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Bayesian Augmented Lagrangian Algorithm for System Identification

Xiaoquan Tanga, Long Zhangb, Xiuting Lia

aSchool of Automation, Huazhong University of Science and Technology China
bSchool of Electrical and Electronic Engineering, University of Manchester UK

Abstract

Nonlinear Auto-Regressive model with eXogenous input (NARX) is one of the most popular black-box model

classes that can describe many nonlinear systems. The structure determination is the most challenging and

important part during the system identification. NARX can be formulated as a linear-in-the-parameters

model, then the identification problem can be solved to obtain a sparse solution from the viewpoint of

the weighted l1 minimization problem. Such an optimization problem not only minimizes the sum squares

of model errors but also the sum of reweighted model parameters. In this paper, a novel algorithm named

Bayesian Augmented Lagrangian Algorithm (BAL) is proposed to solve the weighted l1 minimization problem,

which is able to obtain a sparse solution and enjoys fast computation. This is achieved by converting the

original optimization problem into distributed suboptimization problems solved separately and penalising

the overall complex model to avoid overfitting under the Bayesian framework. The regularization parameter

is also iteratively updated to obtain a satisfied solution. In particular, a solver with guaranteed convergence

is constructed and the corresponding theoretical proof is given. Two numerical examples have been used to

demonstrate the effectiveness of the proposed method in comparison to several popular methods.

Keywords: System Identification, Weighted l1 Minimization, Augmented Lagrangian, Bayesian, NARX

1. Introduction

NARX is a popular model class that can describe complex dynamic behaviour of nonlinear systems [1, 2].

The importance of identifying nonlinear systems using NARX has been widely recognized owing to the

following advantages. First, NARX may provide a more compact model for nonlinear system compared to

Volterra series model class. Second, NARX can be formulated as a linear-in-the-parameters model when5

the unknown parameters in the nonlinear functions are given as a prior. Then the model structure can be

determined using regression algorithms, such as Least absolute shrinkage and selection operator (Lasso) [3]

and sparse Bayesian learning (SBL) [4]. However, the NARX model structure given as a prior often contains

redundant terms. In other words, the predetermined model term dictionary is generally huge and most terms

in the dictionary should not be selected into the final model. Therefore, structure determination is a key10

challenge and an important part in system identification.

Subset selection methods have been widely used to select important terms from the dictionary, leading to a

parsimonious model. For the linear-in-the-parameters model, it can be considered as finding a sparse solution
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which can be solved from the viewpoint of the l1 minimization problem. Lasso is a widely used method to

solve the l1 minimization problem, which tends to find a compromise model between model accuracy and15

complexity. However, when the columns of dictionary are highly correlated rather than orthogonal or nearly

so, Lasso algorithm generally leads to a suboptimal model with some redundant terms.

To obtain a more compact model, many regression problems are converted into the weighted l1 minimiza-

tion problem to find a maximally sparse solution. It also has been proved that weighted l1 minimization tends

to perform better than conventional l1 minimization under certain conditions [5]. SBL is recently proposed20

under the Bayesian framework to solve the weighted l1 minimization problem and has been proved to be an

efficient method in some practical applications. SBL has several advantages summarized as follows. Based

on the prior knowledge of the unknown system, it can build a sparse model by selecting candidate dictionary

terms. In addition, it can iteratively calculate the solution and can avoid overfitting problem with pruning

method. However, the solution is calculated by using third party solvers (e.g. CVX [6]) at each iterative25

step, leading to large computations.

In this paper, the main objective of the proposed BAL method is to build a sparse NARX model in

a computationally efficient manner. This is achieved by transforming the single weighted l1 optimization

problem into several distributed suboptimization problems, and then deriving the corresponding solvers.

Meanwhile, the regularization parameters that control the model complexity are iteratively updated under30

Bayesian framework. The new idea is inspired by both Split Augmented Lagrangian Shrinkage Algorithm

(SALSA) that is recently proposed for solving distributed optimization problem and SBL that is able to

produce a sparse model. The new BAL method enjoys the advantages of the both SALSA and SBL methods

but avoid their disadvantages as it can build a sparse model than SALSA and runs faster than SBL. More

specifically,35

• Using Bayesian learning can penalise the complex model to avoid overfitting problem and it is able

to capture the model uncertainty [4]. In addition, the information about the unknown system can be

converted into priors which can help to identify the unknown system.

• BAL converts the weighted l1 minimization problem into several subproblems that can be exactly

solved without using third party solvers (e.g. CVX). The memory and computational requirement can40

be reduced in comparison to those centralised methods [7]. Therefore, the running time of procedure

could be saved.

• The regularization parameter is iteratively updated to increase the opportunity to find a satisfied

solution.

