
ar
X

iv
:1

40
4.

50
86

v1
  [

m
at

h.
O

C
] 

 2
1 

A
pr

 2
01

4

Algebraic Decompositions of DP Problems with Linear Dynamics

Manolis C. Tsakiris and Danielle C. Tarraf∗

Abstract

Inspired by rational canonical forms, we introduce and analyze two decompositions of dynamic pro-
gramming (DP) problems for systems with linear dynamics. Specifically, we consider both finite and
infinite horizon DP problems in which the dynamics are linear, the cost function depends only on the
state, and the state-space is finite dimensional but defined over an arbitrary algebraic field. Starting from
the natural decomposition of the state-space into the direct sum of subspaces that are invariant under
the system’s linear transformation, and assuming that the cost functions exhibit an additive structure
compatible with this decomposition, we extract from the original DP problem two distinct families of
smaller DP problems, each associated with a system evolving on an invariant subspace of the original
state-space. We propose that each of these families constitutes a decomposition of the original problem
when the optimal policy and value function of the original problem can be reconstructed from the opti-
mal policies and value functions of the individual subproblems in the family. We derive necessary and
sufficient conditions for these decompositions to exist both in the finite and infinite horizon cases. We
also propose a readily verifiable sufficient condition under which the first decomposition exists, and we
show that the first notion of decomposition is generally stronger than the second.

1 Introduction

Dynamic programming (DP), pioneered by Bellman [3], has found wide-ranging applications in diverse
areas. The Principle of Optimality results in a general solution approach that is intuitive. The case where
the state-space is Euclidean, the underlying dynamics are linear, and the cost function is quadratic has
been particularly well studied: It admits an elegant closed form solution obtained by solving an appropriate
algebraic Ricatti equation in the infinite horizon case, and admits a time-dependent closed form solution
obtained by recursively solving the discrete-time Ricatti equation in the finite horizon case [4]. Nonetheless,
DP suffers from the curse of dimensionality: Indeed, the computational complexity of the DP algorithm
increases exponentially with the dimensions of the underlying state and input spaces.

A natural way of alleviating this problem is by decomposing the problem into smaller subproblems, whose
solutions are subsequently combined to yield an exact or suboptimal solution for the original problem [4], [14].
Various notions of DP decomposition have been studied, often inspired by the context of the problem such
as operations research [8], [13] and circuit design [1]. Similar decompositions also arise in decentralized and
distributed control problems [18], [20], [19], [11], [12], [2], [16], [15]. Group theoretic [6], graph theoretic [10],
combinatorial approaches [30], [6] and bisimulation-based model reduction in the context of Markov Decision
Processes [7] have also been considered. Approximate methods have also been used to decompose DP
problems, for example by suitably approximating constraints to achieve separability [5].

Inspired by rational canonical forms, we introduce and study new1 decompositions of DP problems for
systems with linear dynamics. Specifically, we consider both finite and infinite horizon DP problems in which
the dynamics are linear and the cost function depends only on the state. The state-space is finite dimensional
but defined over an arbitrary algebraic field. Starting from the natural decomposition of the state-space into
the direct sum of subspaces that are invariant under the system’s linear transformation, and assuming that
the cost functions exhibit an additive structure compatible with this decomposition, we propose two notions
of decomposition. In particular, we extract from the original DP problem two distinct families of smaller

∗The authors are with the Department of Electrical & Computer Engineering Department at The Johns Hopkins University,
Baltimore, MD, 21218 (mtsakir1@jhu.edu, dtarraf@jhu.edu).

1Preliminary versions of the results for the finite horizon case appeared in [28, 29].
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DP problems, each associated with a system evolving on a distinct invariant subspace. We propose that
each of these families constitutes a decomposition of the original problem when the optimal policy and value
function of the original problem can be reconstructed from the optimal policies and value functions of the
individual problems in the family. We derive necessary and sufficient conditions for these decompositions to
exist both in the finite and infinite horizon cases. We also propose a readily verifiable sufficient condition
under which the first decomposition exists, and we show that the first notion of decomposition is generally
stronger than the second, thereby suggesting that further research should focus on this family of problems.

We emphasize that our notions of decomposition involve no approximation, and are motivated by the
desire to utilize algebraic structures inherent in the dynamics to reduce complexity. The finite state setting
remains our primary interest, in synergy with our past and ongoing work on analysis and synthesis of finite
state machines [23,25–27], and their use as simple, approximate models of more complex systems over finite
alphabets [21,22,24]. Nonetheless, since our results are applicable to the general setting of finite dimensional
but otherwise arbitrary state-spaces, we present them as such, while highlighting the complexity reduction
achieved in the finite state setting of interest.

The manuscript is organized as follows: We begin in Section 2 by describing the problem setup and
assumptions, and we state the problem of interest. We present two families of smaller DP problems in
Section 3, and we propose relevant new notions of DP decomposition. We state our main results in Section
4, present a full derivation in Section 5 and a set of illustrative examples in Section 6, and conclude with
directions for future work in Section 7.

Notation: Z, Z+, R and R+ denote the set of integers, nonnegative integers, reals and nonnegative reals,
respectively. For α ∈ R, ⌈α⌉ denotes the ceiling of α, that is, the smallest integer that is greater than or
equal to α. For sets X and Y, XY denotes the set of all maps from Y to X . In particular, for set X and
index set T , X T denotes the set of all sequences over X indexed by T , and {xt}t∈I or x (with some abuse
of notation) interchangeably denote an element of X T . For f : X → R+, argmin

x∈X

f(x) denotes the set of

arguments x in X that minimize f . For maps f : X → Y and g : Y → W , g ◦ f denotes the composite
map from X to W defined by g ◦ f(x) = g(f(x)). For vectors x1, . . . , xk of vector space X over field F ,
< x1, . . . , xk >F denotes the subspace of X spanned by x1, . . . , xk over F . x′ denotes the transpose of
coordinate vector x. For vector space X , index set T , and x and y in X T , x+ y denotes an element z ∈ X T

such that zt = xt + yt, ∀t ∈ T . For linear operator B, R(B) and N (B) denote the range space and null
space, respectively. ⊕ denotes the direct sum of subspaces. Let σ : X → A be a map of vector space X into
some nonempty set A, and assume that X = S ⊕ V . σ|S denotes the restriction of the action of σ on S,
defined by σ|S(x) = σ(s) where x = s+ v, s ∈ S, v ∈ V is the unique decomposition of x. For X = ⊕i∈IXi,
ρi denotes the ith ‘projection’ map, ρi : X → Xi, defined by ρi(x) = xi where xi is the unique component of
x in Xi, while [⊕i∈IXi]

Z+ denotes a sequence indexed by Z+ whose components are elements of (vectors in)
⊕i∈IXi.

