
ar
X

iv
:1

60
2.

00
92

0v
2 

 [
m

at
h.

O
C

] 
 6

 S
ep

 2
01

6

Approximate and Approximate Null-Controllability of a Class of

Piecewise Linear Markov Switch Systems∗†

Dan Goreac‡ Alexandra Claudia Grosu§ Eduard-Paul Rotenstein¶

September 7, 2016

Abstract

We propose an explicit, easily-computable algebraic criterion for approximate null-controllability of a class
of general piecewise linear switch systems with multiplicative noise. This gives an answer to the general
problem left open in [13]. The proof relies on recent results in [4] allowing to reduce the dual stochastic
backward system to a family of ordinary differential equations. Second, we prove by examples that the
notion of approximate controllability is strictly stronger than approximate null-controllability. A sufficient
criterion for this stronger notion is also provided. The results are illustrated on a model derived from repressed
bacterium operon (given in [19] and reduced in [5]).

1 Introduction

This short paper aims at giving an answer to an approximate (null-)controllability problem left open in [13]. We
deal with Markovian systems of switch type consisting of a couple mode/ trajectory denoted by (Γ, X) . The
mode component Γ evolves as a pure jump Markov process and cannot be controlled. It corresponds to spikes
inducing regime switching. The second component X obeys a controlled linear stochastic differential equation
(SDE) with respect to the compensated random measure associated to Γ. The linear coefficients governing the
dynamics depend on the current mode.

The controllability problem deals with criteria allowing one to drive the XT component arbitrarily close to ac-
ceptable targets. An extensive literature on controllability is available in different frameworks: finite-dimensional
deterministic setting (Kalman’s condition, Hautus test [14]), infinite dimensional settings (via invariance criteria
in [22], [6], [21], [17], [16], etc.), Brownian-driven control systems (exact terminal-controllability in [20], approx-
imate controllability in [3], [9], mean-field Brownian-driven systems in [12], infinite-dimensional setting in [8],
[23], [1], [10], etc.), jump systems ([11], [13], etc.). We refer to [13] for more details on the literature as well as
applications one can address using switch models.

The paper [13] provides some necessary and some sufficient conditions under which approximate controllability
towards null target can be achieved. In all generality, the conditions are either too strong (sufficient) or too
weak (only necessary). Equivalence is obtained in [13] for particular cases : (i) Poisson-driven systems with
mode-independent coefficients and (ii) continuous switching. In the present paper, we extend the work of [13]
and give explicit equivalence criterion for the general switching case. The approach relies, in a first step, as
it has already been the case in [13, Theorem 1], on duality techniques (briefly presented in Subsection 2.1).
However, the intuition on this new criterion and its proof are extensively based on the recent ideas in [4]. The
dual backward stochastic system associated to controllability is interpreted as a system of (backward) ordinary
differential equations in Proposition 12. Reasoning on this new system provides the necessary and sufficient
criterion for approximate null-controllability for general switching systems with mode-dependent multiplicative
noise (Theorem 6 whose proof relies on Propositions 13 and 14). As a by-product, we considerably simplify the
proofs of [13, Criteria 3 and 4] (in Subsection 2.3). Second, we give some elements on the stronger notion of
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(general) approximate controllability. While the notions of approximate and approximate null-controllability are
known to coincide for Poisson-driven systems with mode-independent coefficients, we give an example (Example
9) showing that this is no longer the case for general switching systems. Furthermore, we show that the condition
exhibited in [13, Proposition 3] in connection to approximate null-controllability is actually sufficient for general
approximate controllability (see Condition 10). The proof follows, once again, from the deterministic reduction
inspired by [4]. The theoretical results are illustrated on a model derived from repressed bacterium operon (given
in [19] and reduced in [5]).

We begin with presenting the problem, the standing assumptions and the main results: the duality abstract
characterization in Theorem 2, the explicit criterion in Theorem 6. We give a considerably simplified proof of
the results in [13] in Subsection 2.3. We discuss the difference between null and full approximate controllability
in Subsection 2.4, Example 9 and give a sufficient criterion for the stronger notion of approximate controllability
(Criterion 10). Section 3 focuses on an example derived from [19] (see also [5]). The proofs of the results and the
technical constructions allowing to prove Theorem 6 are gathered in Section 4.