The theoretical analysis regarding to solution existence, uniqueness and algorithm convergence is given. Two45

nonlinear examples are used to illustrate the effectiveness of BAL, and several popular methods are used for

comparison, including SBL, Lasso, SALSA and Orthogonal Forward Regression method (OFR) method.
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2. Preliminary

2.1. NARX model

NARX model is a widely used representation for input-output relationship of an unknown nonlinear50

system. The system can be described by some unknown function of lagged system inputs and outputs [8]:

y(t) = f(y(t− 1), · · · , y(t− ny), u(t− 1), · · · , u(t− nu)) + ξ(t)

= f(x(t)) + ξ(t)

where u(t), y(t) represent system input and output at the time interval t, respectively, with t = 1, 2, · · · , N

and N being the training data size. nu and ny are the largest lags of input and output. Assuming ξ(t) is

i.i.d. Gaussian distributed noise with zero mean and variance σ2.

Suppose the model input is x(t) = [y(t − 1), · · · , y(t − ny), u(t − 1), · · · , u(t − nu)], then the candidate55

dictionary can be represented as [9]

P = [p1

(
x(t)

)
, p2

(
x(t)

)
, · · · , pM

(
x(t)

)
]

Here P is the N ×M matrix which includes some linear and nonlinear terms of x(t). The NARX model

representation can be rewritten as a linear combination of some nonlinear functions such as polynomials and

neural networks

y(t) =

M∑
i=1

pi
(
x(t)

)
Θi + ξ(t)

which can be described as the following matrix format60

y = PΘ + ξ (1)

where vector y = [y(1), y(2), · · · , y(N)]T represents the system output, vector ξ = [ξ(1), ξ(2), · · · , ξ(N)]T

represents the residual, and Θ = [Θ1,Θ2, · · · ,ΘM ]T represents the parameter being estimated.

For obtaining an optimal representation of the unknown nonlinear system, the size of predetermined

candidate pool P is often large enough so that it owns the ability to describe nonlinearities of the unknown

nonlinear system. However, most of terms in the candidate pool are redundant and should not be selected65

into the final model. A sparse solution with good generalization performance is always desirable.

2.2. Sparse Bayesian Learning

Recently, SBL is proposed as an iterative reweighted l1 method to build a sparse model. The main idea

of SBL is briefly reviewed as following. All the unknowns are considered as stochastic variables which have

certain probability distributions in the process of Bayesian modelling [4]. For y = PΘ + ξ, the likelihood of70

the data y given Θ is described as

P(y|Θ) = N (y|PΘ, λI) ∝ exp
[
− 1

2λ
‖y −PΘ‖22

]
3



where λ = σ2. Suppose P(Θ) has the following prior distribution

P(Θ) ∝ exp
[
− 1

2

M∑
i=1

gc(Θi)
]

The function gc(Θ) is usually concave, non-decreasing for |Θ|, which can enforce sparsity of the solution.

Meanwhile, suppose P(Θ) =
∏M
i=1 P(Θi), then according to the Bayes’ rule, the posterior distribution over

Θ can be calculated75

P(Θ|y) =
P(y|Θ)P(Θ)∫
P(y|Θ)P(Θ)dΘ

However, the posterior P(Θ|y) is non-Gaussian, which makes the identification problem intractable. Gen-

erally, one tends to approximate P(Θ|y) as the Gaussian distribution, then the problem can be solved

efficiently. Therefore, an optimal hyperparameter γ = [γ1, · · · , γM ] ∈ RM+ is rationally estimated such that

the Gaussian-distribution P(Θ|y, γ̂) is a good relaxation to P(Θ|y). For more details, please review [4].

Under the Bayesian framework, the problem can be solved from the following viewpoint [7]80

min
γ≥0,Θ

‖PΘ− y‖22 + λΘTΓ−1Θ + log |λI + PΓPT | (2)

with Γ = diag[γ]. However, it is difficult to directly obtain model coefficients Θ and γ according to the

formula (2). Therefore, we rewrite the equation (2) as

min
γ≥0,Θ

g(Θ, γ)− h(γ)

with g(Θ, γ) =‖ PΘ− y ‖22 +λ
∑
j

Θ2
j

γj
and h(γ) = − log |λI + PΓPT |. Here, g(Θ, γ) is jointly convex for Θ,

γ and h(γ) in convex for γ. Since function h(γ) is differentiable over γ, Θ̂k+1 and γ̂k+1 can be obtained by

[Θ̂k+1, γ̂k+1] = arg min
γ≥0,Θ

g(Θ, γ)−∇γh(γ̂k)T γ (3)

Based on the principles in convex analysis, the negative gradient of h(γ) at γ can be expressed as85

−∇γh(γ̂k)T = −∇γ(− log |λI + PΓPT |)|γ=γ̂k

= diag
[
PT(λI + PΓkPT)−1P

]
For convenience, define αk = diag

[
PT(λI + PΓkPT)−1P

]
. With these definitions, the optimization problem

(3) can be further formulated as

[Θ̂k+1, γ̂k+1] = arg min
γ≥0,Θ

‖ PΘ− y ‖22 +λ
∑
j

(
Θ2
j

γj
+ (αk)jγj) (4)

here (αk)j is the jth diagonal element of the matrix αk. It is worth pointing out that the function (4) is

jointly convex in Θ, γ, which can be globally minimised by firstly solving γ and then Θ. More specifically,

given Θ, γ̂k+1 can be estimated by90

γ̂k+1 = arg min
γ≥0
‖PΘ− y‖22 + λ

∑
j

(
Θ2
j

γj
+ (αk)jγj)