2 Problem Setup & Statement

2.1 Setup

Let X and U be finite dimensional vector spaces defined over algebraic field F , with dim(X ) = n and
dim(U) = m. Consider the discrete-time dynamical system defined by the state transition equation

xt+1 = Axt +But (1)

where xt ∈ X , ut ∈ U , and t ∈ T for some index set T . A : X → X and B : U → X are given linear maps.
Consider also a non-negative cost function of the state,

g : X → R+, with g(x) = 0 ⇔ x = 0. (2)

Problem 1. (The DP problem) Consider system (1) and cost function (2). Given any initial state
x0 ∈ X , we wish to find among all policies π : X → UT an optimal policy π∗(x0) that minimizes the additive
cost

J(x0, π) =
∑

t∈T

αtg(xt) (3)
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along the state trajectory {xt}t∈T starting at x0 and evolving according to (1) under policy π. We will
consider two cases:

1. The finite horizon case, where T = {0, 1, . . . , T − 1} and T = {0, 1, . . . , T } for some given positive
integer T , and where α = 1.

2. The infinite horizon case, where T = T = Z+, and where α ∈ (0, 1).

Remark 1. An optimal policy for the DP problem always exists, though it may not be unique in general.

We denote the optimal cost J(x0, π
∗(x0)) in Problem 1 by J∗(x0). We use (A,B, g, T ) to denote the

finite horizon version of Problem 1, and (A,B, g, α) to denote the infinite horizon version.

2.2 The DP Solution

The solution of Problem 1 hinges on the Principle of Optimality [3]. Indeed, for the finite horizon case, let
Tt = {t, t+ 1, . . . , T − 1}, T t = {t, t+ 1, . . . , T } and define the cost-to-go function at time t as

J∗
t (x) =







min
UTt

∑

τ∈T t

g(xτ ) , when t ∈ T

g(x) , when t = T

(4)

for the system evolving according to (1) with xt = x. The principle of optimality can then be stated as

J∗
t (x) = g(x) + min

u∈U
J∗
t+1(Ax+ Bu) (5)

for any t ∈ T and x ∈ X . It is used as the basis of the recursive DP algorithm [4] which solves these
equations backwards in time for the optimal cost J∗(x0) = J∗

0 (x0) and an optimal policy π∗(x0) consistent
with an optimal controller u∗ : X × T → U satisfying

u∗(x, t) ∈ argmin
u∈U

J∗
t+1(Ax +Bu). (6)

Specifically, let {xt}t∈T be the state trajectory of (1) starting from x0 under policy π∗(x0). The t
th component

of π∗(x0), which we will denote by π∗
t (x0), equals u

∗(xt, t). For notational simplicity, we will sometimes write
u∗
t (x) to denote u∗(x, t).
For the infinite horizon case, the principle of optimality gives rise to the Bellman equation:

J∗(x) = g(x) + αmin
u∈U

J∗(Ax+Bu). (7)

The optimal cost can be determined via iterative methods such as value or policy iterations [4], and the
resulting optimal policy corresponds to a state-feedback control law satisfying

u∗(x) ∈ argmin
u∈U

J∗(Ax +Bu). (8)

Remark 2. While the DP problem is typically formulated in a setting where X = R
n and U = R

m, it is
straightforward to verify that (5) and (7) hold without modifications in the general setting considered here.

2.3 Problem Statement

Consider a DP problem (A,B, g, T ) or (A,B, g, α) as formulated in Problem 1. We will assume, without
loss of generality, that B is injective: That is, any matrix representation of B has full column rank. Further
assume that X can be decomposed into the direct sum of A-invariant subspaces, and that the cost function
also exhibits an additive structure compatible with this decomposition. Specifically,

X = X1 ⊕ . . .⊕Xr (9)
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where
AXi ⊆ Xi, (10)

i ∈ I = {1, . . . , r} for some r > 1, and

g(x) = g(x1) + · · ·+ g(xr), ∀x ∈ X (11)

where xi = ρi(x), the unique component of x in Xi.
We will be referring to a decomposition of X satisfying (9) and (10) simply as a decomposition of X over

A, and we will denote by Gs the set of all cost functions g : X → R+ that satisfy (11).

Remark 3. A decomposition of X over A arises naturally regardless of the underlying field F . Indeed, in
the traditional setting where X = R

n and the eigenvalues of A are real, this decomposition is related to the
generalized eigenspaces associated with the Jordan canonical form of A. The more general case, associated
with the rational canonical form, is addressed in the literature [9, 17]. In general r ≥ 1; the case of interest
to us here is when r > 1.

We are fundamentally interested in understanding how, and under what conditions, can

this decomposition of the state-space and associated structure of the cost function be used to

decompose Problem 1 into a family of smaller DP problems that can be independently solved,

with their solutions subsequently combined to yield that of Problem 1?

3 DP Decompositions

We begin by formulating two families of DP problems consistent with the decomposition of X over A. We
then propose two corresponding notions of DP decomposition.

3.1 Two Families of Problems

Consider the subspaces Ei of U , i ∈ I, defined by

Ei = {u ∈ U|Bu ∈ Xi} .

Note that Ei is simply the pre-image of Xi under B. We are now ready to formulate the first family of DP
problems:

Problem 2. Given system (1), cost function (2), and a decomposition of X over A as in (9) and (10). For
each i ∈ I, consider the discrete-time dynamical system defined by the state transition equation

xi,t+1 = Axi,t +Būi,t (12)

where xi,t ∈ Xi and ūi,t ∈ Ei. Given any initial state xi,0 ∈ Xi, we wish to find among all policies πi : Xi →
ET
i an optimal policy π∗

i (xi,0) that minimizes the additive cost

J i(xi,0, πi) =
∑

t∈T

αtg(xi,t) (13)

along the state trajectory starting at xi,0 and evolving according to (12) under policy πi. We will consider
two cases, the finite horizon and the infinite horizon ones, with T , T and α defined as in Problem 1.

We denote the optimal cost J i(xi,0, π
∗
i (xi,0)) of the ith subproblem of Problem 2 by J

∗

i (xi,0). We use
{

(A,B|Ei
, g, T )

}

i∈I
to denote the entire family of finite horizon DP problems formulated in Problem 2, with

(A,B|Ei
, g, T ) denoting the ith subproblem. Similarly, we use

{

(A,B|Ei
, g, α)

}

i∈I
to denote the entire family

of infinite horizon DP problems formulated in Problem 2, with (A,B|Ei
, g, α) denoting the ith subproblem.

