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On the structure of uniformly hyperbolic chain

control sets

Christoph Kawan∗

Abstract

We prove the following theorem: Let Q be an isolated chain control
set of a control-affine system on a smooth compact manifold M . If Q

is uniformly hyperbolic without center bundle, then the lift of Q to the
extended state space U ×M , where U is the space of control functions, is
a graph over U . In other words, for every control u ∈ U there is a unique
x ∈ Q such that the corresponding state trajectory ϕ(t, x, u) evolves in Q.

Keywords: Nonlinear control; control-affine system; chain control set; uniform hy-

perbolicity
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1 Introduction

The notion of a uniformly hyperbolic set, which axiomatizes the geometric pic-
ture behind the “horseshoe”, a general mechanism for producing complicated
dynamics, was introduced by Smale in the 1960s. A uniformly hyperbolic set
of a diffeomorphism g : M → M on a compact Riemannian manifold M is
a closed invariant set Λ such that the tangent bundle over Λ splits into two
subbundles, TΛ = Es⊕Eu, invariant under the differential dg with uniform ex-
ponential contraction (expansion) on Es (Eu). For a flow (φt)t∈R, generated by
an ordinary differential equation ẋ = f(x), a uniformly hyperbolic set is defined
differently, because for any trajectory bounded away from equilibria, the vector
f(x) ∈ TxM is neither contracted nor expanded exponentially. In this case, a
uniformly hyperbolic set is a closed invariant set Λ such that TΛ = Es⊕Ec⊕Eu

with three invariant subbundles, where additionally to the contracting and ex-
panding bundles the one-dimensional center bundle Ec corresponds to the flow
direction. Without the center bundle Ec in this definition, a flow could only
have trivial uniformly hyperbolic sets, consisting of finitely many equilibria.

∗Universität Passau, Fakultät für Informatik und Mathematik, Innstraße 33, 94032 Passau,
Germany; christoph.kawan@uni-passau.de; Phone: +49(0)851 509 3363
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The situation looks different for systems generated by equations with explicitly
time-dependent right-hand sides. General models for such systems are skew-
products, which are dynamical systems of the form Φ : T× B ×M → B ×M ,
Φt(b, x) = (θtb, ϕ(t, x, b)), with a time set T ∈ {Z,R}. The solutions of the equa-
tion are incorporated in the map ϕ, while θ is a ‘driving system’ on a base space
B that models the time-dependency of the equation. Every non-autonomous
difference equation xt+1 = f(t, xt) or differential equation ẋ = f(t, x) with
unique and globally defined solutions gives rise to a skew-product, where B = T

and θt(s) = t + s. Other examples with less trivial base dynamics are random
dynamical systems and control-affine systems. If B is a compact space, M a
smooth manifold and Φ respects these structures, a uniformly hyperbolic set can
be defined as a compact Φ-invariant set Λ ⊂ B×M such that for every (b, x) ∈ Λ
the tangent space TxM splits into subspaces Es

b,x ⊕ Eu
b,x depending on b and

x. The invariance of the splitting now means that dϕt,b(x)E
s/u
b,x = E

s/u
Φt(b,x)

, and

contraction (expansion) rates should be uniformly bounded in b and x. One
major difference to the autonomous situation is that there can exist non-trivial
uniformly hyperbolic sets (whose projection to M has nonempty interior) in
the continuous-time case without the existence of a one-dimensional center sub-
bundle. This, for instance, happens in random dynamical systems that arise as
small time-dependent perturbations of a flow around a hyperbolic equilibrium
(cf. [7] for the discrete-time case).

In this paper, we consider a special type of skew-product flow, namely the
control flow generated by a control-affine system, i.e., a control system governed
by differential equations of the form

Σ : ẋ(t) = f0(x(t)) +

m
∑

i=1

ui(t)fi(x(t)), u ∈ U .

