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Abstract. This paper concerns the continuous time mean-variance portfolio selection problem with a

special nonlinear wealth equation. This nonlinear wealth equation has a nonsmooth coefficient and the dual

method developed in [6] does not work. We invoke the HJB equation of this problem and give an explicit

viscosity solution of the HJB equation. Furthermore, via this explicit viscosity solution, we obtain explicitly

the efficient portfolio strategy and efficient frontier for this problem. Finally, we show that our nonlinear

wealth equation can cover three important cases.
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1 Introduction

A mean-variance portfolio selection problem is to find the optimal portfolio strategy which minimizes the

variance of its terminal wealth while its expected terminal wealth equals a prescribed level. Markowitz [12],

[13] first studied this problem in the single-period setting. It’s multi-period and continuous time counterparts

have been studied extensively in the literature; see, e.g. [1], [7], [9], [10], [15] and the references therein. Most

of the literature on mean-variance portfolio selection focuses on an investor with linear wealth equation. But

in some cases, one need to consider nonlinear wealth equations. For example, a large investor’s portfolio

selection may affect the return of the stock’s price which leads to a nonlinear wealth equation. When some

taxes must be paid on the gains made on the stocks, we also have to deal with a nonlinear wealth equation.

As for the continuous time mean-variance portfolio selection problem with nonlinear wealth equation, Ji

[6] obtained a necessary condition for the optimal terminal wealth when the coefficient of the wealth equation

is smooth. [5] studied the continuous time mean-variance portfolio selection problem with higher borrowing
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rate in which the wealth equation is nonlinear and the coefficient is not smooth. They employed the viscosity

solution of the HJB equation to characterize the optimal portfolio strategy.

In this paper, the continuous time mean-variance portfolio selection problem with a special nonlinear

wealth equation is studied. This nonlinear wealth equation has a nonsmooth coefficient and can cover the

following three important models: the first model is proposed by Jouini and Kallal [8] and El Karoui et al [3]

in which an investor has different expected returns for long and short position of the stock (see Example 4.1);

the second one is given in section 4 of [2] for a large investor (see Example 4.2); the third one is introduced

in [3] to study the wealth equation with taxes paid on the gains (see Example 4.3). We invoke the Hamilton-

Jacobi-Bellman (HJB for short) equation of this problem and give an explicit viscosity solution of the HJB

equation. Furthermore, via this explicit viscosity solution, we obtain explicitly the efficient portfolio strategy

and efficient frontier for this problem.

The paper is organized as follows. In section 2, we formulate the problem. Our main results are given in

section 3. In section 4, we show that our wealth equation (2.1) can cover three important cases.

2 Formulation of the problem

Let W be a standard 1-dimensional Brownian motion defined on a filtered complete probability space

(Ω,F , {Ft}t≥0, P ), where {Ft}t≥0 denotes the natural filtration associated with the 1-dimensional Brow-

nian motion W and augmented. We denote by M2(0, T ) the space of all Ft−progressively measurable R

valued processes x such that E
∫ T

0 x2
t dt < ∞.

We consider a financial market consisting of a riskless asset (the money market instrument or bond)

whose price is S0 and one risky security (the stock) whose price is S1. An investor can decide at time

t ∈ [0, T ] what amount πt of his wealth Xt to invest in the stock. Of course, his decisions can only depend

on the current information Ft, that is, the portfolio π is Ft-adapted.

For given deterministic continuous functions rt, θt, θ̄t, σt on [0, T ], consider the following nonlinear wealth

equation:






dXt = (rtXt + π+
t σtθt − π−

t σtθ̄t)dt+ πtσtdWt,

X0 = x0, t ∈ [0, T ]
(2.1)

where the functions x+ :=















x, if x ≥ 0;

0, if x < 0,

and x− :=















−x, if x ≤ 0;

0, if x > 0.

We assume:

Assumption 2.1 θt ≥ 0, θ̄t ≥ 0, a.e. on [0, T ], σt 6= 0, a.e. on [0, T ].

Remark 2.2 When θt = θ̄t, a.e. on [0, T ], the wealth equation (2.1) reduces to the classical linear wealth

equation.

For a given expectation level K, consider the following continuous time mean-variance portfolio selection
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problem:

Minimize V arXT = E(XT −K)2,

s.t.



















