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Abstract

In this paper, we present an approach for solving the problem of moving N homogeneous agents into
M ≥ N goal locations along energy-minimizing trajectories. We propose a decentralized framework that
only requires knowledge of the goal locations and partial observations of the global state by each agent.
The framework includes guarantees on safety through dynamic constraints, and a method to impose a
dynamic, global priority ordering on the agents. A solution to the goal assignment and trajectory generation
problems are derived in the form of a binary program and a nonlinear system of equations. Then, we present
the conditions for optimality and characterize the conditions under which our algorithm is guaranteed to
converge to a unique assignment of agents to goals. We also solve the fully constrained decentralized
trajectory generation problem considering the state, control, and safety constraints. Finally, we validate the
efficacy of our approach through a numerical simulation in MATLAB.

Keywords: Multi-Agent systems, Decentralized control, Optimal control, Assignment, Trajectory
Generation

1. INTRODUCTION

1.1. Motivation

Complex systems consist of diverse entities that
interact both in space and time [1]. Referring to
something as complex implies that it consists of in-
terdependent entities or agents that can adapt, i.e.,
they can respond to their local and global environ-
ment. Complex systems appear in many applica-
tions, including cooperation between components of
autonomous systems, sensor fusion, and natural bio-
logical systems. As we move to increasingly complex
systems [2], new control approaches are needed to op-
timize the impact of individuals on system-level be-
havior through the control of individual entities [3, 4].
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Swarms are typical complex system which have
attracted considerable attention in many applica-
tions, e.g., transportation, exploration, construction,
surveillance, and manufacturing. As discussed by Oh
et al. [5], swarms are especially attractive due to their
natural parallelization and general adaptability. One
of the typical multiagent applications is creating de-
sired formations. However, due to cost constraints on
any real swarm of autonomous agents, e.g., limited
computation capabilities, battery capacity, and sens-
ing capabilities, any efficient control approach needs
to take into account the energy consumption of each
agent. Moving agents into a desired formation has
been explored previously; however, creating this for-
mation while minimizing energy consumption is an
open problem.
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1.2. Related Work

Brambilla et al. [6] classified approaches to swarms
into two distinct groups, macroscopic, and micro-
scopic. Macroscopic approaches generate group be-
havior from a system of partial differential equations
which are spatially discretized and applied to indi-
vidual agents; this approach is fundamentally based
on work by Turing [7], and is used extensively in
bio-inspired formation and pattern forming [8]. Our
approach is microscopic; that is, we control the be-
havior of individual agents to achieve some desired
global outcome. Microscopic approaches are based
on the seminal work by Reynolds [9], which applied
an agent-based method to capture the flocking be-
havior of birds.

There is a rich literature on the creation of a de-
sired formation, such as the construction of rigid for-
mations from triangular sub-structures [10, 11], for-
mation algorithms inspired by crystal growth [12],
and growing swarm formations in a lattice structure
[13]. It is also possible to build formations using only
scalar, bearing, or distance measurements to move
agents into a desired formation [14, 15]. Olfati-Saber
et al. [16] proved that many formation problems may
be solved by applying a modified form of the ba-
sic consensus algorithm. However, none of these ap-
proaches consider the energy cost to individual agents
in the swarm.

A significant amount of work has applied optimiza-
tion methods to designing potential fields for agent
interaction [17, 18, 19, 20, 21]. However, these ap-
proaches optimize the shape of the potential field and
do not consider the energy consumption of individual
agents. Previous work by Turpin et al. [22] has gener-
ated optimal assignments using a centralized planner.
Other approaches require global information about
the system (e.g., [22] requires globally unique assign-
ments a priori, [23] requires the graph diameter of the
system, and [24] imposes global “seed” agents on the
swarm).

Our approach is decentralized, and thus, each
agent may only partially observe the entire system
state. The latter results in a non-classical informa-
tion structure and many techniques for solving cen-
tralized systems do not hold [25]. To address this

problem, one may impose a priority ordering on the
agents. This has been achieved in previous work
through a centralized controller [26, 27]. In gen-
eral, finding an optimal ordering is NP-Hard, and
an optimal ordering is not always guaranteed to exist
[28]. To reduce the complexity of ordering agents,
much work has been done to decentralize the or-
dering problem, including applying discretized path-
based heuristics [29], and reinforcement learning [30].
In contrast, our approach introduces a decentralized
method of dynamically ordering agents that is path
independent and relies only on information directly
observable by each agent.

Our approach only requires agents to make par-
tial observations of the entire system. This may lead
to performance degradation relative to a centralized
controller with global knowledge. However, this is
a fundamental feature of decentralized control prob-
lems in general [31]. Other efforts have attempted
to circumvent this issue with information sharing, ei-
ther directly [25] or through decentralized auction-
ing [23]. However, these approaches tend to require
knowledge of the global communication graph, long
delays before decisions are made, or both. In con-
trast, we embrace partial observability of the system
and exploit it to reduce the computational load on
each individual agent.

The main contributions of this paper are: (1) a de-
centralized set of interaction dynamics, which impose
a priority order on agents in a decentralized manner,
(2) an assignment algorithm that exploits the uncon-
strained optimal trajectory of the agents, (3) guar-
antees on the stability of the proposed control policy,
and (4) optimality conditions for the fully constrained
collision avoidance problem in R2, as well as a locally
optimal solution in the form of nonlinear algebraic
equations.

1.3. Organization of This Paper

The remainder of this paper proceeds as follows.
In Section 2, we formulate the decentralized opti-
mal control problem, and we decompose it into the
coupled assignment and trajectory generation sub-
problems. In Section 3, we present the conditions
which guarantee system convergence along with the
assignment problem. Then, in Section 4, we prove



that these conditions are satisfied by our framework
and solve the optimal trajectory generation problem.
Finally, in Section 5, we present a series of MAT-
LAB simulations to show the performance of the algo-
rithm, and we presented concluding remarks in Sec-
tion 6.

