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Abstract

Variable selection methods have been widely used for system identification.

However, there is still a major challenge in producing parsimonious models

with optimal model structures as popular variable selection methods often pro-

duce suboptimal model with redundant model terms. In the paper, stability

orthogonal regression (SOR) is proposed to build a more compact model with

fewer or no redundant model terms. The main idea of SOR is that multiple

intermediate models are produced by orthogonal forward regression (OFR) us-

ing sub-sampling technique and then the final model is a combination of these

intermediate model terms but does not include infrequently selected terms. The

effectiveness of the proposed methods is analysed in theory and also demonstrat-

ed using two numerical examples in comparison with some popular algorithms.

Keywords: Orthogonal forward regression, Stability selection, Stability

orthogonal regression, System identification

1. Introduction

The main objective of system identification is to establish a mathematical

model for a system using system input and output observations. The widely

used linear models include auto-regressive with eXogenous input (ARX), auto-
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regressive moving average with eXogenous input (ARMAX), Box Jenkins and5

state space models [1]. If the performance of the linear models is not satisfied,

the nonlinear ARX (NARX) is an alternative option.

The most popular structure for the NARX model is a sum of nonlinear func-

tions whose parameters are given a priori. The nonlinear functions with pre-set

parameters are also referred to as terms in some literatures [2]. However, the pre-10

fixed values for these nonlinear parameters are not optimal, and therefore their

corresponding nonlinear functions are often redundant. The simple option is to

use ordinary least square methods to estimate all the coefficients of these non-

linear functions. For these redundant functions, their correct coefficients should

be zeros. However, due to the noise effect and correlations between redundant15

and important functions, the estimated coefficients of redundant functions are

often not zeros. In other words, the redundant functions are included into the

estimated models, leading to unsatisfactory model performance. Alternatively,

regularized least squares algorithms, such as l1 or l2 regularization can be used

to penalize the coefficients and therefore to produce more compact models. For20

regularized methods, some additional parameters need to be tuned carefully [3].

Another popular option of building a nonlinear model is to select represen-

tative nonlinear functions and then determine their coefficients. The process for

selecting nonlinear functions is also referred to as subset or term selection [2].

The predetermined model set may include a huge number of terms and most of25

terms should not be included into the final model. Therefore, it is important

to determine which terms to be included into the final model. The principle of

subset selection is to build a parsimonious model with as few redundant model

terms as possible [2]. The ideal case is to produce an optimal model without

any redundant model term. The orthogonal forward regression (OFR) is one of30

the most well known subset selection methods. A good review for these existing

term selection and their modifications can be found in literatures [1, 3, 4, 5].

This paper focuses on the subset selection which is a hard problem in the NARX

model [6].

The OFR and their modifications have been successfully used in many ap-35
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plications and well studied within system identification community. In most

applications, they can produce a parsimonious model. However, a suboptimal

solution can be obtained in some applications, in particular when the following

conditions happen:

• Insufficient input-output data and non-persistent excitation: Most40

existing methods are based on least square principle and they are asymp-

totically optimal. The training data length is too short to incorporate

all the useful information, which may lead to an inaccurate model. Non-

persistent input is another proper problem relating to system input data.

Non-persistent excitation can cause regression matrix being ill-conditioning,45

which may result in poor estimation of the parameters and also poor long

term prediction [7].

• Highly correlated terms: The adjacent lagged system inputs or outputs

could be very similar in their values and therefore their corresponding

nonlinear terms are highly correlated, which causes difficulty in selecting50

the correct terms from the similar alternatives.

• No optimal criteria: Most methods have to rely on the information

based criteria to determine the model structure. Akaike Information Cri-

terion (AIC), Bayesian Information Criterion (BIC) and other statistical

criteria are popular options [1]. These criteria are simple to use but they55

may not produce optimal model sizes.

• Mixed problems. The above problems can be coupled, which makes it

more difficult to build an accurate model, especially for nonlinear systems.