2 The Control System and Main Results

We briefly recall the construction of a particular class of pure jump, non explosive processes on a space Ω and
taking their values in a metric space (E,B (E)) . Here, B (E) denotes the Borel σ-field of E. The elements of
the space E are referred to as modes. These elements can be found in [7] in the particular case of piecewise
deterministic Markov processes (see also [2]). To simplify the arguments, we assume that E is finite and we let
p ≥ 1 be its cardinal. The process is completely described by a couple (λ,Q) , where λ : E −→ R+ and the measure
Q : E −→ P (E), where P (E) stands for the set of probability measures on (E,B (E)) such that Q (γ, {γ}) = 0.
Given an initial mode γ0 ∈ E, the first jump time satisfies P0,γ0 (T1 ≥ t) = exp (−tλ (γ0)) . The process Γt := γ0,
on t < T 1. The post-jump location γ1 has Q (γ0, ·) as conditional distribution. Next, we select the inter-jump
time T2 − T1 such that P0,γ0

(
T2 − T1 ≥ t / T1, γ

1
)
= exp

(
−tλ

(
γ1
))

and set Γt := γ1, if t ∈ [T1, T2) . The post-

jump location γ2 satisfies P0,γ0
(
γ2 ∈ A / T2, T1, γ

1
)
= Q

(
γ1, A

)
, for all Borel set A ⊂ E. And so on. To simplify

arguments on the equivalent ordinary differential system, following [4, Assumption (2.17)], we will assume that
the system stops after a non-random, fixed number M > 0 of jumps i.e. P

0,γ0 (TM+1 = ∞) = 1. The reader is
invited to note (see Remark 5) that, for large M, the criteria given in the main result (Theorem 6) no longer
depend on M (due to the finite dimension of the mode and state spaces).

We look at the process Γ under P
0,γ0 and denote by F

0 the filtration
(
F[0,t] := σ {Γr : r ∈ [0, t]}

)
t≥0

. The

predictable σ-algebra will be denoted by P0 and the progressive σ-algebra by Prog0. As usual, we introduce
the random measure q on Ω × (0,∞) × E by setting q (ω,A) =

∑
k≥1 1(Tk(ω),ΓTk(ω)(ω))∈A

, for all ω ∈ Ω, A ∈

B (0,∞) × B (E) . The compensated martingale measure is denoted by q̃. (For our readers familiar with [13],
we emphasize that the notation is slightly different, the counting measure q corresponds to p in the cited paper
and the martingale measure q̃ replaces q in the same reference. Further details on the compensator are given in
Subsection 4.1.)

We consider a switch system given by a process (X(t),Γ(t)) on the state space R
N × E, for some N ≥ 1

and the family of modes E. The control state space is assumed to be some Euclidian space R
d, d ≥ 1. The

component X(t) follows a controlled differential system depending on the hidden variable γ. We will deal with
the following model (A is implicitly assumed to be 0 after the last jump).

(1) dXx,u
s = [A (Γs)X

x,u
s +Bus] ds+

∫

E

C (Γs−, θ)X
x,u
s− q̃ (ds, dθ) , s ≥ 0, Xx,u

0 = x.

The operators A (γ) ∈ R
N×N , B ∈ R

N×d and C (γ, θ) ∈ R
N×N , for all γ, θ ∈ E. For linear operators, we denote

by ker their kernel and by Im the image (or range) spaces. Moreover, the control process u : Ω × R+ −→ R
d is

an R
d-valued, F0− progressively measurable, locally square integrable process. The space of all such processes

will be denoted by Uad and referred to as the family of admissible control processes. The explicit structure of
such processes can be found in [18, Proposition 4.2.1], for instance. Since the control process does not (directly)
intervene in the noise term, the solution of the above system can be explicitly computed with Uad processes
instead of the (more usual) predictable processes.

2.1 The Duality Abstract Characterization of Approximate Null-Controllability

We begin with recalling the following approximate controllability concepts.
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Definition 1 The system (1) is said to be approximately controllable in time T > 0 starting from the initial mode
γ0 ∈ E, if, for every F[0,T ]-measurable, square integrable ξ ∈ L

2
(
Ω,F[0,T ],P

0,γ0 ;RN
)
, every initial condition

x ∈ R
N and every ε > 0, there exists some admissible control process u ∈ Uad such that E0,γ0

[
|Xx,u

T − ξ|
2
]
≤ ε.

The system (1) is said to be approximately null-controllable in time T > 0 if the previous condition holds for
ξ = 0 (P0,γ0-a.s.).

At this point, let us consider the backward (linear) stochastic differential equation

(2)

{
dY T,ξ

t =
[
−A∗ (Γt)Y

T,ξ
t −

∫
E
(C∗ (Γt, θ) + I)ZT,ξ

t (θ) λ (Γt)Q (Γt, dθ)
]
dt+

∫
E
ZT,ξ
t (θ) q (dt, dθ) ,

Y T,ξ
T = ξ ∈ L

2
(
Ω,F[0,T ],P

0,γ0 ;RN
)
.

Classical arguments on the controllability operators and the duality between the concepts of controllability and
observability lead to the following characterization (cf. [13, Theorem 1]).