2. PROBLEM FORMULATION

We consider a swarm of N ∈ N autonomous agents
indexed by the set A = {1, . . . , N}. Our objective is
to design a decentralized control framework to move
the N agents into M ∈ N goal positions, indexed by
the set F = {1, . . .M}. We consider the case where
N ≤M , i.e., no redundant agents are brought to fill
the formation. This requirement can be relaxed by
defining a behavior for excess agents, such as idling
[32]. Each agent i ∈ A follows double-integrator dy-
namics,

ṗi(t) = vi(t), (1)

v̇i(t) = ui(t), (2)

where pi(t) ∈ R2 and vi(t) ∈ R2 are the time-varying
position and velocity vectors respectively, and ui(t) ∈
R2 is the control input (acceleration/deceleration)

over time t ∈ [t0i , t
f
i ], where t0i is the initial time for

agent i and tfi ∈ R>0 is the terminal time for agent i.
Additionally, each agent’s control input and velocity
are bounded by

vmin ≤ ||vi(t)|| ≤ vmax, (3)

umin ≤ ||ui(t)|| ≤ umax, (4)

where || · || is the Euclidean norm. Thus, the state of
each agent i ∈ A is given by the time-varying vector

xi(t) =

[
pi(t)
vi(t)

]
, (5)

and we denote the global (system) state as

x(t) =

x1(t)
. . .

xN (t)

 . (6)

The energy consumption of any agent i ∈ A is
given by

Ėi(t) =
1

2
||ui(t)||2. (7)

We select the L2 norm of the control input
as our energy model since, in general, accelera-
tion/deceleration requires more energy than applying
no control input. Therefore, we expect that minimiz-
ing the acceleration/deceleration of each agent will
yield a proportional reduction in energy consump-
tion.

Our objective is to develop a decentralized frame-
work for the N agents to optimally, in terms of en-
ergy, create any desired formation of M points while
avoiding collisions between agents.

Definition 1. The desired formation is the set of
time-varying vectors G = {p∗j (t) ∈ R2 | j ∈ F}. The
set G can be prescribed offline, i.e., by a human de-
signer, or online by a high-level planner.

In this framework, the agents are cooperative and
capable of communication within a neighborhood,
which we define next.

Definition 2. The neighborhood of agent i ∈ A is
the time-varying set

Ni(t) =
{
j ∈ A

∣∣∣ ∣∣∣∣pi(t)− pj(t)
∣∣∣∣ ≤ h},

where h ∈ R is the sensing and communication hori-
zon of each agent.

Agent i ∈ A is also able to measure the relative po-
sition of any neighboring agent j ∈ Ni(t), i.e., agent
i makes partial observations of the global state. We
denote the relative position between two agents i and
j by the vector

sij(t) = pj(t)− pi(t). (8)

Each agent i ∈ A occupies a closed disk of radius
R; hence, to guarantee safety for agent i we impose
the following constraints for all agents i ∈ A, j ∈
Ni(t), j 6= i,

||sij(t)|| ≥ 2R, ∀t ∈ [t0i , t
f
i ], (9)

h >> 2R. (10)



Condition (9) is our safety constraint, which ensures
that no two agents collide. We also impose the strict
form of (9) pairwise to all goals in the desired for-
mation, G. Equation (10) is a system-level constraint
which ensures agents are able to detect each other
prior to a collision.

In our modeling framework we impose the following
assumptions:

Assumption 1. The state xi(t) for each agent i ∈ A
is perfectly observed and there is negligible commu-
nication delay between the agents.

Assumption 1 is required to evaluate the idealized
performance of the generated optimal solution. In
general, this assumption may be relaxed by formulat-
ing a stochastic optimal control problem to generate
agent trajectories.

Assumption 2. The energy cost of communication
is negligible; the only energy consumption is in the
form of (7).

The strength of this assumption is application de-
pendent. For cases with long-distance communica-
tions or high data rates, the trade-off between com-
munication and motion costs can be controlled by
varying the sensing and communicating radius, h, of
the agents.

To solve the desired formation problem, we first
relax the inter-agent collision avoidance constraint to
decouple the agent trajectories. This decoupling re-
duces the problem from a single mixed-integer pro-
gram to a coupled pair of binary and quadratic pro-
grams, which we solve sequentially. This decoupling
is common in the literature [22, 23], and usually does
not affect the outcome of the assignment problem.

Next, we present some preliminary results before
decomposing the desired formation problem into the
two subproblems, minimum-energy goal assignment
and trajectory generation.

2.1. Preliminaries

First we consider that any agent i ∈ A obeys
double-integrator dynamics, (1) - (2), and has an en-
ergy model with the form of (7).Then, we let the

state and control trajectories of agent i be uncon-
strained, i.e., relax (3), (4), and (9). In this case,
if i is traveling between two fixed states, the uncon-
strained minimum-energy trajectory is given by the
following system of linear equations:

ui(t) = ai t+ bi, (11)

vi(t) =
ai
2
t2 + bi t+ ci, (12)

pi(t) =
ai
6
t3 +

bi
2
t2 + ci t+ di, (13)

where ai,bi, ci, and di are constant vectors of inte-
gration. The derivation of (11) - (13) is straightfor-
ward and can be found in [33].

