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Abstract

In optimization routines used for on-line Model Predictive Control (MPC),
linear systems of equations are usually solved in each iteration. This is true
both for Active Set (AS) methods as well as for Interior Point (IP) methods,
and for linear MPC as well as for nonlinear MPC and hybrid MPC. The main
computational effort is spent while solving these linear systems of equations,
and hence, it is of greatest interest to solve them efficiently. Classically, the
optimization problem has been formulated in either of two different ways.
One of them leading to a sparse linear system of equations involving relatively
many variables to solve in each iteration and the other one leading to a
dense linear system of equations involving relatively few variables. In this
work, it is shown that it is possible not only to consider these two distinct
choices of formulations. Instead it is shown that it is possible to create an
entire family of formulations with different levels of sparsity and number of
variables, and that this extra degree of freedom can be exploited to get even
better performance with the software and hardware at hand. This result
also provides a better answer to an often discussed question in MPC; should
the sparse or dense formulation be used. In this work, it is shown that the
answer to this question is that often none of these classical choices is the best
choice, and that a better choice with a different level of sparsity actually can
be found.
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1. Introduction

Model Predictive Control (MPC) is one of the most commonly used con-
trol strategies in industry. Some important reasons for its success include
that it can handle multi-variable systems and constraints on control signals
and states in a structured way. In each sample, some kind of optimization
problem is solved. In the methods considered in this paper, the optimization
problem is assumed to be solved on-line. The optimization problem can be
of different types depending on which type of system and problem formu-
lation that is used. The most common variants are linear MPC, non-linear
MPC and hybrid MPC. In most cases, the effort spent in the optimization
problems boils down to solving Newton-system-like equations. Hence, lots
of research has been done in the area of solving this type of system of equa-
tions efficiently when it has the special form from MPC. It is well-known
that these equations (or at least a large part of them) can be cast in the
form of a finite horizon LQ control problem and as such it can be solved
using a Riccati recursion. Some examples of how Riccati recursions have
been used to speed up optimization routines can be found in, for example,
[9, 13, 8, 5, 15, 11, 2, 4, 1, 3, 6].

The objective with this paper is to revisit the recurring question in MPC
whether the optimization problem should be formulated in a way where the
states are present as optimization variables or in a form where only the control
signals are the optimization variables. The latter is often called condensing.
In general this choice in turn affects which type of linear algebra that is
possible to use in the optimization routine. If the states are kept, the system
of equations solved in each iteration in the solver potentially becomes sparse
and if the condensed formulation is used this system of equations instead
becomes dense. Since it is known that the computational complexity of
the sparse formulation grows with the prediction horizon length N as O(N)
if sparsity is exploited while the computational complexity for the dense
one grows as O(N3), the sparse one is often recommended for problems
with large N and the dense one is often recommended for problems with
small N . In this paper, it will be shown that this choice does not have
to be this binary. It is shown that it is possible to construct equivalent
problems that have a level of sparsity in between these two classical choices,
but also to increase the sparsity even further for certain types of problems.
By using the approaches proposed in this work, formulations that are even
more computationally efficient than the classical ones can be constructed.
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The key to the performance improvement is that the proposed reformula-
tions change the block-size of the sparse formulation. This makes it possible
to tune this choice according the performance of the software and hardware
available on-line. If a code generated solver is used, the selection of the most
appropriate formulation of the problem can be done off-line in the code gen-
eration phase, taking the performance of the on-line hardware and software
platform into account. Choosing a good, or even “optimal”, block-size is not
a new idea in numerical linear algebra. See, e.g., [16]. However, it has, to the
best of our knowledge, not previously been discussed for MPC and in partic-
ular not in the context of tailored linear algebra for MPC. Furthermore, the
presented result hints that control engineers working with MPC should not
ask themselves whether to formulate the problem in a sparse or dense way,
but instead what is the correct level of sparsity for the problem at hand to
obtain maximum performance which do not necessarily coincide with one of
the two extreme choices that have been used classically.