EXT = K,

π ∈ M2(0, T ),

(X, π) satisfies Eq.(2.1).

(2.2)

Throughout the paper, we assume that K ≥ x0e
∫

T

0
rsds.

The optimal strategy π∗ is called an efficient strategy. Denote the optimal terminal value by X∗
T . Then,

(V arX∗
T ,K) is called an efficient point. The set of all efficient points {(V arX∗

T ,K) | K ∈ [x0e
∫

T

0
rsds,+∞)}

is called the efficient frontier.

Definition 2.3 A portfolio π is said to be admissible if π ∈ M2(0, T ) and (X, π) satisfies Eq.(2.1).

Denote by A(x0; 0, T ) the set of portfolio π admissible for the initial investment x0. For simplicity, we

set A(x0) := A(x0; 0, T ).

3 Main results

To deal with the constraint EXT = K, we introduce a Lagrange multiplier −2λ ∈ R and get the following

auxiliary optimal stochastic control problem:

Minimize E(XT −K)2 − 2λ(EXT −K) = E(XT − d)2 − (d−K)2 := Ĵ(π, d),

s.t.







π ∈ M2(0, T ),

(X, π) satisfies Eq.(2.1),
(3.1)

where d := K + λ.

Remark 3.1 The link between problem (2.2) and (3.1) is provided by the Lagrange duality theorem (see

Luenberger [11])

min
π∈A(x0),EXT=K

V arXT = max
d∈R

min
π∈A(x0)

Ĵ(π, d).

So the optimal problem (2.2) can be divided into two steps. The first step is to solve

Minimize E(XT − d)2, s.t. π ∈ A(x0), (3.2)

for any fixed d ∈ R. The second step is to find the Lagrange multiple which attains

max
d∈R

min
π∈A(x0)

Ĵ(π, d).

To solve the first step, we introduce the stochastic control problem

v(t, x; d) := inf
π∈A(x;t,T )

E(XT − d)2, (t, x) ∈ [0, T ]× R (3.3)

3



on [t, T ], subject to






dXs = (rsXs + π+
s σsθs − π−

s σsθ̄s)ds+ πsσsdWs,

Xt = x.
(3.4)

The value function v(t, x; d) is a viscosity solution of the following HJB equation (refer to [14]):







∂v
∂t

+ inf
π∈R

[

∂v
∂x

(rtx+ π+σtθt − π−σtθ̄t) +
1
2
∂2v
∂x2σ

2
t π

2
]

= 0,

v(T, x; d) = (x− d)2.
(3.5)

Note that the functions x+ and x− are nonsmooth. Then (3.5) does not have a smooth solution. In the

following theorem, we construct the viscosity solution of (3.5).

Theorem 3.2 Under Assumption 2.1, the viscosity solution of the above HJB equation (3.5) is given by

v(t, x; d) =







e−
∫

T

t
θ2
s
ds(xe

∫
T

t
rsds − d)2, if x ≤ de−

∫
T

t
rsds;

e−
∫

T

t
θ
2
s
ds(xe

∫
T

t
rsds − d)2, if x > de−

∫
T

t
rsds,

(3.6)

and the associated optimal feedback control is given by

π∗(t, x) =







−
θ
t

σt
(x− de−

∫
T

t
rsds), if x ≤ de−

∫
T

t
rsds;

− θ̄t
σt
(x− de−

∫
T

t
rsds), if x > de−

∫
T

t
rsds.

(3.7)

Proof: Notice that the terminal condition of (3.5) (x − d)2 is a convex function in x. We conjecture that

v(t, x; d) is convex in x on [0, T ].

Then,

inf
π∈R

[∂v

∂x
(rtx+ π+σtθt − π−σtθ̄t) +

1

2

∂2v

∂x2
σ2
t π

2
]

=











− 1
2

( ∂v

∂x
)2

∂2v

∂x2

θ2t +
∂v
∂x

rtx, if ∂v
∂x

≤ 0;

− 1
2

( ∂v

∂x
)2

∂2v

∂x2

θ
2

t +
∂v
∂x

rtx, if ∂v
∂x

> 0.