Theorem 2 ([13, Theorem 1]) The necessary and sufficient condition for approximate null-controllability (resp.

approximate controllability) of (1) with initial mode γ0 ∈ E is that any solution
(
Y T,ξ
t , ZT,ξ

t (·)
)
of the dual sys-

tem (2) for which Y T,ξ
t ∈ kerB∗ , P0,γ0⊗Leb almost everywhere on Ω × [0, T ] should equally satisfy Y T,ξ

0 = 0,

P
0,γ0−almost surely (resp. Y T,ξ

t = 0, P0,γ0⊗Leb− a.s.).

Remark 3 Concerning the operator A, it is assumed to be a switched matrix but it could also depend on (t,Γt)
or on all the times and marks prior to t. This is why, we implicitly assumed that A = 0 after the last jump
(M th) occurs. Similar assertions are true for C (otherwise, the backward equation (2) should be written with the
compensator q̂ replacing λ (Γt)Q (Γt, dθ).) The reader may also look at the end of Subsection 4.1.

2.2 Main Result : An Iterative Invariance Criterion

Before stating the main result of our paper, we need the following invariance concepts (cf. [6], [22]).

Definition 4 We consider a linear operator A ∈RN×N and a family C =(Ci)1≤i≤k ⊂ R
N×N .

(i) A set V ⊂ R
N is said to be A- invariant if AV ⊂ V.

(ii) A set V ⊂ R
N is said to be (A; C)- invariant if AV ⊂ V +

k∑
i=1

Im Ci.

We construct a mode-indexed family of linear subspaces of RN denoted by
(
V M,n
γ

)
0≤n≤M, γ∈E

by setting

(3) A∗ (γ) := A∗ (γ)−

∫

E

(C∗ (γ, θ) + I)λ(γ)Q(γ, dθ) and V M,M
γ = kerB∗,

for all γ ∈ E, and computing, for every 0 ≤ n ≤ M − 1,
(4)

V M,n
γ the largest

(
A∗ (γ) ;

[
(C∗(γ, θ) + I)Π

V
M,n+1
θ

: θ ∈ E, Q (γ, θ) > 0
])

− invariant subspace of kerB∗.

Here, ΠV denotes the orthogonal projection operator onto the linear space V ⊂ R
N . Whenever there is no

confusion at risk, having fixed the maximal number of jumps M ≥ 1, we drop the dependency on M (i.e. we
write V n

γ instead of V M,n
γ for all 0 ≤ n ≤ M).

Remark 5 (i) A simple recurrence argument shows that V M,n
γ ⊂ V M,m

γ , for every 0 ≤ n ≤ m ≤ M . Further-

more, V M,M−n
γ = V M ′,M ′−n

γ , for all 0 ≤ n ≤ M ≤ M ′. Moreover, since the dimension of kerB∗ cannot exceed

N, V M,0
γ = V

min(M,Np),0
γ .

(ii) This spaces do not depend on the choice of the controllability horizon T > 0. Therefore, if the approximate
(null-)controllability is described by these sets, it is independent of the time horizon.

The main result of the paper is the following.

Theorem 6 The switch system (1) is approximately null-controllable (in time T > 0) with γ0 as initial mode, if
and only if the generated set V 0

γ0
reduces to {0} .
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The proof is postponed to Section 4. This proof uses the reduction of backward equations with respect
to Marked point processes to a system of ordinary differential equations given in [4]. In order to formulate this
system (see Proposition 12), we need to explain some concepts and notations in Subsection 4.1. To prove necessity
of the condition, one uses convenient feedback controls and the equivalence between invariance and the concept
of feedback invariance (see Proposition 13). Sufficiency (given by Proposition 14) follows from (time-) invariance
of convenient linear subspaces with respect to ordinary differential dynamics.

2.3 Comparison With [13]

We begin with giving a different (and simpler) proof of (some of) the results in [13]. Besides the general (abstract)
characterization of approximate and approximate null-controllability, explicit invariance criteria were given in two
specific settings.

(i) In the case without multiplicative noise C = 0, one notes that the subspaces V n
γ (for 0 ≤ n < M)

do not depend on n. They reduce, in fact, to the largest A∗ (γ)-invariant subspace of kerB∗. Moreover, in this
framework, A∗ (γ)-invariance and A∗ (γ)-invariance coincide and Theorem 6 yields the following.

Criterion 7 ([13, Criterion 4]) The system (1) is approximately null-controllable (with initial mode γ0 ∈ E)
if and only if the largest subspace of kerB∗ which is A∗ (γ0) - invariant is reduced to the trivial subspace {0} for
all γ0 ∈ E.

(ii) In the case of Poisson-driven systems with mode-independent coefficients A and C, one works
with the mode-independent operator A∗ := A∗ −

∫
E
(C∗ (θ) + I)λQ(dθ). The reader familiar with [13, Criterion

3] will note that the necessary and sufficient criterion concerns a notion of strict invariance. We get the same
condition provided the system has the possibility to stabilize (the maximal number of jumps M ≥ N + 1 is
allowed to exceed the dimension of the state space). Moreover, without loss of generality, one assumes that E is
the support of Q.