In this article, Sn denotes symmetric matrices with n columns. Further-
more, Sn

++ (Sn
+) denotes symmetric positive (semi) definite matrices with n

columns. The set Z++ denote the set of positive non-zero integers. A Sans
Serif font is used to indicate that a matrix or a vector is, in some way, com-
posed of stacked matrices or vectors from different time instants. The stacked
matrices or vectors have a similar symbol as the composed matrix, but in an
ordinary font. For example, Q = diag(Q, . . . , Q).

2. Problem formulation

The problem considered in this work is

min
xt,ut

N−1
∑

t=0

1

2

[

xT
t uT

t

]

[

Qt Wt

W T
t Rt

] [

xt

ut

]

+
1

2
xT
NQNxN

s.t. x0 = x0

xt+1 = Atxt +Btut, t = 0, . . . , N − 1

0 ≥ Hx,txt +Hu,tut + ht, t = 0, . . . , N − 1

0 ≥ Hx,NxN + hN

(1)

where the states xt ∈ R
n, the initial condition x0 ∈ R

n, the control inputs
ut ∈ Rm, the system matrices At ∈ Rn×n, Bt ∈ Rn×m, the penalty matrices
for the states Qt ∈ Sn, penalty matrices for the control inputs Rt ∈ Sm, the
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cross penalty matrices Wt ∈ Rn×m, the state constraint coefficient matrix
Hx,t ∈ Rc×n, the control signal coefficient matrix Hu,t ∈ Rc×m, the constraint
constant ht ∈ Rc, and the prediction horizon N ∈ Z+. Moreover, the ma-
trices Qt, Rt and Wt are assumed to be chosen such that the following two
assumptions are satisfied

Assumption 1. Rt ∈ Sm
++

Assumption 2.

[

Qt Wt

W T
t Rt

]

∈ S
n+m
+

Both constrained linear MPC problems and nonlinear MPC problems often
boil down to solving problems similar to the one in (1) but without any
inequality constraints during the Interior Point (IP) process or Active Set
(AS) process, [9, 13, 8, 5, 15, 11, 2, 4, 1, 3, 6]. Hence, the ability of solving
unconstrained versions of the problem in (1) efficiently is of great interest
for the overall computational performance in the entire range of problems
from simple unconstrained linear MPC problems, to nonlinear constrained
and hybrid MPC problems.

As shown in [14], the problem in (1) can after a simple variable transfor-
mation be recast in an equivalent form with Wt = 0. Therefore, the analysis
in this work is restricted to the case when Wt = 0 without any loss of gener-
ality.

Assumption 3. Wt = 0

Remark 1. The results shown in this paper can easily be extended to com-
mon variants of MPC, e.g., problems where the control signal horizon differs
from the prediction horizon, problems with affine system descriptions, as well
as to reference tracking problems.

3. Classical optimization problem formulations of MPC

Traditionally, two optimization problem formulations of the MPC prob-
lem have been dominating in the MPC community. In the first formulation,
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the optimization problem in (1) with Wt = 0 has been written more com-
pactly as a Quadratic Programming (QP) problem in the form

min
x,u

1

2

[

xT uT
]

[

Q 0
0 R

] [

x

u

]

s.t.
[

A B
]

[

x

u

]

= b

[

Hx Hu

]

[

x

u

]

+ h ≤ 0

(2)

where x, u, Q, R, q, r, b, A, B, Hx, Hu, and h are defined in the Appendix.
Note that, Q, R, A, B, Hx, and Hu are sparse matrices.

In the second formulation, the dynamics equations in (1) have been used
to express x as

x = Sx,Nx0 + Su,Nu (3)

where Sx,N and Su,N are defined in the Appendix. This expression can be
used to eliminate the equality constraints containing the dynamics in the
problem in (2). As a result, an equivalent problem can be derived in the
form

min
u

1

2
uT

(

BTA−TQA−1B+ R
)

u−
(

BTA−TQA−1b
)T

u

s.t. (HxSu,N + Hu) u+ h+ HxSx,Nx0 ≤ 0
(4)

where BTA−TQA−1B+ R is a dense matrix.