4



with (γ̂k+1)j = |Θj |/
√

(αk)j . In turn, injecting γ̂k+1 into the equation (4), we can calculate Θ̂k+1 by

Θ̂k+1 = arg min
Θ
‖ PΘ− y ‖22 +λ

∑
j

(
Θ2
j

(γ̂k+1)j
+ (αk)j(γ̂k+1)j)

= arg min
Θ
‖PΘ− y‖22 + 2λ

∑
j

√
(αk)j |Θj |

The equation above can be simplified as

Θ̂k+1 = arg min
Θ

1

2
‖PΘ− y‖22 + λ‖GΘ‖1 (5)

where G = diag[wk] is a diagonal matrix and (wk)j is the jth diagonal element with (wk)j =
√

(αk)j . The

αk+1 can be calculated with

αk+1 = diag
[
PT(λI + PΓk+1P

T)−1P
]

(6)

with (γ̂k+1)j = |(Θ̂k+1)j |/
√

(αk)j .95

3. The idea of BAL

In this paper, BAL is proposed to build a sparse model in a computationally efficient manner. This is

achieved by transforming the weighted l1 minimization problem (5) into several subproblems which can be

solved separately without using third party solvers. In addition, the value of the regularization parameter is

updated at each iteration so that it can increase the opportunity to obtain a satisfied solution.100

3.1. Converting to suboptimization problems

The constrained optimization formulation of the weighted l1 minimization problem (5) can be expressed

as

min
Θ,v∈RM

f1(Θ) + f2(v) s.t. v = GΘ (7)

with f1(Θ) = 1
2‖y −PΘ‖22 and f2(v) = λ‖v‖1. Since the constraint of the problem (7) can be rewritten as

‖v −GΘ‖22 = 0, the constrained problem (7) can be converted into a quadratic penalty problem105

min
Θ,v∈RM

f1(Θ) + f2(v) +
µ

2
‖ GΘ− v ‖22 s.t. v −GΘ = 0 (8)

here µ is the Lagrange multiplier. Increasing µ helps to force the solution of the problem (8) to approximate

that of the weighted l1 minimization problem (5). With the Augmented Lagrangian method, the optimization

problem (8) can be further represented as

Lµ(Θ, v, u) = f1(Θ) + f2(v)− uT (GΘ− v) +
µ

2
‖ GΘ− v ‖22 (9)

where u is the dual variable. The problem (9) could be solved by alternating minimization with respect to

Θ, u and v, while keeping other variables fixed. Under the condition that v = GΘ, the problem (9) can be110
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simplified as the weighted l1 minimization problem (5). In other words, given vk, G and uk, Θ̂k+1 obtained

from equation (9) can be considered as the solution of the problem (5), if it satisfies vk = GΘ̂k+1. Given the

estimation Θ̂k+1, the weighted matrix G can be updated according to the equation (5) and (6), namely

αk+1 = diag
[
PT(λI + PΓk+1P

T)−1P
]

with (γ̂k+1)j = |(Θ̂k+1)j |/
√

(αk)j . Therefore, we have G = diag[wk+1] with (wk+1)j =
√

(αk+1)j .

3.2. Solving subproblems115

The specific solution of the problem (9) can be solved from several subproblems. Specifically, replace u

by the variable d = u/µ and substitute d into the equation (9), then we have

Lµ(Θ, v, d) = f1(Θ) + f2(v) +
µ

2
‖GΘ− v − d‖22

Then the solution can be obtained by solving the following subproblems [10]

Θ̂k+1 = arg minΘ f1(Θ) + µ
2 ‖GΘ− vk − dk‖22

vk+1 = arg minv f2(v) + µ
2 ‖GΘ̂k+1 − v − dk‖22

dk+1 = dk − (GΘ̂k+1 − vk+1)

(10)

The solution of subproblems (10) can be exactly solved, which will be specifically introduced in Theorem

2. It is worth pointing out that G in the original SALSA is chosen as unit diagonal matrix I, namely, G = I.

SALSA is a simple and special case of BAL. Here, G is iteratively calculated from the Bayesian viewpoint120

with the assumption that vk = GΘ̂k+1.

3.3. Tuning regularization parameter λ

To obtain a model with good generalization performance, it is necessary to set a proper value of the

regularization parameter. However, it is seldom known as a prior. Therefore, adaptively adjusting the value

of λ according to the previous modelling error is used. Now, we define modelling error at k+ 1th iteration as125

Errk+1 =
1

2
‖y −PΘ̂k+1‖22

Then define βk+1 = |Errk+1/Errk − 1|, (k = 0, · · · , kmax). The principle for adjusting parameter λk+1 is

that if βk+1 < π (π ∈ [0, 1]), then λk+1 = aλk with a > 1, otherwise λk+1 = cλk with 0 < c < 1. Updating

the regularization parameter at each step can increase the opportunity to build a sparse model with less

iterations.

