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On the structure of uniformly hyperbolic chain
control sets
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Abstract

We prove the following theorem: Let @) be an isolated chain control
set of a control-affine system on a smooth compact manifold M. If Q
is uniformly hyperbolic without center bundle, then the lift of @ to the
extended state space U x M, where U is the space of control functions, is
a graph over U. In other words, for every control u € U there is a unique
x € @ such that the corresponding state trajectory (¢, x,u) evolves in Q.
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1 Introduction

The notion of a uniformly hyperbolic set, which axiomatizes the geometric pic-
ture behind the “horseshoe”, a general mechanism for producing complicated
dynamics, was introduced by Smale in the 1960s. A uniformly hyperbolic set
of a diffeomorphism ¢ : M — M on a compact Riemannian manifold M is
a closed invariant set A such that the tangent bundle over A splits into two
subbundles, TA = E* @ E*, invariant under the differential dg with uniform ex-
ponential contraction (expansion) on E® (E*). For a flow (¢;)¢cr, generated by
an ordinary differential equation & = f(z), a uniformly hyperbolic set is defined
differently, because for any trajectory bounded away from equilibria, the vector
f(z) € T, M is neither contracted nor expanded exponentially. In this case, a
uniformly hyperbolic set is a closed invariant set A such that TA = E® E°@ EY
with three invariant subbundles, where additionally to the contracting and ex-
panding bundles the one-dimensional center bundle E° corresponds to the flow
direction. Without the center bundle E€ in this definition, a flow could only
have trivial uniformly hyperbolic sets, consisting of finitely many equilibria.
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The situation looks different for systems generated by equations with explicitly
time-dependent right-hand sides. General models for such systems are skew-
products, which are dynamical systems of the form ® : T x B x M — B x M,
D, (b,x) = (01b, o(t,x,b)), with a time set T € {Z, R}. The solutions of the equa-
tion are incorporated in the map ¢, while 6 is a ‘driving system’ on a base space
B that models the time-dependency of the equation. Every non-autonomous
difference equation a:1; = f(t,2¢) or differential equation & = f(¢,z) with
unique and globally defined solutions gives rise to a skew-product, where B =T
and 6,(s) =t + s. Other examples with less trivial base dynamics are random
dynamical systems and control-affine systems. If B is a compact space, M a
smooth manifold and ® respects these structures, a uniformly hyperbolic set can
be defined as a compact ®-invariant set A C B x M such that for every (b, z) € A
the tangent space T M splits into subspaces Ej , @ Ej', depending on b and

x. The invariance of the splitting now means that dgptvb(x)Elf/mu = E;{?b 2> and

contraction (expansion) rates should be uniformly bounded in b and z. One
major difference to the autonomous situation is that there can exist non-trivial
uniformly hyperbolic sets (whose projection to M has nonempty interior) in
the continuous-time case without the existence of a one-dimensional center sub-
bundle. This, for instance, happens in random dynamical systems that arise as
small time-dependent perturbations of a flow around a hyperbolic equilibrium
(cf. [7] for the discrete-time case).

In this paper, we consider a special type of skew-product flow, namely the
control flow generated by a control-affine system, i.e., a control system governed
by differential equations of the form

S:oat) = fole(t) + Y wilt)fi(z(t), uwell.
=1

The set U of admissible control functions consists of all measurable v : R — R™
with values in a compact and convex set U C R™, and fo, f1,..., fm are C'-
vector fields on a smooth manifold M. The set U, endowed with the weak™*-
topology of L>(R,R™) = L(R,R™)*, is a compact metrizable space. For each
u € U and x € M a unique solution to the corresponding equation exists with
initial value 2 at time ¢t = 0. Writing ¢(-, 2, u) for this solution and assuming
that all such solutions exist on R, one obtains a continuous skew-product flow

O RxUXM—-UxM, &(u,x)= (0u,p(t zu)),

where G,u(s) = u(t + s) is the shift flow on . There are remarkable rela-
tions between dynamical properties of ® and control-theoretic properties of X,
a comprehensive study of which can be found in [2]. In particular, the notions of
control and chain control sets are to mention here. Control sets are the maximal
subsets of M on which complete approximate controllability holds. Their lifts to
U x M are maximal topologically transivite sets of ®. In contrast, chain control
sets are the subsets of M whose lifts are the maximal invariant chain transitive



sets of @, and they can be seen as an outer approximation of the control sets,
since under mild assumptions a control set is contained in a chain control set.