4. Quasi-sparse optimization formulations

As discussed in the introduction, many papers published on the subject
illustrate that the sparse formulation in (2) is preferable over the dense one
in (4) from a computational point of view. However, there also exists appli-
cations where the non-structure exploiting dense formulation turns out to be
the fastest one. It can be realized both from the expressions for the analyti-
cal complexities as well as from numerical experiments that there are certain
breakpoints in the problem sizes where one formulation is better than the
other one. Traditionally, one rule-of-thumb is that the sparse formulation is
faster for large values of N , and the dense one is faster for problems with
small values of N . In this section it is discussed whether it is possible to do
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even better by combining ideas from these two traditional approaches. To
reduce the complexity of the notation in the presentation, the ideas are illus-
trated on an MPC formulation where the system, penalties and constraints
are independent of time.

4.1. Increasing the block-size

Partition the prediction horizon in Ñ +1 subintervals with corresponding
lengths Mk ∈ Z++, k ∈ {0, Ñ} with

∑Ñ

k=0Mk = N+1. To get a reformulated
problem which is in the form of the one in (1) with a non-zero end penalty, the
choice MÑ = 1 was made in this section. Define xk = [xT

τk+0 x
T
τk+1 . . . x

T
τk+Mk

]T

and uk = [uT
τk+0 u

T
τk+1 . . . u

T
τk+Mk−1]

T where τ0 = 0 and τk =
∑k−1

i=0 Mi, k > 0.
Analogously to the equation in (3), given the state at a time τk and all control
signals from subinterval k, all states in subinterval k can be expressed as

xk = Sx,Mk
xτk + Su,Mk

uk (5)

and in particular we have that

xτk+1
= xτk+Mk

= AMkxτk +
[

AMk−1B AMk−2B . . . B
]

uk , Akxτk + Bkuk
(6)

Note that the equation in (6) is in state-space form. The new state dynamics
describes the dynamics from the first sample in one condensed block to the
first sample in the following block. Using these results, it is possible to write
the sum of the stage costs for an entire subinterval as

τk+Mk−1
∑

t=τk

xT
t+1Qxt+1 + uT

t Rut =
[

xT
τk

uTk
]

[

Qk Wk

WT
k Rk

] [

xτk

uk

]

(7)

with

Qk = ST
x,Mk

· diag (Q, . . . , Q, 0) · Sx,Mk
,

Wk = ST
x,Mk

· diag (Q, . . . , Q, 0) · Su,Mk
,

Rk = ST
u,Mk

· diag (Q, . . . , Q, 0) · Su,Mk
+ diag (R, . . . , R)

(8)
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for k ≤ Ñ − 1 and QÑ = Q. As a result, the original problem can be re-cast
in the form

min
xτk

,uk

Ñ−1
∑

k=0

1

2

[

xT
τk

uTk
]

[

Qk Wk

WT
k Rk

] [

xτk

uk

]

+
1

2
xT
τ
Ñ
QÑxτ

Ñ

s.t. xτ0 = x0

xτk+1
= Akxτk + Bkuk, k = 0, . . . , Ñ − 1

0 ≥ Hx,kxτk + Hu,kuk + hk, k = 0, . . . , Ñ − 1

0 ≥ Hx,Ñxτ
Ñ
+ hÑ

(9)

with

Hx,k =







Hx 0 . . . 0 0

0
. . . . . . 0 0

0 . . . 0 Hx 0






Sx,Mk

∈ R
Mkc×(Mk+1)n,

Hu,k =







Hx 0 . . . 0

0
. . . . . . 0

0 . . . Hx 0






Su,Mk

+







Hu 0 . . . 0

0
. . . . . . 0

0 . . . 0 Hu






∈ R

Mkc×Mkm,

hk =







h
...
h






∈ R

Mkc, k = 0, . . . , Ñ − 1

Hx,Ñ = Hx, hÑ = h

(10)