Thus, the energy consumed for any unconstrained
trajectory of agent i ∈ A at time t traveling towards
the goal j ∈ F is given by

Eji (t) =

∫ tfi

t

||ui(τ)||2 dτ = (t3f − t3)
(a2i,x + a2i,y

3

)
+ (t2f − t2)

(
ai,x bi,x + ai,y bi,y

)
+ (tf − t)

(b2i,x + b2i,y
2

)
, (14)

where t ∈ [t0i , t
f
i ], and ai = [ai,x, ai,y]T , bi =

[bi,x, bi,y]T are the coefficients of (11).
Next, we present the interaction dynamics between

agents. To resolve any conflict between agents, we
consider the following objectively measurable con-
stants: 1) neighborhood size, 2) energy required to
reach a goal, and 3) agent index, which may be arbi-
trarily assigned. Each of these quantities has an as-
sociated indicator function for comparing two agents
i, j ∈ A, j 6= i,

1
N
ij (t) :=

{
1 |Ni(t)| > |Nj(t)|,
0 |Ni(t)| ≤ |Nj(t)|,

(15)

1
E
ij(t) :=

{
1 Ei(t) > Ej(t),

0 Ei(t) ≤ Ej(t),
(16)

1
A
ij(t) :=

{
1 i > j,

0 i < j.
(17)

Next, we define the interaction dynamics by combin-
ing (15) - (17) into a single indicator function.



Definition 3. We define the interaction dynam-
ics between any agent i ∈ A and another agent
j ∈ Ni(t), j 6= i as

1
C
ij(t) = 1

N
ij (t) +

(
1− 1Nij (t)

)(
1− 1Nji (t)

)(
1
E
ij(t) +

(
1− 1Eij(t)

)(
1− 1Eji(t)

)
1
A
ij(t)

)
,

(18)

where 1Cij = 1 implies agent i has priority over agent

j, and 1
C
ij = 0 implies that agent j has priority over

agent i.

The interaction dynamics are instantaneously and
noiselessly measured and communicated by each
agent under Assumption 1. Whenever two agents
have a conflict (i.e., share an assigned goal, or have
overlapping assignments) (18) is used to impose an
order on the agents such that higher priority agents
act first.

Remark 1. For any pair of agents i ∈ A, j ∈
Ni(t), j 6= i, it is always true that 1Cij(t) = 1−1Cji(t),
i.e., the outcome of the interaction dynamics (18) is
always unambiguous, and therefore it imposes an or-
der on any pair of agents.

Remark 1 can be proven by simply enumerating all
cases of (15) - (17).

3. Optimal Goal Assignment

The optimal solution of the assignment problem
must assign each agent to a goal such that the to-
tal unconstrained energy cost, given by (14), is min-
imized. In our framework, each agent i ∈ A only
has information about the positions of its neighbors,
j ∈ Ni(t), and the goal positions prescribed by G.
Agent i derives the goal assignment using a binary
matrix Ai(t), which we define next.

Definition 4. For each agent i ∈ A, we define the
assignment matrix, Ai(t), as an |Ni(t)| ×M matrix
with binary elements. The elements of Ai(t) map
each agent to exactly one goal, and each goal to no
more than one agent.

The assignment matrix for agent i ∈ A assigns
all agents in Ni(t) to goals by considering the cost
(14). We discuss the details of the optimal assign-
ment problem later in this section.

Next we define the prescribed goal, which deter-
mines how each agent i ∈ A assigns itself a goal.

Definition 5. We define the prescribed goal for agent
i ∈ A as the goal assigned to agent i by the rule,

pai (t) ∈
{
pk ∈ G | aik = 1, aik ∈ Ai(t), k ∈ F

}
,

(19)
where Ai(t) is the assignment matrix, and the right
hand side is a singleton set, i.e., agent i is assigned
to exactly one goal.

Next, we present the goal assignment algorithm in
terms of some agent i ∈ A. However, as this frame-
work is cooperative, each step is performed by all
individuals simultaneously.

In some cases, multiple agents may select the same
prescribed goal. This may occur when two agents
i ∈ A, j ∈ Ni(t), j 6= i have different neighborhoods
and use conflicting information to solve their local
assignment problem. This motivates the introduction
of competing agents, which we define next.

Definition 6. For agent i ∈ A, we define the set of
competing agents as

Ci(t) =
{
k ∈ Ni(t) | pak(t) = pai (t)

}
.

When
∣∣Ci∣∣ > 1 there are at least two agents,

i, j ∈ Ni(t) which are assigned to the same goal. In
this case, all but one agent in Ci(t) must be perma-
nently banned from the goal pai (t). Next, we define
the banned goal set.

Definition 7. The banned goal set for agent i ∈ A
is defined as

Bi(t) =
{
g ∈ F

∣∣∣ pai (τ) = pg(τ) ∈ G,( ∏
j∈Ci(τ),j 6=i

1
c
ij(τ)

)
= 0, ∃ τ ∈ [t0i , t]

}
, (20)

i.e., the set of all goals which agent i ∈ A had a
conflict over and did not have priority per Definition
3.



Banning is achieved by applying (20) to all agents
j ∈ Ci(t) whenever |Ci(t)| > 1. After the banning
step is completed, agent i ∈ A checks if the size of
Bi(t) has increased. If so, agent i increases the value

of tfi by

tfi = t+ T, (21)

where t is the current time, and T ∈ R>0 is a system
parameter. This allows agent i a sufficient amount of
time to reach its new goal.

Next, each agent broadcasts its new set of banned
goals to all of its neighbors. Any agent who was
banned from Ci(t) assigns itself to a new goal. How-
ever, this may cause new agents to enter Ci(t) as they
are banned from other goals. To ensure each agent
j ∈ Ni(t) is assigned to a unique goal, the assignment
and banning steps are iterated until the condition∣∣Cj(t)∣∣ = 1, ∀j ∈ Ni(t), (22)

is satisfied. For a given neighborhood Ni(t), i ∈ A,
some number of agents will be assigned to the goal
g ∈ F . After the first banning step, all agents except
the one which was assigned to goal g are permanently
banned and may never be assigned to it again. If
additional agents are assigned to g, then this process
will repeat for at most N − 1 iterations. Afterwards
every goal g will have at most one agent from Ni(t)
assigned to it. Thus, we will have |Cj(t)| = 1 for all
j ∈ Ni(t) for every i ∈ A.

