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Abstract

We give an explicit example of a two-dimensional polynomial vector field of
degree seven that has rational coefficients, is globally asymptotically stable, but
does not admit an analytic Lyapunov function even locally.

1. Introduction and Motivation

We are concerned in this paper with a continuous time dynamical system

ẋ = f(x), (1)

where f : Rn → Rn is a polynomial and has an equilibrium point at the origin,
i.e., f(0) = 0. Polynomial differential equations appear throughout engineering
and the sciences and the study of stability of their equilibrium points has been
a problem of long-standing interest to mathematicians and control theorists.

We recall that the origin of (1) is said to be a locally asymptotically stable
(LAS) equilibrium if it is stable in the sense of Lyapunov (i.e., if for every ε > 0,
there exists a δ = δ(ε) > 0 such that ‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε for all t ≥ 0)

and if there exists a scalar δ̂ > 0 such that

‖x(0)‖ < δ̂ ⇒ lim
t→∞

x(t) = 0.

We say that the origin of (1) is a globally asymptotically stable (GAS) if it is
stable in the sense of Lyapunov and if limt→∞ x(t) = 0 for any initial condition
x(0) in Rn.

We also recall (see, e.g., [1]) that the origin of (1) is LAS if there exists a
continuously differentiable (Lyapunov) function V : Rn → R that vanishes at
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the origin and satisfies V (x) > 0 and −〈∇V (x), f(x)〉 > 0 for all x ∈ S \ {0},
where S is a neighborhood of the origin. Moreover, if V is in addition radially
unbounded (i.e., satisfies V (x) → ∞ when ‖x‖ → ∞) and if S = Rn, then
the origin is GAS. We call a function satisfying the former (resp. the latter)
requirements a local (resp. global) Lyapunov function. It is also well known that
existence of such Lyapunov functions is not only sufficient, but also necessary
for local/global asymptotic stability [1].

Since the vector field in (1) is polynomial, it is natural to search for Lyaponuv
functions that are polynomials themselves. This approach has become widely
popular in the last couple of decades due to the advent of optimization-based
algorithms that automate the search for a polynomial Lyapunov function. Ar-
guably, the most prominent such algorithm is based on sum of squares optimiza-
tion, which reduces this search to a semidefinite program [2, 3, 4, 5, 6, 7, 8].
Alternatives to this approach that are based on linear programming or other
algebraic techniques have also appeared in recent years [9, 10, 11, 12]. As the
algorithmic construction of polynomial Lyapunov functions has been the focus
of intense research in recent years, it is natural to ask whether existence of a
Lyapunov function within this class is guaranteed. This is the case, e.g., if the
goal is to prove exponential stability of an equilibrium point over a bounded
region [13], [14]. Our focus in this paper, however, is on the basic question of
whether asymptotic stability of an equilibrium point implies existence of a poly-
nomial Lyapunov function. As is well known, the answer is positive when the
degree of the vector field in (1) is equal to one. Indeed, asymptotically stable
linear systems always admit a quadratic Lyapunov function.

Unlike the linear case, stable polynomial vector fields of degree as low as 2
may fail to admit a polynomial Lyapunov function. Indeed, in [16], it is shown
that the simple vector field

ẋ = −x+ xy
ẏ = −y (2)

is globally asymptotically stable (e.g. as certified by the Lyapunov function
V (x, y) = log(1 + x2) + y2), but does not admit a (global) polynomial Lya-
punov function. Note however, that the linearization of (2) around the origin is
asymptotically stable, and hence this nonlinear system admits a local quadratic
Lyapunov function.

In [17, Prop. 5.2], Bacciotti and Rosier show that the vector field(
ẋ
ẏ

)
=

(
−2λy(x2 + y2)− 2y(2x2 + y2)
4λx(x2 + y2) + 2x(2x2 + y2)

)
− (x2 + y2)

(
4λx(x2 + y2) + 2x(2x2 + y2)
2λy(x2 + y2)− 2y(2x2 + y2)

) (3)

is globally asymptotically stable for any scalar λ ≥ 0 (e.g. as certified by the
Lyapunov function Vλ(x, y) = (x2 + y2)(2x2 + y2)λ), but does not admit a local
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polynomial Lyapunov function for any λ which is irrational.1 However, the
validity of this statement crucially relies on the parameter λ being irrational.
Indeed, for any rational value of λ ≥ 0, the system admits a global polynomial
Lyaponuv function, which is e.g. simply an appropriate integer power of Vλ.