3.4. The stopping criterion130

BAL could produce a sparse solution if a proper stopping criterion is satisfied. The stopping criterion

is important for the iterative algorithm, since the solution could be different at each iterative step. Before

introducing the stopping criterion of the proposed method, we first give the following definition and assump-

tion. Define that the set lock contains the location of nonzero coefficients of Θ at kth iteration and sign is a

6



sign function.135

Assumption 1: Assume that the sign and location of nonzero coefficients of Θ̂i(i = 1, 2, · · · , k) obtained

during the iterative process could be different until the estimation of Θ̂k+1 is similar with that of Θ̂k. In

addition, suppose that at the k + 1th step, Θ̂k+1 could converge to Θ∗ as long as with a suitable λk+1.

According to Assumption 1, the obtained estimation of Θ could be optimal if with a suitable value of

λk+1 and the iterative algorithm will stop when140

sign(Θ̂k+1) = sign(Θ̂k)

lock+1 = lock (11)

3.5. The main procedure

BAL can reduce computations by converting the weighted l1 minimization problem (5) into several sub-

problems solved without third party solver. The main procedure of BAL is summarised as follows:

Algorithm BAL

1: Set k = 0, choose µ=λ0, v0 = d0 = 0 and G = I

2: Repeat

3: Θ̂k+1 = arg minΘ
1
2‖PΘ− y‖22 + µ

2 ‖GΘ− vk − dk‖22
4: vk+1 = arg minv λk‖v‖1 + µ

2 ‖GΘ̂k+1 − v − dk‖22
5: dk+1 ← dk − (GΘ̂k+1 − vk+1)

6: Set Qk = diag[|Θ̂k|], diag[wk] = G, Wk = diag[wk]−1

(wk+1)j =
[
PT
j (λkI + PWkQk+1P

T )−1Pj

] 1
2

7: k ← k + 1

8: calculate λk according to section 3.3.

9: until stopping criterion (11) is satisfied.

Remark 1: During the iterations, there still might be no exact zero coefficients. Therefore, the small esti-

mated weights, e.g. ‖Θj‖22 � ‖Θ̂‖22, could also be pruned at each iteration with a predetermined threshold.145

This pruning procedure is also used by SBL.

4. Theoretical analysis

4.1. The existence of solution

The cost function of BAL is

Lµ(Θ, v, u) = f1(Θ) + f2(v)− uT (GΘ− v) +
µ

2
‖ GΘ− v ‖22

To analysis the existence of solution, we turn to discuss the alternative format of the problem (9), namely150

Lµ(Θ, v, d) = f1(Θ) + f2(v) +
µ

2
‖GΘ− v − d‖22

7



where f1(Θ) = 1
2‖y−PΘ‖22 and f2(v) = λ‖v‖1. Assume G, v, d are bounded, therefore one can alternatively

consider another constrained form such that

min
Θ

{1

2
‖y −PΘ‖22 + λ‖GΘ‖1

}
s.t ‖GΘ− v − d‖22 ≤ R (12)

for some radius R > 0. Since G is a diagonal matrix with each element being positive,the equation (12) can

be rewritten as

min
Θ

{1

2
‖y −PΘ‖22 + λ‖GΘ‖1

}
s.t ‖Θ‖22 ≤ R

′
(13)

where radius R
′
> 0. According to boundedness theorems, maximum and minimum theorems, the optimal155

solution to equation (13) exists, since 1
2‖y−PΘ‖22+λ‖GΘ‖1 is convex [6]. Therefore, according to Lagrangian

duality theory, the problem (9) exists optimal solution.

4.2. The uniqueness of solution

The problem (9) can be simplified as the weighted l1 minimization problem with the assumption that

vk = GΘ̂k+1. Therefore, under this condition, we could directly discuss the theoretical properties of the160

weighted l1 minimization problem (5). We first consider the Lasso problem

Θ̂ = arg min
Θ

{1

2
‖y −PΘ‖22 + λ‖Θ‖1

}
(14)

Firstly , we define a support set S(Θ) = {i|Θi 6= 0} and cardinality k = |S(Θ)| which means the number of

nonzero coefficients in Θ with k < N . In addition, the objective function of Lasso problem is not differentiable,

because l1 penalty is actually a piecewise linear function. Therefore, we apply zero subgradient condition to

solve the optimal solution of Lasso type problem [11]. Suppose vector z ∈ RM is a subgradient for l1 norm

estimated at Θ ∈ RM , if it satisfies zi = sign(Θi), if Θi 6= 0

zi ∈ [−1, 1], if Θi = 0
(15)

Under these definitions, we can start the following discussions.

Lemma 1: The solution uniqueness of Lasso problem [11]

1. Vector Θ̂ ∈ RM is an optimal solution of the problem (14) if and only if there exists a subgradient

vector z which satisfies PTP(Θ̂−Θ∗)−PT ξ + λz = 0.165

2. Assume that the subgradient vector z satisfies strict dual feasibility condition |zj | < 1,∀j /∈ S(Θ̂).

Then any optimal solution Θ∗ to Lasso satisfies Θ∗j = 0,∀j /∈ S(Θ̂).