We enforce the banned goals through a constraint
on the assignment problem, which follows.

Problem 1 (Goal Assignment). Each agent i ∈ A
selects its prescribed goal (Definition 5) by solving
the following binary program

min
ajk∈Ai

{ ∑
j∈Ni(t)

∑
k∈F

ajkE
k
j (t)

}
(23)

subject to:∑
j∈F

ajk = 1, k ∈ Ni(t), (24)

∑
k∈Ni(t)

ajk ≤ 1, j ∈ F , (25)

ajk = 0, ∀ j ∈ Bk(t), k ∈ Ni(t), (26)

ajk ∈ {0, 1}.

This process is repeated by each agent, i ∈ A, until
(22) is satisfied for all j ∈ Ni(t).

As the conflict condition in Problem 1 explicitly de-
pends on the neighborhood of agent i ∈ A, Problem 1
may need to be recalculated each time the neighbor-
hood of agent i switches. The assignments generated
by Problem 1 are guaranteed to bring each agent to
a unique goal; we show this with the help of Assump-
tion 3 and Lemma 1.

Assumption 3. For every agent i ∈ A, for all t ∈
[t0i , t

f
i ], the inequality

∣∣(F \⋃j∈Ni(t)
Bj(t)

)
≥ |Ni(t)|

holds.

Assumption 3 is a condition that is sufficient but
not necessary to prove convergence of our proposed
optimal controller. Intuitively, Assumption 3 only
requires that one agent does not ban many agents
from many goals. Due to the minimum-energy na-
ture of our framework, this scenario is unlikely; addi-
tionally, permanent banning may be relaxed to tem-
porary banning in a way that Assumption 3 is always
satisfied.

Lemma 1 (Solution Existence). Under Assumption
3, the feasible region of Problem 1 is nonempty for
agent i.

Proof. Let the set of goals available to all agents in
the neighborhood of agent i ∈ A be denoted by the
set

Li(t) = {p ∈ F | p 6∈ Bj(t), ∀j ∈ Ni(t)}. (27)

Let the injective function w : A → F map each
agent to a goal. By Assumption 3, |Ni(t)| ≤ |Li(t)|,
thus a function w exists. As w is injective, the im-
posed mapping must satisfy (24) and (25). Likewise,
Li(t)

⋂
Bj(t) = ∅ for all j ∈ Ni(t). Thus, w must

satisfy (26). Therefore, the mapping imposed by the
function w is a feasible solution to Problem 1.

Next, we show that for a sufficiently large value of
T the convergence of all agents to goals is guaranteed.

Theorem 1 (Assignment Convergence). Under As-
sumption 3, for sufficiently large values of the initial
tfi and T , and if the energy-optimal trajectories for



agent i ∈ A never increase the unconstrained energy
cost (14), then tfi must have an upper bound for all
i ∈ A.

Proof. Let {gn}n∈N be the sequence of goals assigned
to agent i ∈ A by the solution of Problem 1. By
Lemma 1, {gn}n∈N must not be empty, and the ele-
ments of this sequence are natural numbers bounded
by 1 ≤ gn ≤ M . Thus, the range of this sequence is
compact, and the sequence must be either (1) finite,
or (2) convergent, or (3) periodic.

1) For a finite sequence there is nothing to prove,

as tfi is upper bounded by tfi,initial +MT .

2) Under the discrete metric, an infinite convergent
sequence requires that there exists N ∈ N>0 such
that gn = p for all n > N for some formation index
p ∈ F . This reduces to case 1, as tfi does not increase
for repeated assignments to the same goal.

3) By the Bolzano-Weierstrass Theorem, an infinite
non-convergent sequence {gn}n∈N must have a con-
vergent subsequence, i.e., agent i is assigned to some
subset of goals I ⊆ F infinitely many times with
some constant number of intermediate assignments,
Pg, for each goal g ∈ I. Necessarily, I

⋂
Bi(t) = ∅

for all t ∈ [t0i , t
f
i ] from the construction of the banned

goal set. This implies that, by the update method
of tfi , the position of all goals, g ∈ I must only be

considered at time tfi .

This implies that the goals available to agent i, i.e.,
I = F \ Bi(tfi ), must be shared between n > 0 other
periodic agents. Hence, at some time t1 a goal, g ∈ I,
must be an optimal assignment for agent i, a non
optimal assignment at time t2 > t1 and an optimal
assignment again at time t3 which corresponds to the
Pg

th assignment. As t3 > t2 > t1, the energy required
to move agent i to goal g satisfies

Egi (t1) ≤ Eki (t1), (28)

Eki (t2) ≤ Egi (t2), (29)

Egi (t3) ≤ Eki (t3), (30)

for any other goal k ∈ I, k 6= g. Therefore, for agent
i to follow an energy optimal trajectory under our
premise, it must never increase the energy required

to reach is assigned goal, which implies

Egi (t1) ≥ Egi (t2), (31)

Eki (t2) ≥ Eki (t3), (32)

this implies
Eki (t1) ≥ Eki (t3), (33)

which is only possible if agent i simultaneously ap-
proaches all goals k ∈ I. This implies that goals g
and k are arbitrarily close, which violates the mini-
mum spacing requirements of the goals; therefore no
such periodic behavior may exist.

Note that Theorem 1 bounds the arrival time of
agent i ∈ A to any goal g ∈ F . A similar bound may
be found for the total energy consumed, i.e.,

Egi (t) ≤ 1

2
(tfi,initial +MT ) ·max

{
|umin|, |umax|

}2
.