The above reasons can cause sub-optimal model structure with redundant

terms. Generally, there are two types of redundant terms. The first type is60

that the terms are highly correctly with the useful terms and they represent

the useful terms when entering the models. The second type is that the terms

can generally reduce the model error but tend to approximating the noise. For

sparse modeling problems where the number of the useful terms is much smaller
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than that of the whole candidate terms, the second type, noise terms, could be65

more serious than the first type in terms of their number in the final model.

Since the noise in the input-output data is usually unknown and very hard to

estimate with a good accuracy, it is difficult to choose a proper stopping criterion

or threshold to control the number of noise terms. Further, system identification

usually use random data as the system input. When repeating the modelling70

using different input-output data, the models could be significantly different in

terms of the number of redundant or noise terms even if the model stopping

criteria or threshold is fixed. In other words, one main difficulty in choosing the

model stopping criterion using OFR in practice is to limit the model redundant

model terms. If a good criterion or threshold is chosen, the resultant model75

has fewer or no redundant terms. If not chosen well, the model could has a

large number of redundant terms. Another difficulty is that, when repeating

the modelling process but just using different input-output data, a number of

different models may be generated and it is hard to determine which model

should be chosen as the final one.80

In this paper, the stability orthogonal regression (SOR) is proposed to build

a more parsimonious model by reducing the redundant model terms. A main

advantage of SOR is that it can produce an improved model with fewer re-

dundant terms than the original OFR method, and further it may provide the

chance to produce an optimal model without any redundant terms. This is85

achieved by introducing the stability selection scheme into the OFR method.

The stability selection was introduced in [8] and mainly aims to produce a stable

model with minimal redundant terms. The main principle of stability selection

is that it produces multiple intermediate models using sub-sampling techniques.

Then the final model is consistent of the most frequently selected terms in the90

intermediate models.

This paper is organized by starting to introduce the basic including the

NARX model and OFR method, then propose the SOR method and analyze its

properties in theory, followed by numerical examples.
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2. Basics95

2.1. NARX model

The linear-in-the-parameters NARX model can be written as the matrix

form given as follow:

y = PΘ + Ξ (1)

where y = [y(1), . . . , y(N)]T is the output vector, Θ = [θ1, . . . , θM ]T is the

weight vector, Ξ = [e(1), . . . , e(N)]T is the residual vector. The matrix P is the

whole candidate terms given by P = [p1, . . . ,pM ], which is an N ×M matrix

with pi = [pi(1), . . . , pi(N)]T .100

The main objective of the subset or term selection is to select the useful terms

Pm = [pi1 , . . . ,pim ] from the whole candidate term pool P, where m denotes

the number of selected terms and [i1, ..., im] are indexes. Then the coefficients

of the selected terms can be written as Θm = [θi1 , . . . , θim ]. Using orthogonal

least squares (OLS) method, equation (1) can be factorized as

y = WAΘ + Ξ (2)

here matrix A is anM×M unit upper triangular matrix. W = [w1,w2, . . . ,wM ]

is an N×M matrix with orthogonal columns that satisfies WTW = diag[wTi wi].

For brief, equation (2) can be rewritten as

y = WAΘ + Ξ = Wg + Ξ (3)

where g = [g1, g2, ..., gM ]T = AΘ is the orthogonal weight vector.

2.2. Orthogonal forward regression (OFR)

OFR is one of most well-known term selection methods and it mainly involves

a series of orthogonal composition using OLS method. OFR begins with an

empty model without any terms in it and then gradually builds a model by

adding one term that gives the largest decrease or increase in the cost function

at a time until the model performance is met under some stopping criterion.
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The first important task in OFR is to choose a cost function for determining

which term is included to a resultant model. The error reduction ratio (ERR)

is a popular criterion for term selection, and its value is derived from the sum

of squares of the model output. More specifically, the sum of squares of the

output variables y is

yTy =

m∑
i=1

g2
iw

T
i wi + ΞTΞ (4)

