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Observability of Boolean Networks via Set

Controllability Approach
Daizhan Cheng, Changxi Li, Fenghua He

Abstract—The controllability and observability of Boolean
control network(BCN) are two fundamental properties. But the
verification of latter is much harder than the former. This paper
considers the observability of BCN via controllability. First, the
set controllability is proposed, and the necessary and sufficient
condition is obtained. Then a technique is developed to convert
the observability into an equivalent set controllability problem.
Using the result for set controllability, the necessary and sufficient
condition is also obtained for the observability of BCN.

Index Terms—Boolean control network, set controllability,
observability, semi-tensor product of matrices.

I. INTRODUCTION

BOOLEAN network was firstly proposed by Kauffman

to describe gene regularity networks [1]. Since then it

has attracted much attention from biologists, physicists, and

system scientists [2–4].

Recently, a new matrix product, called the semi-tensor

product (STP) of matrices was introduced. STP has then

been successfully applied to modeling and controlling Boolean

networks [5–7]. Inspired by STP, the theory of Boolean control

networks (BCNs) as well as the control of general logical

systems have been developed rapidly. A set of systematic

results have been obtained. For instance, the controllability

and observability of Boolean networks have been discussed

in [8, 9]; the disturbance decoupling has been considered in

[10, 11]; the optimal control has been investigated in [12, 13];

the stability and stabilization have been studied in [14, 15],

just to mention a few.

Among them the controllability and observability of BCN

are of particular importance. Particularly, the controllability via

free control sequence is fundamental, and it has been solved

elegantly by [16]. Unlike the controllability, the observability

has also been discussed for long time and various kinds of

observability have been proposed and investigated [8, 16–18].

A comparison for various kinds of observability has been

presented in [19]. Moreover, [19] has also pointed out that

one of them, which will be specified later, is the most sensitive

observability. Here “most sensitive one” means all other kinds

of observability implies this one. In addition, [19] has also

provided necessary and sufficient conditions for various kinds

of observability via finite automata approach. Motivated by
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the idea of [19], [20] proposed a numerical method to verify

the (most sensitive) observability.

Since for BCN the controllability is much easier understand-

able and verifiable than the observability, this paper proposes

a method to verify observability via controllability. In this

paper the set controllability of BCN is proposed first. The

idea comes from [9], where some states are forbidden and it

is a special case of our set controllability. Hence the result

about set controllability can be considered as a generalization

of the corresponding result in [9]. Then a properly designed

extended system of the original BCN is built. It is proved that

the observability of the original BCN is equivalent to the set

controllability of the extended system. Then the observability

of BCN is converted into a set controllability problem and

then is solved completely. In fact, the result is equivalent to

the necessary and sufficient condition proposed in [20]. But

the new result is concise and easily verifiable.

The rest of this paper is organized as follows: Section 2

describes the set controllability of BCN. The set controllability

matrix is constructed. Using it an easily verifiable necessary

and sufficient condition is obtained. As an application, the

output controllability problem is also solved. Section 3 con-

structs an extended system and carefully designs the initial

and destination sets. Then the observability of a BCN becomes

the set controllability of its extended system. Some examples

are presented to describe the design procedure. Section 4 is a

concluding remark.

Before ending this section, a list of notations is presented:

(1) Mm×n: the set of m× n real matrices.

(2) Col(M): the set of columns of a matrix M . Coli(M) :

the i-th column of M .

(3) D := {0, 1}.

(4) δin: the i-th column of the identity matrix In.

(5) ∆n :=
{
δin|i = 1, · · · , n

}
.

(6) 1ℓ = (1, 1, · · · , 1
︸ ︷︷ ︸

ℓ

)T .

(7) A matrix L ∈ Mm×n is called a logical matrix if the

columns of L are of the form δkm. That is, Col(L) ⊂ ∆m.

Denote by Lm×n the set of m× n logical matrixes.

(8) If L ∈ Ln×r, by definition it can be expressed as

L = [δi1n , δi2n , · · · , δirn ]. For the sake of compactness,

it is briefly denoted as L = δn[i1, i2, · · · , ir].
(9) Denote by Bm×n the set of m× n Boolean matrices.

(10) Let A,B ∈ Bm×n. Then A+BB is the Boolean addition

(with respect to +B = ∨ and ×B = ∧).