3. With the conditions of part (2), if k × k matrix PT
S(Θ̂)

PS(Θ̂) is invertible, then the optimal solution Θ̂

of Lasso problem is unique.

The proof of Lemma 1 for Lasso problem has been given in the literature [11]. Here, we tend to prove

the solution of the problem (5) is unique based on this lemma, since the subgradient of ‖GΘ‖1 can also be

8



written as the form of equation (15) z̃i = sign(wiΘi), if wiΘi 6= 0

z̃i ∈ [−1, 1], if wiΘi = 0
(16)

where wi is denoted as the ith diagonal element of the matrix G. In addition, the problem (5) can be rewritten170

as

min
GΘ∈RM

‖GΘ‖1 s.t. PG−1GΘ = y (17)

Before giving the proof of the unique solution of the problem (17), we first give the following lemma.

Lemma 2: The solution uniqueness of weighted l1 minimization problem

1. Vector Θ̂ ∈ RM is an optimal solution of the problem (17) if and only if there exists a subgradient

vector z̃ which satisfies PTP(Θ̂−Θ∗)−PT ξ + λz̃ = 0.175

2. Assume that the subgradient vector z satisfies strict dual feasibility condition |z̃j | < 1,∀j /∈ S(Θ̂).

Then any optimal solution Θ∗ to Lasso satisfies Θ∗j = 0,∀j /∈ S(Θ̂).

3. With the conditions of part (2), if k × k matrix PT
S(Θ̂)

PS(Θ̂) is invertible, then the optimal solution Θ̂

of the weighted l1 minimization problem is unique.

Proof of Lemma 2: Since w1, w2, · · · , wM are positive coefficients, the problem (5), namely 1
2‖y−PΘ‖22 +

λ
∑M
i=1 wi|Θi| is a convex. Here wi also represents the ith diagonal element of the matrix G. According

to standard optimal conditions in convex program, Θ̂ is an optimal solution for problem (5) if and only if

PTPΘ̂−PTy + λz̃ = 0 with the subgradient z̃ ∈ ∂‖GΘ‖1. Meanwhile, y = PΘ∗ + ξ, so the solution of the

problem (5) satisfies condition (1) of Lemma 2. Next, according to duality theory [6], the optimal solution

of the Lasso problem must satisfy z̃TΘ∗ = ‖Θ∗‖1, which can established if and only if Θ∗j = 0 for all j such

that |z̃j | < 1. The solution of the weighted l1 minimization problem still keeps a similar condition as follows.

At the beginning, we prove that the conjugate of f0(GΘ) = ‖GΘ‖1 with GΘ a new variable satisfies

f∗0 (z̃) =

 0, ‖z̃‖1∗ ≤ 1

∞, otherwise
(18)

with ‖ · ‖1∗ being dual norm of ‖ · ‖1. If ‖z̃‖1∗ > 1, then according to dual norm, there exists s ∈ RM with180

‖s‖1 ≤ 1 and z̃T s > 1. If choosing GΘ = ts and t→∞, we have

z̃TGΘ− ‖GΘ‖ = tz̃T s− ‖ts‖1 ≤ t(z̃T s− ‖s‖1)

Therefore, f∗0 (z̃) = z̃TGΘ− ‖GΘ‖1 →∞. Conversely, when ‖z̃‖1∗ ≤ 1, we have [6]

z̃TGΘ− ‖GΘ‖1 ≤ 0

Therefore, f∗0 (z̃) = z̃TGΘ− ‖GΘ‖1 can be maximized with Θ = 0.

The dual function for problem (17) can be described as

g(τ) = inf
GΘ

(
f0(GΘ) + τT (PG−1GΘ− y)

)
9



= −yT τ − f∗0 (−(PG−1)T τ)

where τ is the vector of Lagrangian multipliers τi. Using the result of (18), the dual function g(τ) given by185

g(τ) =

 −yT τ, ‖(PG−1)T τ)‖1∗ ≤ 1

−∞, otherwise

It means that the optimal solution of the problem (5) satisfies z̃TGΘ∗ = ‖GΘ∗‖1 if and only if Θ∗j = 0 for all

j such that |z̃j | < 1. Therefore, the solution of the problem (5) satisfies condition (2) of Lemma 2. Lastly,

since Θ̂k+1 can be rewritten as (ΘS(Θ̂k+1),0), then we have

PΘ = PS(Θ̂k+1)ΘS(Θ̂k+1)

In addition, the columns of matrix PS(Θ̂k+1) are independent, so we can get the conclusion that matrix

PS(Θ̂k+1) is full column rank. Therefore, PT
S(Θ̂)

PS(Θ̂) is positive definite since190

R(PT
S(Θ̂k+1)

PS(Θ̂k+1)) = R(PS(Θ̂k+1)) = k

with k < N .