The purpose of this paper is to prove a theorem about the structure of a chain
control set (Q with a uniformly hyperbolic structure without center bundle. We
show that the lift of such @, defined by

Q:={(u,z) eU XM : o(R,z,u) CQ},

has the property that each fiber {z € M : (u,z) € Q} is a singleton. In other
words, Q is the graph of a (necessarily continuous) function &« — @. This simple
structure can be seen as an analogue to the fact that a connected uniformly
hyperbolic set of a flow without center bundle consists of a single equilibrium.
Nevertheless, from the control-theoretic viewpoint uniformly hyperbolic chain
control sets are not trivial, since they can have nonempty interior and in this
case are the closures of control sets (cf. [Tl B]).

The paper is organized as follows. In Section 2l we review the shadowing lemma
proved in [8] for uniformly hyperbolic sets of general skew-product maps. This
is the main tool for the proof of our theorem, which is carried out in Section
The final Section M contains an application to invariance entropy.

2 A shadowing lemma for skew-product maps

In this section, we explain the contents of the shadowing lemma for skew-product
maps proved in [8] by Meyer and Zhang. Let M be a Riemannian manifold (with
metric d(+,-)) and B a compact metric space. Suppose that

®:BxM—BxM, ®bx)=(0(D),pD,z)),

is a homeomorphism such that also 8 : B — B is a homeomorphismﬂ For
fixed b € B assume that ¢}, := ¢(b,-) : M — M is a diffeomorphism whose
derivative depends continuously on (b,x). The orbit through (b, z) is the set
O(b,x) = {®¥(b,z) : k € Z}. We write ¢(k,z,b) for the second component of
k(b x), i.e., ®F(b, x) = (6%(D), ¢(k,x,b)). A sequence (by,rx)kez in B x M is
an a-pseudo-orbit if

bk+1 = H(bk) and d((p(bk, Ik),«IkJrl) <« forall keZ.
A pseudo-orbit (bg, zk)kez is S-shadowed by an orbit O(b, x) if
b="0by and d(o(k,z,b),z;) < forall ke Z.

A set A C M x B is invariant if ®(A) = A. A closed invariant set A is isolated if
there exists a neighborhood U of A such that ®* (b, x) € clU for all k € Z implies

n [8], 6 is assumed to be almost periodic. However, this is not used for the proof of the
shadowing lemma.



(b,x) € A. A closed invariant set A is uniformly hyperbolic if there are constants
C >0,0< u < 1and a continuous map (b,z) — P(b,z) € P(T,M, T, M),
defined on A, where P(T,M,T,M) denotes the space of all linear projections
on T, M, such that

(i) P(®(b,x))des(x) = dgy(x)P(b, z).
(ii) ||dpk.s(z)P(b,x)| < Cpk for all (b,x) € A, k > 0.

(iii) || drs(z)(I — P(b,2))|| < Cp—* for all (b,z) € A, k < 0.

Here ¢ p = @(k,+,b). A reduced version of the shadowing lemma [8 Lem. 2.11]
reads as follows.

2.1 Lemma: Let A C B x M be a compact invariant uniformly hyperbolic set.
Then there is a neighborhood U of A such that the following holds:

(i) For any 8 > 0 there is an o > 0 such that every a-pseudo-orbit (b, Ty )kez
in U is B-shadowed by an orbit {®*(by,y) : k € Z}.