We formulate the second family of DP problems as follows:
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Problem 3. Given system (1), cost function (2), and a decomposition of X over A as in (9) and (10). For
each i ∈ I, consider the discrete-time dynamical system defined by the state transition equation

xi,t+1 = Axi,t + ρi ◦Bui,t (14)

where xi,t ∈ Xi and ui,t ∈ U . Given any initial state xi,0 ∈ X , we wish to find among all policies πi : Xi → UT

an optimal policy π∗
i (xi,0) that minimizes the additive cost

Ji(xi,0, πi) =
∑

t∈T

αtg(xi,t) (15)

along the state trajectory starting at xi,0 and evolving according to (14) under policy πi. We will consider
two cases, the finite horizon and the infinite horizon ones, with T , T and α defined as in Problem 1.

We denote the optimal cost Ji(xi,0, π
∗
i (xi,0)) of the ith subproblem of Problem 3 by J∗

i (xi,0). We use
{

(A, ρi ◦ B, g, T )
}

i∈I
to denote the entire family of finite horizon DP problems formulated in Problem 3,

with (A, ρi ◦ B, g, T ) denoting the ith subproblem. Similarly, we use
{

(A, ρi ◦ B, g, α)
}

i∈I
to denote the

entire family of infinite horizon DP problems formulated in Problem 3, with (A, ρi ◦B, g, α) denoting the ith

subproblem.

3.2 Proposed Notions of Decomposition

For each of the two families of DP problems, we now propose a corresponding notion of decomposition.

Definition 1. Consider system (1), a decomposition of X over A, and a cost function (2) satisfying g ∈ Gs.
The family

{

(A,B|Ei
, g, T )

}

i∈I
is a decomposition of (A,B, g, T ) if for any x ∈ X , we have

J∗(x) =
∑

i∈I

J̄∗
i (xi) (16)

where xi = ρi(x), and moreover, for any choice of optimal policies π∗
i (xi), for i ∈ I, there exists an optimal

policy π∗(x) such that

π∗(x) =
∑

i∈I

π∗
i (xi). (17)

Likewise, the family
{

(A,B|Ei
, g, α)

}

i∈I
is a decomposition of (A,B, g, α) if for any x ∈ X we have (16),

and for any choice of optimal policies π∗
i (xi), i ∈ I, there exists an optimal policy π∗(x) such that (17) holds.

When
{

(A,B|Ei
, g, T )

}

i∈I
is a decomposition of (A,B, g, T ), we can independently solve each of the

smaller DP problems over time horizon T and then simply add their solutions to obtain the optimal pol-
icy and associated optimal cost of the original DP problem over the same time horizon. Likewise when
{

(A,B|Ei
, g, α)

}

i∈I
is a decomposition of (A,B, g, α).

Definition 2. Consider system (1), a decomposition of X over A, and a cost function (2) satisfying g ∈ Gs.
The family

{

(A, ρi ◦B, g, T )
}

i∈I
is a decomposition of (A,B, g, T ) if for any x ∈ X , we have

J∗(x) =
∑

i∈I

J∗
i (xi) (18)

where xi = ρi(x), and moreover, for any choice of optimal policies π∗
i (xi), for i ∈ I, there exists an optimal

policy π∗(x) such that

Bπ∗
t (x) =

∑

i∈I

ρi ◦Bπ∗
i,t(xi), ∀t ∈ T . (19)

Likewise, the family
{

(A, ρi ◦ B, g, α)
}

i∈I
is a decomposition of (A,B, g, α) if for any x ∈ X we have (18),

and for any choice of optimal policies π∗
i (xi), i ∈ I, there exists an optimal policy π∗(x) such that (19) holds.
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4 Main Results

We begin by completely characterizing conditions under which the family of subproblems formulated in
Problem 2 is a decomposition of the original DP problem formulated in Problem 1.

Lemma 1. Consider system (1), a decomposition of X over A, and a cost function (2) satisfying g ∈ Gs.
{

(A,B|Ei
, g, T )

}

i∈I
is a decomposition of (A,B, g, T ) iff

argmin
u∈U

J∗
t+1(Ax+Bu) ∩ [⊕i∈IEi] 6= ∅, ∀x ∈ X , ∀t ∈ T . (20)

Lemma 2. Consider system (1), a decomposition of X over A, and a cost function (2) satisfying g ∈ Gs.
{

(A,B|Ei
, g, α)

}

i∈I
is a decomposition of (A,B, g, α) iff

argmin
π∈UZ+

J(x, π) ∩ [⊕i∈IEi]
Z
+

6= ∅, ∀x ∈ X . (21)

Note that verifying the necessary and sufficient conditions established in Lemmas 1 and 2 effectively
require solving the original DP problem. Alternatively, we propose a readily verifiable sufficient condition
to ensure that the decomposition exists.

Theorem 1. Consider system (1), a decomposition of X over A, and a cost function (2) satisfying g ∈ Gs.
If

R(B) = ⊕i∈I [R(B) ∩ Xi] , (22)

then
{

(A,B|Ei
, g, T )

}

i∈I
is a decomposition of (A,B, g, T ) for any choice of T > 0, and

{

(A,B|Ei
, g, α)

}

i∈I

is a decomposition of (A,B, g, α).

We also show that under certain conditions on the dynamics of (1), this condition becomes necessary as
well as sufficient.

Theorem 2. Consider system (1), a decomposition of X over A, and a cost function (2) satisfying g ∈ Gs.
When A is invertible, the following three statements are equivalent:

(a) Condition (22) holds.

(b)
{

(A,B|Ei
, g, T )

}

i∈I
is a decomposition of (A,B, g, T ), for any choice of T > 0.

(c)
{

(A,B|Ei
, g, α)

}

i∈I
is a decomposition of (A,B, g, α).

We next turn our attention to completely characterizing conditions under which the family of subproblems
formulated in Problem 3 is a decomposition of the original DP problem formulated in Problem 1.

Lemma 3. Consider system (1), a decomposition of X over A, and a cost function (2) satisfying g ∈
Gs.