The new formulation can be interpreted as another MPC problem in the form
in (1) with virtual prediction horizon Ñ , virtual state dimension ñ = n, and
the virtual control signal dimension for interval k is m̃ = Mk ·m. There are
different variants of this formulation that give similar results. For example
one can take QÑ = 0 and instead include the last state in the second last
sub-interval. The number of inequality constraints in each virtual time step
along the prediction horizon is c̃k = Mk ·c and the total number of inequality
constraints is unaffected compared to the original problem. In words, this
formulation partially condenses the original sparse problem into a new one
where several original samples have been condensed into one new and are
basically handled using the dense formulation. If M0 = N , roughly the
traditional dense formulation in (4) is obtained and if Mk = 1, ∀k, the
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traditional sparse one in (2) is obtained. Note that, the problems in (1) and
in (9) are structurally identical and an algorithm (and an implementation of
it) that can be applied to the problem in (1) can also be applied to the one
in (9). Once the problem in (9) has been solved, u in Section 3 is directly
obtained and the entire vector x can, if desired, easily be computed.

4.2. Decreasing the block-size

Consider a problem with diagonal R and inequality constraints in the
form

0 ≥

[

Hx 0
0 Hu

] [

x(t)
u(t)

]

+

[

hx

hu

]

(11)

where Hu represents simple control signal constraints. Simple here means
that the control signal constraints are, e.g., upper and lower bound con-
straints. For simplicity, we assume Hu diagonal with diagonal elements
Hu,k, k = 1, . . . , m in what follows. Note that, however, Hx can be full
as long as these state constraints do not involve control signals.

Partition the control signal ut in Mt parts such that ut =
[

ut,1 ut,2 . . . ut,Mt

]

with ut,k ∈ Rm,m̃t,k and B =
[

b1 b2 . . . bMt

]

, where m̃t,k ∈ Z++, t ∈
{0, N − 1}, k ∈ {1,Mt} denotes the number of virtual control signals for
which it holds that

∑N−1
t=0

∑Mt

k=1 m̃t,k = Nm. Then the state update equation
can be written as

xt+1 = Axt +But = Axt +
Mt
∑

k=1

bkut,k (12)

which can be equivalently reformulated, e.g., as

x̃t,2 = Ax̃t,1 + b1ut,1

x̃t,3 = Ix̃t,2 + b2ut,2

...

x̃t+1,1 = Ix̃t,Mt
+ bMt

ut,Mt

(13)

with some new states x̃t,k for which it holds that x̃t,1 = xt, ∀t. Since R and Hu

are diagonal, the objective function and inequality constraints can be decom-
posed in u(t) in an analogous way and the diagonal matrices corresponding
to part k are denoted Rk and Hu,k, respectively. That in combination with
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the expression in (13), the problem in (1) can be reformulated in the form

min
x̃k,uk

Ñ−1
∑

k=0

1

2

[

x̃T
k uTk

]

[

Qk Wk

WT
k Rk

] [

x̃k

uk

]

+
1

2
x̃T

Ñ
QÑ x̃Ñ

s.t. x̃0 = x0

x̃k+1 = Akx̃k + Bkuk, k = 0, . . . , Ñ − 1

0 ≥ Hx,kx̃k + Hu,kuk + hk, k = 0, . . . , Ñ − 1

0 ≥ Hx,Ñ x̃Ñ + hÑ

(14)

with

Ak =

{

A, k = 0,M, 2M, . . . , (N − 1)M

I, otherwise

Bk = bmod(k,M)+1

Qk =

{

Q, k = 0,M, 2M, . . . , NM

0, otherwise

Rk = Rmod(k,M)+1

Hx,k =























[

Hx

0

]

, k = 0,M, 2M, . . . , (N − 1)M

Hx, k = Ñ

0, otherwise

Hu,k =











[

0

Hu,1

]

, k = 0,M, 2M, . . . , (N − 1)M

Hu,mod(k,M)+1, otherwise

hk =























[

hx

hu,1

]

, k = 0,M, 2M, . . . , (N − 1)M

hx, k = Ñ

hu,mod(k,M)+1, otherwise

(15)

for the simplified case when the partitioning is done uniformly with a con-
stant Mt = M ∈ {j ∈ Z++ : m/j ∈ Z++} , ∀t over the prediction horizon.
The reformulated problem can be interpreted as an optimization problem
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in the MPC form in (1) with virtual prediction horizon Ñ = NM , virtual
state dimension ñ = n, and virtual control signal dimension m̃ = m/M .
The number of inequality constraints is varying along the virtual prediction
horizon, however, the total number of constraints is unchanged compared to
the original problem. Once the problem in (14) has been solved, u and x in
Section 3 are directly obtained.