(11) Let A ∈ Bm×n, B ∈ Bp×q. Then A⋉BB is the Boolean

(semi-tensor) product (with respect to +B = ∨ and

×B = ∧).

http://arxiv.org/abs/1801.00623v1
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(12) A(k) := A⋉B · · ·⋉B A
︸ ︷︷ ︸

k

.

(13) P 0 ⊂ 2N is the set of initial sets, where N =
{1, 2, · · · , n} is the set of state nodes of a BCN, and

2N is the power set of N .

(14) P d ⊂ 2N is the set of destination sets.

II. SET CONTROLLABILITY

A Markov-type Boolean control network with n nodes is

described as [5]






x1(t+ 1) = f1(x1(t), · · · , xn(t);u1(t), · · · , um(t))

x2(t+ 1) = f2(x1(t), · · · , xn(t);u1(t), · · · , um(t))
...

xn(t+ 1) = fn(x1(t), · · · , xn(t);u1(t), · · · , um(t)),

yj(t) = hj(x1(t), · · · , xn(t)), j = 1, · · · , p,
(1)

where xi ∈ D, i = 1, · · · , n are state variables; ui ∈ D,

i = 1, · · · ,m are controls; yj ∈ D, j = 1, · · · , p are outputs;

fi : Dm+n → D, i = 1, · · · , n, and hj : Dn → D, j =
1, · · · , p are Boolean functions.

Definition II.1. The system (1) is

1) controllable from x0 to xd, if there are a T > 0 and a

sequence of control u(0), · · · , u(T−1), such that driven

by these controls the trajectory can go from x(0) = x0

to x(T ) = xd;

2) controllable at x0, if it is controllable from x0 to

destination xd = x, ∀x;

3) controllable, if it is controllable at any x0.

Under the vector form expression:

1 ∼ δ12 , 0 ∼ δ22 ,

we have xi, ui, yj ∈ ∆2. Using Theorem A.5, (1) can be

converted into its algebraic form as
{

x(t+ 1) = Lu(t)x(t)

y(t) = Hx(t),
(2)

where x(t) = ⋉
n
i=1xi(t), y(t) = ⋉

p
i=1yi(t), u(t) =

⋉
m
j=1uj(t), and L ∈ L2n×2n+m , H ∈ L2p×2n .

Define

M :=
∑

B

2m

j=1

Lδ
j
2m , (3)

and set

C :=
∑

B

2n

i=1

M (i), (4)

which is called the controllability matrix. Then we have the

following result:

Theorem II.2. [16] Consider the controllability of system (1)

(by free control sequence). Assume its controllability matrix is

C = (ci,j), then we have the following results:

1) State xi is controllable from xj , if and only if, ci,j = 1.

2) System (1) is controllable at xj , if and only if, Colj(C) =
12n .

3) System (1) is controllable, if and only if, C = 12n×2n .

Denote by N = {1, 2, · · · , n} the set of state nodes.

Assume s ∈ 2N , the index vector of s, denoted by V (s) ∈ R
n,

is defined as

(V (s))i =

{

1, i ∈ s

0, i 6∈ s.

Define the set of initial sets P 0 and the set of destination

sets P d respectively as follows:

P 0 :=
{
s01, s

0
2, · · · , s

0
α

}
⊂ 2N ,

P d :=
{

sd1, s
d
2, · · · , s

d
β

}

⊂ 2N .
(5)

Using initial sets and destination sets, the set controllability

is defined as follows.

Definition II.3. Consider system (1) with a set of initial sets

P 0 and a set of destination sets P d. The system (1) is

1) set controllable from s0j ∈ P 0 to sdi ∈ P d, if there exist

x0 ∈ s0j and xd ∈ sdi , such that xd is controllable from

x0;

2) set controllable at s0j , if for any sdi ∈ P d, the system is

controllable from s0j to sdi ;

3) set controllable, if it is set controllable at any s0j ∈ P 0.

Using the set of initial sets and the set of destination sets

defined in (5), we can define the initial index matrix J0 and

the destination index matrix Jd respectively as

J0 :=
[
V (s01) V (s02) · · · V (s0α)

]
∈ B2n×α;

Jd :=
[
V (sd1) V (sd2) · · · V (sdβ)

]
∈ B2n×β .

(6)

Using (6), we define a matrix, called the set controllability

matrix, as

CS := JT
d ×B C ×B J0 ∈ Bβ×α. (7)

Note that hereafter all the matrix products are assumed to

be Boolean product (×B). Hence the symbol ×B is omitted.

