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Abstract

In this letter we introduce a class of delayed kinetic systems derived from mass action
type reaction network models. We define the time delayed positive stoichiometric com-
patibility classes and the notion of complex balanced time delayed kinetic systems. We
prove the uniqueness of equilibrium solutions within the time delayed positive stoichiomet-
ric compatibility classes for such models. In our main result we prove the semistability of
the equilibrium solutions for complex balanced systems with arbitrary time delays using an
appropriate Lyapunov-Krasovskii functional and LaSalle’s invariance principle. As a con-
sequence, we obtain that every positive complex balanced equilibrium solution is locally
asymptotically stable relative to its positive stoichiometric compatibility class.

Keywords: Nonnegative systems; Kinetic systems; Chemical reaction networks; Stability The-
ory; Time delay; Logarithmic Lyapunov–Krasovskii functionals

1 Introduction

The class of kinetic systems has proven to be a useful representation of nonnegative system
models not only in biochemistry, but also in other areas like population or disease dynamics,
process systems, and even transportation networks [1, 2, 3]. A network-based description is
often advantageous to describe key properties of potentially large, complex systems with many
components [4, 5]. Kinetic systems are naturally equipped with a network (i.e., directed graph)
structure called the reaction graph, which is the abstraction of a set of chemical reactions,
where the chemical complexes and reactions can be represented by vertices and directed edges,
respectively. One of the primary aims of chemical reaction network theory (CRNT) is to discover
relations between the dynamical behaviour and the graph structure of kinetic systems [6, 7, 8].
Probably the most widely known results of general importance in this field are the Deficiency
Zero and Deficiency One Theorems [9] and more recently the notion of absolute concentration
robustness [10].

The detailed balance property of a thermodynamic system, defined originally by Boltzmann
in the 19th century, means that at equilibrium, each elementary reaction step is equilibriated by
the corresponding reverse reaction. A more general condition is complex balance, which requires
that the signed sum of incoming and outgoing reaction rates at equilibrium is zero for each com-
plex in a chemical reaction network [11, 12, 13]. It is worth remarking that complex balance
does not depend on a particular equilibrium (if there exist multiple equilibria in a system), but
it is a property of a chemical reaction network itself [6]. For a historical review of the notions of
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detailed and complex balance, see [14]. Generally, complex balance is related both to the struc-
ture and to the parameters of chemical reaction networks. Firstly, complex balance implies that
each component of the reaction graph is strongly connected (i.e., the reaction network is weakly
reversible) [6]. It is also important that deficiency zero weakly reversible reaction networks are
complex balanced for any positive values of the reaction rate coefficients [7, 9]. However, complex
balance becomes a parameter-dependent property when the deficiency of the network is higher
than zero. The main significance of complex balance in systems and control theory stands in
its stability implications [15]. According to the Global Attractor Conjecture, complex balanced
kinetic systems are globally stable in the positive orthant with a logarithmic Lyapunov function
that does not depend on the model parameters. The conjecture was proved for several special
cases such as one linkage class networks [16], and a possible proof for the general problem has
recently appeared in [17]. Using the non-uniqueness of reaction graphs corresponding to kinetic
models [18], a feedback design method was proposed in [19] that transforms a polynomial model
into a complex balanced closed loop system via nonlinear state feedback.

Time-delays are often present in natural and technological processes, and the detailed math-
ematical treatment of such delays is sometimes necessary to model and understand important
observed dynamical phenomena [20, 21]. An excellent summary of the fundamental results on
nonnegative and compartmental systems with time-delay can be found in Chapter 3 of [2], where
simple algebraic necessary and sufficient conditions are given for the asymptotic stability of de-
layed linear nonnegative models including linear compartmental systems. Among other results,
the semistability of an important special class of nonlinear compartmental systems for arbitrary
time-delays was shown in [22].

Motivated by the above results, the purpose of this paper is to introduce the complex balance
condition for kinetic systems with delayed reactions, and to study the stability properties of such
systems using logarithmic Lyapunov-Krasovskii functionals and LaSalle’s invariance principle.