Criterion 8 ([13, Criterion 3]) Let us assume that A ∈ R
N×N , B ∈ R

N×d are fixed and C (θ) ∈ R
N×N ,

for all θ ∈ E and that λ (γ)Q (γ, dθ) is independent of γ ∈ E. Moreover, we assume that M ≥ N + 1. Then
the associated system is approximately null-controllable if and only if the largest subspace V0 ⊂ kerB∗ which is
(A∗; [C∗ (θ)ΠV0 : θ ∈ E])-invariant is reduced to {0}.

Proof. The reader will note that the V n spaces in (4) no longer depend on γ ∈ E. They are obviously non-
decreasing in n (see Remark 5). Since kerB∗ ⊂ R

N , it follows that, provided that M ≥ N + 1, one has V 0 = V 1

(indeed, V 0 ⊂ V 1 ⊂ ... ⊂ VM = kerB∗ and, whenever V k = V k+1, for some 0 ≤ k ≤ M − 1, it follows (by
definition), that V j = V k, for all j ≤ k. On the other hand, the inclusions cannot always be strict if M ≥ N + 1
by recalling that the dimension of kerB∗ cannot exceed N). Moreover, this space V 0 is the largest subspace
V0 ⊂ kerB∗ which is (A∗; [(C∗ (θ) + I) ΠV0 : θ ∈ E])-invariant which is the same as (A∗; [C∗ (θ)ΠV0 : θ ∈ E])-
invariant. The proof is complete by invoking Theorem 6.

2.4 Approximate or Approximate Null-Controllability

Using Riccati techniques, one proves (see [13, Criterion 3]) that, for Poisson-driven systems with mode-independent
coefficients, approximate controllability and approximate null-controllability properties coincide. However, in the
case of actual switching systems, the two notions have no reason to and do not coincide. This is illustrated by
the following example.

Example 9 We consider the space dimension N = 4, the control dimension d = 2, E = {0, 1}, a switching rate
λ = 1 and a transition probability Q (γ, 1− γ) = 1, for γ ∈ E. Moreover, we consider, for γ ∈ {0, 1} ,

B =




1 0
0 1
0 0
0 0


 , A (γ) =




0 0 0 0
0 0 0 0

1 + γ 0 0 0
0 2− γ 0 0


 , C (γ, 1− γ) =




−1 0 0 0
0 −1 0 0
γ 0 −1 0
0 1− γ 0 −1


 .

The reader is invited to note that kerB∗ = span
{
e3, e4

}
(standard vectors of the basis of R

4). Thus, simple

computations yield V 1
0 ⊂ span

{
e4
}
, V 1

1 ⊂ span
{
e3
}
. Hence, V 0

0 = V 0
1 = {0} and the system is approximately

null-controllable starting from every initial mode (if M ≥ 2). However, if one considers γ0 = 0, assumes
the mode can jump twice M = 2 and sets ξ := 1T1≤T<T2e

3 − 1T2≤T e
3, then one easily notes that (Yt, Zt) :=

4



(
1T1≤t≤T,t<T2e

3 − 1T2≤t≤T e
3, (1t≤T∧T1 − 2× 1T1<t≤T ) e

3
)
obey the equation (2). To this purpose, it suffices to

note that A∗(Γt)Yt + (C∗ (Γt, 1− Γt) + I)Zt = 0 on [0, T ∧ T2] . For every u ∈ Uad, Itô’s formula (e.g. [15,

Chapter II, Section 5, Theorem 5.1]) applied to the inner product
〈
X0,u

· , Y·

〉
on [0, T ] yields E

0,0
[〈

X0,u
T , ξ

〉]
=

E
0,γ0

[∫ T

0
〈ut, B

∗Yt〉 dt
]
= 0. In particular, this implies that E0,0

[∣∣∣X0,u
T − ξ

∣∣∣
2
]
≥ E

0,0
[
|ξ|

2
]
> 0 and, thus, the

system (1) is not approximately controllable (towards ξ).

In fact, the reader may note that the null-controllability property strongly depends on the initial mode
(through the computation of V 0

γ0
as last step). A sufficient criterion (already available in [13]) is that the

largest subspace of kerB∗ which is (A∗ (γ0) ; [(C
∗(γ0, θ) + I)ΠkerB∗ : θ ∈ E,Q (γ0, θ) > 0])−invariant should be

reduced to {0} . It turns out that asking this condition to hold true for all γ0 ∈ E actually implies approximate
controllability. (The proof is postponed to Section 4.)