(ii) There is By > 0 such that 0 < 8 < (o implies that the shadowing orbit in
(i) is uniquely determined by the pseudo-orbit.

(iii) If A is an isolated invariant set of ®, then the shadowing orbit is in A.

3 The main result

3.1 Preliminaries and assumptions

Consider a control-affine system
S:oa(t) = fole(t) + Y wilt)fi(z(t), uwel=L>R,U),
i=1

on a compact Riemannian manifold M with distance d(-,-). The vector fields
fo, fi,-.., fm are assumed to be of class C! and the control range U C R™ is
compact and convex. The set U of admissible control functions is endowed with
the weak*-topology of L>°(R,R™) = L}(R,R™)*. We write

O RxUXxM—-UxM, P(u,x)=(0ru,pt z,u)),

for the associated control flow and ¢; ., = ¢(t,+,u). A chain control set is a set
@ C M with the following properties:

(i) For every x € @ there exists u € U with p(R,z,u) C Q.



(ii) For each two z,y € @ and all ,7 > 0 there are n € N, con-
trols ug,...,un—1 € U, states xro = z,x1,...,2n—1,T, = y and times
to,...,tn_1 > T such that

d(p(ti, iy ug), xi41) <&, i=0,1,...,n—1.
(iii) @ is maximal with (i) and (ii) in the sense of set inclusion.

Throughout the paper, we fix a chain control set ) and write
Q= {(ua) €U x M : p(R,z,u) C Q)

for its full-time lift, which is a chain recurrent component of the control flow
O on U x M (cf. 2l Thm. 4.1.4]). We further assume that Q is an isolated
invariant set for @, i.e., there exists a neighborhood N C U x M of Q such that
O(R, u,z) C N implies (u,z) € Q. This, e.g., is the case if there are only finitely
many chain control sets on M, because then the chain recurrent components
are the elements of a finest Morse decomposition. We further assume that

T,M = EIwGBE;I, V(u,z) € Q,

with subspaces E_ satisfying

u,x

(H1) desu(2)EE, = EX

w,x TPy (u,x

) for all (u,z) € Qand t € R.
(H2) There exist constants 0 < ¢ <1 and A > 0 such that for all (u,z) € Q,
|dgy o (z)v] < ¢ le M| forallt >0, ve E, .,

and
|dgy o (x)v] > ce|v| for allt >0, v e E},.

From (H1) and (H2) it follows that E;, depend continuously on (u, ) (cf. [6
Lem. 6.4]). We define the u-fiber of Q by

Qu) :={r€Q : (u,z)e Q}.

On U we fix a metric, compatible with the weak*-topology, of the form

i U | Ja(u(t) — v(®), za(8))dt|

W)= 2 3 T T al®) — o0 2 ()0

n=1

where {z,, : n € N} is a dense and countable subset of L!(R,R™) and (-,-) is a
fixed inner product on R™ (cf. [2, Lem. 4.2.1]).



3.2 Statement of results and proofs

We observe that the time-1-map ®1 : Ux M — UX M, (u,z) — (01u, p(1,2,u)),
of the control flow is a skew-product map and Q is a uniformly hyperbolic set
for ®; in the sense of Section Moreover, Q is isolated for ®;, which easily
follows from our assumption that Q is an isolated invariant set of the control
flow. Continuous dependence of the derivative de; (x) on (u,x) is proved in
[6, Thr. 1.1].

3.1 Proposition: For any u,v € U the fibers Q(u) and Q(v) are homeomor-
phic.

Proof: The proof is subdivided into three steps.
Step 1. We claim that for every € > 0 there is § > 0 such that for all u,v € U,

lu—vleo <d = dy(Ou,bv) <e forallteR, (1)

where || - || is the L*°-norm. To prove this, choose N = N(¢) € N with

S 1o
2 2
n=N+
Then put
€
= n 5 5 = )
o(0) 1= max flenlh, = 5
where || - [|1 is the L'-norm. Then, for every t € R, ||u — v||oo < § implies

