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Abstract

We propose a novel actor-critic algorithm with guaranteed convergence to an optimal policy for a
discounted reward Markov decision process. The actor incorporates a descent direction that is motivated
by the solution of a certain non-linear optimization problem. We also discuss an extension to incor-
porate function approximation and demonstrate the practicality of our algorithms on a network routing
application.

1 Introduction

We consider a discounted MDP with state spaceS, action spaceA, both assumed to be finite. A randomized
policy π specifies how actions are chosen, i.e.,π(s), for anys ∈ S is a distribution over the actionsA. The
objective is to find the optimal policyπ∗ that is defined as follows:

π∗(s) = argmax
π∈Π







vπ(s) := E





∑

n

βn
∑

a∈A(sn)

r(sn, a)π(sn, a)|s0 = s











, (1)

wherer(s, a) is the instantaneous reward obtained in states upon choosing actiona, β ∈ (0, 1) is the
discount factor andΠ is the set of all admissible policies. We shall usev∗(= vπ

∗
) to denote the optimal

value function.
Actor-critic algorithms (cf. [8], [4] and [9]) are popular stochastic approximation variants of the well-

known policy iteration procedure for solving (1). Thecritic recursion provides estimates of the value func-
tion using the well-known temporal-difference (TD) algorithm, while theactor recursion performs a gradient
search over the policy space. We propose an actor-critic algorithm with a novel descent direction for the
actor recursion. The novelty of our approach is that we can motivate the actor-recursion in the following
manner: the descent direction for the actor update is such that it (globally) minimizes the objective of a
non-linear optimization problem, whose minima coincide with the optimal policyπ∗. This descent direction
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is similar to that used in Algorithm 2 in [8], except that we use a different exponent for the policy and a sim-
ilar interpretation can be used to explain Algorithm 2 (and also 5) of [8]. Using multi-timescale stochastic
approximation, we provide global convergence guarantees for our algorithm.

While the proposed algorithm is for the case of full state representations, we also briefly discuss a
function approximation variant of the same. Further, we conduct numerical experiments on a shortest-path
network problem. From the results, we observe that our actor-critic algorithm performs on par with the
well-known Q-learning algorithm on a smaller-sized network, while on a larger-sized network, the function
approximation variant of our algorithm does better than thealgorithm in [1].

2 The Non-Linear Optimization Problem

With an objective of finding the optimal value and policy tuple, we formulate the following problem:

min
v∈R|S|

min
π∈Π

(

J(v, π) :=
∑

s∈S

[

v(s)−
∑

a∈A

π(s, a)Q(s, a)
]

)

s.t.∀s ∈ S, a ∈ A

(a)π(s, a) ≥ 0, (b)
∑

a∈A
π(s, a) = 1, and (c) g(s, a) ≤ 0.























(2)

In the above,g(s, a) := Q(s, a) − v(s), with Q(s, a) := r(s, a) + β
∑

s′
p(s′|s, a)v(s′). Herep(s′|s, a)

denotes the probability of a transition from states to s′ upon choosing actiona.
The objective in (2) is to ensure that there is no Bellman error, i.e., the value estimatesv are correct

for the policyπ. The constraints (2(a))–(2(b)) ensure thatπ is a distribution, while the constraint (2(c))
is a proxy for the max in (1). Notice that the non-linear problem (2) has a quadratic objective and linear
constraints.

From the definition ofπ∗, it is easy to infer the following claim:

Theorem 1. Letg∗(s, a) := Q∗(s, a)−v∗(s), withQ∗(s, a) := r(s, a)+β
∑

s′
p(s′|s, a)v∗(s′), ∀s ∈ S, a ∈

A. Then,
(i) Any feasible(v∗, π∗) is optimal in the sense of(1) if and only ifJ(v∗, π∗) = 0.
(ii) π∗ is an optimal policy if and only ifπ∗(s, a)g∗(s, a) = 0, ∀a ∈ A, s ∈ S.

3 Descent direction.

Proposition 1. For the objective in(2), the direction
√

π(s, a)g(s, a) is a non-ascent and in particular, a
descent direction alongπ(s, a) if

√

π(s, a)g(s, a) 6= 0, for all s ∈ S, a ∈ A.

Proof. Consider any actiona ∈ A for somes ∈ S. We show that
√

π(s, a)g(s, a) is a descent direction by
the following Taylor series argument. Let

π̂(s, a) = π(s, a) + δ
√

π(s, a)g(s, a),

for a smallδ > 0. We definêπ to be the same asπ except with the probability of picking actiona in state
s ∈ S being changed tôπ(s, a) (and the rest staying the same). Then by Taylor’s expansion of J(π) upto
the first order term, we have that

J(v, π̂) = J(v, π) + δ
√

π(s, a)g(s, a)
∂J(v, π)

∂π(s, a)
.
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Note that higher order terms are all zero sinceJ(v, π) is linear inπ. It should be easy to see from definition

of the objective that
∂J(v, π)

∂π(s, a)
= −g(s, a). So,

J(v, π̂) = J(v, π) − δ
√

π(s, a)(g(s, a))2.