The set U of admissible control functions consists of all measurable u : R → R
m

with values in a compact and convex set U ⊂ R
m, and f0, f1, . . . , fm are C1-

vector fields on a smooth manifold M . The set U , endowed with the weak∗-
topology of L∞(R,Rm) = L1(R,Rm)∗, is a compact metrizable space. For each
u ∈ U and x ∈ M a unique solution to the corresponding equation exists with
initial value x at time t = 0. Writing ϕ(·, x, u) for this solution and assuming
that all such solutions exist on R, one obtains a continuous skew-product flow

Φ : R× U ×M → U ×M, Φt(u, x) = (θtu, ϕ(t, x, u)),

where θtu(s) = u(t + s) is the shift flow on U . There are remarkable rela-
tions between dynamical properties of Φ and control-theoretic properties of Σ,
a comprehensive study of which can be found in [2]. In particular, the notions of
control and chain control sets are to mention here. Control sets are the maximal
subsets ofM on which complete approximate controllability holds. Their lifts to
U ×M are maximal topologically transivite sets of Φ. In contrast, chain control
sets are the subsets of M whose lifts are the maximal invariant chain transitive
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sets of Φ, and they can be seen as an outer approximation of the control sets,
since under mild assumptions a control set is contained in a chain control set.

The purpose of this paper is to prove a theorem about the structure of a chain
control set Q with a uniformly hyperbolic structure without center bundle. We
show that the lift of such Q, defined by

Q := {(u, x) ∈ U ×M : ϕ(R, x, u) ⊂ Q} ,

has the property that each fiber {x ∈ M : (u, x) ∈ Q} is a singleton. In other
words, Q is the graph of a (necessarily continuous) function U → Q. This simple
structure can be seen as an analogue to the fact that a connected uniformly
hyperbolic set of a flow without center bundle consists of a single equilibrium.
Nevertheless, from the control-theoretic viewpoint uniformly hyperbolic chain
control sets are not trivial, since they can have nonempty interior and in this
case are the closures of control sets (cf. [1, 3]).

The paper is organized as follows. In Section 2 we review the shadowing lemma
proved in [8] for uniformly hyperbolic sets of general skew-product maps. This
is the main tool for the proof of our theorem, which is carried out in Section 3.
The final Section 4 contains an application to invariance entropy.

2 A shadowing lemma for skew-product maps

In this section, we explain the contents of the shadowing lemma for skew-product
maps proved in [8] by Meyer and Zhang. LetM be a Riemannian manifold (with
metric d(·, ·)) and B a compact metric space. Suppose that

Φ : B ×M → B ×M, Φ(b, x) = (θ(b), ϕ(b, x)),

is a homeomorphism such that also θ : B → B is a homeomorphism.1 For
fixed b ∈ B assume that ϕb := ϕ(b, ·) : M → M is a diffeomorphism whose
derivative depends continuously on (b, x). The orbit through (b, x) is the set
O(b, x) =

{

Φk(b, x) : k ∈ Z
}

. We write ϕ(k, x, b) for the second component of
Φk(b, x), i.e., Φk(b, x) = (θk(b), ϕ(k, x, b)). A sequence (bk, xk)k∈Z in B ×M is
an α-pseudo-orbit if

bk+1 = θ(bk) and d(ϕ(bk, xk), xk+1) < α for all k ∈ Z.

A pseudo-orbit (bk, xk)k∈Z is β-shadowed by an orbit O(b, x) if

b = b0 and d(ϕ(k, x, b), xk) < β for all k ∈ Z.

A set Λ ⊂ M×B is invariant if Φ(Λ) = Λ. A closed invariant set Λ is isolated if
there exists a neighborhood U of Λ such that Φk(b, x) ∈ clU for all k ∈ Z implies

1In [8], θ is assumed to be almost periodic. However, this is not used for the proof of the
shadowing lemma.
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(b, x) ∈ Λ. A closed invariant set Λ is uniformly hyperbolic if there are constants
C > 0, 0 < µ < 1 and a continuous map (b, x) 7→ P (b, x) ∈ P (TxM,TxM),
defined on Λ, where P (TxM,TxM) denotes the space of all linear projections
on TxM , such that

(i) P (Φ(b, x))dϕb(x) = dϕb(x)P (b, x).