Next, we formulate the optimal trajectory genera-
tion problem for each agent and prove that the result-
ing trajectories always satisfy the premise of Theorem
1.

4. Optimal Trajectory Generation

After the goal assignment is complete, each agent
must generate a collision-free trajectory to their as-
signed goal. The trajectories must minimize the
agent’s total energy cost subject to dynamic, bound-
ary, and collision constraints. The initial and final
state constraints for each agent i ∈ A are given by

pi(t
0
i ) = p0

i , vi(t
0
i ) = v0

i , (34)

pi(t
f
i ) = pai (tfi ), vi(t

f
i ) = ṗai (tfi ), (35)

where the conditions at tfi come from the solution of
Problem 1.

Whenever an agent must steer to avoid collisions,
we will apply the agent interaction dynamics (Defi-
nition 3) to impose an order on the agents such that
lower priority agents must steer to avoid the higher
priority ones. Thus, we may simplify the collision
avoidance constraint for agent i ∈ A to

||sij(t)|| ≥ 2R, ∀ j ∈ {k ∈ A | 1ik(t) = 0}, (36)

∀ t ∈ [t0i , t
f
i ],



which will always guarantee safety for all agents.
We may then formulate the decentralized optimal

trajectory generation problem.

Problem 2. For each agent i ∈ A, find the opti-
mal control input, ui(t), which minimizes the energy
consumption of agent i and satisfies its boundary con-
ditions and safety constraints.

min
ui(t)

1

2

∫ tfi

t0i

||ui(t)||2 dt (37)

subject to: (1), (2), (34), (35), and (36).

By imposing an order on the agents, we can show
that the solution of Problem 2 will always satisfy the
premise of Theorem 1. First, Lemma 2 shows that
an unconstrained trajectory must never increase the
energy required to reach a goal.

Lemma 2. For any agent i ∈ A, following the un-
constrained trajectory, the energy cost (14) required
to reach a fixed goal g ∈ F is not increasing.

Proof. We may write the derivative of (14) along an
unconstrained trajectory as

dEgi (t)

dt
= lim
δ→0

1

δ

(∫ tfi

t+δ

||ui(τ)||2dτ −
∫ tfi

t

||ui(τ)||2dτ

)

= − lim
δ→0

1

δ

∫ t+δ

t

||ui(τ)||2dτ, (38)

which is never positive. Therefore, (14) is never in-
creasing.

Next, we introduce Theorem 2, which proves the
premise of Theorem 1 is always satisfied by any tra-
jectory which is a feasible solution to Problem 2.

Theorem 2. If a solution to Problem 2 exists for
all agents, then Theorem 1 is satisfied as long as As-
sumption 3 holds.

Proof. The case when any agent i ∈ A is moving with
an unconstrained trajectory is covered by Lemma 2,
so we focus on the case when any of the safety con-
straints are active.

Let K ⊆ A be a group of agents which all have
their safety constraint active over some interval t ∈

[t1, t2]. By Definition 3, there exists some i ∈ K such
that 1

C
ij(t) = 1 for all j ∈ K, j 6= i. Therefore,

agent i satisfies Lemma 2 and always moves toward
its assigned goal by Theorem 1.

Next, consider agent j ∈ V \{i} such that 1cjk(t) =
1 for all k ∈ K \ {i}. As agent j may never be as-
signed to the same goal as i, there must exist some
time tj < min{tfi , t

f
j } such that |sij(tj)| > 2R by

the goal spacing rules. Thus, agent j will move with
an unconstrained trajectory for all t ∈ [tj , t

f
j ]. The

above steps can be recursively applied until only a
single agent remains, which follows an unconstrained
trajectory for some finite time interval. This satisfies
the premise of Theorem 1.

4.1. Hamiltonian Analysis

We solve Problem 2 by applying Hamiltonian anal-
ysis. We will follow the standard methodology used
in optimal control theory for problems with interior
point constraints. First, we start with the uncon-
strained solution, given by (11) - (13). If this solution
violates the state, control, or safety constraints, we
piece it together with solutions corresponding to the
violated constraint. These two arcs yield a set of al-
gebraic equations that must be solved simultaneously
using the boundary conditions (34) and (35) and in-
terior conditions between the arcs. If the resulting
trajectory, which includes the optimal switching time
between the arcs, still violates any constraints, the
new solution must be pieced together with a third arc
corresponding to the new violated constraint. This
process is repeated until no constraints are violated,
which yields the energy-optimal state trajectory for
each agent i ∈ A.

The case where only the control and state con-
straints become active has been extensively studied
in [33]. Thus, we will relax the state and control con-
straints and only consider the safety constraint in this
section. Next, we analyze the case where the collision
avoidance constraint becomes active.

First, the safety constraint (9) must be derived un-
til the control input ui(t) appears. To ensure smooth-
ness in the derivatives we use the equivalent squared



form of (9). This yields

Ni

(
t,xi(t)

)
=

 4R2 − sij(t) · sij(t)
−sij(t) · ṡij(t)

−sij(t) · s̈ij(t)− ṡij(t) · ṡij(t)

 ≤ 0,

(39)
where the first two elements of Ni(t) are the tangency
conditions which must be satisfied at the start of a
constrained arc, while the third element is augmented
to the unconstrained Hamiltonian. The Hamiltonian
is

Hi =
1

2
||ui(t)||2 + λpi (t) · vi(t) + λvi (t) · ui(t)

−
∑
j∈Ni

µij(t)
(
sij(t) · s̈ij(t) + ṡij(t) · ṡij(t)

)
, (40)

where λpi (t),λ
v
i (t) are the position and velocity co-

vectors, and µij(t) is an inequality Lagrange multi-
plier with values

µij(t) =

{
> 0 if sij(t) · s̈ij(t) + ṡij(t) · ṡij(t) = 0,

0 if sij(t) · s̈ij(t) + ṡij(t) · ṡij(t) > 0.