It can be seen that g2
iw

T
i wi is the contribution of the term wi to the sum

of squares of the output. The ERR value due to wi is defined as [2]

[err]i = g2
iw

T
i wi/(y

Ty) = giw
T
i y/(yTy). (5)

The details of the OFR procedure using the ERR criterion are summarized

as follows [2, 9]:

At the kth step, for 1 ≤ i ≤ M, i 6= i1, ..., i 6= ik−1 the following procedure

are calculated:

if k = 1

w
(i)
1 = pi

else

a
(i)
jk = wT

j pi/w
T
j wj , 1 ≤ j < k

w
(i)
k = pi −

k−1∑
j=1

a
(i)
jkwj


(6)

and

g
(i)
k = (w

(i)
k )Ty/(w

(i)
k )Tw

(i)
k ,

err
(i)
k = g

(i)
k (w

(i)
k )Ty/yTy

 (7)

The largest ERR value is calculated using err
(ik)
k = max

{
err

(i)
k , i 6= i1, ..., ik−1

}
and the term related to the number ik is used as

wk = w
(ik)
k = pik −

k−1∑
j=1

a
(ik)
jk wj

gk = wT
k y/wT

k wk

 (8)
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This procedure will be terminated at the mth step when

1−
m∑
k=1

err
(ik)
k < ρ (9)

where ρ ∈ [0, 1] is a preset tolerance. Alternatively, information based criteria

can be used to stop the selection, for example

AIC = Nlog
1

N
ΞTΞ + 2m (10)

is minimized or under a preset threshold. The model parameters Θ can then

be computed with backward substitution

θm = gm

θj = gj −
m∑

k=j+1

ajkθk, j = m− 1, ...1

 (11)

3. Stability orthogonal regression (SOR)105

OFR is a computationally efficient subset selection algorithm. However, the

resultant model obtained by OFR may have some redundant model terms in

some applications under the aforementioned conditions. In the present work, the

SOR is proposed to reduce the redundant terms. This is achieved by introducing

the stability selection scheme into the OFR method. Stability selection was110

proposed in [8] as a general technique and it mainly aims to aid existing subset

selection methods to produce a parsimonious model with minimal redundant

terms. The core idea of stability selection is to produce multiple intermediate

models using sub-sampling techniques. Then the final model is consistent of

the most frequently selected terms in the intermediate models. The redundant115

model terms can be included into the intermediate models but their included

frequencies are much less than that of the important terms. Therefore, the

redundant terms can be excluded from the final model due to their low selection

probability. This paper borrows the important finding in the stability selection

to improve the model sparseness of the well-known OFR method.120
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Figure 1: The idea of SOR

To illustrate procedure of the SOR well, the comparison with original OFR

is shown in Fig. 1. The OFR method uses all the available training data Ps

to produce a single model Pm. However, SOR produces multiple intermediate

models using sub-sampling data. More specifically, a random sub-sampling Ps1

from the whole data Ps is used for building an intermediate model Ps1
m1

via the

OFR method. The above process repeats until multiple, say r, intermediate

models [Ps1
m1
,Ps2

m2
, . . . ,Psr

mr ] are produced. Then count how many times each

term has been selected in the whole r models. Suppose sn(pi), i = 1, . . . ,M ,

is the times of the ith term being selected among r models. The selecting

probability can then be defined as the selecting times over the r repetitions, i.e.

sf(pi) =
sn(pi)

r
(12)

The largest number for sn(pi) is r, which means the term pi have been

selected by all the r models. The smallest number for sn(pi) is 0, which indicates

the term pi has not been selected by any model. If the maximal and minimal

numbers are divided by the repetition times, the term selection probability range

sf(pi) ∈ [0, 1] can be obtained.125

The final model P
′

m includes the terms whose selecting probability is bigger

than a preset threshold λ, which is given by

P
′

m = {pi, where sf(pi) > λ, i = 1, . . . ,M} (13)
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Here, the sub-sampling scheme and selecting threshold have to be determined in

advance. As Ps is an N -row matrix, the random sub-sampling, say Ns = N/2

out of N rows, are recommended in the literature [8]. As the re-sampling has

to be repeated r times, the repetition number r is chosen as a fixed value.