Remark 2. Further degrees of freedom can be obtained by combining the
approaches in Sections 4.1 and 4.2 by first decreasing the block-size and then
increasing the block-size of the modified problem.

Remark 3. Note that, the ideas can also be applied to problems with similar
structures. For example, to the moving horizon state-estimation problem and
to the Lagrange dual of the optimal control problem.

5. Impact on a commonly used sparse linear algebra for MPC

The inequality constrained optimal control problems in (9) and (14) are
usually either solved using either an interior point (IP) method or an active-
set (AS) method. It is well-known that the main computational complexity
in these algorithms can be formulated as solving a sequence of unconstrained
variants of the original control problem. These problems in turn are solved
by solving a linear system of equations corresponding to the KKT conditions
of these unconstrained problems. This can be done in several ways. However,
two commonly used approaches are to either use a Cholesky factorization ap-
plied to a problem where the states have been eliminated (commonly known
as condensing) or a Riccati factorization applied to the problem where the
states are kept as variables. If the problem is reformulated as described in
Sections 4.1 and 4.2, it can be realized that the important block-sizes that
appear in a sparse factorization will be changed. Even thought the Riccati
factorization is used as an example in this work, it is expected that the pro-
posed approaches in this work will have similar impact on other variants of
sparse linear algebra used in MPC. However, none of the proposed reformula-
tions will affect the dense formulation and the following (off-the-shelf) dense
linear algebra. Hence, the focus in this section will be on how Riccati based
sparse linear algebra is affected by the approaches introduced in this arti-
cle. The required number of flops for the Cholesky factorization approach is
known to be roughly (Nm)3/3 and for the Riccati factorization it is roughly
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N(1/3m3 + 4n3 + 4m2n + 6n2m), [12]. A full specification of the Riccati
approach used in this work can be found in [12, 1]. For simplicity, in this sec-
tion it is assumed that the blocking is uniform non-time-dependent and that
it is compatible with N and m. In practice further improvements can po-
tentially be achieved by using a non-uniform blocking factor. However, this
also increases the complexity of determining a good one and it is therefore
not clear whether it is worth that extra effort. Furthermore, it would also be
possible to exploit and take into account in the complexity calculations the
special structures in the reformulated problems. For example, the approach
in Section 4.2 generates many sparse problem data matrices.

5.1. Increasing the block-size

The family of formulations achievable with this approach is parameter-
ized by M , which will increase the block-size in the resulting sparse numer-
ical linear algebra and make the formulation less sparse as M grows. Since
it holds that Ñ = N/M , ñ = n, and m̃ = Mm, the required number of
flops for performing a Riccati factorization on the reformulated problem is
f1(M) = N (M2m3/3 + 4n3/M + 4Mm2n+ 6n2m). The theoretical maxi-
mum possible gain in flops f1(1)/f1(M

∗) which is independent of N is illus-
trated in Figure 1 and can be found to be almost as much as a factor of
30 in the considered problems. M∗ denotes the best choice of M for given
n and m. Furthermore, note that, the relative improvement f1(1)/f1(M) is
independent of N . However, given an N one can only select an M ≤ N .
From the plot it follows that this approach is useful if m is small compared
to n. In that case, it is beneficial to reformulate the problem as an equivalent
control problem with a shorter virtual prediction horizon with more virtual
control signals in each virtual sample.