{

(A, ρi ◦ B, g, T )
}

i∈I
is a decomposition of (A,B, g, T ) iff for any choice of optimal control laws of

{

(A, ρi ◦B, g, T )
}

, i ∈ I, there exists an optimal control law of (A,B, g, T ) such that

ρi(Ax+Bu∗(x, t)) = Axi + ρi ◦Bu∗
i (xi, t), ∀x ∈ X , ∀i ∈ I, ∀t ∈ T . (23)

This relation can be expressed in the commutative diagram

X X

Xi Xi

................................................................................................................................................................... ............
u∗
t

.........................................................
......
......
......
ρi

.........................................................

......

......
......
ρi

................................................................................................................................................................... ............
u∗
i,t
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Lemma 4. Consider system (1), a decomposition of X over A, and a cost function (2) satisfying g ∈
Gs.

{

(A, ρi ◦ B, g, α)
}

i∈I
is a decomposition of (A,B, g, α) iff for any choice of optimal control laws for

{

(A, ρi ◦B, g, α)
}

, i ∈ I, there exists an optimal control law for (A,B, g, α) such that

ρi(Ax +Bu∗(x)) = Axi + ρi ◦Bu∗
i (xi), ∀x ∈ X , ∀i ∈ I. (24)

This relation can be expressed in the commutative diagram

X X

Xi Xi

................................................................................................................................................................... ............
u∗

.........................................................
......
......
......
ρi

.........................................................

......

......
......
ρi

................................................................................................................................................................... ............
u∗
i

Finally, we establish the following hierarchy between the two proposed decompositions:

Theorem 3. Consider system (1), a decomposition of X over A, and a cost function (2) satisfying g ∈ Gs.
If
{

(A, ρi ◦B, g, T )
}

i∈I
is a decomposition of (A,B, g, T ), then

{

(A,B|Ei
, g, T )

}

i∈I
is also a decomposition

of (A,B, g, T ). Likewise, if
{

(A, ρi ◦B, g, α)
}

i∈I
is a decomposition of (A,B, g, α), then

{

(A,B|Ei
, g, α)

}

i∈I

is also a decomposition of (A,B, g, α).

The converse statement in Theorem 3 does not necessarily hold, as we will see in Section 6.

5 Derivation of Results

We begin by establishing some facts that will be helpful in our derivations:

Proposition 1. Consider a system (1), a cost function (2), and a decomposition of X over A. Let g ∈ Gs.
Then for any xi ∈ Xi, we have min

u∈Ei

g(Axi +Bu) = min
u∈
∑

 Ej

g(Axi +Bu).

Proof. We have

min
u∈
∑


Ej

g(Axi +Bu) = min
uj∈Ej, j∈I

g



Axi +B





∑

j∈I

uj









= min
uj∈Ej, j∈I



g(Axi +Bui) +
∑

j 6=i

g (Buj)





= min
ui∈Ei

g(Axi +Bui) +
∑

j 6=i

min
uj∈Ej

g (Buj)

= min
ui∈Ei

g(Axi +Bui)

where the second equality follows from the assumption g ∈ Gs, the third equality follows from the fact that
each ui independently affects one term of the summation, and the fourth equality follows by noting that g
is non-negative and g(0) = 0, and by selecting uj = 0 for j 6= i.

Proposition 2. Consider a system (1), a cost function (2), a decomposition of X over A, and a DP problem
(A,B, g, T ). Let g ∈ Gs, and assume that (20) holds for all x ∈ X , t ∈ T . We have J∗

t ∈ Gs, ∀t ∈ T .

Proof. By backwards induction on T . For t = T we have J∗
T = g by definition, and thus J∗

T ∈ Gs. Now

7



assume J∗
t ∈ Gs, and consider x ∈ X with xi denoting its unique component in Xi. We can write

J∗
t−1(x) = g(x) + min

u∈U
J∗
t (Ax+Bu)

= g(x) + min
u∈
∑

i∈I
Ei

J∗
t (Ax+Bu)

= g(x) + min
ui∈Ei,i∈I

J∗
t

(

∑

i∈I

(Axi + Bui)

)

=
∑

i∈I

g(xi) + min
ui∈Ei,i∈I

∑

i∈I

J∗
t (Axi +Bui)

=
∑

i∈I

[

g(xi) + min
ui∈Ei

J∗
t (Axi +Bui)

]

=
∑

i∈I

[

g(xi) + min
u∈
∑

j∈I
Ej

J∗
t (Axi +Bu)

]

=
∑

i∈I

[

g(xi) + min
u∈U

J∗
t (Axi +Bu)

]

=
∑

i∈I

J∗
t−1(xi)

where the first and last equality follow from (5), the second equality follows from the assumption J∗
t ∈ Gs,

the third from the decomposition of X , the fourth from the assumption that g, J∗
t ∈ Gs, the fifth from the

observation that each ui only affects one term in the summation, the sixth from Proposition 1, and the
seventh from (20). Since the choice of x was arbitrary, we conclude that J∗

t−1 ∈ Gs.

Corollary 1. Consider a system (1), a cost function (2), a decomposition of X over A, and a DP problem
(A,B, g, T ). Let g ∈ Gs, and assume that (20) holds for all x ∈ X , t ∈ T . We have J∗ ∈ Gs.

Proof. Follows immediately from Proposition 2 by noting that J∗(x) = J∗
0 (x), ∀x ∈ X .

Proposition 3. Consider a system (1), a cost function (2), a decomposition of X over A, a DP problem
(A,B, g, T ), and a family of DP problems

{

(A,B|Ei
, g, T )

}

i∈I
. Let g ∈ Gs, and assume that (20) holds for

all x ∈ X , t ∈ T . We have J∗
t |Xi

= J̄∗
i,t, ∀t ∈ T , ∀i ∈ I.

Proof. By backwards induction on t. For t = T , it follows from the definitions that J∗
t (xi) = g(xi) = J

∗

i,t(xi).

Now assume J∗
t |Xi

= J̄∗
i,t. We can write

J∗
t−1(xi) = g(xi) + min

u∈U
J∗
t (Axi +Bu)

= g(xi) + min
u∈
∑

j∈I
Ej

J∗
t (Axi +Bu)

= g(xi) + min
ui∈Ei

J∗
t (Axi +Bui)

= g(xi) + min
ui∈Ei

J̄∗
i,t(Axi +Biui)

= J̄∗
i,t−1(xi).

where the first and last equality follow from (5), the second equality follows from (20), the third from
Propositions 1 and 3, and the fourth by our assumption. The proof is completed by noting that the choices
of i and xi were arbitrary.

Corollary 2. Consider a system (1), a cost function (2), a decomposition of X over A, a DP problem
(A,B, g, T ), and a family of DP problems

{

(A,B|Ei
, g, T )

}

i∈I
. Let g ∈ Gs, and assume that (20) holds for

all x ∈ X , t ∈ T . We have J∗|Xi
= J̄∗

i .