According to the definition of set controllability, the follow-

ing result is easily verifiable.

Theorem II.4. Consider system (1) with the set of initial

sets P 0 and the set of destination sets P d as defined in

(5). Moreover, the corresponding set controllability matrix

CS = (cij) is defined in (7). Then

1) system (1) is set controllable from s0j to sdi , if and only

if, ci,j = 1;

2) system (1) is set controllable at s0j , if and only if

Colj (CS) = 1β;

3) system (1) is set controllable, if and only if, CS = 1β×α.

Example II.5. Consider the following system [5]

{

x1(t+ 1) = (x1(t) ↔ x2(t)) ∨ u1(t)

x2(t+ 1) = ¬x1(t) ∧ u2(t),

y(t) = x1(t) ∧ x2(t).

(8)
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It is easy to calculate that

C =







1 1 1 1
1 1 1 1
0 0 1 0
1 1 1 1






.

1) Assume
{

P d =
{
sd1 = {δ14 , δ

2
4}, sd2 = {δ34 , δ

4
4}
}
;

P 0 =
{
s01 = {δ14}, s02 = {δ24, δ

3
4 , δ

4
4}
}
.

(9)

Then we have

Jd =







1 0
1 0
0 1
0 1






, J0 =







1 0
0 1
0 1
0 1






.

It follows that

CS = JT
d CJ0 =

[
1 1
1 1

]

Hence, the system (8) is set controllable with respect to

the initial set P 0 and the destination set P d defined by

(9).

2) Assume
{

P d =
{
sd1 = {δ34}

}
;

P 0 =
{
s01 = {δ14 , δ

2
4 , δ

3
4}, s

0
2 = {δ14 , δ

4
4}
}
.

(10)

Then

Jd =







0
0
1
0






, J0 =







1 1
1 0
1 0
0 1






.

And

CS = JT
d CJ0 =

[
1 0

]
.

Hence, the system (8) is not set controllable with respect

to the initial set P 0 and destination set P d defined by

(10).

As an application, we consider the output controllability

[22].

Definition II.6. Consider system (1). It is said to be output

controllable, if for any x(0) = x0 and any yd, there exist a

T > 0 and a sequence of control u(0), u(1), · · · , u(T − 1)
such that y(T ) = yd.

Definition II.7. Consider system (1).

1) A partition is called an output-based partition, if

sdj =
{

x
∣
∣ Hx = δ

j
2p

}

, j = 1, · · · , 2p. (11)

2) A partition is called a finest partition, if

s0i = {xi}, i = 1, · · · , 2n. (12)

Using (11) and (12), we define
{

P d :=
{
sdj
∣
∣ j = 1, · · · , 2p

}
;

P 0 :=
{
s0i
∣
∣ i = 1, · · · , 2n

}
.

(13)

Taking the construction of P d and P 0 into consideration, the

following result is an immediate consequence of the definition.

Theorem II.8. System (1) is output controllability, if and

only if, it is set controllability with respect to the set pairs

(P d, P 0), defined in (13).

Note that corresponding to P 0, defined in (13), the initial

index matrix is an identity matrix, and the destination index

matrix is HT . Hence for output controllability, denoting by

CY the output controllability matrix, we have

CY = CS = HC, (14)

where CS is the set controllability matrix with respect to the

set pair (P d, P 0) defined in (13).

The output controllability has been discussed in [23].

Comparing our result with the direct approach in [23], the

advantage of set controllability approach is obvious.

Example II.9. Consider system (8) again. It is easy to figure

out that

Jd = (δ2[1, 2, 2, 2])
T
.

Then

CY = JT
d C =

[
1 1 1 1
1 1 1 1

]

> 0.

Hence, system (8) is output controllable.

III. OBSERVABILITY VIA SET CONTROLLABILITY

APPROACH

As discussed in [19] the following one is the most sensitive

observability among those in recent literature.

Definition III.1. [19] System (1) is observable, if for any

two initial states x0 6= z0, there exist an integer T ≥ 0
and a control sequence u = {u(0), u(1), · · · , u(T − 1)},

such that the corresponding output sequence y(i) = yi(x0, u),
i = 0, 1, · · · , T is not equal to ỹi(z0, u).

Next, we consider two kinds of state pairs.