As mentioned above, the optimal solution of the regression problem (5) satisfies all these three conditions

in Lemma 2 and Lemma 1 is a special case of Lemma 2 with G = I. Therefore, similar with the problem

(14), the solution of the problem (5) is unique.

4.3. The convergence of algorithm195

The convergence of BAL can be guaranteed based on the theorem proposed by [12].

Theorem 1 [12]: Consider the problem (7), where f1 and f2 are closed, proper convex functions, and

G ∈ RM×M has full column rank. Consider arbitrary µ > 0 and v0, d0 ∈ RM . Let {ηk ≥ 0, k = 0, 1, · · ·∞}

and {νk ≥ 0, k = 0, 1, · · ·∞} be two sequences such that

∞∑
k=0

ηk <∞ and

∞∑
k=0

νk <∞

Consider three sequences {Θ̂k ∈ RM , k = 0, 1, · · · }, {vk ∈ RM , k = 0, 1, · · · } and {dk ∈ RM , k = 0, 1, · · · }200

that satisfy

ηk ≥
∥∥∥Θ̂k+1 − arg minΘ f1(Θ) + µ

2 ‖GΘ− vk − dk‖22
∥∥∥

νk ≥
∥∥∥vk+1 − arg minv f2(v) + µ

2 ‖GΘ̂k+1 − v − dk‖22
∥∥∥

dk+1 = dk − (GΘ̂k+1 − vk+1)

If problem (7) has a solution, the sequence {Θ̂k} converges, namely, Θ̂k → Θ∗, where Θ∗ is a solution of

(7). If there does not exist a solution for (7), then at least one of {vk} or {dk} diverges.

The convergence of SALSA has been proved with Theorem 1, for more details, please review the literature

[10]. It is worth noting that the matrix G in BAL is iteratively calculated from the Bayesian viewpoint.
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However, we still can prove the proposed method is convergent.

Theorem 2: If the subproblems (10)

Θ̂k+1 = arg min
Θ

f1(Θ) +
µ

2
‖GΘ− vk − dk‖22 (10.a)

and

vk+1 = arg min
v
f2(v) +

µ

2
‖GΘ̂k+1 − v − dk‖22 (10.b)

can be solved exactly and G is full-column-rank, then the convergence of BAL can be guaranteed.

Proof of Theorem 2 : The reweighted matrix G = diag
[
PT(λI + PΓkPT)−1P

] 1
2 is calculated during each205

iterative step. It is worth pointing out that G is a diagonal matrix and each diagonal element is positive.

Therefore, matrix G is full-column-rank. In addition, f1(Θ) = 1
2‖PΘ − y‖22 and f2(v) = λ‖v‖1, so the

minimizations of subproblems (10.a) and (10.b) can be solved exactly. Specifically, the cost function of the

problem (10.a) can be represented as

J(Θ) =
1

2
(PΘ− y)T (PΘ− y) +

µ

2
(GΘ− vk − dk)T (GΘ− vk − dk) (19)

where the equation (19) is a quadratic function and is differentiable while the equation (10.a) is not differ-210

entiable [6]. The solution of that optimization problem (19) is optimal if and only if the derivative of J is

equal to zero, namely

∇J(Θ) = µ(GTGΘ−GT (vk + dk)) + PTPΘ−PTy = 0 (20)

By simplifying (20), the solution can be calculated as

Θ̂k+1 = (PTP + µGTG)−1
(
PTy + µGT (vk + dk)

)
Before giving the specific solution of problem (10.b), similar to SBL, we also use the soft thresholding operator

Sµ/λ defined as follows [7]:215

Sµ/λ(x) = max(0, x− µ/λ)−max(0,−x− µ/λ)

where λ is the penalty parameter. Based on this function, the solution of equation (10.b) has the following

format

vk+1 = max
(
0, (GΘ̂k+1 − dk)− µ/λk

)
−max

(
0,−(GΘ̂k+1 − dk)− µ/λk

)
We have shown the two subproblems (10.a) and (10.b) have exact solutions and the weighted matrix G is

full-column-rank, according to the proof of the convergence of SALSA, BAL is guaranteed to converge.

5. Simulation220

Consider the nonlinear benchmark example [13]:

z(t) = 0.2z3(t− 1) + 0.7z(t− 1)u(t− 1)
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+ 0.6u2(t− 2)− 0.5z(t− 2)

− 0.7z(t− 2)u2(t− 2)

y(t) = z(t) + e(t). (21)

where u(t) and z(t) are the system input and output at interval t, respectively. The system is excited with

a uniformly distributed white noise u(t) ∈ [-1,1]. The system output z(t) is disturbed by a Gaussian noise

sequence e(t) with the signal-to-noise rate (SNR) 15dB. The delayed input and output {z(t−1), z(t−2), z(t−

3), z(t−4), u(t−1), u(t−2), u(t−3)} of the unknown nonlinear system are used as model input. 2000 samples225

are used as training data and there are another 1000 samples for testing data. Mean square error (MSE) is

used to test the model performance with

MSE =
1

N

N∑
t=1

(
y(t)− ŷ(t)

)2
where ŷ(t) is the prediction of the unknown system.