8



Proof. Follows immediately from Proposition 3 by noting that J∗(x) = J∗
0 (x) and J∗

i (xi) = J∗
i,0(xi).

We are now ready to prove Lemmas 1 and 2:

Proof of Lemma 1. Assume that
{

(A,B|Ei
, g, T )

}

i∈I
is a decomposition of (A,B, g, T ). Then (20) follows

immediately from (5) and (17).
Conversely, assume that (20) holds for all x ∈ X , t ∈ T . From corollaries 1 and 2, we have

J∗(x) =
∑

i∈I

J∗(xi) =
∑

i∈I

J
∗

i (xi)

and thus (16) holds. Now for x ∈ X with ρi(x) = xi, pick a choice of optimal policy π∗
i for each i ∈ I and

consider policy π : X → UT defined by π(x) =
∑

i∈I π
∗
i (xi). Let {xt}t∈T be the state trajectory of (1) under

policy π. We have

J(x, π(x)) = g(x) +
∑

t∈T

g(Axt +Bπt(x))

=
∑

i∈I

g(xi) +
∑

t∈T

g(A
∑

i∈I

xi,t +
∑

i∈I

Bπ∗
i,t(xi))

=
∑

i∈I

[

g(xi) +
∑

t∈T

g(Axi,t +Bπ∗
i,t(xi))

]

=
∑

i∈I

J
∗

i (xi)

= J∗(x).

where the first and fourth equality follow by definition, the second equality follows from the choice of π and
the assumption that g ∈ Gs, the third follows from g ∈ Gs, and the fifth follows from Corollary 2. Thus π is
indeed an optimal policy, and (17) follows by noting that the choices of x and π∗

i were arbitrary.

Remark 4. It follows from condition (20) in Lemma 1 and the definition of the cost-to-go function (4)
that if

{

(A,B|Ei
, g, T )

}

i∈I
is a decomposition of (A,B, g, T ) for some T > 0, then

{

(A,B|Ei
, g, T ′)

}

i∈I
is a

decomposition of (A,B, g, T ′) for any choice of T ′ < T . The converse is not necessarily true.

Proof of Lemma 2. Assume that
{

(A,B|Ei
, g, α)

}

i∈I
is a decomposition of (A,B, g, α). Then (21) follows

immediately from (17) in Definition 1.

Conversely, assume that (21) holds for all x ∈ X . Pick x ∈ X and π∗(x) ∈
⊕

i∈I EZ
+

i . We can write

π∗(x) =
∑

i∈I πi(x), where πi(x) ∈ EZ
+

i , ∀i ∈ I. Now let {xt}t∈Z+
be the state trajectory of (1) starting

from x0 = x under policy π∗(x). We have

J∗(x) =

∞
∑

t=0

αtg(xt)

= g(x) +

∞
∑

t=0

αt+1g (Axt +Bπ∗
t (x))

=
∑

i∈I

g(xi) +

∞
∑

t=0

αt+1

[

∑

i∈I

g (Axi,t +Bπi,t(x))

]

,

where πi,t(x) denotes the tth component of πi(x) and the third equality follows from g ∈ Gs. We can thus
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write

J∗(x) =
∑

i∈I

[

g(xi) +

∞
∑

t=0

αt+1g (Axi,t +Bπi,t(x))

]

=
∑

i∈I

J̄i (xi, πi(x))

≥
∑

i∈I

J̄∗
i (xi).

We also have, for any choice of any choice of optimal policies π∗
i (xi), i ∈ I,

∑

i∈I

J̄∗
i (xi) =

∑

i∈I

J̄i (xi, π̄
∗
i (xi))

=
∑

i∈I

[

g(xi) +

∞
∑

t=0

αt+1g
(

Axi,t +Bπ̄∗
i,t(xi)

)

]

= g(x) +

∞
∑

t=0

αt+1

[

∑

i∈I

g
(

Axi,t +Bπ̄∗
i,t(xi)

)

]

= g(x) +
∞
∑

t=0

αt+1g

(

Axt +B

(

∑

i∈I

π̄∗
i,t(xi)

))

= J

(

x,
∑

i∈I

π̄∗
i (xi)

)

≥ J∗(x).

Hence it follows that J∗(x) =
∑

i∈I J̄∗
i (xi). Since the choice of x was arbitrary, (16) holds. Finally, since

the inequality
∑

i∈I J̄
∗
i (xi) ≥ J∗(x) holds for any choice of π∗

i (xi), (17) also holds, and
{

(A,B|Ei
, g, α)

}

i∈I

is a decomposition of (A,B, g, α).

The following result provides an intuitive characterization of condition (22) that is also useful in proving
Theorem 1.

Proposition 4. R(B) = ⊕i∈I [R(B) ∩ Xi] ⇔ U =
∑

i∈I Ei.

Proof. Assume R(B) = ⊕i∈I [R(B) ∩ Xi] and pick u ∈ U . Then Bu =
∑

i∈I bi, bi ∈ R(B) ∩ Xi. Since
bi ∈ R(B) there exists ui ∈ U such that bi = Bui. Since bi ∈ Xi ⇒ ui ∈ Ei. Thus Bu =

∑

i∈I Bui ⇒
u−

∑

i∈I ui ∈ N (B). Since N (B) ⊆ Ei for any i ∈ I, u ∈
∑

i∈I Ei, and the desired equality follows.
Conversely, assume U =

∑

i∈I Ei and pick b ∈ R(B). Then b = Bu for some u ∈ U . Now u =
∑

i∈I ui, ui ∈ Ei and so b =
∑

i∈I Bui and Bui ∈ [R(B) ∩ Xi]. Thus R(B) =
∑

i∈I [R(B) ∩ Xi] and this
sum is direct.

Proof of Theorem 1. Assume that (22) holds. It follows from Proposition 4 that U =
∑

i∈I Ei, and thus (20)
holds trivially for any choice of T > 0, and (21) holds trivially.