Condition 10 Let us assume that the largest (A∗ (γ) ; [(C∗(γ, θ) + I)ΠkerB∗ : Q (γ, θ) > 0])-invariant subspace
of kerB∗ is reduced to {0}, for every γ ∈ E. Then, for every T > 0 and every γ0 ∈ E, the system (1) is
approximately controllable in time T > 0.

Remark 11 The reader is invited to note that the notion of (A∗ (γ) ; [(C∗(γ, θ) + I)ΠkerB∗ : Q (γ, θ) > 0]) -
invariance and that of (A∗ (γ) ; [(C∗(γ, θ) + I)ΠkerB∗ : Q (γ, θ) > 0]) -invariance coincide for subspaces of kerB∗.
Second, according to [13, Criterion 3], the notions of approximate and approximate null-controllability coincide
in the context of Poisson-driven systems with mode-independent coefficients. Then, a careful look at [13, Example
4] provides an example of system which is approximately controllable without satisfying the sufficient condition
given before.

3 Towards Applications

A model. We will explain how the previous method can be applied in the study of stochastic gene networks. To
this purpose, we consider the following reaction system describing a repressed bacterium operon model introduced
in [19].

D +R
K1

⇄ DR, D +RNAP
K2

⇄ DRNAP, DRNAP
k3→ TrRNAP, T rRNAP

k4→ RBS +D +RNAP

RBS
k5→ ∅, RBS +Rib

K6

⇄ RibRBS, RibRBS
k7→ ElRib+RBS, ElRib

k8→ Protein

Protein
k9→ FoldedProtein, Protein

k10→ ∅, FoldedProtein
k11→ ∅.

Partitioning and simplifying. The authors of [5] propose a partition of ”species” according to which only
ElRib, Protein and FoldedProtein are continuous. The averaging procedures in [5, Figure 4] simplify the model
to

(5) D∗∗
K∗

3

⇄ TrRNAP
k∗
4→ RBS∗ k∗

5→ ∅, RBS∗ k∗
7→ ElRib+ RBS∗,

ElRib
k8→ Protein, Protein

k9→ FoldedProtein, Protein
k10→ ∅, FoldedProtein

k11→ ∅.

Due to the conservation law of [D,R,DR,RNAP,DRNAP, T rRNAP ] one should have something like D∗∗ +
TrRNAP ≃ 1.

It is known ([5, Page 21]) that ”RBS∗ presents infrequent bursts of activity leading to rapid production of
ElRib” and ”RBS∗ rapidly switches to 0 by the reaction RBS∗ → ∅”. To take into account these elements and
keep the conservation law, we proceed as follows :

(1) as RBS∗ switches to 0, D∗∗ will be reset to 1 (hence, D∗∗ + TrRNAP +RBS∗ = 1);

(2) bursts (given by the reaction having k∗7 as speed) will be considered as part of the stochastic updating of
the continuous species and will have null-mean (i.e. they will multiply the martingale measure generated by the
mode switching mechanism). In our toy-model, as RBS∗ switches to 1, stochastic bursts on ElRib will affect (in

multiplicative way) the synthesis of Protein (i.e. the reaction ElRib
k8→ Protein).

A toy mathematical system. The first condition leads to a mode space E =
{
e1, e2, e3

}
consisting of the

standard vector basis of R3, with a jump intensity λ and a transition measure
(
Q
(
ei,
{
ej
})

= Qi,j

)
1≤i,j≤3

given

5



by

(6) λ (γ) =

〈


k∗3
k∗−3 + k∗4

k∗5


 , γ

〉
> 0, for all γ ∈ E, Q =




0 1 0
k∗
−3

k∗
−3+k∗

4
0

k∗
4

k∗
−3+k∗

4

1 0 0


 .

We are going to assume that the positive reaction speeds k∗7 , k8, k9 and k11 depend on the mode γ (note that RBS∗

is part of γ and intervenes to get ElRib) and, maybe, of external one-dimensional control parameters (temperature
or catalysts). Since all the reactions concerning continuous components have one reactant, the resulting ODE
will be linear (see [5, Eq. (28)]). A first order model for the control will give dxt = [A (Γt)xt +But] dt, where A
is given by (7). Furthermore, in our toy model, let us assume that the external control focuses on regulation of

ElRib (i.e. B =
(
1 0 0

)t
= e1). We add to that the bursts (see item (2) above) to finally get a (toy-)model

of type (1) for which, for every γ, θ ∈ E,

(7) B = e1, A (γ) =




−k8 (γ) 0 0
k8 (γt) −k9 (γ) 0

0 k9 (γt) −k11 (γ)


 , C (γ, θ) =




0 0 0
k∗7 (γ) 0 0

0 0 0


 , k∗7 (γ) = 1e3 (γ) .