Throughout the paper, we will use the following notations. If N is a positive integer, RN

denotes the N -dimensional space of real column vectors. The symbols RN+ and RN+ denote the set
of (element-wise) positive and nonnegative vectors in RN , respectively. For x, y ∈ RN+ , the vector
x
y ∈ RN+ is defined by (xy )

i
= xi

yi
for i = 1, . . . , N . For x, y ∈ RN+ , the vector exponential xy is

defined as xy =
∏N
i=1 x

yi
i . The mapping Ln : RN+ → RN is the element-wise logarithmic mapping

defined by (Ln(x))i = ln(xi) for x ∈ RN+ and i = 1, . . . , N . Recall that ln(xy) = yTLn(x) for
x ∈ RN+ and y ∈ RN , where (·)T denotes the transpose, and Ln(xy ) = Ln(x) − Ln(y) whenever

x, y ∈ RN+ . For every τ ≥ 0, the symbol C = C([−τ, 0],RN ) denotes the Banach space of
continuous functions mapping the interval [−τ, 0] into RN with the norm ‖ψ‖ = sup−τ≤s≤0 |ψ(s)|
for ψ ∈ C, where | · | denotes the Eucledian norm in RN . Finally, let C+ = C([−τ, 0],RN+ ) and

C+ = C([−τ, 0],RN+ ) denote the set of positive and nonnegative functions in C.

2 Kinetic systems with time delays

In this section, we introduce mass-action kinetic systems with time delays and show that they
generate a nonnegative semiflow.

Consider the ordinary mass-action kinetic system [7]

ẋ(t) =

M∑
k=1

κk (x(t))yk
[
y′k − yk

]
, t ≥ 0, (1)

where x(t) ∈ RN+ is the state vector. We have a set of complexes K ⊂ ZN+ and there are

M reactions between the complexes. As usual, ZN+ denotes the set on nonnegative integers.
Each reaction has a source and product complex yk, y

′
k ∈ K, respectively, with a reaction rate
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constant κk > 0, k = 1, . . . ,M . Solutions of (1) are determined by nonnegative initial vectors

x(0) = η ∈ RN+ . In this paper, we will consider the mass-action kinetic system with time delays

ẋ(t) =
M∑
k=1

κk
[
(x(t− τk))yk y′k − (x(t))yk yk

]
, t ≥ 0, (2)

where τk ≥ 0, k = 1, . . . ,M . In the special case τk = 0, k = 1, . . . ,M , Eq. (2) reduces to the
ordinary mass kinetic system (1). Solutions of (2) are generated by initial data x(t) = θ(t)
for −τ ≤ t ≤ 0, where τ = max1≤k≤M τk is the maximum delay and θ ∈ C+ is a nonnegative
continuous initial function. Throughout the paper, the solution of (2) with initial function θ ∈
C+ will be denoted by x = xθ. Note that the solutions of delay differential equations are usually
interpreted in C. For every t ≥ 0, xt ∈ C is defined by xt(s) = x(t+ s) for −τ ≤ s ≤ 0.

In the following theorem, we show that the semiflow generated by the time delay kinetic
system (2) is nonnegative.

Theorem 1. For every initial function θ ∈ C+, the solution xθ of (2) is nonnegative, i.e.,
xθt ∈ C+ for all t ≥ 0.

Proof. Eq. (2) can be written in the form

ẋ(t) = F (xt),

where F : C+ → RN is given by

F (φ) =
M∑
k=1

κk
[
(φ(−τk))yk y′k − (φ(0))yk yk

]
, φ ∈ C+.

It follows from the definition of the vector exponential that if φ ∈ C+ and φi(0) = 0 for some i ∈
{1, . . . , N}, then

Fi(φ) =
M∑
k=1

κk(φ(−τk))yk (y′k)i ≥ 0.