5.2. Decreasing the block-size

This approach is related to what in the Kalman filtering literature is
known as sequential processing, where in certain cases the measurement up-
date can be performed sequentially for each one of the measurements in each
sample, [10, 7]. The family of formulations achievable with this approach
is again parameterized by M , which will here decrease the block-size in the
resulting sparse numerical linear algebra and make the formulation more
sparse as M grows. Since Ñ = NM , ñ = n, and m̃ = m/M and the required
number of flops for performing a Riccati factorization on the reformulated
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Figure 1: Theoretical maximum relative flop reduction (left) and for which
respective choice of M this is obtained (right) for a range of relevant values
of n and m. In this range a flop reduction of almost up to 30 times can be
achieved. The reduction in the left plot is only plotted for combinations of
n and m that will give an improvement.

problem is f2(M) = N (m3/(3M2) + 4n3M + 4m2n/M + 6n2m). The theo-
retical maximum possible gain in flops f2(1)/f2(M∗) is illustrated in Figure 2
and can be found to be almost as much as a factor of 8 in the considered
problems. From the plot it follows that this approach is useful if n is small
compared to m. In that case, it is beneficial to reformulate the problem with
a larger prediction horizon with less control signals in each sample.

Note that, by combining the results from Figures 1 and 2 it can be seen
that where the performance gain of one approach is lost, the other one starts
to offer a gain. Still, the improvement possible by the presented approaches
is only moderate for problems for which n ≅ m, which indicates that the
sparsity obtained from the original formulation is a good choice from a per-
formance point of view.

5.3. Combining the approaches

The presented approaches rely on that the original problem’s prediction
horizon either is virtually reduced with the cost of having more control signals
in each virtual sample, or that the number of control signals is reduced in each
virtual sample with the cost of getting a longer virtual prediction horizon. A
natural extension is to have a virtual sampling rate over the virtual horizon
that is not in sync with the original sampling rate. This can be achieved by
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Figure 2: Theoretical maximum relative flop reduction (left) and for which
respective choice of M this is obtained (right) for a range of relevant values
of n and m. In this range a flop reduction of almost up to 8 times can be
achieved. The reduction in the left plot is only plotted for combinations of
n and m that will give an improvement.

combining the two proposed procedures as pointed out in Remark 2 by first
increasing the prediction horizon length according to Section 4.2 and then
reducing it again according to Section 4.1 with another choice of Mk (if the
choice of Mk is the same in both steps the end result would be the original
problem formulation).

Remark 4. The focus in the numerical experiments in this section is serial
linear algebra. However, more generally, the proposed reformulations are also
interesting for parallel approaches where they for example potentially can be
used to optimize the workload distribution.

6. Numerical experiments

In these numerical examples the performance of the proposed strategies
is evaluated. The purpose is to investigate how the theoretical improvements
in terms of flops in Section 5 are transfered to improvements in terms of
computational time. The experiments are performed on an Intel i5-2520M
with 8GiB RAM running Windows 7 64-bit. All algorithms, including the
Cholesky factorizations, are implemented in m-code in an attempt to make
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the results relevant for cases where everything is written in the same pro-
gramming language. If the Cholesky factorization would have been carried
out using, e.g., LAPACK calls then the proposed tools could have been used
to find other values of M to maximize the overall performance. The reformu-
lations presented in this paper are performed in a preprocessing stage, and
the reformulated problems are sent to an implementation of a sparse Riccati
KKT system solver. As a comparison, the same problem is also solved, first,
using a standard dense formulation using a Cholesky factorization and, sec-
ond, using the sparse Riccati KKT solver applied to the initial formulation
of the problem (block-sizes given by the problem). This experiment basically
illustrates the computational complexity of the step direction computation
in an optimization routine. To simulate the computations for the search step
direction computation in an AS or IP method, the test problems considered
are in the form in (1) without any inequality constraints. Note that, the
actual choice of examples used in the experiments are irrelevant since the
performance of the used linear algebra is only affected by the sizes of prob-
lem matrices and not the numbers contained in these. Since the computed
direction from the reformulated problem is the same as from the original
formulation, apart from minor differences due to differences in the numer-
ics, the number of steps performed by a solver can be expected to be the
same independently of which formulation that is used. Since usually the
main computational effort in the targeted optimization routines originates
from the step direction computation, the overall computational time can be
expected to roughly scale as the computational time for the linear algebra
which is what is investigated in this section. Furthermore, the KKT solvers
used do not at all utilize the structure in the sub-blocks of the reformulated
problems, which means that the results shown here can easily be obtained by
users without actually making any other changes of their MPC codes rather
than the problem formulation as described in earlier sections. It can at least
in some cases be expected to be possible to improve these computational
times in practice by tailoring parts of the sparse linear algebra, but it would
require additional coding.