Approximate null-controllability. The largest subspace of kerB∗ which is
(
A∗
(
e2
)
− λ

(
e2
)
I; ΠkerB∗

)
-

invariant reduces to span
(
e3
)
and the largest subspace of kerB∗ which is

(
A∗
(
e1
)
− λ

(
e1
)
I; Πspan(e3)

)
invariant

is {0} (recall that k8 and k9 are reaction speeds and, thus, are strictly positive and so is λ). Due to the structure
of the transition measure Q, as soon as M ≥ 2, the system is approximately null-controllable starting from e1.
Nevertheless, the space kerB∗ being A∗

(
e3
)
−
(
k8
(
e3
)
− k∗5

) (
C∗
(
e3, e1

)
+ I
)
-invariant, constructions similar to

Example 9 show that, provided e3 is reachable in M jumps, the system is not approximately controllable.

4 Proof of the Results

4.1 Technical Preliminaries

Before giving the reduction of our backward stochastic equation to a system of ODE, we need to introduce some
notations making clear the stochastic structure of several concepts : final data, predictable and càdlàg adapted
processes and compensator of the initial random measure. The notations in this subsection follow the ordinary
differential approach from [4]. Since we are only interested in what happens on [0, T ] , we introduce a cemetery
state (∞, γ) which will incorporate all the information after T ∧ TM . It is clear that the conditional law of
Tn+1 given (Tn,ΓTn

) is now composed by an exponential part on [Tn ∧ T, T ] and an atom at ∞. Similarly, the
conditional law of ΓTn+1 given (Tn+1, Tn,ΓTn

) is the Dirac mass at γ if Tn+1 = ∞ and given by Q otherwise.
Finally, under the assumption P

0,γ0 (TM+1 = ∞) = 1, after TM , the marked point process is concentrated at the
cemetery state.

We set ET : = ([0, T ]× E) ∪ {(∞, γ)}. For every n ≥ 1, we let ET,n ⊂
(
ET

)n+1
be the set of all marks of

type e = ((t0, γ0) , ..., (tn, γn)) , where

(8) t0 = 0, (ti)0≤i≤n are non-decreasing; ti < ti+1, if ti ≤ T ; (ti, γi) = (∞, γ) , if ti > T, ∀0 ≤ i ≤ n− 1,

and endow it with the family of all Borel sets Bn. For these sequences, the maximal time is denoted by |e| := tn.
Moreover, by abuse of notation, we set γ|e| := γn. Whenever T ≥ t > |e| , we set

(9) e⊕ (t, γ) := ((t0, γ0) , ..., (tn, γn) , (t, γ)) ∈ ET,n+1.

By defining

(10) en := ((0, γ0) , (T1,ΓT1) , ..., (Tn,ΓTn
)) ,

we get an ET,n−valued random variable, corresponding to our mode trajectories.
The final data ξ is F[0,T ]−measurable and, thus, for every n ≥ 0, there exists a Bn/B

(
R

N
)
−measurable

function ET,n ∋ e 7→ ξn (e) ∈ R
N such that:

(11) If |e| = ∞, then ξn (e) = 0. Otherwise, on Tn (ω) ≤ T < Tn+1 (ω) , ξ (ω) = ξn (en (ω)) .
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A càdlàg process Y continuous except, maybe, at switching times Tn is given by the existence of a
family of Bn ⊗ B ([0, T ]) /B

(
R

N
)
-measurable functions yn such that, for all e ∈ ET,n, y

n (e, ·) is continuous on
[0, T ] and constant on [0, T ∧ |e|] and

(12) If |e| = ∞, then yn (e, ·) = 0. Otherwise, on Tn (ω) ≤ t < Tn+1 (ω) , Yt (ω) = yn (en (ω) , t) , t ≤ T .

Similar, an R
N−valued F-predictable process Z defined on Ω × [0, T ] × E is given by the existence of a

family of Bn ⊗ B ([0, T ])⊗ B (E) /B
(
R

N
)
−measurable functions zn satisfying

(13) If |e| = ∞, then zn (e, ·, ·) = 0. On Tn (ω) < t ≤ Tn+1 (ω) , Zt (ω, γ) = zn (en (ω) , t, γ) , for t ≤ T , γ ∈ E.

To deduce the form of the compensator, one simply writes q̂ (ω, dt, dγ) :=
∑

n≥0

q̂n
en(ω) (dt, dγ) 1Tn(ω)<t≤Tn+1(ω)∧T

such that

(14)

{
If n ≥ M, then q̂ne (dt, dγ) = δγ (dγ) δ∞ (dt) . If n ≤ M − 1,

q̂ne (dt, dγ) := λ(γ|e|)Q(γ|e|, dγ)1|e|<∞,t∈[|e|,T ]Leb (dt) + δγ (dγ) δ∞ (dt) 1(|e|<∞,t>T )∪|e|=∞,
.