Definition III.2. A pair (x, z) ∈ ∆2n × ∆2n is y-

indistinguishable if Hx = Hy. Otherwise, (x, z) is called

y-distinguishable.

Following [20], we split the product state space ∆2n ×∆2n

into a partition of three components as

D = {zx
∣
∣ z = x}, (15)

Θ = {zx
∣
∣ z 6= x and Hz = Hx}, (16)

Ξ = {zx
∣
∣ Hz 6= Hx}. (17)

Using algebraic form (2), we construct a dual system as
{

z(t+ 1) = Lu(t)z(t)

x(t+ 1) = Lu(t)x(t).
(18)

Then the observability problem of system (1) can be con-

verted into a set controllability problem of the extended system

(18). Construct the initial sets and the destination sets as

follows:
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P 0 :=
⋃

zx∈Θ

{zx} (19)

and

P d := {Ξ}. (20)

Note that (19) means that each zx ∈ Θ is an element of

P 0, while (20) means P d has only one element, which is Ξ.

Then we have the following result:

Theorem III.3. System (1) is observable, if and only if, system

(18) is set controllable from P 0 to P d, which are defined in

(19) and (20) respectively.

Proof. (Necessary): Assume the system is observable. Then

for any two initial points z0 6= x0, there exists a control

sequence {u(t) | t = 0, 1, · · · } such that the corresponding

output sequences {y(t) | t = 0, 1, · · · } and {ỹ(t) | t =
0, 1, · · · } are not the same. Let T ≥ 0 be the smallest t such

that y(t) 6= ỹ(t). If T = 0, (z0, x0) ∈ Ξc is a distinguishable

pair. Assume T > 0. Applying the sequence of controls to

system (18), (z0, x0) can be driven to (z(T ), x(T )). Since

Hz(T ) = y(T ) 6= ỹ(T ) = Hx(T ), we have (z(T ), x(T )) ∈
Ξ. That is, system (18) is set controllable from P 0 to P d.

(Sufficiency): Assume a pair z0 6= x0 is given. If (z0, x0) ∈
Ξ, we are done. Otherwise, since the system (18) is set

controllable from P 0 to P d = {Ξ}, there exists a control

sequence {u(t) | t = 0, 1, · · · } which drives (z0, x0) to

(zT , xT ) ∈ Ξ.

It is worth noting that system (18) is essentially a com-

bination of two independent systems corresponding to z and

x respectively. Only the same control sequence is applied to

them. Hence we have zT is on the trajectory of (2) with the

above mentioned control sequence {u(t) | t = 0, 1, · · · },

that is, zT = x(z0, u(0), u(1), · · · , u(T − 1)), and xT =
x(x0, u(0), u(1), · · · , u(T − 1)). Since (zT , xT ) ∈ Ξ, which

means that using this control sequence to system (2), it

distinguishes z0 and x0.

Example III.4. Consider the reduced model for the lac operon

in the bacterium Escherichia coli [24]






x1(t+ 1) = ¬u1(t) ∧ (x2(t) ∨ x3(t))

x2(t+ 1) = ¬u1(t) ∧ u2(t) ∧ x1(t)

x3(t+ 1) = ¬u1(t) ∧ (u2(t) ∨ (u3(t) ∧ x1(t))) ,

(21)

where x1, x2 and x3 represent the lac mRNA, the lactose in

high and medium concentrations, respectively; u1, u2 and u3

are the extracellular glucose, high and medium extracellular

lactose, respectively.

1) Assume that the outputs are






y1(t) = x1(t) ∨ ¬x2(t) ∨ x3(t)

y2(t) = ¬x1(t) ∨ x2(t) ∧ ¬x3(t)

y3(t) = ¬x1(t) ∧ ¬x2(t) ∨ x3(t).

(22)

Its algebraic form is

x(t+ 1) = Lu(t)x(t)
y(t) = Hx(t),

(23)

where

L = δ8[8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1, 1, 1, 5, 3, 3, 3, 7, 1, 1, 1, 5, 3, 3, 3, 7,
3, 3, 3, 7, 4, 4, 4, 8, 4, 4, 4, 8, 4, 4, 4, 8],

H = δ8[8, 6, 3, 6, 5, 6, 7, 6].