Here φi and Fi denote the i-th coordinate function of φ and F , respectively. The conclusion
follows from Theorem 2.1 in Chap. 5 of [23]. Alternatively, we can use the generalization of
Proposition 3.1 of [2] to equations with multiple delays.

3 Stoichiometric compatibility classes for delayed kinetic sys-
tems

Recall [7] that the stoichiometric subspace S for the ordinary mass-action kinetic system (1) is
defined by

S = span
{
y′k − yk | k = 1, . . . ,M

}
, (3)

and for each p ∈ RN+ the corresponding positive stoichiometric compatibility class Sp is given by

Sp =
{
x ∈ RN+ | x− p ∈ S

}
. (4)

It is well know that the positive stoichiometric classes Sp are positively invariant under the
mass-action kinetic system (1), i.e. x(0) ∈ Sp implies x(t) ∈ Sp for all t ≥ 0.

In this section we will extend the definition of the positive stoichiometric classes to the time
delayed kinetic system (2) and we prove their invariance property.
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For each v ∈ RN , define the functional cv : C+ → R by

cv(ψ) = vT

[
ψ(0) +

M∑
k=1

(
κk

∫ 0

−τk
(ψ(s))yk ds

)
yk

]
, ψ ∈ C+. (5)

Let S⊥ denote the orthogonal complement of the stoichiometric subspace S given by S⊥ =
{ v ∈ RN | vT y = 0 for all y ∈ S }. Now we can formulate the definition of the positive stoichio-
metric compatibility classes for the delayed kinetic system (2). For each θ ∈ C+, the positive
stoichiometric compatibility class of (2) corresponding to θ is denoted by Dθ and is defined by

Dθ = {ψ ∈ C+ | cv(ψ) = cv(θ) for all v ∈ S⊥}. (6)

It is easily seen that ψ ∈ Dθ if and only if ψ ∈ C+ and

ψ(0)− θ(0) +

M∑
k=1

(
κk

∫ 0

−τk
[(ψ(s))yk − (θ(s))yk ] ds

)
yk ∈ S. (7)

Therefore if we ignore the delays in (2), i.e. τk = 0 for k = 1, . . . ,M , then the above delayed pos-
itive stoichiometric compatibility classes coincide with the positive stoichiometric compatibility
classes of the ordinary kinetic system (1).

In the next theorem, we establish the invariance property of the above delayed positive
stoichiometric compatibility classes.

Theorem 2. For every θ ∈ C+, the positive stoichiometric compatibility class Dθ is a closed
subset of C+. Moreover, Dθ is positively invariant under Eq. (2), i.e. if ψ ∈ Dθ, then xψt ∈ Dθ
for all t ≥ 0.

Proof. Let θ ∈ C+. The closedness of Dθ is a simple consequence of the continuity of function-
als cv, v ∈ S⊥. We will show that for every v ∈ S⊥ the functional cv defined by (5) is constant
along the solutions of Eq. (2). Indeed, if x is a solution of (2), then we have for t ≥ 0,

d

dt
(cv(xt)) = vT

M∑
k=1

κk (x(t− τk))yk
(
y′k − yk

)
=

M∑
k=1

κk (x(t− τk))ykvT (y′k − yk) = 0,

the last equality being a consequence of the definition of S⊥. From this, we find that if ψ ∈ Dθ,
then for every v ∈ S⊥ and t ≥ 0,

cv(x
ψ
t ) = cv(x

ψ
0 ) = cv(ψ) = cv(θ)

and hence xψt ∈ Dθ. This show that Dθ invariant under Eq. (2).

4 Semistability for delayed complex balanced kinetic systems

Before we formulate our main stability criterion, we recall some definitions.
By a positive equilibrium of (1) or (2), we mean a positive vector x ∈ RN+ such that x(t) ≡ x

is a solution of (1) and (2), respectively. Note that Eqs. (1) and (2) share the same equilibria
satisfying the algebraic equation

M∑
k=1

κk(x)yk
[
y′k − yk

]
= 0. (8)
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A positive equilibrium x is called complex balanced if for every η ∈ K,∑
k:η=yk

κk(x)yk =
∑

k:η=y′k

κk(x)yk , (9)

where the sum on the left is over all reactions for which η is the source complex and the sum on
the right is over all reactions for which η is the product complex. Finally, an ordinary or delayed
kinetic system is called complex balanced if it has a positive complexed balanced equilibrium.