(ii) ‖dϕk,b(x)P (b, x)‖ ≤ Cµk for all (b, x) ∈ Λ, k ≥ 0.

(iii) ‖dϕk,b(x)(I − P (b, x))‖ ≤ Cµ−k for all (b, x) ∈ Λ, k ≤ 0.

Here ϕk,b = ϕ(k, ·, b). A reduced version of the shadowing lemma [8, Lem. 2.11]
reads as follows.

2.1 Lemma: Let Λ ⊂ B×M be a compact invariant uniformly hyperbolic set.
Then there is a neighborhood U of Λ such that the following holds:

(i) For any β > 0 there is an α > 0 such that every α-pseudo-orbit (bk, xk)k∈Z

in U is β-shadowed by an orbit {Φk(b0, y) : k ∈ Z}.

(ii) There is β0 > 0 such that 0 < β < β0 implies that the shadowing orbit in
(i) is uniquely determined by the pseudo-orbit.

(iii) If Λ is an isolated invariant set of Φ, then the shadowing orbit is in Λ.

3 The main result

3.1 Preliminaries and assumptions

Consider a control-affine system

Σ : ẋ(t) = f0(x(t)) +

m
∑

i=1

ui(t)fi(x(t)), u ∈ U = L∞(R, U),

on a compact Riemannian manifold M with distance d(·, ·). The vector fields
f0, f1, . . . , fm are assumed to be of class C1 and the control range U ⊂ R

m is
compact and convex. The set U of admissible control functions is endowed with
the weak∗-topology of L∞(R,Rm) = L1(R,Rm)∗. We write

Φ : R× U ×M → U ×M, Φt(u, x) = (θtu, ϕ(t, x, u)),

for the associated control flow and ϕt,u = ϕ(t, ·, u). A chain control set is a set
Q ⊂ M with the following properties:

(i) For every x ∈ Q there exists u ∈ U with ϕ(R, x, u) ⊂ Q.
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(ii) For each two x, y ∈ Q and all ε, T > 0 there are n ∈ N, con-
trols u0, . . . , un−1 ∈ U , states x0 = x, x1, . . . , xn−1, xn = y and times
t0, . . . , tn−1 ≥ T such that

d(ϕ(ti, xi, ui), xi+1) < ε, i = 0, 1, . . . , n− 1.

(iii) Q is maximal with (i) and (ii) in the sense of set inclusion.

Throughout the paper, we fix a chain control set Q and write

Q = {(u, x) ∈ U ×M : ϕ(R, x, u) ⊂ Q}

for its full-time lift, which is a chain recurrent component of the control flow
Φ on U × M (cf. [2, Thm. 4.1.4]). We further assume that Q is an isolated
invariant set for Φ, i.e., there exists a neighborhood N ⊂ U ×M of Q such that
Φ(R, u, x) ⊂ N implies (u, x) ∈ Q. This, e.g., is the case if there are only finitely
many chain control sets on M , because then the chain recurrent components
are the elements of a finest Morse decomposition. We further assume that

TxM = E+
u,x ⊕ E−

u,x, ∀(u, x) ∈ Q,

with subspaces E±
u,x satisfying

(H1) dϕt,u(x)E
±
u,x = E±

Φt(u,x)
for all (u, x) ∈ Q and t ∈ R.

(H2) There exist constants 0 < c ≤ 1 and λ > 0 such that for all (u, x) ∈ Q,

|dϕt,u(x)v| ≤ c−1e−λt|v| for all t ≥ 0, v ∈ E−
u,x,

and
|dϕt,u(x)v| ≥ ceλt|v| for all t ≥ 0, v ∈ E+

u,x.