Empirically, the value of r = 100 have been shown to be sufficient in many130

cases. Alternatively, the trial-and-error method can be used for choosing the

number of subsamplings. This can be achieved by starting from a fixed number,

say 100, and gradually increasing the total subsamplings. The procedure stops

when increasing subsamplings do not change the resultant models. Furthermore,

the threshold value that is another tunable parameter within [0, 1]. However,135

it was shown in the literature [8] that its impact on the final model is rather

small. When values are in the range of, say [0.6, 0.9], the final models tend to

be very similar. In a words, these tunable parameters are not critical to model

performances and can be easily chosen.

To make the concept of stability selection clear, a simple example is pre-140

sented here. Suppose five model terms [p1,p2,p3,p4,p5] are given using priori

knowledge. The first task is to select the important terms from the five available

ones. Here, five intermediate models are produced using different training da-

ta which are obtained from random sub-sampling. The resultant intermediate

models and their terms are shown in Table 1. Then the second task is to count145

how many times each term has been selected and compute the term selection

probabilities. The results are shown in Table 2. The terms with high selection

Table 1: Intermediate models of the simple example

Model Terms

Model 1 Ps1
m1

[p1,p2,p5]

Model 2 Ps2
m2

[p1,p2,p4]

Model 3 Ps3
m3

[p1,p2]

Model 4 Ps4
m4

[p1,p2,p4]

Model 5 Ps5
m5

[p1,p2,p4]
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Table 2: Term selection probability of the simple example

Term p1 p2 p3 p4 p5

Times 5 5 0 3 1

Probability 1 1 0 0.6 0.2

probabilities will be included into the final model. In this example, if a selecting

threshold is chosen as 0.6, terms p1, p2 and p4 can be included into the final

while p3 and p5 are excluded due to their low selection probabilities.150

4. Theoretical properties and discussions

It is worth pointing out that SOR may not be an optimal method and it is

not guaranteed to produce a perfect model without any redundant terms. In

other words, SOR can include some redundant terms. The number of redundant

terms which are also referred to as falsely selected terms in the final model can155

be bounded, which is reported in [8]. To analyze the number of falsely selected

terms, we give several following definitions.

Definition 1: S = {k : θk 6= 0} is the set of useful model term index and

Z = {k : θk = 0} is the set of redundant model term index in the true model.

Definition 2: Given a threshold ρ (that determines when the procedure of160

OFR stops), suppose the resultant model is represented by Ŝρ. A set of thresh-

old, Λ = {ρ : ρ ∈ R+}, can be used to generate a set of models, ŜΛ = ∪ρ∈ΛŜ
ρ.

Let q be the average of the model size (the number of model terms), namely,

q = E(|ŜΛ|). Further, suppose ŜΛ is produced using the data sample I that is

a random subsample of {1, · · · , N} with the length of data being N/2, then we165

rewrite E(|ŜΛ|) = E(|ŜΛ(I)|).

Definition 3: Assume the size of random subsample I is N/2. The probability

of model setK ⊆ {1, · · · ,M} being selected in set Ŝρ(I) is Π̂ρ
K = P (K ⊆ Ŝρ(I)),

where the probability P is with respect to random subsampling.

Definition 4: Assume I1 and I2 are two random subsets of {1, · · · , N}, the size170

of the two subsets are N/2 and I1 ∩ I2 = ∅. Then the simultaneously selected
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set is defined as Ŝsim,ρ = Ŝρ(I1) ∩ Ŝρ(I2).