Construct the dual system as
{

z(t+ 1) = Lu(t)z(t)

x(t+ 1) = Lu(t)x(t).
(24)

It is easy to figure out that

Θ =
{
{δ28 , δ

4
8}, {δ

2
8 , δ

6
8}, {δ

2
8, δ

8
8}, {δ

4
8, δ

6
8},

{δ48 , δ
8
8}, {δ

6
8, δ

8
8}
}

∼
{
δ1264 , δ

14
64 , δ

16
64 , δ

30
64 , δ

32
64 , δ

48
64

}

:= {θ1, θ2, θ3, θ4, θ5, θ6};

and

Ξ =
{
{δ18 , δ

2
8}, {δ

1
8, δ

3
8}, {δ

1
8, δ

4
8}, {δ

1
8 , δ

5
8}, {δ

1
8, δ

6
8},

{δ18 , δ
7
8}, {δ

1
8, δ

8
8}, {δ

2
8, δ

3
8}, {δ

2
8, δ

5
8}, {δ

2
8, δ

7
8},

{δ48 , δ
3
8}, {δ

4
8, δ

5
8}, {δ

4
8, δ

7
8}, {δ

6
8, δ

3
8}, {δ

6
8, δ

5
8},

{δ68 , δ
7
8}, {δ

8
8, δ

3
8}, {δ

8
8, δ

5
8}, {δ

8
8, δ

7
8}, {δ

3
8, δ

5
8},

{δ38 , δ
7
8}, {δ

5
8, δ

7
8}
}

∼
{
δ264, δ

3
64, δ

4
64, δ

5
64, δ

6
64, δ

7
64, δ

8
64, δ

11
64 , δ

13
64 , δ

15
64 , δ

21
64 ,

δ2364 , δ
27
64 , δ

29
64 , δ

31
64 , δ

39
64 , δ

43
64 , δ

45
64 , δ

47
64 , δ

59
64 , δ

61
64 , δ

63
64

}
.

Set w(t) = z(t)x(t), then (24) can be expressed as

z(t+ 1) = L
(
I64 ⊗ 1

T
8

)
u(t)w(t)

x(t+ 1) = L
(
1
T
8 ⊗ I8

)
u(t)w(t).

Finally, we have

w(t + 1) = Mu(t)w(t), (25)

where

M = δ64[64, 64, 64, . . . , 60, 60, 60, 64] ∈ L64×512

:= [M1,M2,M3,M4,M5,M6,M7,M8].

Then the controllability matrix of (24) can be calculated

by

C :=
∑

B

64

j=1

(
∑

B

8

i=1

Mi

)(j)

∈ B64×64.

Finally, we consider the set controllability of (24). Using

the initial set P 0 = {θ ∈ Θ} = {θ1, θ2, θ3, θ4, θ5, θ6}
and the destination set P d = Ξ, we have

Jd =
∑

δi
64

∈Ξ

δi64;

and

J0 = δ64[12, 14, 16, 30, 32, 48].

It follows that

CS = JT
d CJ0 =

[
1 1 1 1 1 1

]
> 0.

According to Theorem III.3, system (21) with outputs

(23) is observable.
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2) Assume the measured outputs of system (21) are

{

y1(t) = x1(t)

y2(t) = x2(t).
(26)

Its algebraic form is

y(t) = Hx(t), (27)

where

H = δ4[1, 1, 2, 2, 3, 3, 4, 4].

It is easy to figure out that

Θ =
{
{δ18 , δ

2
8}, {δ

3
8, δ

4
8}, {δ

5
8, δ

6
8}, {δ

7
8, δ

8
8}
}

∼
{
δ264, δ

20
64 , δ

38
64 , δ

56
64

}

:= {θ1, θ2, θ3, θ4};

and

Ξ =
{
{δ18 , δ

3
8}, {δ

1
8, δ

4
8}, {δ

1
8 , δ

5
8}, {δ

1
8, δ

6
8}, {δ

1
8, δ

7
8},

{δ18 , δ
8
8}, {δ

2
8 , δ

3
8}, {δ

2
8, δ

4
8}, {δ

2
8, δ

5
8}, {δ

2
8, δ

6
8},

{δ28 , δ
7
8}, {δ

2
8 , δ

8
8}, {δ

3
8, δ

5
8}, {δ

3
8, δ

6
8}, {δ

3
8, δ

7
8},

{δ38 , δ
8
8}, {δ

4
8 , δ

5
8}, {δ

4
8, δ

6
8}, {δ

4
8, δ

7
8}, {δ

4
8, δ

8
8},

{δ58 , δ
7
8}, {δ

5
8 , δ

8
8}, {δ

6
8, δ

7
8}, {δ

6
8, δ

8
8}
}

∼
{
δ364, δ

4
64, δ

5
64, δ

6
64, δ

7
64, δ

8
64, δ

11
64 , δ

12
64 , δ

13
64 , δ

14
64 , δ

15
64 ,

δ1664 , δ
21
64 , δ

22
64 , δ

23
64 , δ

24
64 , δ

29
64 , δ

30
64 , δ

31
64 , δ

32
64 , δ

39
64 , δ

40
64 ,

δ4764 , δ
48
64

}
.