(41)

To solve (40) for agent i ∈ A, we consider two
cases:

1. all agents j ∈ Ni(t) satisfy µij = 0, and
2. any agent j ∈ Ni(t) satisfies µij > 0.

This results in a piecewise trajectory, where the
first case corresponds to following an unconstrained
trajectory, while the second corresponds to some col-
lision avoidance constraints becoming active. Our
task is to derive the form of the constrained arcs, then
optimally piece the constrained and unconstrained
arcs together. This will result in the optimal tra-
jectory for agent i.

Next, we present the solution to the constrained
case and the optimal time to transition between the
two cases.

4.2. Constrained Solution

As with the assignment problem, the constrained
solution is presented in terms of some agent i ∈ A.
However, the steps given here are performed simul-
taneously by all agents. First, we define the conflict
set.

Definition 8. We define the conflict set for agent
i ∈ A at time t ∈ [t0i , t

f
i ] as

Vi(t) =
{
j ∈ Ni(t)

∣∣ µij(t) > 0,1cij = 0
}
, (42)

i.e., the set of all agents which i may collide with and
have a higher priority than agent i.

Agent i must then steer to avoid all agents j ∈
Vi(t). To solve for the constrained trajectory we
introduce Lemma 3, which considers the case when
|Vi(t)| > 1.

Lemma 3 (Collision-Avoidance Constraints). Let
any agent i ∈ A be moving along a collision con-
strained arc such that |Vi(t)| > 1. Then, only feasible
trajectory for agent i is to remain in contact with all
agents j ∈ Vi(t) until agent i exits this constrained
arc. This unique trajectory is therefore optimal.

Proof. For any two agents j, k ∈ Vi(t) we have
||sij(t)|| = 2R and ||sik|| = 2R. This implies that
the points pi(t), pj(t), and pk(t) must form an isosce-
les triangle with two edges of length 2R and base of
length 2R ≤ ||sjk(t)|| ≤ 4R. Therefore, the only fea-
sible trajectory of agent i is to maintain the isosceles
triangle between i, j,, and k. As this is the only one
feasible trajectory for agent i, it must be the optimal
trajectory.

Note that Lemma 3 holds for a single constrained
arc. As such, agent i ∈ A may exit to a different
constrained arc with a new set Vi(t) or may exit to
an unconstrained arc.

Next we consider the case where agent i moves
along a constrained arc with |Vi(t)| = 1. First, we
use the Euler-Lagrange conditions to obtain,

∂Hi

∂ui
= 0, (43)

−λ̇i =
∂Hi

∂xi
. (44)

Application of (43) to (40) yields

ui(t) = −λvi (t)−
∑

j∈Vi(t)

µij(t) sij(t), (45)



while (44) results in

−λ̇pi (t) =
∑

j∈Vi(t)

µij(t) s̈ij(t), (46)

−λ̇vi (t) = λpi +
∑

j∈Vi(t)

µij(t) ṡij(t). (47)

As |Vi(t)| = 1, the optimality condition and Euler-
Lagrange equations become

ui(t) = −λvi (t)− µij(t) sij(t), (48)

−λ̇pi (t) = µij(t) s̈ij(t), (49)

−λ̇vi (t) = λpi + µij(t) ṡij(t), (50)

where j ∈ Vi(t). We denote the relative speed be-
tween two agents i and j as

aij(t) = ||ṡij(t)||. (51)

Next, we define a new orthonormal basis for R2.

Definition 9. For an agent i ∈ A satisfying
∣∣Vi(t)∣∣ =

1, over some nonzero interval t ∈ [t1, t2], where
aij(t) 6= 0, we define the contact basis as

p̂ij(t) =
sij(t)

||sij(t)||
=

sij(t)

2R
, (52)

q̂ij(t) =
ṡij(t)

||ṡij(t)||
=

ṡij(t)

aij(t)
, (53)

where p̂ij(t) · q̂ij(t) = 0 by (39), and both vectors
are unit length. Thus, (52) and (53) constitute an
orthonormal basis for R2.

Next, we find the projection of s̈ij(t) onto the new
contact basis. From (39) we have

s̈ij(t) · p̂ij(t) = s̈ij(t) ·
sij(t)

2R
=
−a2ij(t)

2R
. (54)

We apply integration by parts to find the q̂ij(t) com-
ponent of s̈ij(t). First,∫

s̈ij(t) · ṡij(t) dt = ṡij(t) · ṡij(t)−
∫

s̈ij(t) · ṡij(t) dt,

(55)

which implies∫
s̈ij(t) · ṡij(t) dt =

1

2
ṡij(t) · ṡij(t) =

1

2
a2ij(t). (56)

Taking a time derivative of (56) yields

s̈ij(t) · ṡij(t) = aij(t)ȧij(t). (57)

Next we present Theorem 3, which gives the opti-
mal trajectory for agent i whenever aij(t) = 0 over
any nonzero interval while the safety constraint is ac-
tive.

Theorem 3. For any agents i ∈ A and j ∈ Vi(t),
if aij(t) = 0 over some nonzero interval t ∈ [t1, t2],
then the optimal trajectory for agent i is to follow
ui(t) = uj(t) for all t ∈ [t1, t2).

Proof. By definition we have aij(t) = |ṡij(t)| = 0.
This implies ṡij(t) = 0, and therefore vj(t) = vi(t)
for all t ∈ [t1, t2]. Thus ui(t) = uj(t) for all t ∈
[t1, t2).