Definition 5: For any set K ⊆ {1, · · · ,M}, the simultaneous selection proba-

bility is defined as Π̂sim,ρ
K = P (K ⊆ Ŝsim,ρ), where probability P is with respect

to random sample splitting.175

Variable selection is conventionally addressed by selecting one model from

the set of models

{Ŝρ; ρ ∈ Λ} (14)

here Λ is also the set of predetermined threshold parameter ρ. The true or

optimal model may not be one element of set (14). The main reason may be

that sometimes, even only with small difference on ρ which may result in quite180

different models for system identification. Therefore, if inappropriate ρ being

included in the set Λ, obtaining an optimal model may be hard.

With stability selection, the final model includes those frequently selected

terms in the intermediate models which are obtained using subsampling tech-

nique, rather than directly choose one model from set (14). Using the prede-

termined threshold λ with 0 ≤ λ ≤ 1, the resultant model selected by stability

selection can be written as

P
′

m = {k : max
ρ∈Λ

Π̂ρ
k ≥ λ} = {k : sf(pk) ≥ λ} = ŜSS (15)

It is worth noting that k represents a single model, k = 1, · · · ,M and it is

different from K that is a model set with K ⊆ {1, · · · ,M}. Only the terms

with a high selection probability can be selected into the final model while the185

one with a relatively low selection probability will be excluded. However, some

redundant terms with a low selection probability can still be chosen into the

model as long as their selecting probability is larger than λ.

Using the above definitions, the falsely selected terms can be written as

V = ŜSS ∩ Z. If λ ∈(0.5,1], the expected amount of falsely selected terms can

be bounded by

E(|V |) ≤ 1

2λ− 1

q2

M
(16)
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which is also called error control. The bounded theory is proved as follows.

Lemma 1 (Lower bound for simultaneous selection probability) [8]:190

For any set K ⊆ {1, · · · ,M}, a lower bound for the simultaneous selection

probability is given by Π̂sim,ρ
K ≥ 2Π̂ρ

K − 1.

Lemma 2: For a random subsamples, let K ⊂ {1, 2, ...,M} and Ŝρ the set of

selected terms. If P (K ⊆ Ŝρ) ≤ ε, then P (Π̂sim,ρ
K ≥ ξ) ≤ ε2/ξ. If P (K ⊆

∪ρ∈ΛŜ
ρ) ≤ ε for some Λ ⊆ R+, then P (maxρ∈Λ Π̂sim,ρ

K ≥ ξ) ≤ ε2/ξ.195

Proof of the bounded theory (16) Define ZΛ = Z ∩ ŜΛ to be the set

of redundant terms which are falsely selected into ŜΛ and analogously UΛ =

S ∩ ŜΛ which represents the true model terms being selected into ŜΛ. Then the

expected number of redundant terms selected can be calculated with E(|ZΛ|) =

E(|ŜΛ|) − E(|UΛ|) = q − E(|UΛ|). In addition, assume that the original result200

is not worse than random guessing for any ρ ∈ Λ, namely E(|S∩Ŝρ|)
E(|Z∩Ŝρ|)

≥ |S|
|Z| .

With this assumption, we can obtain E(|UΛ|) ≥ E(|ZΛ|)|S|/|Z|. According to

the expression of E(|UΛ|) and E(|ZΛ|), we can get (1 + |S|/|Z|)E(|ZΛ|) ≤ q

and |Z|−1E(|ZΛ|) ≤ q/M . Here, with the exchangeability assumption, P (k ∈

ŜΛ) = E(|ZΛ|)/|Z| for all k ∈ Z. Therefore, P (k ∈ ŜΛ) ≤ q/M holds as205

desired. Now, using Lemma 2 above, P (maxρ∈Λ Π̂sim,ρ
k ≥ ξ) ≤ (q/M)2/ξ

for k ∈ Z and 0 < ξ < 1. Then P (maxρ∈Λ Π̂ρ
k ≥ λ) ≤ P ((maxρ∈Λ Π̂sim,ρ

k +

1)/2 ≥ λ) ≤ (q/M)2/(2λ − 1) can be obtained with Lemma 1. Therefore,

E(|V |) =
∑
k∈Z P (maxρ∈Λ Π̂ρ

k ≥ λ) ≤ 1
2λ−1

q2

M is approved.