From (H1) and (H2) it follows that E±
u,x depend continuously on (u, x) (cf. [6,

Lem. 6.4]). We define the u-fiber of Q by

Q(u) := {x ∈ Q : (u, x) ∈ Q} .

On U we fix a metric, compatible with the weak∗-topology, of the form

dU (u, v) =

∞
∑

n=1

1

2n
|
∫

R
〈u(t)− v(t), xn(t)〉dt|

1 + |
∫

R
〈u(t)− v(t), xn(t)〉dt|

,

where {xn : n ∈ N} is a dense and countable subset of L1(R,Rm) and 〈·, ·〉 is a
fixed inner product on R

m (cf. [2, Lem. 4.2.1]).
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3.2 Statement of results and proofs

We observe that the time-1-map Φ1 : U×M → U×M , (u, x) 7→ (θ1u, ϕ(1, x, u)),
of the control flow is a skew-product map and Q is a uniformly hyperbolic set
for Φ1 in the sense of Section 2. Moreover, Q is isolated for Φ1, which easily
follows from our assumption that Q is an isolated invariant set of the control
flow. Continuous dependence of the derivative dϕ1,u(x) on (u, x) is proved in
[6, Thm. 1.1].

3.1 Proposition: For any u, v ∈ U the fibers Q(u) and Q(v) are homeomor-
phic.

Proof: The proof is subdivided into three steps.

Step 1. We claim that for every ε > 0 there is δ > 0 such that for all u, v ∈ U ,

‖u− v‖∞ < δ ⇒ dU (θtu, θtv) < ε for all t ∈ R, (1)

where ‖ · ‖∞ is the L∞-norm. To prove this, choose N = N(ε) ∈ N with

∞
∑

n=N+1

1

2n
<

ε

2
.

Then put

c(ε) := max
1≤n≤N

‖xn‖1, δ :=
ε

2c(ε)
,

where ‖ · ‖1 is the L1-norm. Then, for every t ∈ R, ‖u− v‖∞ < δ implies

dU (θtu, θtv) =

∞
∑

n=1

1

2n
|
∫

R
〈u(t+ s)− v(t+ s), xn(s)〉ds|

1 + |
∫

R
〈u(t+ s)− v(t+ s), xn(s)〉ds|

<
N
∑

n=1

1

2n

∣

∣

∣

∣

∫

R

〈u(t+ s)− v(t+ s), xn(s)〉ds

∣

∣

∣

∣

+
ε

2

≤
N
∑

n=1

1

2n

∫

R

|u(t+ s)− v(t+ s)| · |xn(s)|ds+
ε

2

≤ δ

N
∑

n=1

1

2n
max

1≤n≤N

∫

R

|xn(s)|ds+
ε

2
<

ε

2c(ε)
c(ε) +

ε

2
= ε.

Step 2. Consider the time-1-map Φ1 of the control flow with the uniformly
hyperbolic set Q. Let β > 0 be given and choose α = α(β) according to the
shadowing lemma 2.1. Then choose ε = ε(α) such that

dU (u, v) < ε ⇒ d(ϕ(1, x, u), ϕ(1, x, v)) < α, (2)
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whenever u, v ∈ U and x ∈ Q. This is possible by uniform continuity of ϕ(1, ·, ·)
on the compact set Q× U . We claim that for all sufficiently small β,

sup
t∈R

dU (θtu, θtv) < ε ⇒ Q(u) and Q(v) are homeomorphic. (3)

If Q(u) and Q(v) are both empty, there is nothing to show. Otherwise, we may
assume that Q(u) 6= ∅. Then choose x ∈ Q(u) arbitrarily and consider the
doubly infinite sequence xn := ϕ(n, x, u), n ∈ Z, which is completely contained
in Q and (by (2)) satisfies

d(ϕ(1, xn, θnv), xn+1) = d(ϕ(1, xn, θnv), ϕ(1, xn, θnu)) < α

for all n ∈ Z. Hence, (xn, θnv)n∈Z is an α-pseudo-orbit for Φ1. By the shadowing
lemma there exists y ∈ M with

d(ϕ(n, y, v), ϕ(n, x, u)) < β for all n ∈ Z.