Using the initial set P 0 = {θ ∈ Θ} = {θ1, θ2, θ3, θ4}
and the destination set P d = Ξ, we have

Jd =
∑

δi
64

∈Ξ

δi64;

and

J0 = δ64[2, 20, 38, 56].

It follows that

CS = JT
d CJ0 =

[
0 1 0 1

]
.

According to Theorem III.3, system (21) with outputs

(26) is not observable.

IV. CONCLUSION

In this paper the set controllability of BCN is proposed,

and necessary and sufficient condition is obtained. As an

application, the output controllability is converted into a set

controllability problem and is solved easily. Then an extended

system is constructed for a given BCN. It has been proved

that the observability of the given BCN is equivalent to the set

controllability of the extended system. Then the observability

of a BCN is verified via the set controllability of the extended

system by providing a concise and easily verifiable neces-

sary and sufficient condition. A numerical example has been

presented to demonstrate the theoretical result. The method

reveals a relationship between controllability and observability

of BCN.

REFERENCES

[1] S.A. Kauffman, Metabolic stability and epigenesis in ran-

domly constructed genetic nets, J. Theoretical Biology,

Vol. 22, No. 3, 437-467, 1969.

[2] T. Akutsu, M. Hayashida, W.K. Ching, M.K. Ng, Control

of boolean networks: hardness results and algorithms for

tree structured networks, J. Theor. Biology, Vol. 244, No.

4, 670-679, 2007.

[3] R. Albert, A.L. Barabási, Dynamics of complex systems:

Scaling laws for the period of boolean networks, Physical

Review Lett., Vol. 84, No. 24, 5660-5663, 2000.
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APPENDIX

SEMI-TENSOR PRODUCT OF MATRICES

Semi-tensor product of matrices was proposed by us. It is

convenient in dealing with logical functions. We refer to [5, 6]

and the references therein for details. In the follows we give

a very brief survey.

Definition A.1. Let A ∈ Mm×n and B ∈ Mp×q. Denote by

t := lcm(n, p) the least common multiple of n and p. Then

we define the semi-tensor product (STP) of A and B as

A⋉B :=
(
A⊗ It/n

) (
B ⊗ It/p

)
∈ M(mt/n)×(qt/p). (28)

Remark A.2. • When n = p, A ⋉ B = AB. So the STP

is a generalization of conventional matrix product.

• When n = rp, denote it by A ≻r B;

when rn = p, denote it by A ≺r B.

These two cases are called the multi-dimensional case,

which is particularly important in applications.

• STP keeps almost all the major properties of the conven-

tional matrix product unchanged.

We cite some basic properties which are used in this note.

Proposition A.3. 1) (Associative Low)

A⋉ (B ⋉ C) = (A⋉B)⋉ C. (29)

2) (Distributive Low)

(A+B)⋉ C = A⋉ C +B ⋉ C.

A⋉ (B + C) = A⋉B +A⋉ C.
(30)

3)

(A⋉B)T = BT
⋉AT . (31)

4) Assume A and B are invertible, then

(A⋉B)−1 = B−1
⋉A−1. (32)

Proposition A.4. Let X ∈ R
t be a column vector. Then for a

matrix M

X ⋉M = (It ⊗M)⋉X. (33)

Finally, we consider how to express a Boolean function into

an algebraic form.

Theorem A.5. Let f : Dn → D be a Boolean function

expressed as

y = f(x1, · · · , xn). (34)

Identifying

1 ∼ δ12 , 0 ∼ δ22 . (35)

Then there exists a unique logical matrix Mf ∈ L2×2n , called

the structure matrix of f , such that under vector form, by using

(35), (34) can be expressed as

y = Mf ⋉
n
i=1 xi, (36)

which is called the algebraic form of (34).