To show the efficiency of BAL on structure determination for NARX model, several popular methods are

used for comparison. The first method is OFR algorithm which belongs to forward selection method. The230

error reduction ratio (ERR) is a popular criterion for model selection. According to ERR criterion, the term

with largest ERR value is firstly selected into the model at a time until a stopping criterion is satisfied [9].

The selection procedure generally stops at k step if it satisfies

1−
k∑
i=1

ERRi < ρ

where ρ is predetermined. ρ should be carefully tuned since it is related to noise and has a critical effect on

selecting terms [14]. The second method is Lasso which is an effective method to obtain a sparse solution.235

100 different regularized parameters are used to produce 100 models based on 5-folder cross validation (CV)

scheme and the best model is determined as the final model. The third method is SBL recently presented

by the literature [4], while the solution is calculated by using CVX solver to directly address the original

optimization problem (5). The last one is SALSA which is a distributed algorithm. It should be noted that

during the iterations of SALSA, there might also be no exact zero coefficients. Therefore, if we do not prune240

those small weights, it will be hard to obtain a sparse solution by directly using SALSA. For fair comparison,

we determine the same stopping criterion for both SALSA and BAL.

For convenience, define λL, λSB , λB and λSA are the pre-determined parameter for Lasso, SBL, BAL

and SALSA, respectively. Since different values of λL, λSB , λB and λSA may lead to different solutions, so

for fair comparison, we repeat SBL, OFR, SALSA and BAL many times and choose the best one as the final245

model. It is worth pointing out that we define µ = λB in BAL. All the test results for are listed in Table 1.

From Table 1, we can get several conclusions. First, as long as with a suitable predetermined parameter,

BAL, SALSA, OFR, Lasso and SBL all can have a satisfied test performance with MSE being about 0.003.

Second, since all the important terms have been emphasised, therefore, one can obviously see that OFR

12



Table 1: The simulation results for the example 1

Algorithm Selected Terms Coefficient Error Steps Time

z(t− 2) -0.5025

SALSA u(t− 1)z(t− 1) 0.6872

u(t− 2)u(t− 2) 0.5984 0.0034 3 1.36s

z(t− 2)u(t− 2)2 -0.6490

z(t− 1)3 0.1589

other 115 terms
...

z(t− 4)u(t− 2)2 -0.0191

u(t− 2)u(t− 2) 0.6034

OFR z(t− 2) -0.4944 0.0032 - 1.41s

u(t− 1)z(t− 1) 0.6876

z(t− 2)u(t− 2)2 -0.7150

z(t− 1)3 0.1932

z(t− 2) -0.4898

Lasso u(t− 1)z(t− 1) 0.6634

u(t− 2)u(t− 2) 0.5856 0.0034 - 4.13s

z(t− 2)u(t− 2)2 -0.6683

z(t− 1)3 0.1754

z(t− 2) -0.4983

SBL u(t− 1)z(t− 1) 0.6881

u(t− 2)u(t− 2) 0.5979 0.0033 5 21.7s

z(t− 2)u(t− 2)2 -0.6800

z(t− 1)3 0.1812

z(t− 2) -0.4922

BAL u(t− 1)z(t− 1) 0.6862

u(t− 2)u(t− 2) 0.6008 0.0032 6 2.34s

z(t− 2)u(t− 2)2 -0.6996

z(t− 1)3 0.1951

The parameters are determined as λL = 0.0044, λSA = 0.084, λB = 0.1, λSB = 0.4 and ρ = 0.03,

respectively.
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selects a redundant term into final model. The redundant term z(t− 4)u(t− 2)2 tends to be firstly selected250

into the final model according to ERR criterion since it has the largest ERR value. This leads to the fact

that no mater how to tune ρ, the final model always includes z(t− 4)u(t− 2)2. In addition,the estimation of

important terms made by SALSA is similar with true values. However, it can not build a sparse model even

if most values of other selected terms are small. Other three methods based on l1 regularization technique

obtain an optimal model without redundant terms as long as with a suitable tuning parameter, although the255

estimations of parameters made by Lasso are not as accurate as that made by BAL and SBL. Third, from

the table, one can see that algorithms have different running time. The running time of SALSA and OFR

is less than others due to the computation efficient. Among the reweighted l1 methods, BAL can obtain a

satisfied model faster from the raw data alone. The iterative step of BAL is larger than SBL, however, the

running time is less than that of SBL. The reason is that the solution of suboptimization problem (10.a) and260

(10.b) can be solved exactly, therefore BAL does not need any solvers (e.g. CVX).

Figure 1: Box plots of the number of model terms produced by five methods for example 1.

Meanwhile, the Box plots of the number of model terms generated from Monte Carlo simulation with 100

repetitions are shown in Figure 1, which are used to consider the sensitivity of algorithm to noise (level). To

make simulation results more readable, the plots are drawn in the form of two different y axes. From these

two figures, one can see that most algorithms performed better when noise with a larger SNR. Meanwhile,265

the proposed BAL method could obtain a more parsimonious model in most cases comparing with other

algorithms. In addition, the original SALSA can not build a sparse model although most variables have

small weights.