From the left plot in Figure 3, it is clear that the performance gain of the
approach in Section 4.1 can be significant for the chosen example where N =
250, n = 10, and m = 1. The chosen example is one in which the traditional
rule-of-thumb would have suggested that the sparse approach would have
been preferable. This is indeed the case, but only with a small margin, and
it turns out that the sparse and the dense approaches require 61ms and
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Figure 3: Computational time for the approach in Section 4.1 (left) and
the approach in Section 4.2 (right) compared to standard dense and sparse
approaches. The respective approaches presented in this work are in the plots
denoted “New quasi-sparse”.

66ms, respectively. However, by reformulating the problem using the results
presented in Section 4.1 and solving this new formulation using the same
sparse Riccati solver, the performance of the sparse approach applied to the
reformulated problem is significantly improved and the computational time
reduced to 11ms for M = 25.

From the right plot in Figure 3, it is clear that the performance gain of
the approach in Section 4.2 also can be significant for the chosen example
where N = 2, n = 1000, and m = 1000. The computational time for the
standard sparse method applied to the reformulated problem as proposed
in Section 4.2 is 3.8 s attained for M = 8, which should be compared with
the standard methods that need 94 s and 31 s, respectively. Note also, that
the chosen example is one in which the traditional rule-of-thumb would have
suggested that the dense approach should have been preferable. This is not
the case and instead the performance of the sparse one is actually better than
the dense one.

7. Conclusions

In this work, two reformulations of MPC problems are presented. The
main idea in both reformulations is to trade-off the length of the prediction
horizon and the number of control signals in each step along the horizon. This
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in turn affects the block-size used in the numerical linear algebra and can as
such a tool be used to find a formulation of the problem that better utilizes
the software libraries and the hardware available on-line. It is shown that
these new formulations of the problem can significantly reduce the theoretical
number of flops and it is verified in numerical experiments that significant
reductions in computational times can be obtained also in practice. More
general, the result presented in this work shows that the question to be
answered when formulating an MPC problem is not whether a sparse or a
dense formulation should be used, but rather how sparse the formulation
should be.
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Appendix A. Definition of stacked matrices

x =
[

xT
0 xT

1 . . . xT
N

]T
, u =

[

uT
0 uT

1 . . . uT
N−1

]T

Q = diag(Q0, Q1, . . . , QN), R = diag(R0, R1, . . . , RN−1)

Sx,k =















I
A
A2

...
Ak















, Su,k =















0 0 . . . 0
B 0 . . . 0
AB B . . . 0
...

...
. . .

...
Ak−1B Ak−2B . . . B















A =















−I 0 0 . . . 0
A −I 0 . . . 0
0 A −I . . . 0

0
. . . . . . . . . 0

0 . . . 0 A −I















, A−1 =















−I 0 0 . . . 0
−A −I 0 . . . 0
−A2 −A −I . . . 0

...
. . . . . . . . . 0

−AN . . . 0 −A −I















,

B =















0 . . . . . . 0
B 0 . . . 0
0 B . . . 0

0
. . . . . . 0

0 . . . 0 B















,

b =
[

−x0 T 0 0 . . . 0
]T

Hx = diag (Hx(0), . . . , Hx(N))) , Hu = diag (Hu(0), . . . , Hu(N − 1))) ,

h =
[

hT (0), . . . , hT (N)
]T

(A.1)

Note that, from (A.1) it follows that Su,N = −A−1B.
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