In the following part, we mainly focus on analyzing the impact of λ and210

q on the average number of falsely selected terms. If the final model has no

redundant term, it means E(|V |) < 1. Here, considering the bounded theory

shown in (16) and we could have two cases:

• E(|ŜSS ∩ Z|) ≤ q2

(2λ−1)M < 1: When q2

(2λ−1)M < 1, then
1+ q2

M

2 < λ.

Further, as λ ∈(0.5,1], we have λ ∈ (
1+ q2

M

2 , 1].215

• E(|ŜSS ∩ Z|) < 1 ≤ q2

(2λ−1)M <∞: When 1 ≤ q2

(2λ−1)M , then λ ≤ 1+ q2

M

2 .

Further, as λ ∈(0.5,1], we have λ ∈ (0.5,
1+ q2

M

2 ].

12



q can be used for determining the range for λ in theory. However, q is dependent

on specific application and can be not easily given and therefore the above

mentioned optimal range for λ is often impossible to obtain in practice. If the220

final model has some redundant terms, we have b ≤ E(|V |) ≤ q2

(2λ−1)M (b ≥ 1).

As b ≥ 1, λ ≤ 1+ q2

bM

2 ≤ 1+ q2

M

2 . In this case, increasing the threshold can reduce

value
1+ q2

M

2 and therefore limiting the amount of redundant terms. However, if

λ is chosen as too big, say its upper limit 1, useful terms may be excluded from

the model. In practice, in order to limit the number of falsely selected terms225

and avoid missing useful terms, λ ∈ (0.6, 0.9) is recommended.

It is worth pointing out that the new algorithm tends to producing a more

parsimonious model. But the resultant model may not be an optimal model.

For example, a highly correlate term with high cross correlation coefficient may

enter the model with a probability and may be included into the final model. In230

some cases, to produce an optimal model, the global search or Monte-carlo based

methods have to be employed but they may require large computations. The

new algorithm is capable of reducing the redundant terms by scarifying limited

computations, which provides a good trade-off between model performance and

computational requirements.235

The differences with stability selection has been discussed as follows. First,

stability selection is originally provided in statistics community and its effective-

ness is demonstrated using static systems [8]. In this paper, we extended the

idea to nonlinear dynamic systems. Dynamic system modelling is referenced to

as system identification in control community. Although the proposed method240

shares similar conclusion with the stability selection, it deals with a different

model construction problem. One of the main contributions of this paper in

theory is that we proved that the average number of falsely selection terms for

nonlinear dynamic systems can be bounded. Second, for the parameter setting,

the threshold λ is given empirically with λ ∈ (0.6, 0.9) in [8] while we give a245

reference value λ =
1+ q2

M

2 via rigorous theoretical analysis, and we analyse it-

s impact on final model performance with three scenarios in terms of models

13



with no, few and significant redundant terms. Finally, stability selection only

focuses on variable selection but SOR carries out both variable selection and

parameter estimation such that the produced model could have a satisfactory250

generalization performance for system identification.

To help understand SOR well, its advantages, disadvantages and when to

use SOR are discussed as follows:

• Advantages: Compared to the OFR, the main advantage of SOR is

that it could produce a more sparse model and it is less dependent on255

the stopping criterion as the model selection is based on term selecting

probability.

• Disadvantages: The main disadvantage of SOR is that it requires more

computations than OFR as it used sub-sampling techniques. If the sub-

sampling repetition number r is chosen as 100, the computation cost of260

SOR is roughly 25 times of OFR. Further, SOR has one selection probabil-

ity threshold λ to be chosen. In general, we can follow the theory analysis

and choose λ within [0.6, 0.9], which can reduce the efforts and pains on

determining the threshold.