Thus, for a ∈ A and s ∈ S whereπ(s, a) > 0 and g(s, a) 6= 0, J(v, π̂) < J(v, π), while when
√

π(s, a)g(s, a) = 0, J(v, π̂) = J(v, π).

The next section utilizes the descent direction to derive anactor-critic algorithm.

4 The Actor-Critic Algorithm

Combining the descent procedure inπ from the previous section, with aTD(0) [11] type update for the
value functionv on a faster time-scale, we have the following update scheme:

Q-Value: Qn(s, a) = r(s, a) + βvn(s
′), TD Error: gn(s, a) = Qn(s, a)− vn(s),

Critic: vn+1(s) = vn(s) + c(n)gn(s, a), Actor: πn+1(s, a) = Γ

(

πn(s, a) + b(n)
√

πn(s, a)gn(s, a)

)

.

(3)

In the above,Γ is a projection operator that ensures that the updates toπ stay within the simplexD =

{(x1, . . . , xq) | xi ≥ 0,∀i = 1, . . . , q,
q
∑

j=1
xj ≤ 1}, whereq = |A|. Further, the step-sizesb(n) andc(n)

satisfy
∞
∑

n=1

c(n) =

∞
∑

n=1

b(n) = ∞,

∞
∑

n=1

(

c2(n) + b2(n)
)

<∞ andb(n) = o(c(n)).

Remark 1. (Connection to Algorithm 2 of [8]) From Proposition 1, we have that
√

π(s, a)g(s, a) is a
descent direction forπ(s, a). This impliesπ(s, a)α ×

√

π(s, a)g(s, a) for anyα ≥ 0, is also a descent
direction. Hence,

a generic update rule forπ is: πn+1(s, a) = Γ
(

πn(s, a) + b(n)(πn(s, a))
α′
gn(s, a)

)

, for anyα′ ≥
1

2
.

The special case ofα′ = 1 coincides with theπ-recursion in Algorithm 2 of [8].

5 Convergence Analysis

For the purpose of analysis, we assume that the underlying Markov chain for any policyπ ∈ Π is irreducible.

Main result Let vπ = [I − βPπ]
−1Rπ, whereRπ = 〈r(s, π), s ∈ S〉T is the column vector of rewards

andPπ = [p(y|s, π), s ∈ S, y ∈ S] is the transition probability matrix, both for a givenπ. Consider the
ODE:

dπ(s, a)

dt
=Γ̄
(

√

π(s, a)gπ(s, a)
)

,∀a ∈ A, s ∈ S, where (4)

gπ(s, a) :=r(s, a) + β
∑

y∈U(s)

p(y|s, a)vπ(y)− vπ(s). (5)

3



In the above,̄Γ is a projection operator defined bȳΓ(ǫ(π)) := lim
α↓0

Γ(π + αǫ(π)) − π

α
, for any continuous

ǫ(·).

Theorem 2. LetK denote the set of all equilibria of the ODE (4),G the set of all feasible points of the
problem(2) andK̂ := K ∩G. Then, the iterates(vn, πn), n ≥ 0 governed by(3) satisfy

(vn, πn) → K∗ a.s. asn→ ∞, whereK∗ = {(v∗, π∗) | π∗ ∈ K̂}.

The algorithm (3) comprises of updates tov on the faster time-scale and toπ on the slower time-scale.
Using the theory of two time-scale stochastic approximation [5, Chapter 6], we sketch the convergence
of these recursions as well as prove global optimality in thefollowing steps (the reader is referred to the
appendix for proof details):

Step 1: Critic Convergence We assumeπ to be time-invariant owing to time-scale separation. Consider
the ODE:

dv(s)

dt
= r(s, π) + β

∑

s′∈S

p(s′|s, π)v(y) − v(s),∀s ∈ S, (6)

wherer(s, π) =
∑

a∈A π(s, a)r(s, a) andp(s′|s, π) =
∑

a∈A π(s, a)p(s
′|s, a). It is well-known (cf. [2])

that the above ODE has a unique globally asymptotically stable equilibrium vπ. We now have the main
result regarding the convergence ofvn on the faster time-scale.

Theorem 3. For a givenπ, the critic recursion in(3) satisfiesvn → vπ a.s. asn→ ∞.

Step 2: Actor Convergence Due to timescale separation, we can assume that the critic has converged in
the analysis of the actor recursion. We first provide a usefulcharacterization for the setK of equilibria of
the ODE (4).

Lemma 4. Let L = {π|π(s) is a probability vector overA,∀s ∈ S} denote the set of policies that are
distributions over the actions for each state. Then,

π ∈ K if and only ifπ ∈ L and
√

π(s, a)gπ(s, a) = 0,∀a ∈ A, s ∈ S.

From Lemma 4, the setK can be redefined as follows:K =

{

π ∈ L

∣

∣

∣

∣

√

π(s, a)g(s, a) = 0,∀a ∈ A, s ∈ S

}

.

The setK can be partitioned using the feasible setG of (2) asK = K̂ ∪ K̂c, whereK̂ = K ∩G.