And the infimum in the above formula is attained at

π∗(t, x) =











−
θ
t

∂v

∂x

σt
∂2v

∂x2

, if ∂v
∂x

≤ 0;

−
θ̄t

∂v

∂x

σt
∂2v

∂x2

, if ∂v
∂x

> 0.
(3.8)

The HJB equation (3.5) becomes










−∂v
∂t

+
[

1
2

( ∂v

∂x
)2

∂2v

∂x2

θ2t −
∂v
∂x

rtx
]

I{ ∂v

∂x
≤0} +

[

1
2

( ∂v

∂x
)2

∂2v

∂x2

θ
2

t −
∂v
∂x

rtx
]

I{ ∂v

∂x
>0} = 0,

v(T, x; d) = (x− d)2.
(3.9)

We divide [0, T ]× R into three disjoint regions

Γ1 := {(t, x) ∈ [0, T ]× R|x < de−
∫

T

t
rsds};

Γ2 := {(t, x) ∈ [0, T ]× R|x > de−
∫

T

t
rsds};

Γ3 := {(t, x) ∈ [0, T ]× R|x = de−
∫

T

t
rsds}.
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It is easy to verify that v(t, x; d) defined in (3.6) is C1,2 and satisfies (3.9) on Γ1 and Γ2.

On Γ3,

v(t, x; d) =
∂v

∂t
(t, x; d) =

∂v

∂x
(t, x; d) ≡ 0,

Unfortunately, ∂2v
∂x2 does not exist on Γ3 since e

∫
T

t
(rs−θ2

s
)ds 6≡ e

∫
T

t
(rs−θ

2
s
)ds.

For any φ ∈ C∞([0, T ]× R), such that (t, x) ∈ Γ3 is a minimum point of φ− v, it’s easy to verify that

∂φ

∂t
(t, x) =

∂φ

∂x
(t, x) = 0

and
∂2φ

∂x2
(t, x) ≥ max{2e

∫
T

t
(rs−θ2

s
)ds, 2e

∫
T

t
(rs−θ

2
s
)ds}, (t, x) ∈ Γ3.

Then for any φ ∈ C∞([0, T ]× R), such that (t, x) ∈ Γ3 is a minimum point of φ− v, we have

∂φ

∂t
+ inf

π∈R

[∂φ

∂x
(rtx+ π+σtθt − π−σtθ̄t) +

1

2

∂2φ

∂x2
σ2
t π

2
]

=
1

2
inf
π∈R

[∂2φ

∂x2
σ2
t π

2
]

≥
1

2
inf
π∈R

[

max{2e
∫

T

t
(rs−θ2

s
)ds, 2e

∫
T

t
(rs−θ

2
s
)ds}σ2

t π
2
]

= 0.

Therefore, v is a viscosity subsolution of the HJB equation (3.5).

Similarly, for any φ ∈ C∞([0, T ]× R), such that (t, x) ∈ Γ3 is a maximum point of φ− v, we have

∂φ

∂t
(t, x) =

∂φ

∂x
(t, x) = 0.

In this case,

∂φ

∂t
+ inf

π∈R

[∂φ

∂x
(rtx+ π+σtθt − π−σtθ̄t) +

1

2

∂2φ

∂x2
σ2
t π

2
]

=
1

2
inf
π∈R

[∂2φ

∂x2
σ2
t π

2
]

≤ 0.

Therefore, v is a viscosity supersolution of the HJB equation (3.5). Finally, the terminal condition v(T, x; d) =

(x−d)2 is satisfied. By the definition of viscosity solution, we know that v(t, x; d) defined in (3.6) is a viscosity

solution of the HJB equation (3.5). By (3.8), it is easy to see that (3.7) holds.

This completes the proof. �

Now we determine the Lagrange multiple d∗ which attains max
d∈R

min
π∈A(x0)

Ĵ(π, d).

From (3.1),

min
π∈A(x0)

Ĵ(π, d)

= v(0, x0; d)− (d−K)2

=







e−
∫

T

0
θ2
s
ds(x0e

∫
T

0
rsds − d)2 − (d−K)2, if x0 ≤ de−

∫
T

0
rsds;

e−
∫

T

0
θ
2
s
ds(x0e

∫
T

0
rsds − d)2 − (d−K)2, if x0 > de−

∫
T

0
rsds.
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Set d∗ = K−x0e
∫
T
0 (rs−θ

2
s
)ds

1−e
−

∫
T
0

θ2
s
ds

. We have

max
d∈R

min
π∈A(x0)

Ĵ(π, d)

= max
d∈R

[v(0, x0; d)− (d−K)2]

= v(0, x0; d
∗)− (d∗ −K)2

=
1

e
∫

T

0
θ2
s
ds − 1

(K − x0e
∫

T

0
rsds)2, (3.10)

Therefore, the Lagrange multiple λ∗ = d∗ −K = K−x0e
∫
T
0 rsds

e
∫
T
0

θ2
s
ds−1

≥ 0.