o0

1| Jplult+5) —v(t +5),zn(s))ds|

dy(Oru, 0v) = 2n 14| fR (t+s)—v(t+s),z,(s))ds|

MZM

N

< (t+s)—v(t+s),z,(s))ds| +

| ™

n=1

Mz

zi/R|u<t+s> ot 5| [ea(s)lds + 5

n=1
N

5 5 €
52 e 121}122(1\[/ |z (s)]ds + 3 < F(E)C(E) + 5 =¢

IN

Step 2. Consider the time-1-map ®; of the control flow with the uniformly
hyperbolic set Q. Let 5 > 0 be given and choose @ = «(/3) according to the
shadowing lemma 2Tl Then choose ¢ = £(«) such that

dy(u,v) <e = dle(l,z,u),o(l,z,v)) < a, (2)



whenever u,v € Y and 2 € Q. This is possible by uniform continuity of ¢(1,,-)
on the compact set Q x U. We claim that for all sufficiently small 3,
supdy (0yu,0v) <e = Q(u) and Q(v) are homeomorphic. (3)
teR
If Q(u) and Q(v) are both empty, there is nothing to show. Otherwise, we may
assume that Q(u) # (. Then choose x € Q(u) arbitrarily and consider the

doubly infinite sequence x,, := @(n,x,u), n € Z, which is completely contained
in @ and (by (@) satisfies

d(cp(l, T, 9n’l)), xn-{-l) = d(@(la L, 9n’l)), 90(17 Ty enu)) <«
for alln € Z. Hence, (24, 0,0)ncz is an a-pseudo-orbit for ®;. By the shadowing
lemma there exists y € M with
d(e(n,y,v),e(n,z,u)) < forall n € Z.

Since Q is isolated, Lemma 2[(iii) implies (v,y) € Q, i.e., y € Q(v). We claim
that the map
hu 1 Q(u) = Q(v), @y,

defined in this way, is a homeomorphism. If § is small enough, the shadowing
orbit is unique by Lemma 2I(ii), and hence h,, is uniquely defined. Since
the fB-shadowing relation between wu-orbits and v-orbits is symmetric, one can
equivalently define a map hy, : Q(v) — Q(u), which by uniqueness must be
the inverse of h,,. The proof for the continuity of h,, is standard and will be
omitted. (Continuity will also follow trivially from Proposition B3]).

Step 3. From convexity of U it follows that for arbitrary u,v € U the curve
w:[0,1] = U, T w, w(t):=(1—7)ut)+ To(t),

is well-defined. It is continuous w.r.t. the L*>-topology on U, since

[wr, = wr, [loo ess sup |(1 = m)u(t) +7o(t) = (1 = m2)u(t) = rov(®)]

= esssup|(mo — m)u(t) — (72 — 11)v(t)]
teR

= esssup|m — 7| |u(t) —v(t)| < |2 — 11| diam U.
teR
Hence, for each 7 € [0,1] we can pick a (relatively) open subinterval I, C
[0, 1] containing 7 such that ||ws — wy||eo is smaller than a given constant for
all s,r € I.. By Step 1 this implies that sup,cp dy(6:ws, 6;w,) < € for all
s, € I, with a given ¢ > 0. Choose ¢ according to Step 2 so that Q(ws)
and Q(w,) are homeomorphic for any two s, € I.. By compactness, finitely
many such intervals I,,..., I, are sufficient to cover [0,1]. We may assume
that 0 = inf I, <infl., <--- <infI, <supl, = 1. To show that Q(u) and
Q(v) are homeomorphic, we put to := 0, t; := 1 and pick t; € I, NI, # 0

for 4 = 1,...,1 — 1. Then there exist homeomorphisms h;;+1 : Q(wy) —
Q(wy,,,) for 0 < i <1 —1. The composition of these homeomorphisms gives a
homeomorphism from Q(u) = Q(wy,) to Q(v) = Q(wy,). O



3.2 Corollary: If Q(u) is a singleton for one u € U, then Q is the graph of a
continuous map from U to Q.

Proof: By the proposition, Q(u) is a singleton for every u € U, say Q(u) =
{z(u)}. Consider the map u — (u,z(u)), U — Q. This is an invertible map
between compact metric spaces with (obviously) continuous inverse. Hence, it
is a homeomorphism. This implies that the function v — z(u), U — Q, is
continuous and Q is its graph. O

The next proposition shows that the fibers Q(u) are finite.