Lemma 5. All π∗ ∈ K̂c are unstable equilibrium points of the system of ODEs (4).

Proof. For anyπ∗ ∈ Kc, there exists somea ∈ A(s), s ∈ S, such thatgπ(s, a) > 0 andπ(s, a) = 0
becauseKc is not in the feasible setG. LetBδ(π

∗) = {π ∈ L| ‖π − π∗‖ < δ}. Chooseδ > 0 such that
gπ(s, a) > 0 for all π ∈ Bδ(π

∗)\K. So,Γ̄(
√

π(s, a)gπ(s, a)) > 0 for anyπ ∈ Bδ(π
∗)\K which suggests

thatπ(s, a) will be increasingly moving away fromπ∗. Thus,π∗ is an unstable equilibrium point for the
system of ODEs (4).

Remark 2. (G = K̂) We already have that̂K ⊆ G. So, it is sufficient to show thatG ⊆ K̂. A pol-
icy π belongs toG if gπ(s, a) ≤ 0 for all a ∈ A(s) and s ∈ S. By definition,vπ is obtained from
∑

a∈A(s) π(s, a)g
π(s, a) = 0,∀s ∈ S. Since each term in the summation is negative, we have that

π(s, a)gπ(s, a) = 0 =
√

π(s, a)gπ(s, a),∀a ∈ A(s), s ∈ S and henceG = K̂.
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Proof of Theorem 2

Proof. The update ofπ on the slower time-scale can be re-written as

πn+1(s, a) =Γ (πn(s, a) + b(n)(H(πn) + ηn)) , where (7)

H(πn) =
√

πn(s, a)g
π(s, a) andηn =

√

πn(s, a)gn(s, a) − H(πn). We can infer the claim regarding
convergence ofπn governed by (7) using Kushner-Clark lemma (Theorem 2.3.1 in[10]), if we verify the
following:
(i) H is a continuous function.(ii) The sequenceηn, n ≥ 0 is a bounded random sequence withηn → 0
almost surely asn→ ∞. (iii) The step-sizesb(n), n ≥ 0 satisfyb(n) → 0 asn→ ∞ and

∑

n b(n) = ∞.

Now, (i) follows by definition ofH and (iii) by assumption on step-sizes. Consider (ii):ηn is bounded
since we consider a finite state-action space setting (⇒ g(s, a) is bounded) andπ is trivially upper-bounded.
From Theorem 3,vn → vπ a.s. asn→ ∞ and hence,ηn → 0 a.s. The claim follows.

Remark 3. (Avoidance of traps) Note that from the foregoing, the setK comprises of both stable and
unstable attractors and in principle from Lemma 5, the iteratesπn governed by (4) can converge to an
unstable equilibrium. A standard trick to avoid such traps,as discussed in Chapter 4 of [5], is to introduce
additional noise in the iterates. For this purpose, we perturb the policy everyτ > 0 iterations to obtain a
new policyπ̂ as follows:

π̂(s, a) =
π(s, a) + η

∑

a∈A

(π(s, a) + η)
, a ∈ A. (8)

The above scheme ensures that the convergence of the policy sequenceπn governed by(3) is to the stable
setK̂.

Step 3: Global Optimality Here we establish that our algorithm converges to a globallyoptimal policy.

Lemma 6. If π ∈ K̂, thenπ is globally optimal and the corresponding value functionvπ is the same as the
optimal valuev∗.

Proof.
If π(s, a) > 0, theng(s, a) = 0 ⇒ vπ(s) = r(s, a) + β

∑

y∈U(s)

p(y|s, a)vπ(y).

If π(s, a) = 0, theng(s, a) ≤ 0 ⇒ vπ(s) ≥ r(s, a) + β
∑

y∈U(s)

p(y|s, a)vπ(y).

Thus, it follows that∀s ∈ S, vπ(s) = max
a∈A(s)



r(s, a) + β
∑

y∈U(s)

p(y|s, a)vπ(y)



 .

6 Extension to incorporate function approximation

The actor-critic algorithm described in Section 4 is infeasible for implementation in high-dimensional set-
tings where the state and action spaces are large. A standardapproach to alleviate this problem is to employ
function approximation techniques and parameterize the value function and policies as follows:

5



Value function Using a linear architecture, the value function is approximated asvπ(s) ≈ f(s)Tw, for
any given policyπ. Heref(s) is thestate feature vectorandw is thevalue function parameter, both in some
low-dimensional subspaceRd1 , with d1 << |S|.

Policies We consider a parameterized class of policies such that eachpolicy is continuously differentiable
in its parameter. A common approach is to employ the Boltzmann distribution to obtain the following form

for policies: πθ(s, a) ≈
eθ

Tφ(s,a)

∑

b∈A

eθ
Tφ(s,b)

. Hereφ(s, a) is a state-action feature vectorand θ is the policy

parameter vector, both assumed to be in a compact subsetC ∈ Rd2 .