Let us now concentrate on the specific form of the jump contribution Z (to the BSDE (2)). We consider
a càdlàg process Y continuous except, maybe, at switching times Tn. Then, as explained before, this can be
identified with a family (yn) . We construct, for every n ≥ 0,

(15) ŷn+1 (e, t, γ) := yn+1 (e⊕ (t, γ) , t) 1|e|<t

and YTn+1 can be obtained by simple integration of the previous quantity with respect to the conditional law of(
Tn+1,ΓTn+1

)
knowing FTn

. Then, Z is given by zn (e, t, γ) := ŷn+1 (e, t, γ)− yn (e, t) .
The coefficient function A (Γt) is adapted and can be seen as follows: if |e| = ∞, then A = 0; otherwise,

one works with A
(
γ|e|
)
. Similar constructions hold true for C. In fact, the results of the present paper can be

generalized to more general path-dependence of the coefficients.

4.2 Reduction to a System of Linear ODEs

We consider the family of (ordinary) differential equations

(16)





yM (eM (ω) , ·) = ξM (eM (ω)) . For n ≤ M − 1, yn (en (ω) , T ) = ξn (en (ω)) ,

dyn (en (ω) , t) = −A∗
(
γ|en(ω)|

)
yn (en (ω) , t) dt

−
∫
E

(
C∗
(
γ|en(ω)|, θ

)
+ I
) (

ŷn+1 (en (ω) , t, θ)− yn (en (ω) , t)
)
q̂nen(ω) (dt, dθ)

(= −A∗
(
γ|en(ω)|

)
yn (en (ω) , t) dt

−
∑

θ∈E λ(γ|en(ω)|)Q(γ|en(ω)|, θ)
(
C∗
(
γ|en(ω)|, θ

)
+ I
)
yn+1 (en (ω)⊕ (t, θ) , t) dt),

where we have used the notation (3). The following result adapts [4, Lemma 7] to our case.

Proposition 12 A càdlàg adapted process Y given by a family of functions (yn) as in (12) is solution to (2) if
and only if, for P-almost all ω and all 0 ≤ n ≤ M, it satisfies the system (16).

The proof is quasi-identical to the one of [4, Lemma 7]. The only difference in our case is the presence of the
term −A∗

(
γ|en(ω)|

)
yn (en (ω) , t) dt which is, of course, classical. The results of [4, Lemma 7] apply directly if

one assumes that λ(γ) > 0 for all γ ∈ E (that is if there exists no absorbing state). Otherwise, we actually get
an ODE of type dyn (en (ω) , t) = −A∗

(
γ|en(ω)|

)
yn (en (ω) , t) dt.

4.3 An Iterative Invariance-Based Criterion (Proof of Theorem 6)

As already hinted in [13], the (approximate) controllability properties can be expressed with respect to invariance
conditions. The equivalence between the dual (backward) stochastic equation (2) and the (backward) ordinary
differential system (16) yields the following approximate controllability criterion.

Proposition 13 If the system (1) is approximately null-controllable with γ0 as initial mode, then the generated
set V 0

γ0
reduces to {0} .
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Proof. Using classical results on the different notions of invariance (e.g. [22, Theorem 3.2], see also [6, Lemma
4.6]), invariance is equivalent to feedback invariance. Thus, one gets the existence of a family of operators

Fn
γ,θ ∈ L

(
V n
γ ;V n+1

θ

)
such that

(
A∗ (γ) +

∑
θ∈E, Q(γ,θ)>0

(C∗(γ, θ) + I)Fn
γ,θ

)
V n
γ ⊂ V n

γ , for all n ≥ 0. We begin

with picking (an arbitrary) v0 ∈ V 0
γ0

and define ζ0 (t0, γ0) = v0. We proceed by setting, for every n ≥ 1 and

en ∈ ET,n, φn,en to be the unique solution of the ordinary differential system





dφn,en (t) = −
(
A∗
(
γ|en|

)
+
∑

θ∈E, Q(γn,θ)>0

(
C∗(γ|en|, θ) + I

)
Fn
γ|en|,θ

)
φn,en (t) dt, |en| ≤ t ≤ T

φn,en (|en|) =

{
ζn (en) , if |en| < ∞,
0, otherwise.

and

ζn+1 (en ⊕ (t, θ)) =

{ 1
λ(γ|en|)Q(γ|en|,θ)

Fn
γ|en|,θ

φn (en, t) 1T≥t>|en|, if λ(γ|en|)Q(γ|en|, θ) > 0,

0, otherwise

One also sets φn,en (t) = φn,en (|en| ∨ t) to extend the solution for t ∈ [0, T ]. Then, one easily notes that
φn,en (t) ∈ kerB∗, for all 1 ≤ n ≤ M , all en ∈ ET,n and all t ∈ [0, T ] . Moreover, a simple glance at the
construction shows that by setting yn (en, t) := φn,en (t), for 1 ≤ n ≤ M , all en ∈ ET,n and all t ∈ [0, T ] , one
gets the solution of (16) with the particular choice of the final data ξ such that ξn (en) = φn,en (T ) . Since we
have assumed the system (1) to be approximately null-controllable, Theorem 2 and Proposition 12 yield v0 = 0.
The proof is complete by recalling that v0 ∈ V 0

γ0
is arbitrary.