It is well-known [24] that if Eq. (1) and hence (2) has a positive complex balanced equilibrium
x, then any other positive equilibrium is complex balanced and the set of all positive equilibria E
can be characterized by

E = {x̃ ∈ RN+ | Ln(x̃)− Ln(x) ∈ S⊥}. (10)

Now we formulate the main result of the paper about the semistability of positive equilibria of
delayed complex balanced systems in the sense of the following definition. A positive equilibrium
x of Eq. (2) is called semistable if it is Lyapunov stable and there exists δ > 0 such that if
θ ∈ B̂δ(x), then xθ(t) converges to a Lyapunov stable equilibrium of (2) as t → ∞. As usual,
B̂δ(x) = {ψ ∈ C | ‖ψ − x‖ ≤ δ }.

Theorem 3. Every positive complex balanced equilibrium of the delayed kinetic system (2) is
semistable.

As a preparation for the proof of Theorem 3, we establish an auxiliary result about the
uniqueness of positive equilibria in the positive stoichiometric classes of complex balanced sys-
tems.

Theorem 4. Suppose that the delayed kinetic system (2) is complex balanced. Then for every θ ∈
C+ the corresponding delayed stoichiometric class Dθ contains at most one positive equilibrium.

Proof. Let θ ∈ C+. Suppose that x̃ and x are positive equilibria belonging to Dθ. From the
characterization (7) of Dθ, we find that

x̃− x+
M∑
k=1

(
κk

∫ 0

−τk
[x̃yk − xyk ] ds

)
yk ∈ S.

This, together with (10), yields

0 = (Ln(x̃)− Ln(x))T

[
x̃− x+

M∑
k=1

(
κk

∫ 0

−τk
[x̃yk − xyk ] ds

)
yk

]

=
N∑
i=1

(ln(x̃i)− ln(xi)) (x̃i − xi) +
M∑
k=1

κkτk (ln(x̃yk)− ln(xyk)) (x̃yk − xyk) .

Since (ln(a) − ln(b))(a − b) ≥ 0 whenever a, b > 0 with equality if and only if a = b, this is
possible only if x̃i = xi for all i = 1, . . . , N .

Now we are in a position to give a proof of Theorem 3. It will be based on the Lyapunov-
Krasovskii method and LaSalle’s invariance principle [2], [25], [26], [27].

Proof of Theorem 3. We will use the following two inequalities. For every a, b ∈ R,

ea(b− a) ≤ eb − ea, (11)

with equality if and only if a = b. For every b > 0 there exists c > 0 such that for all x > 0,

x
[
ln(x)− ln(b)− 1

]
+ b ≥ c ln

[
1 + (x− b)2

]
≥ 0. (12)
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Inequality (11) is not new. It is a simple consequence of the mean value theorem applied to the
exponential function. Inequality (12) is less obvious. Its proof is given in the Appendix.

Consider the candidate Lyapunov–Krasovskii functional V : C+ → R+ defined by

V (ψ) =

N∑
i=1

(
ψi(0)(ln(ψi(0))− ln(xi)− 1) + xi

)
+

M∑
k=1

κk

∫ 0

−τk
{(ψ(s))yk [ln((ψ(s))yk)− ln(xyk)− 1] + xyk} ds

(13)

for ψ ∈ C+. Clearly, V (x) = 0. We will show that there exists a continuous strictly increasing
function α : [0,∞)→ [0,∞) with α(0) = 0 such that

V (ψ) ≥ α(|ψ(0)− x|), ψ ∈ C+, (14)

where | · | is the Euclidean norm in RN . By virtue of (12), the second sum in (13) is nonnegative
and the first sum in (13) can be estimated from below using the first inequality in (12). Thus,
(12) implies the existence of positive constants ci, 1 ≤ i ≤ N , such that for all ψ ∈ C+,