Since Q is isolated, Lemma 2.1(iii) implies (v, y) ∈ Q, i.e., y ∈ Q(v). We claim
that the map

huv : Q(u) → Q(v), x 7→ y,

defined in this way, is a homeomorphism. If β is small enough, the shadowing
orbit is unique by Lemma 2.1(ii), and hence huv is uniquely defined. Since
the β-shadowing relation between u-orbits and v-orbits is symmetric, one can
equivalently define a map hvu : Q(v) → Q(u), which by uniqueness must be
the inverse of huv. The proof for the continuity of huv is standard and will be
omitted. (Continuity will also follow trivially from Proposition 3.3).

Step 3. From convexity of U it follows that for arbitrary u, v ∈ U the curve

w : [0, 1] → U , τ 7→ wτ , wτ (t) :≡ (1− τ)u(t) + τv(t),

is well-defined. It is continuous w.r.t. the L∞-topology on U , since

‖wτ1 − wτ2‖∞ = ess sup
t∈R

|(1− τ1)u(t) + τ1v(t)− (1− τ2)u(t)− τ2v(t)|

= ess sup
t∈R

|(τ2 − τ1)u(t)− (τ2 − τ1)v(t)|

= ess sup
t∈R

|τ2 − τ1| · |u(t)− v(t)| ≤ |τ2 − τ1| diamU.

Hence, for each τ ∈ [0, 1] we can pick a (relatively) open subinterval Iτ ⊂
[0, 1] containing τ such that ‖ws − wr‖∞ is smaller than a given constant for
all s, r ∈ Iτ . By Step 1 this implies that supt∈R

dU (θtws, θtwr) < ε for all
s, r ∈ Iτ with a given ε > 0. Choose ε according to Step 2 so that Q(ws)
and Q(wr) are homeomorphic for any two s, r ∈ Iτ . By compactness, finitely
many such intervals Iτ1 , . . . , Iτl are sufficient to cover [0, 1]. We may assume
that 0 = inf Iτ1 < inf Iτ2 < · · · < inf Iτl < sup Iτl = 1. To show that Q(u) and
Q(v) are homeomorphic, we put t0 := 0, tl := 1 and pick ti ∈ Iτi ∩ Iτi+1

6= ∅
for i = 1, . . . , l − 1. Then there exist homeomorphisms hi,i+1 : Q(wti) →
Q(wti+1

) for 0 ≤ i ≤ l − 1. The composition of these homeomorphisms gives a
homeomorphism from Q(u) = Q(wt0) to Q(v) = Q(wtl). �
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3.2 Corollary: If Q(u) is a singleton for one u ∈ U , then Q is the graph of a
continuous map from U to Q.

Proof: By the proposition, Q(u) is a singleton for every u ∈ U , say Q(u) =
{x(u)}. Consider the map u 7→ (u, x(u)), U → Q. This is an invertible map
between compact metric spaces with (obviously) continuous inverse. Hence, it
is a homeomorphism. This implies that the function u 7→ x(u), U → Q, is
continuous and Q is its graph. �

The next proposition shows that the fibers Q(u) are finite.

3.3 Proposition: If u is a constant control function, then Q(u) consists of
finitely many equilibria. Hence, there exists n ∈ N such that Q(u) has precisely
n elements for every u ∈ U .