3.3 Proposition: If u is a constant control function, then Q(u) consists of
finitely many equilibria. Hence, there exists n € N such that Q)(u) has precisely
n elements for every u € U.

Proof: Let u € U be a constant control function. Observe that Q(u) is a
uniformly hyperbolic set for the diffeomorphism ¢ := ¢y, : M — M. It is well-
known that a diffeomorphism is expansive on a uniformly hyperbolic set, i.e.,
there is € > 0 such that d(g*(z), g (y)) < e for all k € Z and z,y € Q(u) implies
z =y (see [B, Cor. 6.4.10]). If z € Q(u) and w = fo(x) + >, u; fi(x) # 0,
then the Lyapunov exponent I(w) := limsup,_, . (1/t)log|dp: . (x)w| vanishes
if the trajectory (¢, x,u) is bounded away from equilibria. A zero Lyapunov
exponent, however, contradicts the existence of the uniformly hyperbolic split-
ting on Q. Since the right-hand side of the system is bounded on compact sets,
l(w) < 0 follows, implying w € E, . Writing f := fo + >_/", u; fi, this yields
| (z)w| = | f(p(t, ,u))| < c e > for t > 0. Because of the uniform hyper-
bolicity, there can be at most finitely many equilibria in the compact set Q(u),
and hence ¢(t, z,u) — z, for some equilibrium z; . The same argumentation for
the backward flow yields ¢(t,z,u) — z_ for an equilibrium z_. Choose tg > 0
large enough so that

dolt, ), 22) < 5 i) > %0 (4)
Then choose § > 0 small enough so that
d(z,y) <6 = dle(t,z,u), ot y,u)) <e forall [t| <. (5)
Finally, let 7 € (0,%0/2) be chosen so that
d(z, (T, z,u)) < 9. (6)

We let y := (7, 2,u) and claim that d(¢(t,z,u), p(t,y,u)) < e for all t € R,
implying « = y. Indeed, by (@) and (&) we have

d(p(t,x,u), o(t,y,u)) <e for all t| < to.
Now assume that ¢ > to. Then (@) yields

d(p(t, z,u), o(t,y,u)) < d(e(t,z,u), 24) +d(z4, p(t + 7, 2,u)) < &.



If t < —tg, we obtain t +7 < —tg+7 < —to+1t9/2 = —to/2, and hence ) gives
d(p(t,z,u), o(t,y,u)) < d(p(t, z,u), 2-) +d(z—, p(t + 7, 2,u)) <.

In particular, d(g*(z), g*(y)) < e for all k € Z, and hence v =y = 2z, = z_.
Consequently, Q(u) consists of finitely many equilibria. O

The next theorem is our main result.

3.4 Theorem: Consider the control-affine system % with the uniformly hyper-
bolic chain control set Q with isolated lift Q. Assume that int U # () and let ug
be a constant control function with value in int U. Additionally suppose that
the following hypotheses are satisfied:

(i) The vector fields fo, f1,..., fm are of class C*° and the Lie algebra gener-
ated by them has full rank at each point of Q.

(ii) For each x € Q(ug) and each p € (0,1] it holds that = € int O} (), where
Of (x) = {e(t,z,u) : t >0, u € U} with

U ={ueld : ult) € up+ p(U —up) a.e.}.
Then Q is a graph of a continuous function U — Q.