V (ψ) ≥
N∑
i=1

ci ln
[
1 + (ψi(0)− xi)2

]
≥ γ

N∑
i=1

ln
[
1 + (ψi(0)− xi)2

]
= γ ln

N∏
i=1

[
1 + (ψi(0)− xi)2

]
≥ γ ln

(
1 +

N∑
i=1

(ψi(0)− xi)2
)

= γ ln
(
1 + |ψ(0)− x|2

)
,

where γ = min1≤i≤N ci. Thus, (14) holds with

α(r) = γ ln(1 + r2), r ≥ 0.

Next, it follows that the Lyapunov-Krasovskii directional derivative along trajectories of (2) is
given by

V̇ (xt) =
M∑
k=1

κk Ln

(
x(t)

x

)T [
(x(t− τk))yk y′k − (x(t))yk yk

]
+

M∑
k=1

κk (x(t))yk
(

ln

({
x(t)

x

}yk)
− 1

)

−
M∑
k=1

κk (x(t− τk))yk
(

ln

({
x(t− τk)

x

}yk)
− 1

)

=
M∑
k=1

κk

[
(x(t− τk))yk ln

({
x(t)

x

}y′k)
− (x(t))yk ln

({
x(t)

x

}yk)]

+

M∑
k=1

κk

[
(x(t))yk ln

({
x(t)

x

}yk)
− (x(t− τk))yk ln

({
x(t− τk)

x

}yk)]

+
M∑
k=1

κk [(x(t− τk))yk − (x(t))yk ]

=

M∑
k=1

κk x
yk

(
x(t− τk)

x

)yk [
ln

({
x(t)

x

}y′k)
− ln

({
x(t− τk)

x

}yk)]

+
M∑
k=1

κk x
yk

[(
x(t− τk)

x

)yk
−
(
x(t)

x

)yk]
.

6



By virtue of (11), we have for each k = 1, . . . ,M ,(
x(t− τk)

x

)yk [
ln

({
x(t)

x

}y′k)
− ln

({
x(t− τk)

x

}yk)]

≤
(
x(t)

x

)y′k
−
(
x(t− τk)

x

)yk
with equality if and only if for each k = 1, . . . ,M ,(

x(t)

x

)y′k
=

(
x(t− τk)

x

)yk
.

From this, we find that

V̇ (xt) ≤
M∑
k=1

κk x
yk

[(
x(t)

x

)y′k
−
(
x(t)

x

)yk]

=
∑
η∈K

(
x(t)

x

)η  ∑
k:η=y′k

κkx
yk −

∑
k:η=yk

κkx
yk

 = 0,

where the last equality follows from the complex balanced property (9). This implies that the
complex balanced equilibrium x of (2) is Lyapunov stable.

Choose ε such that 0 < ε < min1≤i≤N xi so that B̂ε(x) ⊂ C+. The Lyapunov stability of
the equilibrium x implies the existence of δ > 0 such that if θ ∈ B̂δ(x), then xθt ∈ B̂ε(x) for all
t ≥ 0. We will show that for every θ ∈ B̂δ(x) the solution xθ(t) converges to a Lyapunov stable
equilibrium of (2). Let

R = {ψ ∈ B̂ε(x) | V̇ (ψ) = 0 }.
From the previous calculations, we find that

R =

{
ψ ∈ B̂ε(x) |

(
ψ(0)

x

)y′k
=

(
ψ(−τk)
x

)yk
for k = 1, . . . ,M

}
.