Proof: Let u ∈ U be a constant control function. Observe that Q(u) is a
uniformly hyperbolic set for the diffeomorphism g := ϕ1,u : M → M . It is well-
known that a diffeomorphism is expansive on a uniformly hyperbolic set, i.e.,
there is ε > 0 such that d(gk(x), gk(y)) < ε for all k ∈ Z and x, y ∈ Q(u) implies
x = y (see [5, Cor. 6.4.10]). If x ∈ Q(u) and w := f0(x) +

∑m
i=1 uifi(x) 6= 0,

then the Lyapunov exponent l(w) := lim supt→∞(1/t) log |dϕt,u(x)w| vanishes
if the trajectory ϕ(t, x, u) is bounded away from equilibria. A zero Lyapunov
exponent, however, contradicts the existence of the uniformly hyperbolic split-
ting on Q. Since the right-hand side of the system is bounded on compact sets,
l(w) < 0 follows, implying w ∈ E−

u,x. Writing f := f0 +
∑m

i=1 uifi, this yields

|dϕt,u(x)w| = |f(ϕ(t, x, u))| ≤ c−1e−λt for t ≥ 0. Because of the uniform hyper-
bolicity, there can be at most finitely many equilibria in the compact set Q(u),
and hence ϕ(t, x, u) → z+ for some equilibrium z+. The same argumentation for
the backward flow yields ϕ(t, x, u) → z− for an equilibrium z−. Choose t0 > 0
large enough so that

d(ϕ(t, x, u), z±) <
ε

2
if |t| ≥

t0
2
. (4)

Then choose δ > 0 small enough so that

d(x, y) < δ ⇒ d(ϕ(t, x, u), ϕ(t, y, u)) < ε for all |t| ≤ t0. (5)

Finally, let τ ∈ (0, t0/2) be chosen so that

d(x, ϕ(τ, x, u)) < δ. (6)

We let y := ϕ(τ, x, u) and claim that d(ϕ(t, x, u), ϕ(t, y, u)) < ε for all t ∈ R,
implying x = y. Indeed, by (6) and (5) we have

d(ϕ(t, x, u), ϕ(t, y, u)) < ε for all |t| ≤ t0.

Now assume that t ≥ t0. Then (4) yields

d(ϕ(t, x, u), ϕ(t, y, u)) ≤ d(ϕ(t, x, u), z+) + d(z+, ϕ(t+ τ, x, u)) < ε.
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If t < −t0, we obtain t+ τ < −t0+ τ < −t0+ t0/2 = −t0/2, and hence (4) gives

d(ϕ(t, x, u), ϕ(t, y, u)) ≤ d(ϕ(t, x, u), z−) + d(z−, ϕ(t+ τ, x, u)) < ε.

In particular, d(gk(x), gk(y)) < ε for all k ∈ Z, and hence x = y = z+ = z−.
Consequently, Q(u) consists of finitely many equilibria. �

The next theorem is our main result.

3.4 Theorem: Consider the control-affine system Σ with the uniformly hyper-
bolic chain control set Q with isolated lift Q. Assume that intU 6= ∅ and let u0

be a constant control function with value in intU . Additionally suppose that
the following hypotheses are satisfied:

(i) The vector fields f0, f1, . . . , fm are of class C∞ and the Lie algebra gener-
ated by them has full rank at each point of Q.

(ii) For each x ∈ Q(u0) and each ρ ∈ (0, 1] it holds that x ∈ intO+
ρ (x), where

O+
ρ (x) = {ϕ(t, x, u) : t ≥ 0, u ∈ Uρ} with

Uρ = {u ∈ U : u(t) ∈ u0 + ρ(U − u0) a.e.}.

Then Q is a graph of a continuous function U → Q.

3.5 Remark: Before proving the theorem, we note that assumption (ii) is
in particular satisfied if the system is locally controllable at (u0, x) for each
x ∈ Q(u0) (using arbitrarily small control ranges around u0). A sufficient con-
dition for this to hold, which is independent of ρ, is the controllability of the
linearization around (u0, x).

Proof: Without loss of generality, we assume that u0(t) ≡ 0. Let Q(u0) =
{x1, . . . , xn}. We consider for each ρ ∈ (0, 1] the control-affine system

Σρ : ẋ(t) = f0(x(t)) +
m
∑

i=1

ui(t)fi(x(t)), u ∈ Uρ.