Thus, for any agent i ∈ A which has an active
safety constraint with some agent j ∈ Vi(t), Theorem
3 provides the optimal control input for agent i in the
case that aij(t) = 0 over a nonzero time interval. If
aij(t) = 0 for at single instant t ∈ R, then the optimal
solution at that instant must enforce continuity of
aij(t) and the constraint sij(t) · sij(t) = 4R2.

Finally, we may project the dynamics of agent i
onto the basis given in Definition 9 and solve for the
optimal trajectory when aij(t) 6= 0. Next, we will use
(54) and (57) to project s̈ij(t) onto the contact basis,

s̈ij(t) =

[
−a

2
ij(t)

2R
ȧij(t)

]
·
[
p̂ij(t)
q̂ij(t)

]
, (58)

which we use to solve for the time derivatives of (52)
and (53). First,

d

dt
p̂ij(t) =

ṡij(t)

2R
=
a(t)

2R
q̂ij(t). (59)



Then, by the quotient rule,

d

dt
q̂ij(t) =

s̈ij(t) aij(t)− ṡij(t) ȧij(t)

a2ij(t)

=
aij(t)

(
− a2(t) 1

2R p̂ij(t) + ȧij(t)q̂ij(t)
)

a2ij(t)

− ṡij(t) ȧij(t)

a2ij(t)

= −aij(t)
2R

p̂ij(t). (60)

From (8), we may now write s̈ij(t) projected on to
the contact basis (Definition 9) as

s̈ij(t) = uj(t) + λvi (t) + µi(t)sij(t)

=
(
uj(t) + λvi (t)

)[p̂ij(t)
q̂ij(t)

]
+ µi(t)

[
2R
0

]
.

(61)

Next, we set (58) equal to (61) and rewrite it as a
system of scalar equations,

λvi (t) · p̂ij(t) = −
a2ij(t)

2R
− 2R µij(t)− uj(t) · p̂ij(t),

(62)

λvi (t) · q̂ij(t) = ȧij(t)− uj(t) · q̂ij(t). (63)

Taking the time derivative of (62) yieds

aij(t)

2R
λvi (t) · q̂ij(t) + λ̇vi (t) · p̂ij(t) = −aij(t)ȧij(t)

R

−2Rµ̇ij(t)− u̇j(t) · p̂ij(t)−
aij(t)

2R
uj(t) · q̂ij(t).

(64)

We then substitute (50) and (63) into (64), which
yields

λpi (t) · p̂ij(t) =
3aij(t)ȧij(t)

2R
+ 2Rµ̇ij(t)

+ u̇j(t) · p̂ij(t). (65)

Taking a time derivative of (63) yields,

−aij(t)
2R

λvi (t) · p̂ij(t) + λ̇vi (t) · q̂ij(t) = äij(t)

−u̇j(t) · q̂ij(t) +
aij(t)

2R
uj(t) · p̂ij(t), (66)

and substituting (50) and (62) into (66), yields

λpi · q̂ij(t) = u̇j(t) · q̂ij(t)− äij(t) +
a3ij(t)

4R2
. (67)

We then take an additional time derivative of (65)
and (67). This yields

λ̇pi (t) · p̂ij(t) = −aij(t)
2R

λpi (t) · q̂ij(t)

+
3

2R
(ȧ2ij(t) + aij(t)äij(t)) + 2Rµ̇ij(t)

+
aij(t)

2R
u̇j(t) · q̂ij(t) + üj(t)p̂(t),

(68)

λ̇pi (t) · q̂ij(t) =
aij(t)

2R
λpi (t) · p̂ij(t)

− ...
a ij(t) +

3

4R2
a2ij(t)ȧij(t)

− aij(t)

2R
u̇j(t) · p̂ij(t) + üj(t) · q̂(t).

(69)

Substituting (49), (65), and (67) into (68) and (69)
yields a system of nonlinear ordinary differential
equations,

a2ij(t)

2R
µij(t) +

a4ij(t)

8R3
= 2Rµ̇ij(t) +

4

2R
aij(t)äij(t)

+
3

2R
ȧij(t) + üj(t) · p̂ij(t),

(70)

aij(t)µ̇ij(t) + ȧij(t)µij(t) + üj(t) · q̂ij(t)

+
6

4R2
a2ij(t)ȧij(t) =

...
a ij(t).

(71)

Thus, for any constrained trajectory to be energy-
optimal, it must be a solution of (70) and (71). In
general, finding a solution is rare, since both equa-
tions are nonlinear and (71) is third order. There-
fore, our approach will be to impose ȧij(t) = 0 over
the constraint arc, which is a locally optimal trajec-
tory per Theorem 3.

Thus, the remaining unknown quantities are: the
junction time when agent i transitions from the un-
constrained to constrained arc, t1, the junction time



that agent i exits from the constrained arc, t2, and
the initial orientation of the vector sij(t1). These
quantities are coupled to the proceeding and follow-
ing unconstrained arcs by the jump conditions [34],

xi(t
−
1 ) = xi(t

+
1 ), (72)

λTi (t−1 ) = λTi (t+1 ) + νTi
∂Ni

(
t,xi(t)

)
∂x(t)

∣∣∣∣∣
t=t1

, (73)

H(t−1 ) = H(t+1 ) + νTi
∂Ni

(
t,xi(t)

)
∂t

∣∣∣∣∣
t=t1

, (74)

H(t−2 ) = H(t+2 ), (75)

xi(t
−
2 ) = xi(t

+
2 ), (76)

λi(t
−
2 ) = λi(t

+
2 ), (77)

where the superscripts t− and t+ correspond to the
left and right-side limits of t, respectively. Thus, t−1
and t+2 correspond to the unconstrained arcs at the
junctions t1 and t2. Likewise, t+1 and t−2 correspond
to the junctions where agent i enters and exits the
constrained arc, respectively. The constant vector νi
is given by [34]

νi =

[
− ui(t

−
1 )·ui(t

−
1 )

2(sij(t
−
1 )·vi(t

−
1 ))

0

]
. (78)

For the case when agent i’s trajectory has only
a single constrained arc, (72) - (77) coupled with
the initial and final conditions, (35) and (34), con-
stitute 26 scalar equations to solve for the 26 un-
knowns (8+8+8 constants of integration + 2 transi-
tion times). When additional constrained arcs be-
come active, additional jump conditions must be
computed using (72) - (77). The entire system of
equations is then solved simultaneously to yield the
energy-optimal trajectory for agent i.