Update rule Choosean ∼ πθn(·, sm) and observe the rewardr(sn, an). Then, update the critic parameter
wn and policy parameterθn as follows:

TD Error: gn(sn, an) := r(sn, an) + βf(sn+1)
Twn − f(sn)

Twn, (9)

Critic: wn+1 = wn + c(n)gn(sn, an)f(sn), (10)

Actor: θn+1 = Γ̂
(

θn + b(n)πn(sn, an)
3/2ψn(sn, an)gn(sn, an)

)

. (11)

In the above,̂Γ projects anyθ onto a compact setC ⊂ Rd2 andψn(sn, an) =
∂ log πn(sn, an)

∂θn
are the

compatible features. For Boltzmann policies,ψn(sn, an) = φn(sn, an)−
∑

b∈A

πn(sn, b)φn(sn, b).

The critic recursion above follows from the standard TD(0) with function approximation update. The
idea is to have the increment∆wn ∝

[

vt(sn)− f(sn)
Twn

]2
, wherevt(sn) = r(sn, an) + βf(sn+1)

Twn is
the current estimate of the return. A natural update increment for the actor recursion is to have

∆θn ∝ −
∂J

∂θn
= −

∂J

∂πn
·
∂πn

∂θn
=
√

πn(sn, an)gn(sn, an)πn(sn, an)ψn(sn, an).

Preliminary result:

In addition to irreducibility of the underlying Markov chain for any policy and differentiability of the policy,
we assume that the feature matrixΦ with rowsf(s)T,∀s ∈ S is full rank. These assumptions are standard
in the analysis of actor-critic algorithms (cf. [4]). Letdπ

θ

(s) = (1−β)
∑∞

n=0 β
n Pr(sn = s|s0;π

θ) for any
policy θ ⊂ C. Let K̄ denote the set of all equilibria of the ODE:

θ̇(t) = Γ̌

(

∑

s∈S

dπ
θ(t)

(s)
∑

a∈A

πθ(t)(s, a)∇πθ(t)
(

r(s, a) + β
∑

s′∈S

p(s′ | s, a)wθ(t)Tf(s′)− wθ(t)Tf(s)
)

)

.

(12)

Theorem 7. The iterates(wn, θn), n ≥ 0 governed by(11)satisfy

(wn, θn) → K̃ a.s. asn→ ∞, whereK̃ = {(wθ , θ) | θ ∈ K̄}.

In the above,wθ is the solution toAwθ = b, whereA = ΦTΨθ(I − βP )Φ and b = ΦTΨθr with Ψθ is a
diagonal matrix with the stationary distribution of the Markov chain underlying policy with parameterθ as
the diagonal entries andr is a column vector with entries

∑

a π
θ(s, a)r(s, a), for eachs ∈ S.

6
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(a) Six node graph

Destination
Rewards -5-5

-10-15-10
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(b) 44 node graph

Figure 1: Network graphs with associated rewards

Node
Value

MPA1 Probability
function

1 −17.83 2 0.87
2 −19.64 2 0.96
3 −9.24 1 0.95
4 −6.00 1 0.96
5 −8.22 1 0.92

(a) AC-OPT algorithm

Node Q(s,1) Q(s,2) Q(s,3) Q(s,4)

1 -24.4 -15.72 -20.376 N.A
2 -25.72 -16.72 -19.576 N.A
3 -8.4 -15.8 -23.376 -21.576
4 -6 -17.72 -32.376 N.A
5 -8 -8.72 -30.576 N.A

(b) Q-learning algorithm

Figure 2: Performance of Q-learning and actor-critic algorithms on six node network graph

7 Simulation Experiments

Setup Routing packets through a communication network is a natural application for reinforcement learn-
ing algorithms. Q-routing, that is, using Q-learning for routing packets in dynamically changing networks
has been investigated among others by [6] and [3]. We have considered a highly simplified version of the
problem over two network graph settings:

Six node graph As shown in Fig. 1a, the state space here consists of the nodesthemselves, that isS =
{1, 2, 3, 4, 5, 6}, and the number of actions in a state corresponds to the number of neighbouring nodes
to which a packet can be routed from the given node. The next state is chosen randomly and node6
is theabsorbingdestination node. Further, each run started from state1 and the initial estimate of the
Q-value was0 for all states. Rewards in each transition are negative of the edge weight (as depicted
in Fig. 1a).

44 node graph As shown in Fig. 1b, the state space here isS = {0, 1, 2, ....., 43, 44}, with 44 being
the destination node. The actions are as follows: at any nodestart from direction east and move in
clockwise direction.1st action isa0, second action isa1 and so on. For all actions, rewards are shown
in Fig. 1b.

On these two settings, we implemented both the Q-learning and our actor-critic algorithm (henceforth,
referred to as AC-OPT). For both algorithms, we set the discount factorβ = 0.8. The initial randomized

1MPA stands for "Most probable action".
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(b) Recommended actions, state-wise,for full-state algorithms: Q-learning and AC-OPT.
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(c) Recommended actions, state-wise, for function approximation algorithms: AC-OPT-FA and RPAFA-2

Figure 3: Performance comparison on a44-node network graph
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policy was set to the uniform distribution. For AC-OPT, the policy was perturbed everyτ = 10 iterations
(see Remark 3). All the results presented are averaged over50 independent runs of the respective algorithm.