LetM be the largest set in R which is invariant under Eq. (2). We will show that every element
ofM is a positive equilibrium of (2). Let ψ ∈M and write x = xψ for brevity. Rewrite Eq. (2)
in the form

ẋ(t) =
∑
η∈K

 ∑
k:η=y′k

κkx
yk

(
x(t− τk)

x

)yk
−
∑

k:η=yk

κkx
yk

(
x(t)

x

)yk η.
Since M⊂ R is invariant, we have that xt ∈ R for all t ≥ 0 and hence

ẋ(t) =
∑
η∈K

(
x(t)

x

)yk  ∑
k:η=y′k

κkx
yk −

∑
k:η=yk

κkx
yk

 η = 0

for t ≥ 0, where the last equality is a consequence of the complex balanced property (9).
Thus, x = xψ is a constant solution of (9) and hence ψ ≡ x̃ is a positive equilibrium. Now
suppose that θ ∈ B̂δ(x). As noted before, xθt ∈ B̂ε(x) for all t ≥ 0. By the application
of LaSalle’s invariance principle [26], we conclude that ω(θ) ⊂ M, where ω(θ) = {φ ∈ C |
there exists tn →∞ such that xθtn → φ } is the omega limit set. On the other hand, since θ ∈ Dθ
and according to Theorem 2 the stoichiometric class Dθ is closed and invariant, it follows that
ω(θ) ⊂ Dθ. Thus, ω(θ) ⊂ M ∩ Dθ. As shown before, every element of M is a positive
equilibrium of (2), while Theorem 4 implies that Dθ contains at most one positive equilibrium.
Hence ω(θ) = {x̃} for some x̃ ∈ E and xθ(t) → x̃ as t → ∞. The Lyapunov stability of the
positive equilibrium x̃ follows from the first part of the proof.
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Remark. In the previous proof we have shown that for every positive initial function θ from a
neighborhood of the positive complex balanced equilibrium x of (2) the stoichiometric class Dθ
contains exactly one positive equilibrium. A simple modification of the above proof can be used
to show that if system (2) is comlexed balanced then Dθ contains exactly one positive equilibrium
whenever the closure of the forward orbit O+

θ = {xθt | t ≥ 0 } remains in C+. This last condition
certainly holds if the solution xθ is persistent in the sense that lim inft→∞ x

θ
i (t) > 0 for each

i = 1, . . . , N .

Let x be a positive complex balanced equilibrium of Eq. (2). Theorem 4 implies that x is
the only positive equilibrium in its positive stoichiometric compatibility class Dx. This, together
with Theorem 3 yields the following analogue of a known result for ordinary kinetic systems.

Theorem 5. Every positive complex balanced equilibrium x of the delayed kinetic system (2) is
locally asymptotically stable relative to its positive stoichiometric compatibility class Dx.

5 Example

In this section, we will illustrate our results and notations on a simple example. The studied
system is intentionally low dimensional in order to be able to simply illustrate the relations and
differences between non-delayed and delayed kinetic systems.

Let the time delayed complex balanced kinetic system be given by a reversible reaction
2X1 � X2 containing one undelayed and a delayed reaction as follows

2X1
κ1=1−−−→ X2, X2

κ2=2,τ2−−−−−→ 2X1.

Then, the corresponding time-delay differential equation is

ẋ(t) = 1

(
(x1(t))

2

[
0
1

]
− (x1(t))

2

[
2
0

])
+ 2

(
x2(t− τ2)

[
2
0

]
− x2(t)

[
0
1

])
,

(15)

where x = [x1, x2]
T ∈ R2

+ are the states and τ2 is the time delay of the second reaction. It is
easily verified that [2, 2]T is a positive complex balanced equilibrium of (15). The stoichiometric
subspace is

S = span
{

[−2, 1]T
}

and S⊥ = span
{

[1, 2]T
}
.

The dimension of S is one, therefore Eq. (15) has infinitely many positive equilibria given by
the set

E =

{
x ∈ R2

+ |
[

ln(x1)− ln(2)
ln(x2)− ln(2)

]
∈ S⊥

}
. (16)

For x ∈ E , consider the set Xx of those positive constant functions which belong to Dx:

Xx =

{
η ∈ R2

+ |
[

η1 − x1
(1 + 2τ2)(η2 − x2)

]
∈ S

}
. (17)

According to Theorem 5, if θ ≡ η ∈ Xx is close to the equilibrium x ∈ E , then xθ(t) → x as
t→∞.