4.3. The Full Solution to Problem 2

So far, we have provided the unconstrained and
safety-constrained arcs with a relaxation of the state
and control constraints. An extension to the fully-
constrained case for agent i ∈ A is straightforward,
and the solution for every possible case is outlined
below.

1. No constraints are active: Agent i will follow an
unconstrained trajectory.

2. Only one safety constraint is active: Agent i will
follow the trajectory outlined in Section 4.2.

3. More than one safety constraint is active: By
Lemma 3, the unique trajectory of agent i will
be defined by the active constraints.

4. Only one state/control constraint is active: This
reduces to a steering problem, where agent i fol-
lows a known velocity profile and must arrive at
a target state along a minimum-energy path [35].

5. One safety and one state/control constraint are
active: Agent i must follow the path imposed
by the safety constraint with a speed profile de-
termined by the state/control constraint. The
unique solution to this problem is, therefore, op-
timal.

The state trajectory of agent i ∈ A must be a
piecewise-continuous function consisting of the five
possible cases. These segments are then pieced to-
gether using the optimality conditions. We presented
the optimality conditions for collision avoidance in
Section 4.2; the conditions for the state and control
constraints are derived in [33] and [34].

5. Simulation Results

To provide insight into the behavior of the agents, a
series of simulations were performed with M = N =
10 agents and a time parameter of T = 10 s. The
simulations were run for t = 20 s or until all agents
reach their assigned goal, whichever occurred later.
The center of the formation moved with a velocity
of vcg = [0.15, 0.35] m/s; the leftmost and rightmost
three goals each move with an additional periodic ve-
locity of [0.125 cos 0.75t, 0] m/s relative to the forma-
tion. Videos of the simulation results can be found
at https://sites.google.com/view/ud-ids-lab/

omas.
The minimum separating distance between agents,

total energy consumed, and maximum velocity for
the unconstrained solutions to Problem 2 are all given
as a function of the horizon in Table 1. The energy
consumption only considers the energy required to
reach the goal, which, in this case, was significantly

https://sites.google.com/view/ud-ids-lab/omas
https://sites.google.com/view/ud-ids-lab/omas
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Figure 1: Simulation result for the centralized case. Goals
which minimize the unconstrained trajectories are assigned to
the agents once at t0i .

lower than the energy required to maintain the for-
mation. The trajectory of each agent over time is
given in Figures 1–3 for varying sensing horizon val-
ues. Although the trajectories may appear to cross
in Figures 1–3, they are only crossing in space and
not in time.

The performance of our algorithm is strongly af-
fected by how much information is available to each
agent. This is a function of the sensing horizon, ini-
tial states of the agents, and the desired formation
shape. Generally, better overall performance requires
the agents to have more information. However, it is
not apparent what information is necessary; in fact,
the results in Table 1 generally show no correlation
between energy consumption and sensing horizon.

The trade-off for more information is in the com-
putational and sensing load imposed on each agent.
As an agent observes more of the system (via sens-
ing, communication, or memory), the computational
burden to solve the assignment and trajectory gener-
ation problems also increases. However, this compu-
tational cost does not necessarily result in improved
system performance, as demonstrated in Table 1.

Table 1: Numerical results for N=10 agents and M=10 goals
for various sensing distances.

h [m] min. separation energy tf Total Bans
[cm] [J/kg] [s]

∞ 25.25 0.85 20 0
1.60 1.64 1.10 20 4
1.50 1.60 1.17 20 24
1.40 2.01 1.96 23.3 31
1.30 0.33 1670 26.05 36
1.20 0.65 866 25.35 34
1.10 1.05 5370 26.85 40
1.00 1.96 7609 30.65 35
0.95 3.12 3149 25.05 27
0.75 1.37 6.87 20 35
0.50 0.27 692.0 26.65 35

6. Conclusion

In this paper, we proposed a decentralized frame-
work for moving a group of autonomous agents into
a desired formation. The only information required
a priori is the positions of the goals in a global co-
ordinate frame. We provided guarantees of conver-
gence under Assumption 3. Our method leveraged
a set of agent interaction dynamics, which allowed
a decentralized calculation of the priority order for
agents. We also derived local energy-optimal trajec-
tories for constrained and unconstrained paths and
presented the conditions for optimality in the form
of a boundary-value nonlinear ordinary differential
equation. The resulting optimal controller was vali-
dated in MATLAB using ten agents and ten dynamic
moving goals with varying values of the sensing ra-
dius.

One area for future research is finding a relaxation
of Assumption 3 or another fundamental condition to
replace it. Deriving additional locally-optimal solu-
tions to (70) and (71) is another research direction.
A relaxation of the jump conditions to find approxi-
mately optimal trajectories that can be generated in
real-time is another area which is under active re-
search [36]. Finally, analysis of the system parame-
ter T using the fully constrained agent trajectories is
another potential direction for future research. This
includes methods to optimally select T or to estimate
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Figure 2: Simulation result for h = 1.30 m. The agents do not
start with a globally unique assignment, and several agents
must re-route partway through the simulation. Although the
trajectories cross in space they do not cross in time.

its magnitude based on the state and observations of
each agent.
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