5.1. Example 2

Consider the following sparse nonlinear system [15]270

z(t) = −0.3u(t− 2) + 0.8z(t− 1) + u(t− 1)

− 0.4u(t− 3) + 0.25u(t− 1)u(t− 2)
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− 0.3u3(t− 1) + 0.24u3(t− 2)

− 0.2u(t− 2)u(t− 3)

y(t) = z(t) + e(t). (22)

where u(t) and z(t) are the system input and output at interval t, respectively. A uniformly distributed white

noise u(t) ∈ [−1, 1] is used to excite the nonlinear system above and the system with noise being SNR 15dB.

4000 samples are generated for system identification, 25 percent samples are used for testing data and others

for training data. In addition, the delayed input and output {z(t − 1), z(t − 2), u(t − 1), u(t − 2), u(t − 3)}

are used for model input, which means there are total 56 polynomial terms.275

We repeated each algorithm 100 times and choose the optimal model as final results. All the simulation

results are listed in Table 2. From the table, one can see that the performance of these algorithms are similar

with test error being about 0.01 (MSE). In addition, the solution of OFR, SALSA and Lasso is suboptimal

since there are redundant terms in the final model. The simulation results of Lasso are not satisfied since

Lasso obtain a model with many redundant terms, leading to the estimation of coefficients of important terms280

is not as accurate as that made by other algorithms. Meanwhile, one can see that SALSA can not produce

a sparse solution even though most values of other terms are small. BAL and SBL can obtain an optimal

model without unimportant terms, leading to a more parsimonious model. And the running time of SALSA

and OFR is less than other methods. Next comes BAL with running time being 3.99s while the time of SBL

is 14.0s. As discussed above, the novel algorithm has the ability to give a more satisfied solution with less or285

no redundant terms and obtain more accurate estimation of parameters. In addition, BAL solves the original

optimization problem by converting into several suboptimization problem, therefore the running time can be

saved.

Figure 2: Box plots of the number of model terms produced by five methods for example 2.

Again, the Box plots of the number of model terms generated from Monte Carlo simulation with 100

repetitions are shown in Figure 2. One can see that in most cases, BAL could build a more compact model290

and other algorithms may often select redundant terms into the final model. Meanwhile, as the value of SNR
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Table 2: The simulation results for example 2

Algorithm Selected Terms Coefficient Error Steps Time

u(t− 1) 1.0055

u(t− 2) -0.3061

u(t− 3) -0.4025

z(t− 1) 0.7908

SALSA u(t− 1)u(t− 2) 0.2797 0.0100 3 0.65s

u(t− 2)u(t− 3) -0.1609

u(t− 1)3 -0.3148

u(t− 2)3 0.1749

other 48 terms
...

u(t− 1) 1.0092

u(t− 2) -0.3832

u(t− 1)u(t− 2) 0.2475

u(t− 1)3 -0.3164

OFR u(t− 2)u(t− 3) -0.2067 0.0099 - 0.63s

u(t− 3)3 -0.0111

z(t− 1) 0.8722

u(t− 3) -0.4337

u(t− 2)3 0.2799

u(t− 1) 0.9535

u(t− 2) 0.4777

z(t− 1) 0.0046

Lasso u(t− 1)u(t− 2) 0.2440 0.0108 - 10.6s

u(t− 1)3 -0.2340

other 6 terms
...

u(t− 1) 1.0084

u(t− 2) -0.2854

u(t− 3) -0.3925

z(t− 1) 0.7761

SBL u(t− 1)u(t− 2) 0.2472 0.0099 5 14.0s

u(t− 2)u(t− 3) -0.1818

u(t− 1)3 -0.3153

u(t− 2)3 0.2481

u(t− 1) 1.0093

u(t− 2) -0.3082

u(t− 3) -0.3991

z(t− 1) 0.7958

BAL u(t− 1)u(t− 2) 0.2479 0.0100 6 3.99s

u(t− 2)u(t− 3) -0.1695

u(t− 1)3 -0.3160

u(t− 2)3 0.2613

The parameters are determined as λL = 0.0026, λB = 0.043, λSB = 0.03, λSA = 0.0385 and ρ = 0.031,

respectively.
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increasing, most algorithms performed better since the decreasing noise level makes variable selection get

easier. According to discussions aforementioned, the effectiveness of BAL has been demonstrated.

6. Conclusion

In this paper, we have proposed a Bayesian Augmented Lagrangian (BAL) method to solve the weighted295

l1 minimization problem by converting the original optimization problem into several subproblems. The

reweighted matrix can be iteratively calculated from Bayesian viewpoint rather than setting as identity matrix

used in conventional methods, leading to a sparse model with fewer or no redundant terms. Theoretical proof

regarding to solution existence, uniqueness, algorithm convergence has been given. The simulation results

show that BAL is able to build a compact model with less running time compared with other reweighted l1300

methods and also keeps a satisfied model performance.
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