Our contribution in this paper is to give an example of a (globally) asymp-
totically stable polynomial vector field with rational coefficients that does not
admit a local polynomial (or even analytic) Lyaponuv function. Our construc-
tion is inspired by and is similar to that of Bacciotti and Rosier [17]. However,
by adapting their underlying proof technique, we are able to prove stability with
a Lyapunov function which is the ratio of two polynomials. This allows us to
use only rational coefficients in the construction of the vector field.2

Our interest in studying polynomial vector fields with rational coefficients
partly stems from the fact that in practice, most (if not all) vector fields that
are analyzed on a computer (e.g. by an optimization-based algorithm) have
rational coefficients. Therefore, if it was true that such vector fields always
had polynomial Lyapunov functions, one could restrict attention to this func-
tion class for all practical purposes and use techniques such as sum of squares
optimization to algorithmically find these Lyapunov functions. Because of this
practical motivation, existence of the counterexample that we present in this
paper was regarded as a significant unresolved question in the community; see
e.g. the ending paragraph in [15, Sect. IV].

Polynomial vector fields with rational coefficients are also important from the
viewpoint of complexity analysis in the standard Turing model. For example,
it is not known whether the problem of testing local asymptotic stability is
decidable for this class of vector fields. Indeed, this is an outstanding open
problem suggested by Arnold, which appears e.g. in [18], [19]:

“Let a vector field be given by polynomials of a fixed degree, with
rational coefficients. Does an algorithm exist, allowing to decide,
whether the stationary point is stable?”

In [18], Arnold is quoted to have conjectured that the answer to the above
question is negative:

“My conjecture has always been that there is no algorithm for some
sufficiently high degree and dimension.”

This conjecture also motivates the example in this paper: if it was true
that LAS polynomial vector fields with rational coefficients always admitted
polynomial Lyaponuv functions of a computable degree, then the problem of
testing stability would become decidable. This is because one can e.g. use the

1In fact, they show that for irrational λ, the system (3) does not even admit a local analytic
Lyaponuv function.

2Note that by rescaling, one can always change a polynomial vector field with rational co-
efficients to a polynomial vector field with integer coefficients without changing the properties
of stability or validity of a candidate Lyapunov function.
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quantifier elimination theory of Tarski and Seidenberg [20], [21] to test, in finite
time, whether a polynomial vector field admits a local polynomial Lyaponuv
function of a given degree.

We end our introduction by noting that, interestingly, there is a parallel
to these questions in the study of switched linear systems in discrete time.
There, the problem of testing asymptotic stability is similarly not known to
be decidable [22, Problem 10.2], [23]. One can show, however, that if the so
called “finiteness conjecture” [24] is true for rational matrices, then asymptotic
stability becomes decidable. This conjecture is known to be false over the reals
[25], but is currently unresolved for rational matrices [26].

2. The Main Result

Our contribution in this paper is to prove the following theorem.

Theorem 1. The polynomial vector field(
ẋ
ẏ

)
= f(x, y), (4)

with

f(x, y) =

(
−2y(−x4 + 2x2y2 + y4)

2x(x4 + 2x2y2 − y4)

)
− (x2 + y2)

(
2x(x4 + 2x2y2 − y4)

2y(−x4 + 2x2y2 + y4)

)
,

is globally asymptotically stable but does not admit an analytic Lyapunov func-
tion even locally.

Figure 1: A typical trajectory of the vector field in (4) and the level sets of the Lyapunov
function W in (5).
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Proof. We prove that the vector field in (4) is globally asymptotically stable by
means of the rational Lyapunov function defined as

W (x, y) =
x4 + y4

x2 + y2
∀(x, y) 6= (0, 0), and W (0, 0) = 0. (5)

Note that the function W is continuously differentiable on R2, positive definite
(i.e., satisfies W (x, y) > 0 for all (x, y) 6= (0, 0)), and radially unbounded.
Radial unboundedness can be seen, e.g., by noting that since ||(x, y)T ||2 ≤
21/4||(x, y)T ||4 for all (x, y) ∈ R2, we have

W (x, y) =
||(x, y)T ||44
||(x, y)T ||22

≥ 1

2
||(x, y)T ||22, ∀(x, y) ∈ R2.

Let us examine the gradient of W . A straightforward calculation gives

∇W (x, y) =
1

(x2 + y2)2

(
a(x, y)
b(x, y)

)
,

where a(x, y) = 2x(x4 + 2x2y2 − y4) and b(x, y) = 2y(−x4 + 2x2y2 + y4).

If we let f0 =

(
−b
a

)
, and f1 = −(x2 + y2)

(
a
b

)
, then f = f0 + f1, and

〈∇W, f〉 = 〈∇W, f0〉+ 〈∇W, f1〉

= 0− a2 + b2

x2 + y2
.