The above analysis boils down to the following theorem.

Theorem 3.3 The efficient strategy of the problem (2.2) can be written as a function of time t and wealth

X:

π∗(t,X) =







−
θ
t

σt
(X − d∗e−

∫
T

t
rsds), if X ≤ d∗e−

∫
T

t
rsds;

− θ̄t
σt
(X − d∗e−

∫
T

t
rsds), if X > d∗e−

∫
T

t
rsds.

(3.11)

Moreover, the efficient frontier is

V arXT =
1

e
∫

T

0
θ2
s
ds − 1

(K − x0e
∫

T

0
rsds)2 ≡

1

e
∫

T

0
θ2
s
ds − 1

(EXT − x0e
∫

T

0
rsds)2.

Remark 3.4 The efficient strategy (3.11) indicates that the investor should long the stock if his current

wealth is less than d∗e−
∫

T

t
rsds, otherwise he should take the short position.

4 Three examples

In this section, three examples are given to show the applications of our main results. The wealth equations

in these examples are described by equation (2.1).

Example 4.1 Jouini and Kallal [8] and El Karoui et al [3] proposed the following model.

Under some circumstance, one has different expected returns for long and short position of the stock. In

this case, the assets prices are given by






dS0
t = S0

t rtdt, S0
0 = s0;

dS1
t = S1

t

[

(

btI{πt≥0} + b̄tI{πt<0}

)

dt+ σtdWt

]

, S1
0 = s1 > 0;

Then the wealth process X ≡ Xx,π of the self-financed large investor who is endowed with initial wealth

x0 > 0 is governed by the following stochastic differential equation,


















dXt = πt
dS1

t

S1
t

+ (Xt − πt)
dS0

t

S0
t

= (rtXt + π+
t σtθt − π−

t σtθ̄t)dt+ πtσtdWt;

X0 = x0,

where θt :=
b
t
−rt
σt

, θ̄t :=
b̄t−rt
σt

are risk premia for long and short positions.
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Example 4.2 Cuoco and Cvitanic [2] gave the following large investor model.

The portfolio strategy of a large investor can infect the expected return of the stock.







dS0
t = S0

t rtdt, S0
0 = s0;

dS1
t = S1

t

[

(

bt − εsgn(πt)
)

dt+ σtdWt

]

, S1
0 = s1 > 0;

where ε is a given small positive number, and

sgn(x) =







|x|
x
, if x 6= 0;

0, otherwise.
(4.1)

In this specific large investor model, longing the risky security depresses its expected return while shorting it

increases its expected return as explained in [2].

The wealth equation can be written



















dXt = (rtXt + (bt − rt)πt − ε|πt|)dt+ πtσtdWt

= (rtXt + π+
t σtθt − π−

t σtθ̄t)dt+ πtσtdWt;

X0 = x0,

(4.2)

where θs :=
bs−rs−ε

σs
and θs :=

bs−rs+ε
σs

, s ∈ [0, T ].

Example 4.3 El Karoui et al [3] studied the following wealth equation with taxes.

We suppose the assets prices are given by







dS0
t = S0

t rtdt, S0
0 = s0;

dS1
t = S1

t (btdt+ σtdWt), S1
0 = s1 > 0.

And there are some taxes which must be paid on the gains made on the stock. In this case, the wealth equation

satisfies



















dXt = (rtXt + (bt − rt)πt − απ+(bt − rt))dt+ πtσtdWt

= ((rtXt + π+
t σtθt − π−

t σtθ̄t)dt+ πtσtdWt;

X0 = x0,

(4.3)

where θt :=
(1−α)(bt−rt)

σt
and θ̄t :=

bt−rt
σt

, α ∈ [0, 1) is a constant.
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