Results The tales in Figs. 2a–2b present the results obtained upon convergence of the AC-OPT and Q-
learning algorithms for the six node network graph setting,respectively. It is evident that both algorithms
converge to the optimal policy. While Q-learning recommends the best action using Q-values, AC-OPT,
being randomized, suggests the optimal action with high probability.

Fig. 3a presents the value function estimates obtained fromboth algorithms on the44 node network
graph, while Fig. 3b compares the actions suggested by both algorithms upon convergence, for each
state(=node) in the network graph. It is evident that AC-OPTrecommends the same (as well as optimal)
actions as Q-learning on almost all the states. Even though there is change in the recommended actions on
a small number of states, the difference in value estimates here is negligible.

Function approximation We show here the results the function approximation variantof our actor-critic
algorithm (henceforth referred to as AC-OPT-FA) and the RPAFA-2 algorithm from [1]. For any states, let
a ≡ ⌊ s9⌋ andb ≡ s mod 9. Then, the state features are chosen as:f(s) = (4 − a, 8 − b, 4 + a − b, 1)T.
Along similar lines, the state-action featureφ(s, a) = (4− a, 8− b, 4 + a− b, r(x, y), 1)T.

Fig. 3c compares the actions recommended by AC-OPT-FA and RPAFA-2 algorithms, while also high-
lighting the sub-optimal actions. It is evident that AC-OPT-FA recommends with high probability (≈ 0.9
on the average) the best action with a93% accuracy. On the other hand. RPAFA-2 achieved only a50%
accuracy, i.e., sub-optimal actions suggested over half ofthe state space.

8 Conclusions

In this paper, we proposed a new actor-critic algorithm withguaranteed convergence to the optimal pol-
icy in a discounted MDP. The proposed algorithm was validated through simulations on a simple shortest
path problem in networks. A topic of future study is to strengthen the convergence result of the function
approximation variant of our actor-critic algorithm.

Appendix

A Proofs for the actor-critic algorithm

Lemma 8. LetRπ = 〈r(s, π), s ∈ S〉T be a column vector of rewards andPπ = [p(y|s, π), s ∈ S, y ∈ S]
be the transition probability matrix, both for a givenπ. Then, the system of ODEs (6) has a unique globally
asymptotically stable equilibrium given by

vπ = [I − βPπ]
−1Rπ. (13)

Proof. The system of ODEs (6) can be re-written in vector form as given below.

dv

dt
= Rπ + βPπv − v. (14)

Rearranging terms, we get
dv

dt
= Rπ + (βPπ − I)v,

9



whereI is the identity matrix of suitable dimension. Note that for afixed π, this ODE is linear inv and
moreover, all the eigenvalues of(βPπ − I) have negative real parts. Thus by standard linear systems theory,
the above ODE has a unique globally asymptotically stable equilibrium which can be computed by setting
dv

dt
= 0, that is,Rπ + (βPπ − I)v = 0. The trajectories of the ODE (14) converge to the above equilibrium

starting from any initial condition in lieu of the above.

Proof of Theorem 3
For establishing the proof, we require the notion of(T, δ)-perturbation of an ODE, defined as follows:

Definition 1. Consider the ODE

ẋ(t) = f(x(t)). (15)

GivenT, δ > 0, we say that̄x(·) is a (T, δ)-perturbation of(15), if there exist0 = T0 < T1 < T2 < · · · <
Tn ↑ ∞ such thatTn+1 − Tn ≥ T, for all n ≥ 0 andsupt∈[Tn,Tn+1] ‖ x̄(t)− x(t) ‖< δ, for all n ≥ 0.

Let Z be the globally asymptotically stable attractor set for (15) andZǫ be theǫ-neighborhood ofZ.
Then, the following lemma by Hirsch (see Theorem 1 on pp. 339 of [7]) is useful in establishing the
convergence of a(T, δ)-perturbation to the limit setZǫ.

Lemma 9 (Hirsch Lemma). Givenǫ, T > 0, ∃δ̄ > 0 such that for allδ ∈ (0, δ̄), every(T, δ)-perturbation
of (15) converges toZǫ.

Proof. (Theorem 3) Fix a states ∈ S. Let {n̄} represent a sub-sequence of iterations in algorithm (3) when
the state iss ∈ S. Also, letQn = {n̄ : n̄ < n}. For a givenπ, the updates ofv on the slower time-scale
{c(n)} given in algorithm (3) can be re-written as

vn̄+1(s) = vn̄(s) + c(n)





∑

a∈A(s)

πn̄(s, a)gπn̄
(s, a) + χ̃n̄



 , (16)

whereχ̃n̄ = r(s, a) + βvn̄(s
′) −

∑

a∈A(s)

πn̄(s, a)gπn̄
(s, a), is the noise term. Let̃Mn =

∑

m∈Qn

c(m)χ̃m.

Then, M̃n, n ≥ 0, is a convergent martingale sequence by the martingale convergence theorem (since
∑

n̄
c2(n̄) < ∞ and‖g‖

△
= |g(·)(s, a)| < ∞). The equation (16) can now be seen to be a(T, δ)-perturbation

of the system of ODEs (6). Thus, by Lemma 9, it can be seen thatvn converges to the globally asymptotically
stable equilibriumvπ (see equation (13)) of the system of ODEs (6).

