1

l
sin

2nπx

l
(55)

for all n ≥ 1 are the eigenvalues and eigenvectors, respectively. For the mixed
boundary condition (48), we have the following eigenvalues and eigenvectors

λn = −ν(2nπ/l)2 (56)

and

φn(x) =

√

1

l
(sin

2nπx

l
+ cos

2nπx

l
) (57)

for all n ≥ 1. For the output y(t) = Cz(x, t) =
∫ l

0
c(x)z(x, t)dx in (50), the

observability condition given in Theorem 3 for Dirichlet boundary condition
(47) is actually

√
l

2nπε
sin

2nπx0
l

sin
2nπε

l
6= 0, n ≥ 1 (58)

Note that if we take the limit as ε→ 0, we obtain the observability condition
for the case where y(t) = z(x0, t) as

sin
2nπx0
l

6= 0, n ≥ 1 (59)

For the periodic boundary conditions (48) and the output (50), the observ-
ability condition will be
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√
l

2nπε
(sin

2nπx0
l

+ cos
2nπx0
l

) sin
2nπε

l
6= 0, n ≥ 1 (60)

and for the output (49), it is

sin
2nπx0
l

+ cos
2nπx0
l

6= 0, n ≥ 1 (61)

Example 2 Consider the following one-dimensional wave equation

∂2

∂t2
w(x, t) =

∂2

∂x2
w(x, t) + u(t)

∂

∂t
w(x, t)

w(x, 0) = w0(x), t ≥ 0, x ∈ (0, 1), u ∈ R (62)

with Dirichlet boundary conditions

w(0, t) = w(1, t) = 0, t ≥ 0 (63)

The output is given by

y(t) =

∫ l

0

c(x)w(x, t)dx (64)

where c(x) is given by (51).
System (62) can be represented as the first order differential equation in

Z = H1
0 (0, 1)× L2(0, 1):

ż(t) = Az(t) + u(t)Dz(t) (65)

where

z(t) =

(

w(t)
ẇ(t)

)

, A =

(

0 I
A0 0

)

(66)

and

A0 = ∂2/∂x2 and D =

(

0 0
0 I

)

(67)

here D(A0) = H1
0 (0, L) ∩ H2(0, L). The operator A is skew-adjoint (A∗ =

−A) with D(A) = D(A0)×D(A
1/2
0 ) and generates an isometric C0 semigroup

on H. The system (62) can then be formulated as a bilinear system as follows
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ż(t) = Az(t) + u(t)Dz(t)

y(t) = Cz(t), Cz(t) =

∫ l

0

c(x)z1(x, t)dx (68)

The operator A has the eigenvalues {λn = jnπ, n = ±1,±2, · · · } and the
eigenvectors

φn(x) =
1

λn

(

sin(nπx)
λn sin(nπx)

)

, n = ±1,±2, · · · (69)

which forms a Riesz basis. It follows that the observability condition given
in Theorem 3 is actually

sin(nπx0) sin(nπε)

nπε
6= 0, n = ±1,±2, · · · (70)

Note that if we take the limit as ε→ 0, we obtain the observability condition
for the case where y(t) = z1(x0, t) as

sin(nπx0) 6= 0, n = ±1,±2, · · · (71)

5 Conclusions

A formal Volterra series representation of the solution of a class of infinite
dimensional bilinear systems has been derived which provides a new way to
investigate the observability of these systems. Two types of approximate
observability have been discussed, that is the approximate observability with
respect to a given input and with respect to all admissible inputs. It has
been found that the observability gramian for the approximately observability
with respect to a given input can be explicitly expressed in terms of the
C0-semigroup of the operator A, the bounded bilinear operator D, and the
property of the given input. A testable observability criterion for the case
where the infinitesimal generator is self-adjoint or Riesz-spectral operator
has also been given as a practical test. The importance of the results in this
paper lies in that they provide a new way to study the system properties of
infinite dimensional nonlinear systems.

Another closely related question is the design of an observer by using the
Volterra series representation for infinite-dimensional systems. Comparing
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with the classic methods, one of the advantages of using a Volterra series
representation is that it provides a parametric input-output representation
for the underlying nonlinear systems. Moreover, Volterra series provides a
new way to investigate infinite-dimensional nonlinear systems in frequency
domain, which could have important implication in the observer design for
nonlinear systems.
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