Let V be a subspace of U such that
U = ⊕i∈IEi ⊕ V . (25)

In particular, when (22) holds we have V = {0}. We have the following observations:

Proposition 5. Consider system (1), a decomposition of X over A, and a cost function (2) satisfying
g ∈ Gs. If

{

(A,B|Ei
, g, T )

}

i∈I
is a decomposition of (A,B, g, T ), then A(X ) ∩B(V) = {0}.
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Proof. Assume
{

(A,B|Ei
, g, T )

}

i∈I
is a decomposition of (A,B, g, T ) and pick ξ ∈ A(X )∩B(V). We have ξ =

Axξ = Bvξ for some xξ ∈ X , vξ ∈ V . By Lemma 1 it follows from (20) evaluated at t = T−1 that there exists
uξ ∈ ⊕iEi such that min

u∈U
g(Axξ+Bu) = g(Axξ+Buξ). But we have min

u∈U
g(Axξ+Bu) = min

u∈U
g(Bvξ+Bu) = 0,

which implies g(Axξ + Buξ) = g(Bvξ + Buξ) = 0. It follows from (2) that 0 = Bvξ + Buξ = B(vξ + uξ),
which implies that vξ + uξ = 0, since B is injective. The only possibility for the last relation to be true is
vξ = 0, from which it follows that ξ = Bvξ = 0, and thus A(X ) ∩B(V) = {0} indeed.

Proposition 6. Consider a DP problem (A,B, g, T ) or (A,B, g, α). We have J∗(x) = 0 ⇔ x = 0.

Proof. Since g is non-negative, we have J(x, π) ≥ 0, for all choices of x and π. It thus follows that J∗(x) ≥ 0,
for all x ∈ X . Now let x = 0, and consider policy π(0) defined by πt(0) ∈ N (B) for all t ∈ T . The
state trajectory of (1) starting at x = 0 under policy π satisfies xt = 0, ∀t ∈ T , and its associated cost
J(0, π(0)) = 0. This policy thus achieves the minimum, and J∗(0) = 0 indeed holds. Conversely, assume
x 6= 0: We then have g(x) > 0, and thus J∗(x) ≥ g(x) > 0.

Proposition 7. Consider a DP problem (A,B, g, T ) or (A,B, g, α). We have π∗
t (0) ∈ N (B), ∀t ∈ T .

Proof. Follows immediately from the proof of Proposition 6.

Proposition 8. Consider system (1), a decomposition of X over A, and a cost function (2) satisfying
g ∈ Gs. If

{

(A,B|Ei
, g, α)

}

i∈I
is a decomposition of (A,B, g, α), then A(X ) ∩B(V) = {0}.

Proof. Assume
{

(A,B|Ei
, g, α)

}

i∈I
is a decomposition of (A,B, g, α) and pick ξ ∈ A(X ) ∩ B(V). We have

ξ = Axξ = Bvξ for some xξ ∈ X , vξ ∈ V . It follows from (21) and (8) that there exists uξ ∈ ⊕iEi such that
min
u∈U

J(Axξ +Bu) = J(Axξ +Buξ), from Proposition 6 and an argument similar to that made in Proposition

5 (omitted for brevity) that 0 = Bvξ+Buξ = B(vξ+uξ), and thus ξ = Bvξ = 0 and A(X )∩B(V) = {0}.

We are now ready to prove Theorem 2:

Proof of Theorem 2. We have (a) ⇒ (b) and (a) ⇒ (c) by Theorem 1. To show that (b) ⇒ (a), assume that
{

(A,B|Ei
, g, T )

}

i∈I
is a decomposition of (A,B, g, T ). It follows from Proposition 5 that A(X )∩B(V) = {0}.

Since A in invertible by assumption, A(X ) = X , and B(V) = {0}. Since B is injective, we conclude that
V = 0, and thus U = ⊕Ei, and (22) follows from Proposition 4. The proof (c) ⇒ (a) similarly follows from
Proposition 8.

We now turn our attention to the second family of DP problems and their associated notion of decom-
position. We begin by establishing the following intermediate result:

Proposition 9. Consider system (1), a decomposition of X over A, a cost function (2) satisfying g ∈ Gs,
a DP problem (A,B, g, T ) and a family

{

(A, ρi ◦B, g, α)
}

i∈I
. The following two statements are equivalent:

(a) For any choice of optimal policies π∗
i , i ∈ I, there exists an optimal policy π∗ such that (19) holds.

(b) For any choice of optimal control laws of
{

(A, ρi ◦ B, g, T )
}

, i ∈ I, there exists an optimal control law
of (A,B, g, T ) such that (23) holds.

Proof. Pick x ∈ X and a choice of optimal policies π∗
i (xi), i ∈ I. Let {xi,t}t∈T be the state trajectory of the

ith subsystem under policy π∗
i (xi), and let u∗

i (xi,t, t) = π∗
i,t(xi) be the corresponding optimal control laws.

To show (a) ⇒ (b), let π∗ be an optimal policy such that (19) holds, let {xt}t∈T be the state trajectory
of (1) under this policy, with u∗(xt, t) = π∗

t (x). We have

Bπ∗
t (x) =

∑

i∈I

ρi ◦Bπ∗
i,t(xi), ∀t ∈ T ⇔ Ax+Bπ∗

t (x) = Ax+
∑

i∈I

ρi ◦Bπ∗
i,t(xi), ∀t ∈ T

⇔ Ax+Bu∗(x, t) =
∑

i∈I

Axi +
∑

i∈I

ρi ◦Bu∗
i (xi, t), ∀t ∈ T

⇔ Ax+Bu∗(x, t) =
∑

i∈I

[

Axi + ρi ◦Bu∗
i (xi, t)

]

, ∀t ∈ T

⇔ ρi(Ax +Bu∗(x, t)) = Axi + ρi ◦Bu∗
i (xi, t), ∀t ∈ T , ∀i ∈ I.

11



What is left is to note that the choice of x was arbitrary.
To show (b) ⇒ (a), let u∗ be an optimal control law satisfying (23) and consider the policy π∗ defined by

π∗
t (x) = u∗(xt, t). By the above equivalence, we have that π∗ satisfies (19).

We are now ready to prove Lemma 3:

Proof of Lemma 3. Having established in Proposition 9 the equivalence between conditions (19) and (23),
what is left is to show that (23) ⇒ (18).

Assume that (23) holds, let {xi,t}t∈T be the state trajectory of the ith subsystem under the optimal
control law u∗

i (xi,t, t), i ∈ I, and let {xt}t∈T be the state trajectory of (1) under the corresponding optimal
control law u∗(xt, t). For any x ∈ X , we have

J∗(x) = g(x) +
∑

t∈T

g(Axt +Bu∗(x, t))

= g(x) +
∑

t∈T

g
(

∑

i∈I

ρi(Axt +Bu∗(x, t))
)

= g(x) +
∑

t∈T

g
(

∑

i∈I

(Axi,t + ρi ◦Bu∗
i (xi,t, t))

)

=
∑

i∈I

g(xi) +
∑

t∈T

∑

i∈I

g
(

(Axi,t + ρi ◦Bu∗
i (xi,t, t))

)

=
∑

i∈I

[

g(xi) +
∑

t∈T

g(Axi,t + ρi ◦Bu∗
i (xi,t, t))

]

=
∑

i∈I

J∗
i (xi)

where the first equality follows by definition, the second from the definition of ρi, the third from (23), the
fourth from g ∈ Gs, and the fifth and sixth by definition.