Proof of Lemma 4

Proof.

If part: If π ∈ L and
√

π(s, a)gπ(s, a) = 0,∀a ∈ A, s ∈ S holds, then by definition of operatorsΓ andΓ̄,
the result follows.

Only if part: The operator̄Γ, by definition, ensures thatπ ∈ L. Suppose for somea ∈ A(s), s ∈ S,
we haveΓ̄(

√

π(s, a)gπ(s, a)) = 0 but
√

π(s, a)gπ(s, a) 6= 0. Then,gπ(s, a) 6= 0 and sinceπ ∈ L,
1 ≥ π(s, a) > 0. We analyze this by considering the following two cases:
(i) 1 > π(s, a) > 0 andgπ(s, a) 6= 0: In this case, it is possible to find a∆ > 0 such that for all
δ ≤ ∆,

1 > π(s, a) + δ
√

π(s, a)gπ(s, a) > 0.
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This implies that

Γ̄
(

√

π(s, a)gπ(s, a)
)

=
√

π(s, a)gπ(s, a) 6= 0,

which contradicts the initial supposition.
(ii) π(s, a) = 1 andgπ(s, a) 6= 0: Sincevπ is solution to the system of ODEs (6), the following
should hold:

∑

â∈A(s)

π(s, â)gπ(s, â) = π(s, a)gπ(s, a) = 0.

This again leads to a contradiction.

The result follows.

B Proofs for the function approximation variant

Proof of Theorem 7

Proof. Due to timescale separation, we can assume that the policy parameterθ is constant for the sake of
analysis of the critic recursion in (11). For any fixed policygiven as parameterθ, the critic recursion in (11)
converges towθ, which is the TD fixed point (see Theorem 7 statement for the explicit form of wθ). This is
a standard claim for TD(0) with function approximation - see[12] for a detailed proof.

LetFn = σ(θm,m ≤ n). The actor recursion (17) in the main paper can be re-writtenas

θn+1 =Γ̂

(

θn + b(n)E[πn(sn, an)
3/2ψn(sn, an)ḡ(sn, an) | Fn]

+ b(n)
(

πn(sn, an)
3/2ψn(sn, an)gn(sn, an)− E[πn(sn, an)

3/2ψn(sn, an)gn(sn, an) | Fn]
)

+ b(n)E
[

πn(sn, an)
3/2ψn(sn, an)

(

gn(sn, an)− ḡ(sn, an)
)

| Fn

]

)

, (17)

whereḡ(s, a) := r(s, a) + β
∑

s′∈S p(s
′ | s, a)wθ(t)Tf(s′)− wθ(t)Tf(s).

Since the critic converges, i.e.,wn → wθ a.s. asn → ∞, the last term in (17) vanishes asymptotically.
Let Mn =

∑n−1
m=0 πm(sm, am)3/2ψm(sm, am)gm(sm, am) − E[πm(sm, am)3/2ψm(sm, am)gm(sm, am) |

Fn]. Using arguments similar to the proof of Theorem 2 in [4], it can be seen thatMn is a convergent
martingale sequence that converges to zero. So, that leavesout the first term multiplyingb(n) in (17). A
simple calculation shows that

E[πn(sn, an)
3/2ψn(sn, an)ḡ(sn, an) | Fn]

=
∑

s∈S

dπ
θ(t)

(s)
∑

a∈A

πθ(t)(s, a)∇πθ(t)
(

r(s, a) + β
∑

s′∈S

p(s′ | s, a)wθ(t)Tf(s′)− wθ(t)Tf(s)
)

.

The rest of the proof amounts to showing that the RHS above is Lipschitz continuous and that the recursion
(17) is a(T, δ) perturbation of the ODE (12) in the main paper. These facts can be verified in a similar
manner as in the proof of Theorem 2 in [4] and the final claim follows from Hirsch lemma (see Lemma 9
above).
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C Simulation Experiments

Results for full state representation based algorithms on44 node graph

Tables. 1–2 present detailed results for our AC-OPT algorithm and Q-learning, respectively on the44-node
network graph setting. For Q-learning results in Table 2, the action achieving the maximum inmaxaQ(s, a))
is boldened. It is evident that AC-OPT suggests the same (as well as optimal) actions as that of Q-learning,
on almost all the states.