Figure 1 shows the phase portrait of the system (15) with τ2 = 0.5 and with different con-
stant initial conditions. The initial conditions are chosen such that the corresponding solutions
converge to three different equilibria. Figure 2 shows the time domain behavior of the system
(15) when there are different time delays, but the initial conditions are same.
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Figure 1: The phase portrait of the system (15) with τ2 = 0.5. The red dash curve shows the
equilibrium set E of the network. The black dash-dot lines show the set of points for which the
corresponding constant initial functions result in the same equilibrium point. The green dashed
lines show three stoichiometric compatibility classes of the non-delayed network having the same
structure and reaction rate coefficients as the delayed one. The blue curves show the solution
trajectories of (15) with different constant initial functions.
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Figure 2: The phase portrait of the system (15) with different time delays τ2 = {0.05, 0.1, 0.5}
and with the same constant initial function defined by η = [0.5 0.5]T . The red dashed line shows
the equilibrium set E of the network. The black dash-dot line shows the positive stoichiometric
compatibility class of the undelayed system having the same structure and reaction rate coeffi-
cients as the delayed one. The blue curves show the solution trajectories of (15) with different
time delays.

9



6 Conclusions

In this paper a class of delayed kinetic systems is introduced, where different constant time-delays
can be assigned to the individual reactions of the network. The complex balance property is
defined for this system in a straightforward way. It is shown that the equilibrium solutions
of complex balanced kinetic systems can be directly obtained from the equilibria of the cor-
responding non-delayed kinetic system. Therefore, the complex balance property of a delayed
network can be checked in the same way as in the non-delayed model. The notion of stoichio-
metric compatibility classes is extended to delayed networks. It is shown that contrary to the
classical mass action case, these classes are no longer linear manifolds in the state space. The
uniqueness of equilibrium solutions within a time delayed positive stoichiometric compatibility
class is proved for delayed complex balanced models. By introducing a logarithmic Lyapunov-
Krasovskii functional and using LaSalle’s invariance principle, the semistability of equilibrium
solutions in complex balanced systems with arbitrary time delays is also proved. As a conse-
quence, a positive complex balanced equilibrium is always locally asymptotically stable relative
to its positive stoichiometric class. The obtained results further underline the significance of the
complex balance principle in the theory of dynamical systems. In the light of [16] and [17], an
interesting question is whether the asymptotic stability of a delayed complex balanced system
is global relative to its positive stoichiometric class.
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Appendix

We give a proof of inequality (12). Let b > 0 be fixed. For x > 0, define

f(x) = x [ ln(x)− ln(b)− 1] + b

and
g(x) = ln

[
1 + (x− b)2

]
.

Since f ′(x) = ln(x)− ln(b) for x > 0, f ′ < 0 on (0, b) and f ′ > 0 on (b,∞). This implies that f
has a strict minimum at x = b. Hence f(x) > f(b) = 0 for x ∈ (0, b) ∪ (b,∞). Clearly, the same
inequality holds for g. A repeated application of l’Hospital’s rule yields

lim
x→b

f(x)

g(x)
=

1

2b
.

Therefore the function h : (0,∞)→ R defined by

h(x) =


f(x)

g(x)
for x ∈ (0, b) ∪ (b,∞)

1

2b
for x = b

is positive and continuous. Since x ln(x)→ 0 as x→ 0+, h can be extended continuously to the
interval [0,∞) by

h(0) = lim
x→0+

h(x) =
b

ln(1 + b2)
.

Since limx→∞ h(x) =∞, there esists T > 0 such that h(x) > h(0) for all x > T . The continuity
of h implies the existence of c = min0≤x≤T h(x). Since h(x) > h(0) ≥ c > 0 for x > T , we have
that h(x) ≥ c for all x ≥ 0 which implies the desired inequality (12).
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