• When to use: When dealing with a system identification problem, if265

we find that OFR or other selection methods are very sensitive to the

model stopping criterion or different input-output data, SOR could be

a better choice to build a consistent model with fewer or no redundant

model terms.

5. Numerical examples270

Consider the sparse nonlinear system [10] :

z(k) =0.2z3(k − 1) + 0.7z(k − 1)u(k − 1)− 0.7z(k − 2)u2(k − 2)

+ 0.6u2(k − 2)− 0.5z(k − 2)

y(k) =z(k) + e(k).

(17)
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where u(k) and y(k) are the system input and output at interval k, respectively.

The system is excited with a uniformly distributed white noise u(k) ∈ [-1,1].

The system output z(k) is disturbed by a Gaussian noise sequence e(k) with

the signal-to-noise rate (SNR) 15dB. Here the SNR is defined as SNR =

10log( ZTZ
ΞTΞ

), where Ξ = [e(1), ..., e(N)] and Z = [z(1), ..., z(N)] with N being275

the number of input-output data points. A data sequence of 800 samples were

generated for system identification and therefore N = 800. The delayed input

and output {y(t− 1), y(t− 2), y(t− 3), y(t− 4), u(t− 1), u(t− 2), u(t− 3)} from

the nonlinear system are chosen as model input [11]. The polynomial NARX

model with order up to 3 is used and it has 120 terms in total.280

First of all, the conventional OFR is used to build a NARX model. It has to

be mentioning that the following two factors can have an impact on the resultant

model performance.

• Stopping criterion: The model selection criterion (9) is used and the

threshold value ρ has to be chosen first. The threshold value ρ is related285

to the system noise Ξ. If we use equations (4), (5), (9), the ideal threshold

ρ = 0.0307 in the case of noise with 15dB SNR. However, noise is often

unknown in practice and therefore the optimal value may not be given.

Here, we suppose we can use near-optimal value, ρ = 0.03 as the threshold,

which represents SNR=15.2dB. According to the definition of SNR, the290

larger SNR value means smaller noise. Using ρ = 0.03, the selection

process only can stop when the model produces a equivalent SNR 15.2dB

noise. The resultant model may have to include some redundant terms,

in where we can test how many redundant terms will be produced under

slightly over-fitted setting.295

• Random input data: When repeating the same modelling process, dif-

ferent input-output data due to the randomly generated input data u(k)

can result in different models even if the settings, such as stopping thresh-

old, are fixed. To study the impact of random input data, a Monte Carlo

simulation with 100 repetitions is carried out.300
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To make a fair comparison, SOR uses the same setting with OFR. However,

SOR has two additional parameters, the sub-sampling repetition number r and

the selecting probability threshold λ. Following the empirical recommendation,

r = 100 is used. Further, as for λ, instead of only choosing one value from

the the recommended range of λ ∈ [0.6,0.9], here we choose λ = 0.6. We
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Figure 2: The redundant term distribution produced by OFR (left) and SOR (right) with

λ = 0.6 for example 1 using Monte-Carlo simulation

305

use number of redundant terms as the performance evaluations. Under the

above mentioned settings, the redundant terms distribution produced by OFR

is shown in the left of Figure 2 with Monte Carlo simulation. It can seen that

the number of redundant terms varies from 0 to 9 where 0 means no redundant

terms in the model. More than 90% resultant models have redundant terms and310

majority have two or three redundant terms and a small proportion has over

five redundant terms. Then SOR is used to build the NARX model. Before

representing all the Monte Carlo results, one model is chosen from 100 final

models is given in table 3, which is used to help understand the new method.