We show that 〈∇W, f〉 is negative when (x, y) 6= (0, 0) by observing that for
every (x, y) ∈ R2 \ {(0, 0)}, a(x, y) and b(x, y) cannot both be zero. Indeed, if
a(x, y) = b(x, y) = 0 for some (x, y) ∈ R2, then

ya(x, y) + xb(x, y) = 8(xy)3 = 0,

therefore x = 0 or y = 0. If x = 0 for example (the case y = 0 is similar), then
b(x, y) = 2y5, and hence y = 0 as well. This shows that

〈∇W (x, y), f(x, y)〉 < 0 ∀(x, y) 6= (0, 0),

and hence W is a global Lyapunov function which proves that the vector field
is GAS.

Let us now show that f does not admit an analytic Lyapunov function
locally. Assume for the sake of contradiction that such a function p : R2 → R
exists. By analyticity, p =

∑∞
k=0 pk, where pk is a homogeneous polynomial of

degree k. Let pk0 be the first non-vanishing term. Note that k0 ≥ 2 as

p(0, 0) = 0⇒ p0 = 0,

p ≥ 0, p(0, 0) = 0⇒ ∇p(0, 0) = (0, 0)T ⇒ p1(x, y) = 0,∀(x, y) ∈ R2.
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Here, the first implication follows from the fact that the origin is a global min-
imum for p. Observe now that

〈∇p, f〉 = 〈∇
∞∑

k=k0

pk, f0 + f1〉

= 〈∇pk0 , f0〉+ q,

where q := 〈∇pk0 , f1〉 +
∑∞
k=k0+1〈∇pk, f0 + f1〉. Note that all terms in q have

degree higher than the degree of the (homogeneous) polynomial 〈∇pk0 , f0〉. This
is because f1 has higher degree than f0 and the index of the sum in the definition
of q starts at k0 +1. Since 〈∇p, f〉 ≤ 0 (as we are assuming that p is a Lyapunov
function), and since 〈∇pk0 , f0〉 constitutes the terms of 〈∇p, f〉 of lowest order,
it must be that 〈∇pk0 , f0〉 is nonpositive in a small enough neighborhood of the
origin. But as 〈∇pk0 , f0〉 is homogeneous, this implies that

〈∇pk0(x, y), f0(x, y)〉 ≤ 0 ∀(x, y) ∈ R2. (6)

We now claim that the (homogeneous) polynomial pk0 must be constant on
the 1-level set of W , which we denote by

M := {(x, y) ∈ R2 |W (x, y) = 1}.

Since W is continuous (resp. radially unbounded), it follows that M is
closed (resp. bounded). In addition, f0 is continuously differentiable and does
not vanish on M , as we have already argued that a(x, y) and b(x, y) cannot
simultaneously vanish except at the origin. Moreover, trajectories of the vector
field f0 that start in M remain in M as one can verify that

〈∇W, f0〉 = 0.

Hence, by the Poincaré-Bendixson Criterion (see e.g. [1, Lemma 2.1]), the set
M contains a periodic orbit of f0.

Since M is a one-dimensional connected manifold, the trajectory of f0 start-
ing from a point z0 ∈M on this periodic orbit can only return to z0 by travers-
ing all points in M. Hence, the periodic orbit coincides with M . In view of
the fact that 〈∇pk0 , f0〉 ≤ 0 as established in (6), it follows that pk0 must be
equal to some constant c on M . Indeed, if we had pk0(z1) > pk0(z2) for some
z1, z2 ∈ M, then the trajectory of f0 starting from z2 would not visit z1 and
this is a contradiction.

Note that the constant c must be nonzero or else, by homogeneity, the poly-
nomial pk0 would be identically zero, contradicting the definition of k0. As a
consequence,

pk0 and cW
k0
2

are two nonzero homogeneous functions of degree k0 that are equal on M . Since
M intersects all the lines passing through the origin, and since any homogeneous
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function u : R2 → R of degree k0 satisfies u(λx, λy) = λk0u(x, y) for all λ ∈ R
and all (x, y) ∈ R2, we get that

pk0(x, y) = cW
k0
2 (x, y) ∀(x, y) ∈ R2.

This implies the following polynomial identity

(x2 + y2)k0p2k0(x, y) = c2(x4 + y4)k0 ,

which gives a contradiction as (x, y) = (
√
−1, 1) makes only the left-hand side

vanish.

The vector field in (4) is a polynomial of degree 7 in two variables. We leave
open the problem of determining the minimum degree of a polynomial vector
field with rational coefficients for which the statement of Theorem 1 holds. Note
also that although the vector field in (4) does not admit a polynomial Lyapunov
function, it admits a rational one (i.e., a ratio of two polynomials). We leave
the question of determining whether LAS polynomial vector fields with rational
coefficients admit a local rational Lyapunov function for future research. We
have recently shown in [27] that one cannot hope for a global rational Lyapunov
function in general. On the other hand, [27] also shows that if the vector field
in question is homogeneous, then asymptotic stability implies existence of a
rational Lyaponuv function.
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