We can establish an analogous result for the infinite horizon setting and use it in proving Lemma 4:

Proposition 10. Consider system (1), a decomposition of X over A, a cost function (2) satisfying g ∈ Gs,
a DP problem (A,B, g, α) and a family

{

(A, ρi ◦B, g, α)
}

i∈I
. The following two statements are equivalent:

(a) For any choice of optimal policies π∗
i , i ∈ I, there exists an optimal policy π∗ such that (19) holds.

(b) For any choice of optimal control laws of
{

(A, ρi ◦ B, g, α)
}

, i ∈ I, there exists an optimal control law
of (A,B, g, α) such that (24) holds.

Proof. The proof is similar to that of Proposition 9 and is omitted for brevity.

Proof of Lemma 4. Having established in Proposition 10 the equivalence between conditions (19) and (24),
what is left is to show that (24) ⇒ (18).

Assume that (24) holds, let {xi,t}t∈T be the state trajectory of the ith subsystem under the optimal
control law u∗

i (xi,t), i ∈ I, and let {xt}t∈T be the state trajectory of (1) under the corresponding optimal
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control law u∗(xt). For any x ∈ X , we have

J∗(x) = g(x) +

∞
∑

t=0

αt+1g(Axt +Bu∗(xt))

= g(x) +

∞
∑

t=0

αt+1g
(

∑

i∈I

ρi(Axt +Bu∗(xt)
)

= g(x) +

∞
∑

t=0

αt+1g
(

∑

i∈I

(Axi,t + ρi ◦Bu∗
i (xi,t))

)

=
∑

i∈I

g(xi) +

∞
∑

t=0

αt+1
∑

i∈I

g
(

(Axi,t + ρi ◦Bu∗
i (xi,t))

)

=
∑

i∈I

[

g(xi) +
∞
∑

t=0

αt+1g(Axi,t + ρi ◦Bu∗
i (xi,t))

]

=
∑

i∈I

J∗
i (xi)

where the first equality follows by definition, the second from the definition of ρi, the third from (24), the
fourth from g ∈ Gs, and the fifth and sixth by definition.

Proof of Theorem 3. Assume that
{

(A, ρi ◦B, g, T )
}

i∈I
is a decomposition of (A,B, g, T ). By Definition 2,

(19) holds for all x ∈ X . In particular, for z ∈ Xi, we have the following ∀t ∈ T :

Bπ∗
t (z) =

∑

i∈I

ρi ◦Bπ∗
i,t(zi)

= ρi ◦Bπ∗
i,t(z) +

∑

j∈I,j 6=i

ρj ◦Bπ∗
j,t(0)

= ρi ◦Bπ∗
i,t(z)

where the second equality follows from the fact that z ∈ Xi and the third equality follows from Proposition
7 with ρj ◦B replacing B. We thus conclude that for z ∈ Xi, Bπ∗

t (z) ∈ Ei, ∀t ∈ T .
Now pick an x ∈ X , a choice of optimal policies π∗

i , i ∈ I and an optimal policy π∗ satisfying (19). Let
{xi,t}t∈T and {xt}t∈T be the corresponding state trajectories. By (19), we have for all t ∈ T

Bu∗(xt, t) = Bπ∗
t (x)

=
∑

i∈I

ρi ◦Bπ∗
i,t(xi)

=
∑

i∈I

Bπ∗
t (xi)

=
∑

i∈I

Bu∗
i (xi,t, t)

from which we have u∗(xt, t) −
∑

i∈I u
∗
i (xi,t, t) ∈ N (B), and hence u∗(xt, t) =

∑

i∈I u
∗
i (xi,t, t) since B is

injective. It thus follows that u∗(xt, t) ∈
∑

i∈I Ei, for all choices of xt and t, and thus (20) holds and
{

(A,B|Ei
, g, α)

}

i∈I
is a decomposition of (A,B, g, T ).

The proof for the infinite horizon case is similar, and is thus omitted for brevity.

6 Illustrative Examples

Our first example is a familiar instance of dynamic programming:
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Example 1. Consider the case where X = R
n,U = R

m, and the dynamics xt+1 = Axt + But with A ∈
R

n×n, B ∈ R
n×m over a finite horizon t ∈ {0, 1, . . . , T } , T ∈ Z

+. Let g(x) = xTPx where P is positive-
definite. Then J∗

t (x) = xTKtx with KT = P and Kt given by the backward algebraic Riccati recursion
(assuming that B has full column rank)

Kt = P +ATKt+1A−ATKt+1B(BTKt+1B)−1BTKt+1A

and the optimal controller is given by

u∗
t (x) = −(BTKtB)−1BTKtAx.

Now let A = SJS−1 be the canonical Jordan decomposition of A and denote by Si the submatrix of S
consisting of the columns of S corresponding to the ith Jordan block of J . Define Xi = R(Si). Then by
construction Xi is A-invariant and R

n = ⊕i∈IXi. Assume in addition that the conditions of Thm. ?? are
true. This implies that the subspaces Xi must be Kt-orthogonal in order for J∗

t to split, i.e. xT
i Ktxj = 0,

whenever xi ∈ Xi, xj ∈ Xj , i 6= j. Note also that R
m = ⊕i∈IEi. Consider the representation of A,P on

a basis of R
n given by the union of basis of each of the subspaces Xi; then P,A will be block diagonal.

Moreover choosing as a basis of Rm the union of basis of the subspaces Ei and representing the image of B
using the above mentioned basis of Rn, yields B in a block diagonal form as well (even though B need not
be square). Then it is seen that the algebraic Riccati recursion becomes block diagonal, the block recursions
representing the Riccati recursions corresponding to the subsystems (Ai, Bi). Finally, the optimal controller
itself is diagonal, each of its entries giving an optimal controller for the corresponding subsystem.