From the assumptions (i) and (ii) it follows by [2, Cor. 4.1.7] that each xi is
contained in the interior of a control set Dρ

i of Σρ. Each Dρ
i is contained in a

unique chain control set Eρ
i of Σρ (cf. [2, Cor. 4.3.12]). By [2, Cor. 3.1.14] the

chain control sets depend upper semicontinuously on ρ, hence Eρ
i ⊂ Q = E1

i

for every 1 ≤ i ≤ n and ρ ∈ (0, 1]. This implies that each Eρ
i is uniformly

hyperbolic. By [1, Thm. 3] it follows that Eρ
i = clDρ

i . If Ci denotes the chain
recurrent component of the uncontrolled system ẋ = f0(x) which contains the
equilibrium xi, then Ci ⊂ Eρ

i for each ρ, because otherwise Eρ
i ∪Ci would satisfy

the first two properties of chain control sets, contradicting maximality of Eρ
i .

Since each chain recurrent component is connected and Ci ⊂ Q(u0), we have
Ci = {xi}. By [2, Cor. 3.4.10], the chain control set Eρ

i shrinks to {xi} as ρ ց 0.
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Hence, for small ρ, the sets Eρ
i are pairwisely disjoint. Since E1

i = Q for each
i, at some point the chain control sets have to merge as ρ increases. Since, by
[2, Thm. 3.1.12], the control sets Dρ

i depend lower semicontinuously on ρ, this
is a contradiction if n > 1. It follows that n = 1 and Corollary 3.2 yields the
assertion. �

3.6 Remark: Of course, in many cases it will be easier to check directly that
Q(u) is a single equilibrium for some constant control function u than verifying
the conditions of the preceding theorem. We also note that the fact that Q is a
graph over U implies the existence of a topological conjugacy between the shift
flow θ on U and the restriction of the control flow to Q (cf. [3]).

4 Application to invariance entropy

The invariance entropy of a controlled invariant subset Q of M measures the
complexity of the control task of keeping the state inside Q. In general, it is
defined as follows. A pair (K,Q) of subsets of M is called admissible if K
is compact and for every x ∈ K there is u ∈ U with ϕ(R+, x, u) ⊂ Q. In
particular, if K = Q, this means that Q is a compact and controlled invariant
set. For τ > 0, a set S ⊂ U is (τ,K,Q)-spanning if for every x ∈ K there is u ∈ S
with ϕ([0, τ ], x, u) ⊂ Q. Then rinv(τ,K,Q) denotes the number of elements in a
minimal such set and we put rinv(τ,K,Q) := ∞ if no finite (τ,K,Q)-spanning
set exists. The invariance entropy of (K,Q) is

hinv(K,Q) := lim sup
τ→∞

1

τ
log rinv(τ,K,Q),

where log is the natural logarithm. From [3, Thm. 5.4] we can conclude the
following result on the invariance entropy of admissible pairs (K,Q), where Q
is a uniformly hyperbolic chain control set. The difference to [3, Thm. 5.4] is
that we do not have to assume explicitly anymore that Q is a graph over U .

4.1 Theorem: Consider the control-affine system Σ with the uniformly hyper-
bolic chain control set Q with isolated lift Q. Let the assumptions (i) and (ii)
of Theorem 3.4 be satisfied, or alternatively, assume that Q(u) is a singleton for
some u ∈ U . Then Q is the closure of a control set D and for every compact
set K ⊂ D of positive volume the pair (K,Q) is admissible and its invariance
entropy satisfies

hinv(K,Q) = inf
(u,x)∈Q

lim sup
τ→∞

1

τ
log

∣

∣

∣
det(dϕτ,u)|E+

u,x
: E+

u,x → E+
Φτ (u,x)

∣

∣

∣
.

4.2 Remark: The paper [4] provides a rich class of examples for uniformly
hyperbolic chain control sets that arise on the flag manifolds of a semisimple
Lie group. The control-affine system in this case is induced by a right-invariant
system on the group.
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