At this point, the reader may want to note that these considerations involve one equation at the time. The
invariant space obtained is then employed for the next equation and gives a coherent character to the system.
The basic idea is to provide some kind of local in time invariance of the sets concerned. In [13], this is done using
Riccati techniques. But, except for special cases, the solvability of these stochastic schemes is far from obvious.
Due to the ordinary differential structure of the equivalent system (16), we are able to elude these techniques
and work directly on the deterministic systems.

Proposition 14 Conversely, if the generated set V 0
γ0

reduces to {0} , then the system (1) is approximately null-
controllable with γ0 as initial mode.

Proof. We begin with a solution of (2) for which Y belongs to kerB∗. We prove by descending recurrence that
yn (e, t) ∈ V n

γ|e|
, for all t ∈ [0, T ] and all e ∈ ET,n (starting from γ0), where we use the structure (12). The

assertion is obvious for n = M since, by notation, V M
· = kerB∗. We assume it to hold true for n+ 1 ≤ M and

prove it for n ≥ 0. By equation (16), one has

dyn (e, t) =

(
−A∗

(
γ|e|
)
yn (e, t)−

∑

θ∈E

λ(γ|e|)Q(γ|e|, θ)
(
C∗
(
γ|e|, θ

)
+ I
)
yn+1 (e⊕ (t, θ) , t)

)
dt.

We have assumed that yn (e, t) ∈ kerB∗ and, thus, [I −ΠkerB∗ ] yn (e, t) = 0. We infer that

A∗
(
γ|e|
)
yn (e, t) +

∑

θ∈E

λ(γ|e|)Q(γ|e|, θ)
(
C∗
(
γ|e|, θ

)
+ I
)
yn+1 (e⊕ (t, θ) , t) ∈ kerB∗.

Hence, using the recurrence assumption, yn (e, t) is (for almost all t ∈ [0, T ]), an element of the linear space

W 0 :=





v ∈ kerB∗ : ∃wθ ∈ V n+1
θ , for all θ ∈ E s.t. Q

(
γ|e|, θ

)
> 0 satisfying

A∗
(
γ|e|
)
v +

∑
θ∈E, Q(γ|e|,θ)>0

(
C∗
(
γ|e|, θ

)
+ I
)
wθ ∈ kerB∗



 .

By repeating our argument, we prove that yn (e, t) is (for almost all t ∈ [0, T ]), an element of the linear space

Wm+1 :=





v ∈ Wm : ∃wθ ∈ V n+1
θ , for all θ ∈ E s.t. Q

(
γ|e|, θ

)
> 0 satisfying

A∗
(
γ|e|
)
v +

∑
θ∈E, Q(γ|e|,θ)>0

(
C∗
(
γ|e|, θ

)
+ I
)
wθ ∈ Wm



 ,

for every m ≥ 0. Then, W := ∩
0≤m≤N

Wm is an
(
A∗
(
γ|e|
)
;
[(
C∗
(
γ|e|, θ

)
+ I
)
ΠV

n+1
θ

: Q
(
γ|e|, θ

)
> 0
])

−invariant

subspace of the (at mostN -dimensional) space kerB∗. Therefore, we have proven that yn (e, t) ∈ V n
γ|e|

. To complete

our argument, one only needs to recall that, by assumption, V 0
γ0

= {0} and use Theorem 2 and Proposition 12.
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4.4 Proof of Sufficiency Condition 10 for Approximate Controllability

Proof of Condition 10. In light of the Theorem [13, Theorem 1] and Proposition 12, one only needs to show that
the only solution of (16) remaining in kerB∗ is constant 0. One proceeds as in the Proof of Proposition 14 starting
with a solution of (2) for which Y belongs to kerB∗ and showing that yn (e, t) ∈ V n

γ|e|
⊂ kerB∗, for all t ∈ [0, T ]

(recall that yn is continuous). One recalls that V n
γ is

(
A∗ (γ) ;

[
(C∗(γ, θ) + I)ΠV

n+1
θ

: Q (γ, θ) > 0
])

-invariant,

for every γ ∈ E. Hence, a fortiori, V n
γ|e|

is
(
A∗
(
γ|e|
)
;
[(
C∗(γ|e|, θ) + I

)
ΠkerB∗ : Q

(
γ|e|, θ

)
> 0
])
-invariant. Our

assumption implies that V n
γ|e|

= {0} and approximate controllability follows.
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