Our next example considers a finite state system and illustrates that (22) is indeed sufficient, but not
necessary in general, for a decomposition to exist:

Example 2. Let X = (Z3)
3
,U = (Z3)

2
and consider the system

xt+1 =





1 1 0
0 2 0
0 0 1



 xt +





1 0
1 1
0 1



ut

The invariant subspaces are X1 =< [1 0 0]T >,X2 =< [1 1 0]T >,X3 =< [0 0 1]T >. Note that R(B)∩X1 =
R(B) ∩ X3 = {0} ,R(B) ∩ X2 = X2. The three subsystems are

(A1, B1) =









1 0 0
0 0 0
0 0 0



 ,





0 0
0 0
0 0









(A2, B2) =









0 2 0
0 2 0
0 0 0



 ,





1 0
1 0
0 0









(A3, B3) =









0 0 0
0 0 0
0 0 1



 ,





0 0
0 0
0 0







 .

(26)

Since (Z3)
3 = X1 ⊕ X2 ⊕ X3, every element of (Z3)

3 can be written as a unique linear combination of

[1 0 0]
T
, [1 1 0]

T
, [0 0 1]

T
. In particular for any α1, α2, α3 ∈ Z3 we have that




α1

α2

α3



 = (α1 + 2α2)





1
0
0



+ α2





1
1
0



+ α3





0
0
1



 .

Now consider a cost function g : (Z3)
3 → R

+ with the property that g









α1

α2

α3







 = g



α2





1
1
0







, i.e. g

penalizes only X2. Consider also a finite horizon T = 1. Then the optimal controller corresponding to state
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[x1 x2 x3]
T
is given as the solution to the problem

min
u1,u2∈Z3

g









1 1 0
0 2 0
0 0 1









x1

x2

x3



+





1 0
1 1
0 1





[

u1

u2

]





which can equivalently be written as

min
u1,u2∈Z3

g









1 1 0
0 2 0
0 0 1









x1

x2

x3



+





1 1 1 0
1 0 1 0
0 0 0 1













u1

2u2

u2

u2

















or equivalently using the property of g

min
u1,u2∈Z3

g









1 1 0
0 2 0
0 0 1









x2

x2

0



+ (u1 + u2)





1
1
0









which is equivalent to

min
u1∈Z3

g









0 2 0
0 2 0
0 0 0









x2

x2

0



+ u1





1
1
0









or equivalently

min
u1∈Z3

g









0 2 0
0 2 0
0 0 0









x2

x2

0



+





1 0
1 0
0 0





[

u1

0

]





the latter being precisely the problem giving the optimal controller of subsystem 2. Consequently, if [u∗
1 0]

T

is an optimal controller for subsystem 2 corresponding to state [x2 x2 0]
T
, then [u∗

1 0]
T

is also an optimal

controller for the original system corresponding to state [x1 x2 x3]
T for any x1, x3 ∈ Z3.

Our last example demonstrates that one notion of decomposition implies the other, but not vice-versa:

Example 3. Consider the reachable linear system over the real number field with

A =





1 0 0
0 1 0
0 0 0



 , B =





1 1
0 1
0 1



 .

Take the invariant subspaces to be X1 =< e1 >R,X2 =< e2 >R,X3 =< e3 >R where ei is the standard unit

vector of R3×1. Note that E1 =<

[

1
0

]

>R, E2 = E3 = {0} ,V =< [0 1]
′
>R. Let h : R → R

+ be defined by

h(ξ) =

{

1, ξ 6= 0
0, ξ = 0

and for any state x = (x1, x2, x3) define a cost function of the state

g(x) = h(x1) + h(x2) + h(x3).

Finally consider for simplicity a finite horizon T = 1. The systems of
{

(A,B|Ei
, g, α)

}

i∈I
and their corre-
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sponding solutions are

A|X1
=





1 0 0
0 0 0
0 0 0



 , B|E1
=





1 0
0 0
0 0





A|X2
=





0 0 0
0 1 0
0 0 0



 , B|E2
=





0 0
0 0
0 0





A|X3
=





0 0 0
0 0 0
0 0 0



 , B|E3
=





0 0
0 0
0 0





ū∗
1,T−1(x1, 0, 0) = [−x1 0]′, J̄∗

1,T−1(x1, 0, 0) = h(x1)

ū∗
2,T−1(0, x2, 0) = [0 0]′, J̄∗

2,T−1(0, x2, 0) = 2h(x2)

ū∗
3,T−1(0, 0, x3) = [0 0]′, J̄∗

3,T−1(0, 0, x3) = h(x3)

and ū∗
1,T−1

(x1, 0, 0)+ ū∗
2,T−1

(0, x2, 0)+ ū∗
3,T−1

(0, 0, x3) = [−x1 0]′ = u∗
T−1

(x1, x2, x3) and J∗
T−1

(x1, x2, x3) =

J̄∗
1,T−1

(x1, 0, 0) + J̄∗
2,T−1

(0, x2, 0) + J̄∗
3,T−1

(0, 0, x3) = h(x1) + 2h(x2) + h(x3). So
{

(A,B|Ei
, g, α)

}

i∈I
is

decomposition of (A,B, g, T ). The systems associated with the family of problems
{

(A, ρi ◦B, g, T )
}

i∈I

A|X1
=





1 0 0
0 0 0
0 0 0



 , ρ1 ◦B =





1 1
0 0
0 0





A|X2
=





0 0 0
0 1 0
0 0 0



 , ρ2 ◦B =





0 0
0 1
0 0





A|X3
=





0 0 0
0 0 0
0 0 0



 , ρ3 ◦B =





0 0
0 0
0 1



 .

Notice that R(A|Xi
) ⊆ R(ρi ◦ B), ∀i = 1, 2, 3, and so J∗

1,T−1
(x1, 0, 0) = h(x1), J∗

2,T−1
(0, x2, 0) = h(x2),

J∗
3,T−1(0, 0, x3) = h(x3). Hence, whenever x2 6= 0, J∗

T−1(x1, x2, x3) = h(x1) + 2h(x2) + h(x3) > h(x1) +

h(x2) + h(x3) = J∗
1,T−1(x1, 0, 0) + J∗

2,T−1(0, x2, 0) + J∗
3,T−1(0, 0, x3) and

{

(A, ρi ◦ B, g, T )
}

i∈I
cannot be a

decomposition of (A,B, g, T ).

7 Future Work

The decompositions considered in this manuscript are natural and intuitive, but the conditions for their
existence may be fairly restrictive in practice. As such, future work will focus on the study of instances
where such exact decompositions do not exist, but where “small” perturbations of the original dynamics
would allow them to exist. Our focus will be on getting a handle on the difference between the exact and
the approximate solutions in such a setting.
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