3.5 Remark: Before proving the theorem, we note that assumption (ii) is
in particular satisfied if the system is locally controllable at (ug,x) for each
x € Q(up) (using arbitrarily small control ranges around ug). A sufficient con-
dition for this to hold, which is independent of p, is the controllability of the
linearization around (ug, x).

Proof: Without loss of generality, we assume that uo(t) = 0. Let Q(ug) =
{z1,...,2,}. We consider for each p € (0, 1] the control-affine system

S0 i) = folz(t) + Y wilt) filz(t), weUr.
=1

From the assumptions (i) and (ii) it follows by [2, Cor. 4.1.7] that each a; is
contained in the interior of a control set D? of ¥*. Each D! is contained in a
unique chain control set EY of ¥* (cf. [2| Cor. 4.3.12]). By [2, Cor. 3.1.14] the
chain control sets depend upper semicontinuously on p, hence EY C Q = E}
for every 1 < ¢ < n and p € (0,1]. This implies that each Ef is uniformly
hyperbolic. By [I, Thm. 3] it follows that Ef = c1 D?. If C; denotes the chain
recurrent component of the uncontrolled system & = fo(z) which contains the
equilibrium x;, then C; C EY for each p, because otherwise Ef UC; would satisfy
the first two properties of chain control sets, contradicting maximality of EY.
Since each chain recurrent component is connected and C; C Q(up), we have
C; = {x;}. By [2, Cor. 3.4.10], the chain control set E shrinks to {z;} as p \, 0.



Hence, for small p, the sets Ef are pairwisely disjoint. Since E} = @ for each
1, at some point the chain control sets have to merge as p increases. Since, by
[2l Thm. 3.1.12], the control sets D? depend lower semicontinuously on p, this
is a contradiction if n > 1. It follows that n = 1 and Corollary B.2] yields the
assertion. O

3.6 Remark: Of course, in many cases it will be easier to check directly that
Q(u) is a single equilibrium for some constant control function w than verifying
the conditions of the preceding theorem. We also note that the fact that Q is a
graph over U implies the existence of a topological conjugacy between the shift
flow 0 on U and the restriction of the control flow to Q (cf. [3]).

4 Application to invariance entropy

The invariance entropy of a controlled invariant subset @@ of M measures the
complexity of the control task of keeping the state inside ). In general, it is
defined as follows. A pair (K,Q) of subsets of M is called admissible if K
is compact and for every x € K there is u € U with o(Ry,z,u) C Q. In
particular, if K = @, this means that @ is a compact and controlled invariant
set. For 7 > 0,aset S C U is (1, K, Q)-spanning if for every x € K thereisu € §
with ([0, 7], z,u) C Q. Then 7y (7, K, Q) denotes the number of elements in a
minimal such set and we put 7,y (7, K, Q) := oo if no finite (7, K, Q)-spanning
set exists. The invariance entropy of (K, Q) is

hinv (K, Q) := lim sup B log riny (7, K, Q),
T—o00 T
where log is the natural logarithm. From [3] Thm. 5.4] we can conclude the
following result on the invariance entropy of admissible pairs (K, @), where @
is a uniformly hyperbolic chain control set. The difference to [3, Thm. 5.4] is
that we do not have to assume explicitly anymore that Q is a graph over U.

4.1 Theorem: Consider the control-affine system ¥ with the uniformly hyper-
bolic chain control set Q@ with isolated lift Q. Let the assumptions (i) and (ii)
of Theorem[34 be satisfied, or alternatively, assume that Q(u) is a singleton for
some uw € U. Then @ is the closure of a control set D and for every compact
set K C D of positive volume the pair (K, Q) is admissible and its invariance
entropy satisfies

1
Bine (K, Q) = inf i ~ log |det(dpy CEY S EF :
(K,Q) (nf limsup — log de (deru)lps, « Bus B (u,z)

4.2 Remark: The paper [4] provides a rich class of examples for uniformly
hyperbolic chain control sets that arise on the flag manifolds of a semisimple
Lie group. The control-affine system in this case is induced by a right-invariant
system on the group.
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