Node no. Value function MPA: Probability Node no. Value function MPA: Probability
0 −40.824 0 : 0.974759 22 −27.6105 0 : 0.952729
1 −39.7619 0 : 0.940369 23 −23.6213 1 : 0.965307
2 −38.3387 0 : 0.954584 24 −19.3607 1 : 0.956485
3 −37.1019 0 : 0.934279 25 −25.1828 1 : 0.917481
4 −35.8406 1 : 0.977405 26 −19.9879 1 : 0.973978
5 −37.5327 4 : 0.775096 27 −32.8828 0 : 0.962421
6 −35.618 3 : 0.726475 28 −30.5635 0 : 0.963262
7 −36.8312 0 : 0.699411 29 −28.1035 0 : 0.935406
8 −35.2874 3 : 0.986148 30 −25.5654 0 : 0.951051
9 −38.3211 0 : 0.966336 31 −22.8029 0 : 0.965918
10 −37.9592 0 : 0.937302 32 −18.8625 0 : 0.955858
11 −36.0614 0 : 0.959576 33 −14.5632 1 : 0.929352
12 −33.4332 0 : 0.95668 34 −10.0406 1 : 0.9742
13 −31.1697 0 : 0.961255 35 −16.8062 0 : 0.928148
14 −28.057 1 : 0.95864 36 −29.7862 0 : 0.989813
15 −30.1452 0 : 0.951196 37 −27.6444 0 : 0.966042
16 −28.4007 3 : 0.940799 38 −25.6189 0 : 0.94836
17 −30.4659 1 : 0.863991 39 −23.6847 0 : 0.972548
18 −38.2062 1 : 0.937154 40 −19.5683 0 : 0.99494
19 −35.7315 1 : 0.94369 41 −14.0438 0 : 0.981092
20 −33.0474 1 : 0.930422 42 −9.6131 0 : 0.994136
21 −30.2144 0 : 0.941161 43 −5.00005 0 : 0.939764

Table 1: Performance of the AC-OPT algorithm (MPA stands for“most probable action”) on the44-node
network graph

Results for function approximation based algorithms

Tables. 3 – 4 present the detailed results for the function approximation based algorithms: RPAFA-2 from [1]
and our AC-OPT-FA. States that are shown in bold in these tables correspond to those where the respective
algorithm recommended a sub-optimal action. It is evident that AC-OPT-FA results in93% accuracy, i.e.,
on 93% of the state space, AC-OPT-FA recommended the optimal action with high probability (around0.9
in almost all states). On the other hand, RPAFA-2 achieved only 50% accuracy.
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Node no.(s) Q(s,0 ) Q(s,1 ) Q(s,2 ) Q(s,3 ) Q(s,4 ) Q(s,5 ) Q(s,6 ) Q(s,7 )
0 −39.7583 −41.4778 −47.83 N.A N.A N.A N.A N.A
1 −38.6203 −39.9753 −46.4778 −42.83 −40.7824 N.A N.A N.A
2 −37.3559 −38.3059 −44.9753 −41.4778 −39.7583 N.A N.A N.A
3 −35.951 −36.451 −43.3059 −39.9753 −38.6203 N.A N.A N.A
4 −37.3559 −34.39 −41.451 −38.3059 −37.3559 N.A N.A N.A
5 −35.951 −36.451 −39.39 −36.451 −35.951 N.A N.A N.A
6 −37.3559 −34.39 −41.451 −34.39 −37.3559 N.A N.A N.A
7 −35.951 −36.451 −39.39 −36.451 −35.951 N.A N.A N.A
8 −41.451 −34.39 −37.3559 N.A N.A N.A N.A N.A
9 −36.4778 −38.5253 −45.1728 −50.7824 −44.7583 N.A N.A N.A
10 −34.9753 −36.6948 −43.5253 −40.1728 −37.83 −45.7824 −49.7583 −43.6203
11 −33.3059 −34.6609 −41.6948 −38.5253 −36.4778 −44.7583 −48.6203 −42.3559
12 −31.451 −32.401 −39.6609 −36.6948 −34.9753 −43.6203 −47.3559 −40.951
13 −29.39 −29.89 −37.401 −34.6609 −33.3059 −42.3559 −45.951 −42.3559
14 −31.451 −27.1 −34.89 −32.401 −31.451 −40.951 −47.3559 −40.951
15 −29.39 −29.89 −32.1 −29.89 −29.39 −42.3559 −45.951 −42.3559
16 −31.451 −27.1 −34.89 −27.1 −31.451 −40.951 −47.3559 −40.951
17 −32.1 −29.89 −29.39 −42.3559 −45.951 N.A N.A N.A
18 −33.5253 −35.8681 −42.7813 −47.83 −41.4778 N.A N.A N.A
19 −31.6948 −33.7424 −40.8681 −37.7813 −35.1728 −42.83 −46.4778 −39.9753
20 −29.6609 −31.3804 −38.7424 −35.8681 −33.5253 −41.4778 −44.9753 −38.3059
21 −27.401 −28.756 −36.3804 −33.7424 −31.6948 −39.9753 −43.3059 −36.451
22 −24.89 −25.84 −33.756 −31.3804 −29.6609 −38.3059 −41.451 −34.39
23 −22.1 −22.6 −30.84 −28.756 −27.401 −36.451 −39.39 −36.451
24 −24.89 - 19 −27.6 −25.84 −24.89 −34.39 −41.451 −34.39
25 −22.1 −22.6 - 24 −22.6 −22.1 −36.451 −39.39 −36.451
26 −27.6 - 19 −24.89 −34.39 −41.451 N.A N.A N.A
27 −30.8681 −33.4766 −40.629 −45.1728 −38.5253 N.A N.A N.A
28 −28.7424 −31.0852 −38.4766 −35.629 −32.7813 −40.1728 −43.5253 −36.6948
29 −26.3804 −28.4279 −36.0852 −33.4766 −30.8681 −38.5253 −41.6948 −34.6609
30 −23.756 −25.4755 −33.4279 −31.0852 −28.7424 −36.6948 −39.6609 −32.401
31 −20.84 −22.195 −30.4755 −28.4279 −26.3804 −34.6609 −37.401 −29.89
32 −17.6 −18.55 −27.195 −25.4755 −23.756 −32.401 −34.89 −27.1
33 - 14 −14.5 −23.55 −22.195 −20.84 −29.89 −32.1 −29.89
34 −17.6 - 10 −19.5 −18.55 −17.6 −27.1 −34.89 −27.1
35 - 15 −14.5 - 14 −29.89 −32.1 N.A N.A N.A
36 −28.4766 −42.7813 −35.8681 N.A N.A N.A N.A N.A
37 −26.0852 −30.629 −37.7813 −40.8681 −33.7424 N.A N.A N.A
38 −23.4279 −28.4766 −35.8681 −38.7424 −31.3804 N.A N.A N.A
39 −20.4755 −26.0852 −33.7424 −36.3804 −28.756 N.A N.A N.A
40 −17.195 −23.4279 −31.3804 −33.756 −25.84 N.A N.A N.A
41 −13.55 −20.4755 −28.756 −30.84 −22.6 N.A N.A N.A
42 −9.5 −17.195 −25.84 −27.6 - 19 N.A N.A N.A
43 - 5 −13.55 −22.6 - 24 −22.6 N.A N.A N.A