It can be seen that all the five true terms have selecting probability above 0.9.315

One redundant term u2(k − 2)y(k − 4) could enter the model due to its high

correlation with u2(k−2)y(k−2), which was also reported in [11, 12]. All other

terms have very low selecting probabilities. The reason for this is that these

terms enter the model by approximating the noise. When using sub-sampling
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Table 3: Term selecting probability using SOR

Term Probability (SOR)

y(k− 2) 1

y(k− 1)u(k− 1) 1

u2(k− 2) 1

y3(k− 1) 1

u2(k− 2)y(k− 2) 0.92

u2(k − 2)y(k − 4) 0.43

others ≤ 0.1

techniques, the sampling noise varies and their approximating terms also vary320

accordingly. Therefore, their selecting probabilities are low and these redundant

terms can be referenced to as noisy terms. It is worth mentioning that other 99

models may have not the same term selecting probabilities as they use different

input-output data. Now the whole results using SOR are shown in the right of

Figure 2. It can be seen that majority has no redundant terms and only a small325

proportion has one redundant term. The significance of the new method is that

it can built more spare and robust models than OFR method. Further, SOR

produce more consistent results than OFR under different input-output data.

Moreover, least absolute shrinkage and selection operator (LASSO), as a

widely used method, is employed here to make further comparison with the330

new method. There are many LASSO solvers that were published in the past

decade. In this paper, the matlab toolbox function ′lasso′ is used to build the

NARX model. LASSO has one regularized parameter to be determined. To

avoid unfair comparison, 5000 regularized parameters that are chosen by the

matlab function were used to build 5000 models and the best one is picked up335

for comparison in terms of the least sum squared error with 2-folder and 5-

folder cross validation (CV) scheme. Again, a Monte Carlo simulation with 100

realization is performed. The redundant term distribution is given in Figure 3.

It can be seen that LASSO produces more redundant terms than SOR.
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Figure 3: The redundant term distribution produced by lasso method with 2 (left) and 5

(right) folder cross validation for example 1 using Monte Carlo simulation

A special case of NARX model which identifies nonlinear system with poly-

nomial NAR model. It is taken from [9], the specific format as follows

z(t) =(0.8− 0.5e−y
2(t−1))y(t− 1) + 0.1 sin(πy(t− 1))

− (0.3 + 0.9e−y
2(t−1))y(t− 2)

y(t) =z(t) + e(t).

(18)

where y(t) is the system output at interval t and y(t) is disturbed by a Gaussian340

noise sequence e(t) with the signal-to-noise rate (SNR) 15dB. 800 samples are

generated for identification. The delayed output {y(t−1), y(t−2), y(t−3), y(t−

4)} are used for model input. When the orders of polynomial are up to 3, then

there are total 34 polynomial terms. All the experimental conditions are the

same with previous examples. At the same time, Monte Carlo simulation is345

repeated 100 times. The average number of selected terms and average training

error of different methods are listed in table 4. It can be found that LASSO

has the largest average training error. Although OFR has a smaller error than

that of LASSO, which is larger than that of SOR. In addition, SOR builds a

parsimonious model with fewer terms compared to LASSO and OFR. The listing350

results have shown the effectiveness of SOR to build a parsimonious model with

a satisfied model performance.
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Table 4: The simulation results

Algorithm No. of Terms Error

OFR (ρ = 0.03) 9.32 0.0064

LASSO (CV = 5) 16.80 0.0168

SOR (λ = 0.6) 3.55 0.0015

6. Conclusion

In the present work, stability orthogonal regression (SOR) has been pro-

posed for system identification. First, multiple intermediate models have been355

produced using sub-sampling technique and then the final model is a combina-

tion of intermediate model terms but does not include low frequently selected

terms. SOR has employed the well known orthogonal forward regression (OFR)

to build the intermediate models. The main advantage of the new method is

that it is capable of building a more parsimonious model with fewer redundan-360

t model terms and further it has the potential to produce an optimal model.

Theoretical analysis has analyzed the impact of choice of term selecting thresh-

old. Results from numerical examples have confirmed the effectiveness of the

proposed method with comparison to two popular methods.
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