Table 2: Performance of Q-learning algorithm on the44-node network graph
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Node Value function MPA: Probability Node Value function MPA: Probability
0 −52.8351 1 : 0.975949 22 −28.674 1 : 0.96989
1 −50.4398 1 : 0.969893 23 −26.2787 1 : 0.969891
2 −48.0445 1 : 0.969893 24 −23.8834 1 : 0.96989
3 −45.6493 1 : 0.969893 25 −21.4882 1 : 0.96989
4 −43.254 1 : 0.969893 26 −19.0929 0 : 0.513957
5 −40.8587 1 : 0.969893 27 −30.965 1 : 0.975946
6 −38.4635 1 : 0.969893 28 −28.5698 1 : 0.96989
7 −36.0682 1 : 0.969893 29 −26.1745 1 : 0.96989
8 −33.6729 0 : 0.513958 30 −23.7792 1 : 0.969891
9 −45.545 1 : 0.975946 31 −21.384 1 : 0.96989
10 −43.1498 1 : 0.96989 32 −18.9887 1 : 0.96989
11 −40.7545 1 : 0.96989 33 −16.5934 1 : 0.96989
12 −38.3592 1 : 0.96989 34 −14.1982 1 : 0.969891
13 −35.964 1 : 0.969891 35 −11.8029 0 : 0.513957
14 −33.5687 1 : 0.96989 36 −23.675 0 : 0.999869
15 −31.1734 1 : 0.96989 37 −21.2797 0 : 0.993623
16 −28.7782 1 : 0.96989 38 −18.8845 0 : 0.993624
17 −26.3829 0 : 0.513957 39 −16.4892 0 : 0.993624
18 −38.255 1 : 0.975946 40 −14.0939 0 : 0.993623
19 −35.8598 1 : 0.96989 41 −11.6987 0 : 0.993623
20 −33.4645 1 : 0.969891 42 −9.30341 0 : 0.993624
21 −31.0692 1 : 0.96989 43 −6.90814 0 : 0.993624

Table 3: Performance of the function approximation variantAC-OPT-FA on the44-node network graph

Node MPA: Probability Node MPA: Probability
0 1 : 0.504191 22 0 : 0.984263
1 2 : 0.330269 23 2 : 0.497062
2 1 : 0.496113 24 1 : 0.49855
3 0 : 0.330723 25 4 : 0.996063
4 3 : 0.331711 26 1 : 0.499916
5 3 : 0.50029 27 0 : 0.329259
6 2 : 0.332378 28 2 : 0.249082
7 2 : 0.498791 29 6 : 0.255686
8 2 : 0.499996 30 2 : 0.25075
9 3 : 0.330108 31 3 : 0.500413
10 1 : 0.201589 32 2 : 0.249539
11 3 : 0.491524 33 1 : 0.20215
12 2 : 0.249318 34 1 : 0.249613
13 6 : 0.253784 35 0 : 0.999038
14 1 : 0.249081 36 0 : 0.969508
15 1 : 0.249349 37 0 : 0.978052
16 3 : 0.249717 38 0 : 0.330178
17 3 : 0.33322 39 1 : 0.336035
18 3 : 0.330103 40 0 : 0.996688
19 0 : 0.20268 41 0 : 0.989921
20 0 : 0.202288 42 3 : 0.498579
21 7 : 0.33527 43 1 : 0.49913

Table 4: Performance of RPAFA-2 algorithm from [1] on the44-node network graph
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